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MULTIVARIATE UTILITY MAXIMIZATION WITH
PROPORTIONAL TRANSACTION COSTS AND RANDOM
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Abstract. In this paper we deal with a utility maximization problem at finite horizon on a
continuous-time market with conical (and time varying) constraints (particularly suited to modeling
a currency market with proportional transaction costs). In particular, we extend the results in
[L. Campi and M. Owen, Finance Stoch., 15 (2011), pp. 461–499] to the situation where the agent is
initially endowed with a random and possibly unbounded quantity of assets. We start by studying
some basic properties of the value function (which is now defined on a space of random variables),
and then we dualize the problem following some convex analysis techniques which have proven very
useful in this field of research. We finally prove the existence of a solution to the dual and (under an
additional boundedness assumption on the endowment) to the primal problem. The last section of
the paper is devoted to an application of our results to utility indifference pricing.
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1. Introduction. We place ourselves in the framework of a continuous-time
market with proportional transaction costs as described in [CO11] and [CS06]. The
agent’s objective is to maximize utility at a fixed terminal date T by trading in the
available assets. The model is very general, as it allows the portfolio process to be
driven by any cone-valued process, provided it satisfies some regularity assumptions.
In the most common version of the model, the cones are generated by the evolution of
bid-ask prices (which may possibly have jumps) and therefore they describe market
frictions due to transaction costs. Also in this framework, the model preserves a great
generality as the modeling of bid-ask prices does not pass through asset prices and
transaction costs dynamics separately. This approach, based on the key concept of
solvency cones, was first introduced in [Kab99] and has been further developed by
many authors in the last decade (for more details, see the recent book [KS09] and the
references therein).

The agent’s preferences are described by a multivariate utility function (see sec-
tion 2.2) supported on R

d
+, reflecting the idea that the agent will not necessarily

liquidate positions to a single numeraire at the final date (which is realistic, in par-
ticular, on a currency market). We also make the following assumptions.

Assumption 1.1. The utility function U : Rd → [−∞,∞) satisfies the following
conditions:

(i) U is measurable;
(ii) U is strictly concave on the interior of Rd

+;
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(iii) U is essentially smooth, and its gradient diverges at the boundary of Rd
+ (see

Definition 2.5);
(iv) U is asymptotically satiable (see Definition 2.6).
As in [Kam01], the utility function is then extended to D > d assets in order to

model the investor’s preferences towards a restricted set of assets in a larger economy.
This is motivated by the fact that the agent may be ultimately interested in consuming
a small set of assets at the date T but will trade in all available assets in order to
reach his or her objective. Hence we define Ũ : RD → [−∞,+∞) by

(1.1) Ũ(x) =

{
U(x1, . . . , xd) if x ∈ R

D
+ ;

−∞ otherwise.

In the formulation of [CO11] the investor is initially endowed with a deterministic
amount x ∈ R

D of different assets, while in this paper we extend those results by as-
suming that the initial endowment is a random variable that we call E := (E1, . . . , ED).
For example, the agent may have no assets at the beginning but may have access to
some contingent claims on these assets (such as a right to buy or sell some of them
at a future date).

The earliest work on optimal investment using convex duality methods (with no
transaction costs and deterministic endowments) dates back to [KLSX91]. The first
introduction of a (bounded) random endowment is due to [CSW01], which considered
univariate utility functions and used some of the ideas already developed in [KrS99].
Important contributions in the same direction have later been given in, among others,
[HG04] and [OZ09], where the boundedness condition on the endowment is relaxed
and replaced by weaker requirements (those in [OZ09], in particular, have inspired
the ones which are employed in this paper).

In the literature of market with frictions, [Bou02] first accounted for transaction
costs in the optimization problem1 (with bounded random endowment) by adapting
the underlying mathematical framework, using the already mentioned idea of solvency
cones introduced by Kabanov in a series of papers (see [KS09] for a reference). This
new modeling approach paved the way for the more general model in [CS06] (with
time varying and random proportional transaction costs), which in turn provided
the necessary tools for the results in [CO11], where multivariate utility functions are
introduced in the optimization problem (with deterministic endowment). See also
[DPT01], where the topic of multivariate utility maximization has been studied for
the first time (in a constant transaction cost framework).

The subject of utility-based pricing of contingent claims, that we investigate in
the last section, has been an active (and quite natural) area of research since the
introduction and development of incomplete market models, in which the replication
paradigm is no longer sufficient for finding a unique price (hence utility comes in as
an additional criterion of choice). The idea of utility indifference pricing has been
first introduced in a dynamic hedging framework by [HN89] and it has been further
extended by other authors in different settings, possibly under different names; see,
for example, [Mu99] and [OZ09] (which is our main reference). In fact, the underlying
concept of certainty equivalent is quite pervasive in the whole economics literature
because of its natural and intuitive interpretation. We refer to [HH09] for a more
detailed overview on this subject.

1In fact, utility maximization with transaction costs had already been studied in [CK96], but on
a market with only one risky asset, constant transaction costs, and no random endowment.
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Before proceeding, section 2 will give some details on the transaction cost model
we work on, as well as some preliminaries on the main mathematical tools that we
are going to employ. The main results are presented in section 3, while in section 4
we propose an application to utility-based pricing of contingent claims.

2. Preliminaries. In this section we present all of the preliminary concepts and
notation which are required for the analysis of the optimization problem.

2.1. Cones and transaction costs. A general and convenient description of a
large class of market constraints and/or frictions can be provided by a Kabanov-type
market model, which is centered on the idea of cone-valued processes (evolving in
continuous time in our framework). Let (Ω, (Ft)t∈[0,T ],P) be a filtered probability
space satisfying the usual conditions and supporting all processes appearing in this
paper. We will use the notation χA for the indicator function of a set A and cone(A)
to denote the cone generated by any set A in R

D.
A C-valued process is defined as a sequence of set-valued mappingsK = (Kt)t∈[0,T ]

specified by a countable sequence of adapted R
D-valued processes Xn = (Xn

t ) such
that, for all t and ω, only a finite but nonzero number of Xt(ω) is different from zero
and

Kt(ω) := cone{Xn
t (ω), n ∈ N},

which implies that Kt(ω) is a polyhedral cone (by the so-called Farkas–Minkowski–
Weyl theorem; see, e.g., section 5.1 in the appendix of [KS09]). The cones Kt− are
the ones generated by the left limits of the generators. As we shall see in a moment,
these cones are there to describe the trading possibilities of an investor over time, i.e.,
to model the evolution of the portfolio processes.

Let Ks,t(ω) denote the closure of cone{Kr(ω), s ≤ r < t}, and let

Ks,t+(ω) :=
⋂
ε>0

Ks,t+ε(ω), Ks−,t(ω) :=
⋂
ε>0

Ks−ε,t(ω).

In order to derive useful results one needs some regularity assumptions that we list
here. Recall that a cone K is proper if K ∩ (−K) = {0}.

Assumption 2.1.

(i) The cones Kt and Kt− are proper and contain R
D
+ (efficient friction);

(ii) Kt,t+ = Kt, Kt−,t = Kt−, and Kt−,t+ = cone{Kt−,Kt} for all t ∈ [0, T ].
Remark 2.1. It can be shown (see [KS09, p. 165]) that (ii) is verified if (i) is

true and all cones Kt and Kt− can be generated by a finite number of càdlàg vector
processes.

Example 2.1. Even though all the results of this paper are true just under the
above assumptions, we give here an example of how cone processes can be constructed
in a particular (but still quite general) model of a market with transaction costs,
which is the main situation we have in mind (and which justifies the title of the
paper). In such a model, formalized in [CS06] (see also [S04]), all agents can trade in
D assets according to a random and time varying bid-ask matrix. A D ×D matrix
Π = (πij)1≤i,j≤D is called a bid-ask matrix if (i) πij > 0 for every 1 ≤ i, j ≤ D, (ii)
πii = 1 for every 1 ≤ i ≤ D, and (iii) πij ≤ πikπkj for every 1 ≤ i, j, k ≤ D.

Given a bid-ask matrix Π, the solvency cone K(Π) is defined as the convex poly-
hedral cone in R

D spanned by the canonical basis vectors ei, 1 ≤ i ≤ D of RD, and
the vectors πijei − ej , 1 ≤ i, j ≤ D. The convex cone −K(Π) should be interpreted
as those portfolios available at price zero.
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We must now introduce randomness and time in the model. An adapted, càdlàg
process (Πt)t∈[0,T ] taking values in the set of bid-ask matrices will be called a bid-ask
process. Once a bid-ask process (Πt)t∈[0,T ] has been fixed, one can drop it from the
notation by writing Kτ instead of K(Πτ ) for a stopping time τ , coherently with the
framework introduced above. Under the hypothesis of efficient friction (i), part (ii) of
Assumption 2.1 is automatically satisfied in this case by Remark 2.1.

In accordance with the framework developed in [CS06] we make the following
technical assumption throughout the paper. The assumption is equivalent to disal-
lowing a final trade at time T , but it can be relaxed via a slight modification of the
model (see [CS06, Remark 4.2]). For this reason, we shall not explicitly mention the
assumption anywhere.

Assumption 2.2. FT− = FT and ΠT− = ΠT a.s.
Given a cone K in R

D, its (positive) polar cone is defined by

K∗ =
{
w ∈ R

D : 〈v, w〉 ≥ 0 ∀v ∈ K
}
.

