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Abstract

We consider an equilibrium model à la Kyle-Back for a defaultable claim issued by a given
firm. In such a market the insider observes continuously in time the value of firm, which is
unobservable by the market makers. Using the construction of a dynamic Bessel bridge of
dimension 3 in [5], we provide the equilibrium price and the optimal insider’s strategy. As
in [3], the information released by the insider while trading optimally makes the default time
predictable in market’s view at the equilibrium. We conclude the paper by comparing the in-
sider’s expected profits in the static and dynamic private information case. We also compute
explicitly the value of insider’s information in the special cases of a defaultable stock and a bond.
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1 Introduction

Consider a defaultable claim issued by a company with no recovery and the payoff f(1+β1) in case
of no-default. β denotes the fundamental value process and is assumed to be a standard Brownian
motion with β0 = 0. The default time, T0, is given by

T0 := inf{t > 0 : 1 + βt = 0}.

Campi and Çetin [3] study an equilibrium model à la Kyle-Back in the case when T0 is known to
the insider at time 0. The main result therein is that a risk-neutral insider who is thus maximizing
her expected profit reveals part of her private information making the default time predictable
in market’s view, while that very default time was, by assumption, totally inaccessible before
the trading started. Moreover, it is shown in [3] that the equilibrium demand is a 3-dimensional
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Bessel bridge for the insider and a Brownian motion for the market (so-called “Inconspicuous trade
theorem”), meaning that the insider hides herself (behind the noise traders) while optimally trading.

The model assumption of an insider knowing the default time from the beginning of the trading
period is very strong. The goal of this paper is to generalize the results in [3] to the more realistic
case of dynamic insider’s information, where the insider observes the fundamental value of the
company β continuously on time.

However, in this case an equilibrium would not exist (for a discussion of this in a related
context, see the discussion after Remark 2.2, and Remark 5.1 in [4] as well as the discussion
following Theorem 2.1 in [5]). Thus, to relax the assumption of static information while ensuring
the existence of a solution, we allow the insider to look into the future, i.e. we assume that she
observes Z = (1 + βV (t))t∈[0,1] where V is any continuous and increasing function with V (0) = 0,
V (t) > t for t ∈ (0, 1) and V (1) = 1. Note that the assumption that the insider observes (Zt)t∈[0,1]
rather than β itself is a standard assumption1 in dynamic information models, see, e.g., Back and
Pedersen [2] and Wu [13]. Note that one can find another Brownian motion, BZ , such that

Zt = 1 +

∫ t

0

√
V ′(s)dBZ

s t ≥ 0,

where V ′ is the left derivative of V . Also observe that Z1 = 1+β1 and T0 = V (inf{t > 0 : Zt = 0}).
A precise description of the market model, based on the latter observation, will be the content of
the next section.

The main results of the present paper can be summarized as follows. We obtain even in this case
the existence of an equilibrium where the insider maximizes her profit while the market makers set
a unique rational pricing rule based on the observation of the total demand. This is the content of
the main Theorem 3.2. In particular, we compute explicitly both the equilibrium pricing rule and
the optimal insider’s strategy. The corresponding equilibrium total demand X∗ is a semimartingale
behaving like a bridge hitting the default barrier 0 for the first time at V (τ) on the default event
[τ ≤ 1] while reaching the fundamental value Z1 at maturity in case of no-default, i.e. on [τ > 1].
Moreover we obtain, as in the static information case in [3], that the equilibrium total demand
X∗ is a Brownian motion for the market makers, that is the insider hides her actions behind noise
trading so that the “Inconspicuous trade theorem” holds true.

Using the characterization of the equilibrium we have just described, we can compare the static
and dynamic information case. It turns out that an agent willing to pay a price (the value of
information) for getting some private information is indifferent between knowing τ and Z1 from
the beginning or only at the end through a continuous-in-time monitoring of the fundamental value
Z. This is due to the fact that from her viewpoint the expected profits in both cases are the same
(Theorem 4.1 and the discussion below it). Finally, we computed explicitly the value of private
information in the two important cases of a defaultable stock and a corporate bond, finding that
the longer the defaultable claim is traded, the higher such a value is.

Since this paper deals with a Kyle-Back equilibrium model with default and gradually revealing
information, it could also be viewed as a generalization of Back and Pedersen [2] and Campi, Çetin
and Danilova [4] to a financial market with default.

The structure of the paper is the following: Section 2 sets the model, while Section 3 gives the
existence and the characterization of the equilibrium (Theorem 3.2) via an explicit computation of

1Observe that the signal process of the insider in Back and Pedersen [2] and Wu [13] can be rewritten as a
time-changed Brownian motion where the time-change is given by V (t) with V (t) > t for every t ∈ (0, 1).
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the optimal insider’s expected profit (Proposition 3.1). In the proofs of that section a crucial role
is played by the construction of a 3-dimensional dynamic Bessel bridge in [5]. Finally, Section 4
provides a comparison between the static and the dynamic information case.