Definition 2.1. An adapted, RD
+ \{0}-valued, càdlàg martingale Z = (Zt)t∈[0,T ]

is called a consistent price process for the C-valued process K if Zt ∈ K∗
t a.s. for every

t ∈ [0, T ]. Moreover, Z will be called a strictly consistent price process if Zt ∈ int(K∗
t )

and Zt− ∈ int(K∗
t−) a.s. for every t ∈ [0, T ]. The set of all (strictly) consistent price

processes will be denoted by Z (Zs).
The following assumption, which is used extensively in [CS06], will also hold

throughout the paper.
Assumption 2.3. Existence of a strictly consistent price system (SCPS): Zs �= ∅.
This assumption is intimately related to the absence of arbitrage (see also [JK95,

GRS10, GK11, DGR11]).
Definition 2.2. Suppose that K = (Kt)t∈[0,T ] is a C-valued process such that

Assumption 2.3 holds true. An R
D-valued process V = (Vt)t∈[0,T ] is called a self-

financing portfolio process for the process K if it satisfies the following properties:
(i) It is predictable and a.e. path has finite variation (not necessarily right-

continuous).
(ii) For every pair of stopping times 0 ≤ σ ≤ τ ≤ T , we have

Vτ − Vσ ∈ −Kσ,τ .

A self-financing portfolio process V is called admissible if it satisfies the following
additional property:

(iii) There is a constant a > 0 such that VT +a1 ∈ KT a.s. and 〈Vτ + a1, Zs
τ 〉 ≥ 0

a.s. for all [0, T ]-valued stopping times τ and for every strictly consistent
price process Zs ∈ Zs. Here, 1 ∈ R

D denotes the vector whose entries are all
equal to 1.

Let Ax denote the set of all admissible, self-financing portfolio processes with
initial endowment x ∈ R

D, and let

Ax
T := {VT : V ∈ Ax}

be the set of all contingent claims attainable at time T with initial endowment x.
Note that Ax

T = x+A0
T for all x ∈ R

D.
For the convenience of the reader we present a reformulation of [CS06, Theo-

rem 4.1].



UTILITY MAXIMIZATION WITH TRANSACTION COSTS 1287

Theorem 2.1 (super-replication). Let x ∈ R
D, and let X be an FT -measurable,

R
D
+ -valued random variable. Under Assumption 2.3 we have

X ∈ Ax
T if and only if E[〈X,Zs

T 〉] ≤ 〈x, Zs
0〉 ∀Zs ∈ Zs.

This result will be used, in particular, in the proof of Theorem 3.2 to show that
our candidate for the optimizer in the utility maximization problem (with random
endowment) is indeed an attainable contingent claim, i.e., the terminal value of an
admissible portfolio.

2.2. Convex analysis and utility functions. The material of this section is
mostly taken from sections 2.2 and 2.3 in [CO11], where all the proofs can be found.
We report here those results that we are going to use in our proofs for the reader’s
convenience.

Let (X , τ) be a locally convex topological vector space, and let X ∗ denote its dual
space. Given a set S ⊆ X we let cl(S), int(S), ri(S), and aff(S) denote, respectively,
the closure, interior, relative interior, and affine hull of S. We shall say that a set
C ⊆ X is a convex cone if λC + μC ⊆ C for all λ, μ ≥ 0. Given a set S ⊆ X , we
denote its polar cone by

S∗ := {x∗ ∈ X ∗ : 〈x, x∗〉 ≥ 0 ∀x ∈ S} .
Note that S∗ is weak∗ closed. A convex cone C ⊆ X induces a preorder �C on X :
we say that x, x′ ∈ X satisfy x′ �C x if and only if x′ − x ∈ C. When we do not
specify the cone in the notation, we always mean that it is RD

+ .
Definition 2.3 (dual functionals).
(i) If U : X → [−∞,∞) is proper concave, then we define its dual functional

U∗ : X ∗ → (−∞,∞] by

(2.1) U∗(x∗) := sup
x∈X

{U(x)− 〈x, x∗〉} .

The dual functional U∗ is a weak∗ lower semicontinuous, proper convex func-
tional on X ∗. Note that U∗ = (cl(U))∗ (see, e.g., [Z02, Theorem 2.3.1]).

(ii) If V : X ∗ → (−∞,∞] is proper convex, then we define the predual functional
∗V : X → [−∞,∞) by

∗V(x) := inf
x∗∈X ∗

{V(x∗) + 〈x, x∗〉} .

Similarly, ∗V is a weakly2 upper semicontinuous, proper concave functional.
We say that U is increasing with respect to a preorder � on X if U(x′) ≥ U(x)

for all x, x′ ∈ X such that x′ � x.
Lemma 2.1 (see [CO11, Lemma 2.8]). Let U : X → [−∞,∞) be proper concave.

Then U∗ is decreasing with respect to the preorder induced by (dom(U))∗. Suppose
furthermore that U is increasing with respect to the preorder induced by some cone C.
Then dom(U∗) ⊆ C∗.

Definition 2.4 (utility function). We shall say that a proper concave function
U : Rd → [−∞,∞) is a (multivariate) utility function if

(i) CU := cl(dom(U)) is a convex cone which contains the nonnegative orthant
R

d
+, and

2A concave functional is weakly upper semicontinuous if and only if it is upper semicontinuous
with respect to the original topology τ .
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(ii) U is increasing with respect to the preorder induced by the closed convex cone
CU .

We call CU the support (or support cone) of U and say that U is supported on CU .
Throughout the whole paper the agent’s utility function U is assumed to be

supported on R
d
+, and the extended utility function Ũ defined by (1.1) is therefore

supported on R
D
+ . It is shown in [CO11, Proposition 3.1] that under Assumption 3.1

the value function ū is a utility function which is supported on R
D ∩ (−A0

T ), a cone
which is strictly larger than R

D
+ . It follows that ū is finite on I := int(RD ∩ (−A0

T )),
a fact that we will use later.

We now review the analogues of the well-known “Inada conditions” for the case
of a multivariate utility function. For the proofs of the results, as well as for a more
detailed discussion, we refer the reader to [CO11].

The first condition, which we recall from [Roc72], is well known within the field
of convex analysis.

Definition 2.5. A proper concave function U : Rd → [−∞,∞) is said to be
essentially smooth if

(i) int(dom(U)) is nonempty;
(ii) U is differentiable throughout int(dom(U));
(iii) limi→∞ |∇U(xi)| = +∞ whenever x1, x2, . . . is a sequence in int(dom(U))

converging to a boundary point of int(dom(U)).
A proper convex function V is said to be essentially smooth if −V is essentially
smooth.

Lemma 2.2 (see [CO11, Lemma 2.12]). Let U be a proper concave function which
is essentially smooth and strictly concave on int(dom(U)). Then U∗ is strictly convex
on int(dom(U∗)), and essentially smooth. Moreover, the maps ∇U : int(dom(U)) →
int(dom(U∗)) and ∇U∗ : int(dom(U∗)) → − int(dom(U)) are bijective and (∇U)−1 =
−∇U∗.

The next condition was first introduced by [CO11] and plays an important role
in the paper.

Definition 2.6. We say that a utility function U is asymptotically satiable if
for all ε > 0 there exists an x ∈ R

d such that ∂(cl(U))(x) ∩ [0, ε)d �= ∅.
Lemma 2.3 (see [CO11, Lemma 2.14]). A sufficient condition for asymptotic

satiability of U is that for all ε > 0 there exists an x ∈ int(dom(U)) such that ∂U(x)∩
[0, ε)d �= ∅. If U is closed, or essentially smooth, then the condition is both necessary
and sufficient for asymptotic satiability.

The next proposition clarifies the effects of asymptotic satiability on the dual
function.

Proposition 2.1 (see [CO11, Proposition 2.15]). Let U be a utility function.
The following conditions are equivalent:

(i) U is asymptotically satiable;
(ii) 0 ∈ cl(dom(U∗));
(iii) cl(dom(U∗)) = (CU )

∗; and
(iv) cl(dom(U∗)) is a convex cone.

If U is asymptotically satiable, then we define the closed convex cone CU∗ := cl
(dom(U∗)) so that condition (iii) can be written more succinctly as CU∗ = (CU )

∗.
We note that for a utility function U supported on R

D
+ , the previous proposition

states that if U is asymptotically satiable then cl(dom(U∗)) = R
D
+ .

Corollary 2.1 (see [CO11, Corollary 2.16]). Let U : Rd → [−∞,∞) be a utility
function which is supported on R

d
+ and which satisfies Assumption 1.1. Recall that by
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the definition of the dual function we have

(2.2) U∗(x∗) ≥ U(x)− 〈x, x∗〉

for all x, x∗ ∈ R
d. If x∗ ∈ int(Rd

+), then we have equality in (2.2) if and only if
x = I(x∗) := −∇U∗(x∗).

Given D ≥ d, define Ũ : RD → [−∞,∞) by (1.1). Again, by the definition of the
dual function, we have

(2.3) Ũ∗(x∗) ≥ Ũ(x)− 〈x, x∗〉

for all x, x∗ ∈ R
D. Define P : RD → R

d by

(2.4) P (x1, . . . , xd, xd+1, . . . , xD) := (x1, . . . , xd),

and define Ĩ : int(Rd
+)× R

D−d
+ → int(Rd

+)× R
D−d
+ by

(2.5) Ĩ(x∗) := (−∇U∗(P (x∗)), 0),

where 0 denotes the zero vector in R
D−d. Then, (i) if x∗ ∈ int(Rd

+) × R
D−d
+ , then

we have equality in (2.3) whenever x = Ĩ(x∗); and (ii) if x∗ ∈ int(RD
+ ), then there is

equality in (2.3) if and only if x = Ĩ(x∗).

2.3. Euclidean vector measures. A function m from a field F of subsets of
a set Ω to a Banach space X is called a finitely additive vector measure, or simply
a vector measure, if m(A1 ∪ A2) = m(A1) +m(A2) whenever A1 and A2 are disjoint
members of F . In this paper, we will be concerned with the special case where
X = R

D; we refer to the associated vector measure as a “Euclidean vector measure,”
or simply a “Euclidean measure.” Let us recall a few definitions from the classical,
onedimensional setting. The total variation of a (finitely additive) measure m : F →
R is the function |m| : F → [0,∞] defined by

|m|(A) := sup

n∑
j=1

|m(Aj)|,

where the supremum is taken over all finite sequences (Aj)
n
j=1 of disjoint sets in F

with Aj ⊆ A. A measure m is said to have bounded total variation if |m|(Ω) < ∞. A
measure m is said to be bounded if sup {|m(A)| : A ∈ F} < ∞. A measure m is said
to be purely finitely additive if 0 ≤ μ ≤ |m| and μ being countably additive imply
that μ = 0. A measure m is said to be weakly absolutely continuous with respect to
P if m(A) = 0 whenever A ∈ F and P(A) = 0.

We turn now to the D-dimensional case. A Euclidean measure m can be de-
composed into its one-dimensional coordinate measures mi : F → R by defining
mi(A) :=

〈
ei,m(A)

〉
, where ei is the ith canonical basis vector of RD. In this way,

m(A) = (m1(A), . . . ,mD(A)) for every A ∈ F . We shall say that a Euclidean mea-
sure m is bounded, purely finitely additive or weakly absolutely continuous with respect
to P if each of its coordinate measures is bounded, purely finitely additive or weakly
absolutely continuous with respect to P.

We denote by ba(RD) = ba(Ω,FT ,P;R
D) the vector space of bounded Euclidean

measures m : FT → R
D, which are weakly absolutely continuous with respect to P,
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and by ca(RD) the subspace of countably additive members of ba(RD). Equipped
with the norm

‖m‖ba(RD) :=

D∑
i=1

|mi|(Ω),

the spaces ba(RD) and ca(RD) are Banach spaces.
Let ba(RD

+ ) denote the convex cone of RD
+ -valued measures within ba(RD). The

next proposition is an immediate extension of its univariate counterpart.
Proposition 2.2. Given any m ∈ ba(RD) there exists a unique Yosida–Hewitt

decomposition m = mc +mp, where mc ∈ ca(RD) and mp is purely finitely additive.
If m ∈ ba(RD

+ ), then mc,mp ∈ ba(RD
+).

It is well known that L∞(RD)∗, the set of linear functionals on the space of (essen-
tially) bounded R

D-valued random variables, can be identified with ba(RD). Another
standard result in functional analysis is that (ba(RD), ‖.‖ba(RD)) has a σ(ba(RD),

L∞(RD))-compact unit ball. For any m ∈ ba(RD) we will denote

m(X) :=

∫
Ω

〈X, dm〉 :=
D∑
i=1

∫
Ω

Xidmi.

Given x ∈ R
D and A ∈ FT we clearly have m(xχA) = 〈x,m(A)〉. In the special

case where A = Ω, we have m(x) = 〈x,m(Ω)〉.
Let L0(RD

+ ) and L∞(RD
+) denote, respectively, the convex cones of random vari-

ables in L0(RD) and L∞(RD) which are R
D
+ -valued a.s. Note that if m ∈ ba(RD

+ )
and X ∈ L∞(RD

+), then m(X) ≥ 0 (see [RR83, Theorem 4.4.13]). This observation
allows us to extend the definition of m(X) to cover the case where m ∈ ba(RD

+) and
X ∈ L0(RD

+) (not necessarily bounded from above) by setting

(2.6) m(X) := sup
n∈N

m (X ∧ (n1)) ,

where (x1, . . . , xD) ∧ (y1, . . . , yD) := (x1 ∧ y1, . . . , xD ∧ yD). It is trivial that (2.6) is
consistent with the definition of m(X) for X ∈ L∞(RD). Furthermore, the supremum
in (2.6) can be replaced by a limit, since the sequence of numbers is increasing. It
follows that givenm1,m2 ∈ ba(RD

+ ), λ1, λ2, μ1, μ2 ≥ 0, andX1, X2 ∈ L0(RD
+), we have

(λ1m1 + λ2m2)(μ1X1 + μ2X2) = λ1μ1m1(X1) + λ1μ2m1(X2)

+ λ2μ1m2(X1) + λ2μ2m2(X2).

Given m ∈ ca(RD) and X ∈ L∞(RD) we have m(X) = E[〈X, dm
dP 〉], where dm

dP
is the vector of Radon–Nikodym derivatives. It is easy to show that this property is
also true under the extended definition (2.6).

More details on finitely additive measures (which are sometimes referred to as
charges) can be found in [RR83].

3. Utility maximization problem with random endowment. In this sec-
tion we will elaborate on the main optimization problem that is defined in (3.2) below,
with a particular focus on the issue of existence of a solution. We start by investigat-
ing some useful properties of the value function in Proposition 3.1. We then proceed
by dualizing the problem in section 3.1, using some convex duality techniques that are
commonly used in optimization (see, for example, [Bou02], [OZ09], [CO11], among
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others). Lemma 3.1 will give another convenient representation of the dual functional,
while Theorem 3.1 will establish the absence of duality gap and the existence of a so-
lution to the dual problem under some rather weak conditions on E (see condition
(3.1) below). Finally, in section 3.2, we show the existence of a solution to the primal
problem in Theorem 3.2 under the additional assumptions of asymptotic satiability
of the value function and boundedness of the endowment.

For technical reasons that will be clear later in the proofs, we will mainly consider
endowments E ∈ L0(RD,FT ) such that

(3.1) x′ � E � x′′ +X ′′.

for some x′, x′′ ∈ I := int(−A0
T ∩ R

D) and X ′′ ∈ A0
T . We call O the convex set of

endowments with these properties. For any E ∈ O we define the primal optimization
problem as

(3.2) u(E) := sup
{
E

[
Ũ(X + E)

]
: X ∈ A0

T

}
.

When E = x is deterministic, this reduces to the formulation in [CO11]:

ū(x) := sup
{
E

[
Ũ(X)

]
: X ∈ Ax

T

}
.

We denote dom(u) := {E ∈ L0(RD) : u(E) > −∞} and Ã0
T := {X ∈ A0

T : ∃ε > 0 :
X + ε1 ∈ A0

T }. The set Ã0
T is clearly not empty as it contains the constants in the

(strictly) negative orthant. The following mild assumption is fairly natural in any
optimization problem (compare [CO11, Assumption 1.2]).

Assumption 3.1. ū(x) < +∞ for some x ∈ int(dom(ū)).
Under this assumption, we can rephrase condition (3.1) as follows: x′ � E � x′′+

X ′′ for some initial portfolios x′, x′′ in int(dom ū) and some final portfolio X ′′ ∈ A0
T .

Indeed, it has been established in [CO11, Proposition 3.1] that, under Assumption 3.1,
one has cl(dom ū) = −A0

T ∩ R
D.

Remark 3.1. Take any E ∈ O. Notice that u(E − ε1) ≥ E[Ũ(X + E − ε1)] ≥
E[Ũ(X + x′ − ε1)] for all X ∈ A0

T so that u(E − ε1) ≥ ū(x′ − ε1) > −∞ for some
ε > 0 since x′ ∈ I. This simple observation will be used in the proof of the following
proposition.

Proposition 3.1. The value function u : L0(RD) → [−∞,∞] has the following
properties:

(i) u is concave on O and increasing with respect to L0(RD
+);

(ii) u(E) ∈ R for any E ∈ O, so that in particular O ⊆ dom(u);
(iii) u(E) < ∞ for any E ∈ O ∩ L∞(RD);
(iv) cl(dom(u)) = − cl(A0

T ) in the topology of convergence in probability;
(v) u is increasing with respect to the preorder generated by dom(u). If U is

lower semicontinuous, then u is also increasing with respect to the preorder
generated by cl(dom(u)).

Proof. (i) Concavity follows from the fact that A0
T is convex and Ũ is concave.