2 Description of the market model

To formulate the model of the market precisely, let (Ω,F , (Ft)t≥0,P) be a filtered probability
space satisfying the usual conditions of right continuity and P-saturatedness. Assume that on this
probability space there exist two independent standard Brownian motions, B and BZ .

Consider now a defaultable claim issued by a firm with no recovery and payoff f(Z1) in case of
no-default, where Z denotes the fundamental value and follows

Zt = 1 +

∫ t

0
σ(s)dBZ

s t ≥ 0, (2.1)

where σ : [0, 1] 7→ R+ is a measurable deterministic function and V (t) :=
∫ t
0 σ

2(s) ds.

Assumption 2.1 V and f satisfy the following:

1. V (t) > t for all t ∈ (0, 1) and V (1) = 1;

2. there exists some ε > 0 such that
∫ ε
0

1
(V (t)−t)2dt <∞.

3. f : [0,∞) 7→ R+ is a nondecreasing function which is not identically 0 and such that

|f(z)| ≤ k1 exp (k2z) , ∀z ∈ [0,∞),

for some constants k1 and k2.

The firm’s default time is given by the random time V (τ) where

τ := inf{t > 0 : Zt = 0}. (2.2)

and the price of the defaultable claim is determined in equilibrium. We generalize, by incorporating
dynamic information, the equilibrium framework of Campi and Çetin [3], which in turn is an
extension of that of Back [1] to a market with a defaultable bond. We refer the reader to Back [1]
for motivation and details that are not explained in what follows.

Remark 1 The modeling of the default can also be interpreted in terms of economic, τ , and
recorded, V (τ), default. It is documented that these two notions of default do not necessarily
coincide and the latter is typically later than the former (see Guo et al. [8]).

The microstructure of the market, and the interaction of market participants, is modeled as fol-
lows. There are three types of agents: noisy/liquidity traders, an informed trader (insider), and
competitive market makers, all of whom are risk neutral. The agents differ in their information
sets, and objectives, as follows.

• Noisy/liquidity traders trade for liquidity reasons, and their total demand at time t is given
by a standard (Ft)-Brownian motion B independent of BZ .
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• The market makers set the price of the defaultable claim using their information set. Since
the market makers are risk neutral and identical in their information sets, they set the same
price. Their information consists of two parts. The first component is the total order of the
noise traders and the insider, which is denoted with X̃ and has the decomposition

X̃ = X̃θ = BV (τ) + θV (τ), (2.3)

where θ is the position of the insider in the defaultable claim so that the total demand right
before the insider starts trading at time 0 equals 0. Note that we stop the market at time
V (τ) so that there is no trading in the defaultable claim once the default has occurred.
Let X = 1 + X̃ and observe that X and X̃ generate the same filtration. We will denote the
minimal right continuous and complete filtration generated by X with FX , where we suppress
the dependency on θ in the notation.

The second part of the market makers’ information comes from the observation of the recorded
default event, i.e. the market makers also observe whether the recorded default has happened
or not. In mathematical terminology, this makes V (τ) a stopping time in his filtration.
Therefore, the market makers’ information is modeled by the filtration FM = (FMt )0≤t≤1
where FMt := FXt ∨ σ(V (τ) ∧ t).
Similar to Back [1] and Campi and Çetin [3], we assume that the market makers set their
price as a function of the total order process at time t, i.e. we assume that

St = DtH (t,Xt) , ∀t ∈ [0, 1) (2.4)

where D is the non-default process, i.e. Dt = 1[V (τ)>t]. Moreover, a pricing rule H has to
be admissible in the sense of Definition 2.1. In particular, H ∈ C1,2 and, therefore, S is a
semimartingale on [0, 1).

• The informed investor observes the price process St = DtH (t,Xt) where X is given by (2.3),
and the fundamental value Zt, i.e. her filtration, (FIt )t∈[0,1], is given by (FZ,St ). She is
risk-neutral, thus, her objective is to maximize the expected final wealth, i.e.

sup
θ∈A(H)

E
[
W θ

1

]
= sup

θ∈A(H)
E

[
(f(Z1)1[V (τ)>1] − S1∧V (τ)−)θ1∧V (τ) +

∫ V (τ)∧1−

0
θsdSs

]
(2.5)

where A(H) is the set of admissible trading strategies for the given pricing rule H, which will
be defined in Definition 2.2. In particular, θ is an absolutely continuous process. That is, the
insider maximizes the expected value of her final wealth W θ

1 , where the first term on the right
hand side of equation (2.5) is the contribution to the final wealth due to a potential differential
between price and fundamental value at time V (τ)∧ 1, when the market terminates, and the
second term is the contribution to final wealth coming from the trading activity.