The second property follows from the same property for U .
(ii) Observe that u(E) ≥ E[Ũ(X + E)] ≥ E[Ũ(X + x′)] for all X ∈ A0

T , so that
u(E) ≥ u(x′) > −∞ since x′ ∈ I ⊆ int(dom(ū)), where we recall that ū is the
restriction of the value function u on R

D. Also note that u(E) ≤ E[Ũ(X+x′+X ′′)] ≤
ū(x′′) < ∞ whenever x′′ ∈ I (see section 2.2). Hence u(E) ∈ R.

(iii) We show that u(E) < ∞ for any E ∈ O ∩ L∞. Suppose for a contradiction
that there exists some Ẽ ∈ L∞ such that u(Ẽ) = ∞. Let E ∈ O so that u(E) < ∞.
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We can find an a > 0 such that E1 := E+a1 � Ẽ a.s. We have u(E1) ≥ u(Ẽ) = ∞. By
Remark 3.1 there exists an ε > 0 such that E0 := E−ε1 ∈ dom(u) so that u(E0) > −∞.
We also have u(E0) ≤ u(E) < ∞, and hence u(E0) ∈ R. This implies that we may find
an X0 ∈ A0

T such that E[Ũ(X0 + E0)] =: c ∈ R. Since u(E1) = ∞, given any R ∈ R

we may also find an X1 ∈ A0
T such that E[Ũ(X1 + E1)] ≥ R. Define λ := ε/(a + ε)

and X := (1 − λ)X0 + λX1. So we have

u(E) ≥ E

[
Ũ(X + E)

]
= E

[
Ũ((1 − λ)(X0 + E0) + λ(X1 + E1))

]
≥ (1 − λ)E

[
Ũ(X0 + E0)

]
+ λE

[
Ũ(X1 + E1)

]
≥ (1− λ)c+ λR,

which is a contradiction since R can be taken arbitrarily large.
(iv) Take X0 ∈ Ã0

T . There exists ε > 0 such that X0 + ε1 ∈ A0
T , then

u(−X0) ≥ E

[
Ũ(ε1)

]
> −∞,

and hence −X0 ∈ dom(u), so −Ã0
T ⊆ dom(u).

Suppose that E ∈ dom(u). Necessarily then AE
T ∩ L0(RD

+) �= ∅, where AE
T :=

E + A0
T = {Y ∈ L0 : Y = X + E , X ∈ A0

T } . Take X ∈ AE
T ∩ L0(RD

+), then
0 = X −X ∈ AE

T − L0(RD
+) ⊆ AE

T , and hence 0 ∈ AE
T , which implies E ∈ −A0

T . So

−Ã0
T ⊆ dom(u) ⊆ −A0

T ,

and the claim follows from cl(−Ã0
T ) = cl(−A0

T ). To see the last equality, note first
that cl(Ã0

T ) ⊆ cl(A0
T ). Now take X ∈ cl(A0

T ); then (up to a subsequence) there exists
(Xn)n≥0 ∈ A0

T such that Xn → X a.s. Let (εn)n≥0 > 0 be such that εn → 0 and note

that Yn := Xn − εn1 belongs to Ã0
T and Yn → X a.s. Hence Yn → X in probability

yielding X ∈ cl(Ã0
T ).

(v) We prove only the second part of the claim. Take E ∈ L0(RD) such that
u(E) < ∞ and E1 ∈ cl(dom(u)), so by property (iv) there exists (Yn)n≥0 ∈ A0

T such
that Yn → −E1 a.s. (up to a subsequence). By definition, for any ε > 0 there exists
a X ∈ A0

T such that E[Ũ(X + E)] ≥ u(E) − ε. Since X + Yn ∈ A0
T we have that

u(E + E1) ≥ E[Ũ(X + Yn + E + E1)] for all n ∈ N, and hence

u(E + E1) ≥ lim inf
n

E

[
Ũ(X + Yn + E + E1)

]
≥ E

[
lim inf

n
Ũ(X + Yn + E + E1)

]
≥ E

[
Ũ(X + E)

]
≥ u(E)− ε,

where we used the fact that Ũ is lower semicontinuous. Since ε is arbitrary the claim
follows.

If u(E) = ∞, then we can find an X ∈ A0
T such that E[Ũ(X + E)] ≥ R for any

R > 0. With the same arguments as above we can say that u(E + E1) ≥ R, and hence
u(E + E1) = u(E) = ∞.

3.1. Dual representation of the optimization problem. In this section we
show that the value function of our optimization problem with random endowment can
be represented as the value function of a suitably defined dual minimization problem.
To do so, let us define the functional

UE(X) := E

[
Ũ(X + E)

]
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and its dual

(3.3) U
∗
E(m) := sup

X∈L∞(RD)

[UE(X)−m(X)].

Lemma 3.1. If E ∈ O, then we have the following representation:

(3.4) U
∗
E(m) =

{
E

[
Ũ∗ (dmc

dP

)]
+m(E) if m ∈ ba(RD

+),

∞ otherwise.

Proof. Note first that since U0 is increasing with respect to the preorder induced
by L∞(RD

+ ), it follows from Lemma 2.1 that dom(U∗
0) ⊆ L∞(RD

+)∗ = ba(RD
+).

Now take m ∈ ba(RD
+) and define

UE,n(X) := E

[
Ũ(X + EχE
1n)

]
.

It is clear that by monotone convergence one has

lim
n→∞UE,n(X) = sup

n
UE,n(X) = UE(X).

Thus we get

U
∗
E(m) = sup

X∈L∞(RD)

[UE(X)−m(X)]

= sup
X∈L∞(RD)

sup
n
[UE,n(X)−m(X)]

= sup
n

sup
X∈L∞(RD)

[UE,n(X)−m(X)]

= lim
n→∞ sup

X∈L∞(RD)

[U0(X + Eχ(E
n1))−m(X + Eχ(E
n1))] +m(EχE
1n)

= lim
n→∞ sup

X̃∈L∞(RD)

[U0(X̃)−m(X̃)] +m(EχE
1n)

= U
∗
0(m) + lim

n→∞m(EχE
1n)

= U
∗
0(m) +m(E).

Now that we have isolated the contribution of the random endowment, it suffices to
study the case of zero endowment to conclude the proof. This has already been done
in [CO11], where it is shown that U

∗
0(m) = U

∗
0(m

c) = E[Ũ∗(dm
c

dP )], which yields the
claim.

Remark 3.2. A consequence of Lemma 3.1 is that if E ∈ O, then dom(U∗
E ) =

dom(U∗
0). Measures in this set are sometimes said to have finite relative entropy (see,

for example, [OZ09]).
Consider now the abstract maximization problem

sup
X∈C

UE(X),

where

C := L∞(RD) ∩ A0
T .
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It is immediately clear that

sup
X∈C

UE(X) ≤ u(E).

Its abstract dual problem is defined as

inf
m∈D

U
∗
E(m),

where U
∗
E is defined as in (3.3) and

D :=
{
m ∈ ba(RD) : m(X) ≤ 0 ∀X ∈ C} .

Since −L∞(RD
+) ⊆ C, one clearly has D ⊆ ba(RD

+). We introduce the Lagrangian
L(X,m) := UE(X)−m(X) and note that

(3.5) sup
X∈C

UE(X) ≤ sup
X∈L∞

inf
m∈D

L(X,m) ≤ inf
m∈D

sup
X∈L∞

L(X,m) = inf
m∈D

U
∗
E(m).

Remark 3.3. It is important to notice that, given any Z ∈ Zs, we can construct
a corresponding m ∈ ca(RD

+ ) by setting m(A) := E [ZT1A] for each A ∈ FT . We call
mZ the measure associated to the price process Z. We have that

Zs ⊆ D ∩ ca(RD
+) ⊆ Z.

To see this, begin with the first inclusion (that was already established in [CO11,
Remark 3.10]): Take Z ∈ Zs and X ∈ C. Then E [〈X,ZT 〉] = mZ(X) ≤ 0 by
Theorem 2.1, where mZ ∈ ca(RD

+).
For the second inclusion, take m ∈ D ∩ ca(RD

+) so that m(X) ≤ 0 for any X ∈ C.
Take any X ∈ L∞(−Kt,Ft) for some t; then X ∈ A0

T (consider the strategy that just
trades at time t for an amount equal to X). So X ∈ C and then m(X) ≤ 0, which
implies Zm

t := E
[
dm
dP |Ft

] ∈ K∗
t a.s. and so Zm ∈ Z. By monotone convergence, this

is also true for unbounded X .
Define

P :=

{
m ∈ ba(RD

+) : P

(
dmc

dP

)
is int(Rd

+)-valued a.s.

}
,

where P is defined as in Corollary 2.1.
Lemma 3.2. Suppose that m̂ is a minimizer for the problem infm∈D U

∗
E(m). Then

m̂ ∈ P. If the utility function U is strictly concave, then the minimizer is unique.
Proof. We will use the same arguments as in [CO11, Proposition 3.9], with minor

modifications. However, we will give the details of the proof for reader’s convenience.
By Lemma 3.1, m̂ ∈ ba(RD

+ ). Suppose that m̂ /∈ P . By definition some of

the components of dm̂c

dP are zero on a set A ∈ F with positive probability. Take

Z ∈ Zs, and let mZ be its associated measure as in Remark 3.3. For λ > 0 let

mλ := λmZ + m̂ ∈ D and νλ := Ũ∗(dm
c
λ

dP ). By Lemma 2.1, U∗
0 is decreasing with

respect to the preorder induced by ba(RD
+ ), implying that mλ ∈ dom(U∗

0). Since νλ is
convex as a function of λ, the integrable random variables (νλ − ν0)/λ are monotone
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increasing in λ. By the monotone convergence theorem,

lim
λ→0

E

[
χA

(
νλ − ν0

λ

)]
= E

[
χA lim

λ→0

(
νλ − ν0

λ

)]

= E

⎡⎣χA lim
λ→0

⎛⎝ Ũ∗
(
λdmZ

dP + dm̂c

dP

)
− Ũ∗ (dm̃c

dP

)
λ

⎞⎠⎤⎦
= E

⎡⎣χA lim
λ→0

⎛⎝U∗
(
λP (dm

Z

dP ) + P (dm̂
c

dP )
)
− U∗ (P (dm̃

c

dP )
)

λ

⎞⎠⎤⎦ = −∞

since, being U∗ essentially smooth (by Lemma 2.2), its gradient diverges on the
boundary points of its domain. Hence limλ→0

1
λE [νλ − ν0] = −∞. By Lemma 3.1,

the optimality of m̂, the assumptions on the endowment, and Theorem 2.1 we have
that E [νλ − ν0] = U

∗
E(mλ) − mλ(E) − U

∗
E(m̂) + m̂(E) ≥ −λmZ(E) ≥ −λmZ(x′′ +

X ′′) ≥ −λmZ(x′′) = −λ 〈x′′,E [ZT ]〉 = −λ 〈x′′, Z0〉 > −∞, therefore 1
λE [νλ − ν0] ≥

〈x′′, Z0〉 > −∞, and so the limit as λ → 0 cannot be −∞, which is a contradiction.
Uniqueness follows easily from strict convexity of the dual function.
Motivated by Lemma 3.1, we define

v(E) := inf
m∈D

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E)

}
.

Take X ∈ C and m ∈ D. We can consider in what follows that X + E ∈ L0(RD
+ );

otherwise the results are trivial. We have

m(X + E) = sup
n

m ((X + E) ∧ 1n) ≤ sup
n

m (X ∧ 1n) + sup
n

m (E ∧ 1n)

= m (X) +m(E) ≤ m(E).
We also remark that

m(X + E) ≥ mc(X + E) = E

[〈
X + E , dm

c

dP

〉]
.

By combining these considerations and using the definition of the dual function, we
get

E

[
Ũ(X + E)

]
≤ E

[
Ũ∗
(
dmc

dP

)
+

〈
dmc

dP
,X + E

〉]
≤ E

[
Ũ∗
(
dmc

dP

)]
+m(E).

(3.6)

After all of these preliminaries, we can finally prove the existence result.
Theorem 3.1. If E ∈ O, then

(3.7) sup
X∈C

UE(X) = u(E) = v(E) = min
m∈D

U
∗
E(m) < ∞.

If the utility function is strictly concave, then the minimizer is unique.
Proof. The proof can be split into two parts.
1. We first use the Lagrange duality theorem as reported in the appendix of

[CO11] to show that supX∈C UE(X) = v(E) = minm∈D U
∗
E(m) < ∞. Take E ∈ O,

let X = L∞(RD), and define the concave functional U : X → [−∞,∞) by U = UE .
By Remark 3.1 there exists ε > 0 such that −Y := E − 3ε1 ∈ dom(u) = − cl(A0

T ).
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Suppose first that Y ∈ A0
T , so by using [KS09, Lemma 3.6.7] we can find a sequence

Yn ∈ C ⊆ − dom(u) such that Yn → Y a.s.
By definition, p := −1ε belongs to the interior of C (with the norm of L∞), and we

can assume that Yn � 2ε1−E for n sufficiently large. Hence U(p+Yn) = U(−1ε+Yn) ≥
E[Ũ(1ε)] > −∞ if n is sufficiently large. By property (ii) in Proposition 3.1 we have

sup
X∈C

U(X) ≤ u(E) < ∞.

This verifies the hypotheses of part 1 of Theorem A.1 in [CO11], and hence the claim
follows.

If we have instead Y ∈ cl(A0
T ) then there exists Ỹ k ∈ A0

T such that Ỹ k → Y a.s.
(up to a subsequence) and for each Ỹ k we can find a sequence Ỹ k

n ∈ C such that Ỹ k
n →

Ỹ k a.s. Then by the same arguments as above we have U(p+ Y k
n ) ≥ E[Ũ (1ε)] > −∞

for n and k sufficiently large.
2. It remains to show that

sup
X∈C

UE(X) = u(E).

Clearly supX∈C UE(X) ≤ u(E). To show the other inequality, take a sequence Xn ∈
A0

T such that UE(Xn) → u(E) in R. By step 1, there exists Y ∈ C such that Y +E � 1ε,
so we can assume w.l.o.g. that Xn + E ∈ int(RD

+) for all n. For any ε > 0 we can
find n0 such that UE(Xn) ≥ u(E) − ε for all n ≥ n0. By [KS09, Lemma 3.6.7], the
set C = A0

T ∩ L∞ is Fatou-dense in A0
T .

3 Thus, for any Xn ∈ A0
T there is a sequence

Xk
n ∈ C such that Xk

n → Xn a.s., and since U is continuous on int(RD
+ ) by [Roc72,

Theorem 10.1], we can find k0 such that UE(Xk
n) ≥ UE(Xn) − ε for any k ≥ k0.

This implies that UE(Xk
n) ≥ u(E) − 2ε when n and k are sufficiently large. Since ε

is arbitrary we finally get the opposite inequality by letting n and k tend to infinity.
Uniqueness follows easily by strict concavity of the utility function.

Take E ∈ O, and let m̂ be the corresponding minimizer in the abstract dual
problem above so that

v(E) = E

[
Ũ∗
(
dm̂c

dP

)]
+ m̂(E) ∈ R.

For x ∈ R
D
+ , define

D(x) := {m ∈ D,m(Ω) = x}.
Take x ∈ R

D
+ and m ∈ D(x); then

m(E) = lim
n

m(Eχ(E
n1)) ≤ 〈x, x′′〉 < ∞,

and hence if m ∈ dom(U∗
0), then

U
∗
E(m) = E

[
Ũ∗
(
dmc

dP

)]
+m(E) < ∞.

Define

(3.8) vE(x) := inf
m∈D(x)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E)

}
.

3We recall that a sequence of RD-valued random variables Xn is Fatou-convergent to X if
Xn → X a.s. and Xn + a1 ∈ L0(KT ,FT ) for some a. A set A0 is said to be Fatou-dense in A if
any element of A is a limit of a Fatou-convergent sequence of elements from A0.
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We define, for x ∈ R
D
+ , uE(x) := u(E + x). Hence we have4

uE(x) = vE+x = min
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E + x)

}
= inf

y∈RD
+

inf
m∈D(y)∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) + 〈x, y〉

}
= min

y∈RD
+

{vE(y) + 〈x, y〉} ,

where the second equality is due to the fact that domU
∗
0 = domU

∗
E whenever E ∈ O

(see Remark 3.2). As a consequence, vE (y) is the convex conjugate of uE(x), which
implies u∗

E(y) = vE(y).
Lemma 3.3. The infimum in (3.8) is attained whenever vE(x) is finite.
Proof. Set L∞ = L∞(RD) and ba = ba(RD) for the sake of simplicity. Take

x ∈ R
D
+ such that vE(x) is finite. We first show that D(x) is σ(ba, L∞)-compact. To

see this, note first that the set D is σ(ba, L∞)-closed: for any sequence (μn)n≥0 ⊆ D
such that μn → μ in σ(ba, L∞) we also have μ(X) = limn μn(X) ≤ 0 for any X ∈ C.
To show closedness of D(x) take (μn)n≥0 ⊆ D(x) such that μn → μ in σ(ba, L∞),
then μ(Ω) = limn μn(Ω) = x and μ ∈ D(x). The set D(x) contains only positive
measures, for which ‖μ‖ ≤ μ(Ω), and hence it can be seen as a closed subset of the
σ(ba, L∞)-compact ball {μ ∈ ba : ‖μ‖ ≤ x}. Hence D(x) is σ(ba, L∞)-compact.

It follows from basic properties of dual functions that U∗
E(m) is σ(ba, L∞)-lower

semicontinuous (being the supremum of a sequence of affine functions). Then if
(μn)n≥0 ⊆ D(x) is a minimizing sequence in (3.8), we can extract a subsequence μnk

converging to μ in σ(ba, L∞) as k → ∞, and we have U
∗
E(μ) ≤ lim infk U

∗
E(μnk

) =
infm∈D(x)U

∗
E(m). Hence U

∗
E(μ) = infm∈D(x)U

∗
E(m), and μ attains the infimum in

(3.8).

3.2. Existence of the optimizer. Let E ∈ O. We now show that vE : RD
+ → R

is a proper convex function. It is clearly proper by Proposition 3.1 (ii) and Lemma 3.1.
Now, we turn to convexity. Let m1 and m2 be the minimizers in vE(x1) and vE(x2),
and let x = (1 − λ)x1 + λx2, m = (1− λ)m1 + λm2 ∈ D(x) ∩ dom(U∗

0). We have

(1− λ)vE (x1) + λvE(x2)

= (1− λ)

{
E

[
Ũ∗
(
dmc

1

dP

)]
+m1(E)

}
+ λ

{
E

[
Ũ∗
(
dmc

2

dP

)]
+m2(E)

}
= E

[
(1− λ)Ũ∗

(
dmc

1

dP

)
+ λŨ∗

(
dmc

2

dP

)]
+ (1− λ)m1(E) + λm2(E)

≥ E

[
Ũ∗
(
(1 − λ)

dmc
1

dP
+ λ

dmc
2

dP

)]
+ (1− λ)m1(E) + λm2(E)

= E

[
Ũ∗
(
dmc

dP

)]
+m(E) ≥ vE(x).

Consider anym ∈ D∩dom(U∗
0) and mλ := λm+(1−λ)m̂ ∈ D∩dom(U∗

0) for λ ∈ [0, 1].
The function

h(λ) = E

[
Ũ∗
(
dmc

λ

dP

)]
+mλ(E)

4Let x ∈ RD
+ . Notice that, since RD

+ ⊆ I := int(−A0
T ∩ RD), one has that x+ x′ ∈ I whenever

x′ ∈ I. This implies that if E ∈ O and x ∈ RD
+ , then x+E belongs to O, and the duality representation

(3.7) can be applied to x+ E as well.
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is convex and has a minimum at zero, and therefore by monotone convergence one
has

0 ≤ h′
+(0) = lim

λ↓0
h(λ)− h(0)

λ

= lim
λ↓0

⎧⎨⎩E

⎡⎣ Ũ∗
(

dmc
λ

dP

)
− Ũ∗ (dm̂c

dP

)
λ

⎤⎦+
mλ(E)− m̂(E)

λ

⎫⎬⎭
= E

⎡⎣lim
λ↓0

Ũ∗
(

dmc
λ

dP

)
− Ũ∗ (dm̂c

dP

)
λ

⎤⎦+m(E) − m̂(E)

= E

[〈
−Ĩ

(
dm̂c

dP

)
,
dmc

dP
− dm̂c

dP

〉]
+m(E)− m̂(E)

so that

E

[〈
Ĩ

(
dm̂c

dP

)
,
dmc

dP

〉]
−m(E) ≤ E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
− m̂(E).

Since U∗
0 is decreasing with respect to the preorder induced by ba(RD

+ ), if we take any
m̃ ∈ D, we have that m := m̂+ m̃ ∈ D ∩ dom(U∗

0). It follows that

(3.9) E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̃c

dP

〉]
≤ m̃(E).

At this point, we would like to prove that we have equality in (3.9) when m̃ = m̂.
To do so, we need to impose an additional property on the value function uE(·) which
is the asymptotic satiability.

Assumption 3.2. Let E ∈ O ∩ L∞(RD
+). The function uE : RD

+ → R is asymptot-
ically satiable.

Since uE(·) is asymptotically satiable, by Proposition 2.1 if E ∈ L∞, there exists a

y ∈ dom(u∗
E) such that ‖E‖∞‖y‖1 ≤ ε for any ε > 0, where ‖y‖1 =

∑D
i=1 |yi|. Also, by

duality, there must exist anm ∈ D(y)∩dom(U∗
0). Clearlym(E) ≤ ‖m‖ba(RD)‖E‖∞ ≤ ε

so that

−ε ≤ −m(E) ≤ E

[〈
Ĩ

(
dm̂c

dP

)
,
dmc

dP

〉]
−m(E)

≤ E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
− m̂(E) ≤ 0

and, being ε arbitrary, this implies

(3.10) E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
= m̂(E).

Inequalities (3.9) and equality (3.10) allow us to prove the existence of the opti-
mizer for the original maximization problem with random endowment E ∈ O, under
the additional assumption that E is bounded.

Theorem 3.2. Let U : Rd → [−∞,∞) be a utility function supported on R
d
+.

Given any E ∈ O∩L∞, if the value function verifies Assumption 3.2, then the optimal
investment problem (3.2) has a unique solution X̂ := Ĩ(dm̂

c

dP ) − E, where m̂ is any
optimizer in the dual problem.
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Proof. Take any Z ∈ Zs, and let mZ ∈ D be its corresponding measure as in

Remark 3.3. It follows from (3.9) that E[〈X̂ + E , ZT 〉] = E[〈Ĩ(dm̂c

dP ), dmZ

dP 〉] ≤ mZ(E),
and hence E[〈X̂, dmZ

dP 〉] ≤ 0. It now follows from Theorem 2.1 that X̂ ∈ A0
T . Hence

by using (3.10) we can write

E

[
Ũ(X̂ + E)

]
= E

[
Ũ

(
Ĩ

(
dm̂c

dP

))]
= E

[
Ũ∗
(
dm̂c

dP

)]
+ E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
= E

[
Ũ∗
(
dm̂c

dP

)]
+ m̂(E) = U

∗
E(m̂).

It is now easy to conclude by using Theorem 3.1. Uniqueness follows by the same
arguments used in [CO11, Theorem 3.12].

Remark 3.4. It is important to stress that the boundedness assumption on the
random endowment E is needed only to prove the existence of the optimal portfolio,
while to obtain the duality characterization and the existence of the minimizer in
the dual problem, it suffices to require the weaker property E ∈ O, i.e., the random
endowment can be unbounded from above.

3.3. Sufficient conditions for existence and liquidation. We can now give
some conditions which ensure asymptotic satiability of uE(x). In order to check them
easily, it is useful, in general, to look for conditions that concern only the utility
function U (or possibly its dual). We start by defining a growth condition in the
version of [CO11] (even if similar conditions have appeared in different papers, for
example, in [DPT01]).

Definition 3.1. Let U : Rd → [−∞,∞) be a utility function. We shall say
that the dual function U∗ satisfies the growth condition if there exists a function
ζ : (0, 1] → [0,∞) such that for all ε ∈ (0, 1] and all x∗ ∈ int(Rd

+),

(3.11) U∗(εx∗) ≤ ζ(ε)(U∗(x∗)+ + 1).

The following result is the analogue of [CO11, Corollary 3.7]. The proof is essen-
tially the same with some minor modifications. Nonetheless, we decided to give the
details for the reader’s convenience.

Lemma 3.4. Take E ∈ O ∩ L∞(RD). If U∗ satisfies the growth condition (3.11),
then both U and uE(·) are asymptotically satiable.

Proof. Take m ∈ D ∩ dom(U∗
0) (for example, the minimizer in the dual problem

(3.7)), and define x∗ := m(Ω). Then, since E � x′′ + X ′′ with x′′ ∈ I and X ′′ ∈ C,
one has

u∗
E(εx

∗) = vE(εx∗) ≤ E

[
Ũ∗
(
ε
dmc

dP

)]
+ εm(E) ≤ E

[
U∗
(
εP

(
dmc

dP

))]
+ ε 〈x∗, x′′〉

≤ ζ(ε)E

[
U∗
(
P

(
dmc

dP

))+

+ 1

]
+ ε 〈x∗, x′′〉

= ζ(ε)E

[
Ũ∗
(
dmc

dP

)+

+ 1

]
+ ε 〈x∗, x′′〉 < ∞

for any ε ∈ (0, 1]. Hence εx∗ ∈ dom(u∗
E). Taking the limit as ε → 0 shows that

0 ∈ cl(dom(u∗
E)), and hence uE is asymptotically satiable by Proposition 2.1. The

proof for U follows along the same lines, but in an easier way, by directly using the
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growth condition and the characterization of Proposition 2.1 as in [CO11, Corollary
3.7].

One might look for sufficient conditions to check that the growth condition (3.11)
actually holds. In [CO11] the notion of reasonable asymptotic elasticity of U is intro-
duced in order to ensure the growth condition in the case of multivariate utility func-
tions, which are multivariate risk-averse and bounded from below. If U is bounded
from above, then (3.11) trivially holds with ζ(ε) := supx∗∈Rd

+
U∗(x∗) = U∗(0) =

supx∈Rd U(x) < ∞. It is also satisfied if the quantity −〈∇U∗(εx∗), x∗〉 is bounded
from above in x∗ (as in the case of the sum of logarithms, a utility function which is
neither bounded from above nor from below).

Remark 3.5. Some papers dealing with optimal investment assume that the agent
liquidates his assets at the terminal date to one (or more) reference assets. As in
[CO11], it is possible to show that the problem treated here is essentially equivalent
to the investment problem with final liquidation, provided that U is upper semi-
continuous. In particular we have that

(3.12) u(E) = sup
W∈A0

T−

E
[
Ū(W + E)] ,

where

(3.13) Ū(W ) := sup
{
U(ξ) : ξ ∈ R

d
+, (ξ, 0)−W ∈ −KT

}
, W ∈ L0(KT ,FT−)

and 0 denotes the zero vector in R
D−d. The proof follows along the same lines as

[CO11, Proposition 4.3], with minor modifications.
If E ∈ O ∩L∞ (which ensures the existence of a solution in the primal problem),

then we can argue as in [CO11, Proposition 4.4] to conclude that the supremum in

(3.12) is attained at some Ŵ ∈ A0
T− and that (ξ̂(Ŵ + E), 0) = X̂ + E a.s., where

ξ̂(Ŵ + E) is the maximizer in (3.13).
Remark 3.6. If d = 1, our optimization problem is similar to that treated in

[Bou02]. In that paper, however, the utility function is defined on the whole real line,
which permits us to avoid recurring to singular measures. In a sense, we generalize
their results in that we do not require the underlying asset processes to be continuous
nor the transaction costs to be constant (we work in the framework set out in [CS06]
which is much more general). Moreover, we allow for a liquidation to many assets,
which forces us to introduce multivariate utility functions. Finally, many of our results
(e.g., the duality characterization) do not require the boundedness of the endowment
which is instead assumed in [Bou02].

4. Utility indifference pricing. In this section we will examine some applica-
tions of the above results to the pricing of contingent claims in an incomplete market.
The analysis that follows is motivated by the rapidly growing interest in new pricing
paradigms (alternative to replication) in the context of incomplete financial markets.
We adopt some of the techniques used in [OZ09], where the authors studied a simi-
lar investment problem but in a framework of frictionless financial markets and with
univariate utility functions (defined on the whole real line).

We start by proving some continuity properties of the value function.
Lemma 4.1.

(i) If (En)n∈N is a sequence of endowments in O and such that

sup
m∈D∩dom(U∗

0)

m(En − E) → 0 and inf
m∈D∩dom(U∗

0)
m(En − E) → 0

as n → ∞ with E ∈ O, then u(En) → u(E).
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(ii) If U is lower semicontinuous, then u is as well on O equipped with the topology
of convergence in probability.

(iii) If (xn + E)n∈N ∈ O, and (xn)n∈N is a sequence in R
D such that xn → x and

a � xn � b for some a, b ∈ R
D, then x+ E ∈ O and

u(E + x) = lim
n

u(E + xn).

(iv) If (En)n∈N is a sequence of endowments in O ∩ L∞(RD) which uniformly
satisfy (3.1) (in the sense that the upper and lower bounds do not depend on
n) and such that En → E in L∞(RD), then we have

u(E) = lim
n

u(En).

Proof. (i) We have

u(En)− u(E) = inf
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(En)

}
− inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E)

}
≤ sup

m∈D∩dom(U∗
0)

m(En − E)

but also

u(En)− u(E) ≥ inf
m∈D∩dom(U∗

0)
m(En − E),

and hence |u(En)− u(E)| → 0 as n → ∞.
(ii) Let (En)n∈N be a sequence of endowments inO such that En → E in probability

(E ∈ O). Then a subsequence (that we still call in the same way) converges a.s. and
we have, by semicontinuity of U and Fatou’s lemma,

u
(
lim inf

n
En
)
= sup

X∈A0
T

E

[
Ũ(X + lim inf

n
En)
]
≤ sup

X∈A0
T

E

[
lim inf

n
Ũ(X + En)

]
≤ sup

X∈A0
T

lim inf
n

E

[
Ũ(X + En)

]
≤ lim inf

n
sup

X∈A0
T

E

[
Ũ(X + En)

]
= lim inf

n
u(En),

which implies the claim.
(iii) Let (xn+E)n∈N ∈ O with (xn)n∈N being a sequence in R

D such that xn → x
and a � xn � b for some a, b ∈ R

D; then x+ E ∈ O (since −A0
T ∩ R

D is closed) and
we have

u(E + x) = inf
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) +m

(
lim sup

n
xn

)}
= inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) + lim sup

n
m(xn)

}
≥ lim sup

n
inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E + xn)

}
= lim sup

n
u(E + xn),

and hence u is continuous along such sequences.
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(iv) Let (En)n∈N be a sequence of endowments in O ∩ L∞(RD) which uniformly
satisfy (3.1) and such that En → E in L∞(RD). Thus, we have

u(E) = inf
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m

(
lim
n

En
)}

= inf
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+ lim

n
m(En)

}
≥ lim sup

n
inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(En)

}
= lim sup

n
u(En)

since En → E in σ(L∞(RD), ba(RD)). Hence u is continuous also along these sequences
as well.

For j = 1, . . . , d define

mj(X) :=

D∑
i=1

∫
Ω

Xi
dmi

mj(Ω)

and

mj(X) := inf
m∈D∩dom(U∗

0)

{
D∑
i=1

∫
Ω

Xi
dmi

mj(Ω)

}
.

For B ∈ L0(RD
+ ) denote uE(B) := u(E + B) (sometimes we will write uE instead of

u(E)). The following lemma will be useful for the characterization of utility indiffer-
ence prices, which will be introduced immediately after.

Lemma 4.2. If E ∈ O and E +B − ejm̂j(B) ∈ O, then

uE (B − ejm̂j(B)) ≤ uE ≤ uE
(
B − ejmj(B)

)
for all j = 1, . . . , d.

Proof. Note first that the conditions above imply also that E+B−ejmj(B) ∈ O.
Using the duality characterization in Theorem 3.1 together with the definitions of mj

and mj yields

uE
(
B − ejmj(B)

)
= inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) +m

(
B − ejmj(B)

)}
≥ inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E)

}
+ inf

m∈D∩dom(U∗
0)

{
m
(
B − ejmj(B)

)}
= inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E)

}
+ inf

m∈D∩dom(U∗
0)

{(
D∑
i=1

∫
Ω

Bi
dmi

mj(Ω)
−mj(B)

)
mj(Ω)

}
= vE + 0 = uE .
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On the other hand,

uE (B − ejm̂j(B))

= inf
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) +m (B − ejm̂j(B))

}
≤ E

[
Ũ∗
(
dm̂c

dP

)]
+ m̂(E) + m̂ (B − ejm̂j(B)) = E

[
Ũ∗
(
dm̂c

dP

)]
+ m̂(E) + 0 = uE ,

which yields the other inequality.
Definition 4.1. For j = 1, . . . , d the utility indifference (bid) price (UIP)

pj(B) = pj(B;U, E) ∈ R for the contingent claim B (expressed in units of asset
j) is implicitly defined as the solution to the equation

(4.1) u(E +B − ejpj) = u(E).
In the next proposition we show that the definition of UIP is well-posed, i.e. pj(B)

exists uniquely, and that it satisfies in particular the properties of cash-invariance,
monotonicity and convexity characterizing a convex risk measure defined on vector-
valued random variables (compare [BR06, JMT, HHR10]).

Proposition 4.1. Let j = 1, . . . , d. Under the assumptions of Lemma 4.2 there
exists a unique solution to (4.1). The UIP pj(B) is therefore well defined and verifies
the following properties:

(i) mj(B) ≤ pj(B) ≤ m̂j(B);

(ii) if B ∈ A0
T , then pj(B) ≤ 0 for any j = 1, . . . , d;

(iii) for c ∈ R we have pj(B + ejc) = pj(B) + c;
(iv) if B � C, then pj(B) ≤ pj(C) for any j = 1, . . . , d;
(v) given contingent claims B1, B2, and λ ∈ [0, 1],

pj(λB1 + (1− λ)B2) ≥ λpj(B1) + (1− λ)pj(B2)

for any j = 1, . . . , d;
(vi) the utility indifference price can be expressed as

pj(B) = inf
m∈Dj(1)∩dom(U∗

0)
{mj(B) + αj(m)} ,

where

Dj(k) := {m ∈ D : mj(Ω) = k},

αj(m) := inf
k>0

1

k

{
E

[
Ũ∗
(
dmk,c

dP

)]
+mk(E)− vE

}
,

and mk is such that mk
i = mi if i �= j and mk

j = kmj;
(vii) if (Bn)n∈N is a sequence of contingent claims such that

inf
m∈Dj(1)∩dom(U∗

0)
mj(Bn −B) → 0 and sup

m∈Dj(1)∩dom(U∗
0)

mj(Bn −B) → 0,

then pj(Bn) → pj(B).
Proof. Note first that if E1 belongs to O and E2 := E1+x with x ∈ R

D
+ and xj > 0

for some j ≤ d, then u(E2) > u(E1). Indeed, we have

u(E1) = E

[
Ũ∗
(
dm̂c

1

dP

)]
+ m̂1(E1) ≤ E

[
Ũ∗
(
dm̂c

2

dP

)]
+ m̂2(E2 − x)

< E

[
Ũ∗
(
dm̂c

2

dP

)]
+ m̂2(E2) = u(E2),

(4.2)
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where m̂1 (resp., m̂2) is the minimizer in the dual problem with endowment E1 (resp.,
E2).

Existence and uniqueness follow from Lemma 4.1(iii) and the above considera-
tions. Property (i) is clear from Lemma 4.2. Property (ii) follows from the definition
of the primal problem by noting that X + B ∈ A0

T if X,B ∈ A0
T . In particular we

have u(E + B) ≤ u(E) = u(E + B − ejpj), which implies the claim. Property (iii) is
straightforward from the definition of UIP, and (iv) follows by monotonicity of uE(·).

(v) By concavity of uE(·),
uE(λB1+(1− λ)B2 − ejλpj(B1)− ej(1− λ)pj(B2))

≥ λuE(B1 − ejpj(B1)) + (1− λ)uE (B2 − ejpj(B2)) = uE
= uE(λB1 + (1 − λ)B2 − ejpj(λB1 + (1− λ)B2))

by definition of UIP. The claim follows by monotonicity of uE(·).
(vi) By monotonicity of uE(·) and Lemma 4.1(iii), we have

pj(B) = inf{p : uE(B − ejp) < vE}

= inf

{
p : inf

m∈D∩dom(U∗
0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) +m(B)− pmj(Ω)

}
< vE

}
= inf

{
p : inf

m∈Dj(1)∩dom(U∗
0)

inf
k>0

{
E

[
Ũ∗
(
dmk,c

dP

)]
+mk(E) + kmj(B) − vE − kp

}
< 0

}
= inf

{
p : inf

m∈Dj(1)∩dom(U∗
0)
mj(B)

+ inf
k>0

1

k

{
E

[
Ũ∗
(
dmk,c

dP

)]
+mk(E)− vE

}
< p

}
= inf

m∈Dj(1)∩dom(U∗
0)

{
mj(B) + inf

k>0

1

k

{
E

[
Ũ∗
(
dmk,c

dP

)]
+mk(E)− vE

}}
= inf

m∈Dj(1)∩dom(U∗
0)
{mj(B) + αj(m)} ,

where we recall that

Dj(k) := {m ∈ D : mj(Ω) = k},

αj(m) := inf
k>0

1

k

{
E

[
Ũ∗
(
dmk,c

dP

)]
+mk(E)− vE

}
,

and mk is such that mk
i = mi if i �= j and mk

j = kmj .
(vii) Note that

inf
m∈Dj(1)∩dom(U∗

0)
mj(Bn −B)

= inf
m∈Dj(1)∩dom(U∗

0)
[(mj(Bn) + αj(m))− (mj(B) + αj(m))]

≤ inf
m∈Dj(1)∩dom(U∗

0)
[mj(Bn) + αj(m)]− inf

m∈Dj(1)∩dom(U∗
0)
[mj(B) + αj(m)]

= pj(Bn)− pj(B) ≤ sup
m∈Dj(1)∩dom(U∗

0)

mj(Bn −B),

which implies the claim.
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Example 4.1. Point (ii) of the previous proposition implies that if a contingent
claim is super-replicable starting from h units of asset j, then pj(B) ≤ h. The
inequality is usually strict, as it is shown in the following example. Let us first briefly
recall the setting of the one period market of Example 3.13 in [CO11]. The stock price
S satisfies S0 = 1 and S1 = sn with probability pn (n ∈ N), where s0 = 2, p0 = 1−α,
and sn = 1/n, pn = α2−n for n ≥ 1, with α ∈ (0, 1) sufficiently small. Frictions are
modeled by the bid-ask matrices

Π0 =

(
1 S0

2/S0 1

)
and Π1 =

(
1 2S1

1/S1 1

)
.

Consider now a call option C on the stock with strike K = 1. By using the general
form Xλ

x = x+ λ(S1 − S0) of the payoff of a strategy starting from x units of bonds,
we deduce that the minimal super-replicating price of the call is equal to 1/2. Indeed,
considering the case S1 = 2 we must have x + λ ≥ 1, while in the case S1 = 1/n
we have x + λ(1/n − 1) ≥ 0 for all n ≥ 1, that is, x − λ ≥ 0. Hence in this case
the super-replication price is the minimal x such that there exists λ satisfying x ≥ λ
and x + λ ≥ 1, that is, x = 1/2. On the other hand, the UIP p (with a log utility
U(x) = log x) solves the equation u(x) = u(x− p+ C), that is,

log x+ E[log(S1)] = E[log((x− p)S1 + 1S1=2)],

which simplifies to

(x− p+ 1/2)1−α(x − p)α = x.

It follows that p < 1/2 (recall that α ∈ (0, 1)).
This pricing paradigm can be considered a good solution in situations where the

super-replicating price is unreasonably high (which is often the case with transaction
costs).

Definition 4.2. The average utility indifferent purchase price for β units of the
contingent claim B (in terms of asset j) is defined by

pβj (B) :=
pj(βB)

β
.

In the next proposition we present some properties of the function β �→ pβj (B).

Different from [OZ09], we were not able to prove that limβ→0 p
β
j (B) = m̂j(B). To

establish this result we would need a stronger version of point (i) of Lemma 4.1, in
which the supremum is computed only over measures with fixed total variation. In
[OZ09] Owen and Žitković are able to obtain this result because the dual U∗(y) of a
utility function U defined over the whole real line goes to infinity as y → ∞, a fact
that does not have an analogue in our context.

Proposition 4.2. If E ∈ O and E + β(B − ejm̂j(B)) ∈ O for all β > 0, then

the function β �→ pβj (B) verifies the following properties:
(i) It is nonincreasing in β;

(ii) mj(B) ≤ pβj (B) ≤ m̂j(B) for all β > 0;

(iii) limβ→∞ pβj (B) = mj(B).
Proof. Note first that the conditions of Lemma 4.2 are automatically satisfied by

βB for all β > 0.



1306 GIUSEPPE BENEDETTI AND LUCIANO CAMPI

(i) Take 0 < β1 ≤ β2. Then by concavity (Proposition 4.1(v)) we have

pβ1

j (B) :=
1

β1
pj

(
β1

β2
β2B

)
≥ 1

β2
pj(β2B) +

(
1

β1
− 1

β2

)
pj(0) =

1

β2
pj(β2B) = pβ2

j (B).

(ii) It is clear from Proposition 4.1.
(iii) Suppose for a contradiction that there exists m̃ ∈ D ∩ dom(U∗

0) such that

m̃j(B) < limβ→∞ pβj (B). Then for any β > 0

uE = uE(βB − ejpj(βB))

= inf
m∈D∩dom(U∗

0)

{
E

[
Ũ∗
(
dmc

dP

)]
+m(E) + βm

(
B − ejp

β
j (B)

)}
≤ E

[
Ũ∗
(
dm̃c

dP

)]
+ m̃(E) + βm̃j(Ω)

[
m̃j(B) − pβj (B)

]
,

and we get the desired contradiction by sending β to infinity.
Let us look for an interpretation of the previous result. Assume the agent has

purchased the claim B, paying p units of asset j, and now wants to eliminate all of
the risk arising from this position by superhedging the claim −B. By Theorem 2.1
he will be able to reach this objective if and only if

inf
Z∈Zs

E

[〈
B,

ZT

Zj
0

〉]
≥ p,

and hence the highest price he or she will accept to pay for the claim B (in units of
asset j) by remaining sure of running no risks at maturity is

p̄j(B) := inf
Z∈Zs

E

[〈
B,

ZT

Zj
0

〉]
.

Now suppose that B is bounded; then (by definition of p̄j(B) and Theorem 2.1)
there exists X ∈ C such that −ej p̄j(B) + X � −B. Thus for any m ∈ D we have

p̄j(B) ≤ m(B)
mj(Ω) , implying p̄j(B) ≤ mj(B).

It is natural to ask under which condition we also have p̄j(B) ≥ mj(B) that would
imply p̄j(B) = mj(B) for bounded B. By Remark 3.3 we know that Zs ⊆ D, and
hence it would be easy to get the desired inequality if

mj(B) = inf
m∈D∩dom(U∗

0)

m(B)

mj(Ω)
= inf

m∈D
m(B)

mj(Ω)
.

This condition on B (which looks hard to verify in practice) is, for example, auto-
matically satisfied if the utility function U is bounded from above (which implies that
0 ∈ dom(U∗

0), and hence dom(U∗
0) = ba(RD

+ ) by Lemma 2.1 and Proposition 2.1).
Therefore if B is in L∞(RD

+ ) and U is bounded from above, point (iii) of Propo-
sition 4.2 tells us that the average price (in terms of any of the first d assets) that a
risk-averse agent is ready to pay to buy more and more units of a contingent claim
and always get the same utility approaches a price that allows the agent to trade as
to bear zero risk at maturity. If we only have boundedness of B, which is the case
for most common claims like call and put options (recall that we are working with
units and not with prices), then, in general, the agent will keep some risk also in the
limiting case.
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Remark 4.1. The definition of UIP can be further generalized to account for the
case where we seek a “price” in terms of more than one asset. Let n ≤ d and denote
p̄ := (p, 0) ∈ R

D, where p ∈ R
n and 0 is now the zero vector in R

D−n. One can define
p(B) ∈ R

n, the UIP for B expressed in terms of the first n assets, as a solution to
uE+B−p̄ = uE , with E ∈ O and E + B − p̄ ∈ O. The subspace of Rn of the solutions
to the previous inequality is closed if we only consider endowments in L∞(RD) (by
Lemma 4.1(iv)). A more thorough treatment of such vector UIPs is postponed to
future research.
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[CSW01] J. Cvitanić, W. Schachermayer, and H. Wang, Utility maximization in incomplete
markets with random endowment, Finance Stoch., 5 (2001), pp. 259–572.
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[GRS10] P. Guasoni, M. Rásonyi, and W. Schachermayer, The fundamental theorem of asset
pricing for continuous processes under small transaction costs, Ann. Finance, 6
(2010), pp. 157–191.

[HHR10] A. Hamel, F. Heyde, and B. Rudloff, Set-Valued Risk Measures for Conical Market
Models, preprint, aXvix.1011.5986v1, 2010.

[HH09] V. Henderson and D. Hobson, Utility indifference pricing—An overview, in Indif-
ference Pricing: Theory and Applications, R. Carmona, ed., Princeton University
Press, Princeton, NJ, 2009, pp. 44–73.

[HN89] S. Hodges and A. Neuberger, Optimal replication of contingent claims under trans-
action costs, Rev. Futures Markets, 8 (1989), pp. 222–239.

[HG04] J. Hugonnier and D. Kramkov, Optimal investment with random endowments in
incomplete markets, Ann. Appl. Probab., 14 (2004), pp. 845–864.

[JK95] E. Jouini and H. Kallal, Martingales and arbitrage in securities markets with trans-
action costs, J. Econom. Theory, 66 (1995), pp. 178–197.

[JMT] E. Jouini, M. Meddeb, and N. Touzi, Vector-valued coherent risk measures, Finance
Stoch., 8 (2004), pp. 531–552.

[KLSX91] I. Karatzas, J. P. Lehoczky, S. E. Shreve, and G.-L. Xu, Martingale and duality
methods for utility maximization in an incomplete market, SIAM J. Control Optim.,
29 (1991), pp. 702–730.

[Kab99] Yu. M. Kabanov, Hedging and liquidation under transaction costs in currency markets,
Finance Stoch., 3 (1999), pp. 237–248.

[KS09] Yu. M. Kabanov and M. Safarian, Markets with Transaction Costs. Mathematic
Theory, Springer Finance, Springer-Verlag, Berlin, 2009.



1308 GIUSEPPE BENEDETTI AND LUCIANO CAMPI

[Kam01] K. Kamizono, Hedging and Optimization Under Transaction Costs, Ph.D. thesis,
Columbia University, New York, NY, 2001.

[KrS99] D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions
and optimal investment in incomplete markets, Ann. Appl. Probab., 9 (1999),
pp. 904–950.

[Mu99] C. Munk, The valuation of contingent claims under portfolio constraints: Reservation
buying and selling prices, European Finance Rev., 3 (1999), pp. 347–388.
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