Note also that the above market structure implies that the insider’s optimal trading strategy
takes into account the feedback effect i.e. that prices react to her trading strategy according to
(2.4). Our goal is to find the rational expectations equilibrium of this market, i.e. a pair consisting
of a pricing rule and an admissible trading strategy such that: a) given the pricing rule the trading
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strategy is optimal, b) given the trading strategy, the pricing rule is rational2 in the following sense:

DtH(t,Xt) = St = E
[
f(Z1)1[V (τ)>t]|FMt

]
, t ∈ [0, 1]. (2.6)

This in particular implies S1∧V (τ) = f(Z1)1[V (τ)>1] because true prices are revealed to the market
at 1∧V (τ). To formalize this definition of equilibrium, we first need to define the sets of admissible
pricing rules and trading strategies.

Definition 2.1 A measurable function H : [0, 1]× R 7→ R is a pricing rule if

1. H ∈ C1,2([0, 1)× R);

2. E[D1H(1, B1)] <∞ and E[
∫ 1
0 DtH(t, Bt)

2dt] <∞;

3. x 7→ H(t, x) is strictly increasing for every t ∈ [0, 1).

Moreover, let θ be a trading strategy of the insider. Given θ, a pricing rule H is said to be
rational if it satisfies equation (2.6).

Remark 2 The strict monotonicity of H in the space variable implies x 7→ H(t, x) is invertible
for t ∈ [0, 1), thus, the filtration of the insider is generated by X and Z. This in turn implies that
FS,Zt = FB,Zt , for all t ∈ [0, 1). Using the continuity of the processes involved we get (FS,Zt )t∈[0,1] =

(FB,Zt )t∈[0,1], i.e. the insider has full information about the market.

It is standard (see, e.g., [2], [6] or [13]) in the insider trading literature to limit the set of
admissible strategies to absolutely continuous ones motivated by the result in Back [1], and we do
so. The formal definition of the set of admissible trading strategies is summarized in the following
definition.

Definition 2.2 An FB,Z-adapted θ is said to be an admissible trading strategy for a given pricing
rule H if

1. it is absolutely continuous with respect to the Lebesgue measure, i.e. θt =
∫ t
0 αsds;

2. (X,Z) is a Markov process adapted to (Ft);

3. and no doubling strategies are allowed i.e.

E
[∫ 1

0
DtH

2 (t,Xt) dt

]
<∞. (2.7)

The set of admissible trading strategies for a given H is denoted with A(H).

Given these definitions of admissible pricing rules and trading strategies, it is now possible to
formally define the market equilibrium as follows.

Definition 2.3 A couple (H∗, θ∗) is said to form an equilibrium if H∗ is an admissible pricing
rule, θ∗ ∈ A(H∗), and the following conditions are satisfied:

2This rational pricing rule corresponds to perfect competition among the risk neutral market makers.
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1. Market efficiency condition: given θ∗, H∗ is a rational pricing rule.

2. Insider optimality condition: given H∗, θ∗ solves the insider optimization problem:

E[W θ∗
1 ] = sup

θ∈A(H∗)
E[W θ

1 ].

3 Equilibrium with dynamic insider’s information

In order to determine the conditions for equilibrium we start with the optimality conditions for
the insider. The next proposition characterizes the optimal insider’s strategy for a given class of
pricing rules set by the market makers. This class contains the solutions to the heat equation,
which are fully determined by the terminal value h(x). Therefore, choice of the pricing rule H(t, x)
is equivalent to the choice of h(x) by the market makers. The following proposition is valid for
a general h(x) and we will establish in Theorem 3.2 the existence of a particular h ensuring the
equilibrium.

Proposition 3.1 Assume that a pricing rule H is a classical solution to

Ht(t, x) +
1

2
Hxx(t, x) = 0, H(1, x) = h(x), (3.8)

where h is nondecreasing right continuous function on R with at most exponential growth, the range
of h contains that of f and 0 ∈ (infx h(x), supx h(x)).

If θ∗ ∈ A(H) satisfies limt↑1H(V (τ) ∧ t,X∗V (τ)∧t) = f(Z1)1[τ>1] a.s., where X∗ = B + θ∗, then

θ∗ is an optimal strategy, i.e., for all θ ∈ A(H),

E[W θ
1 ] ≤ E[W θ∗

1 ] = E

[∫ 1

ξ(0,a∗)
(H(0, u)− a∗)du+

1

2

∫ 1∧V (τ)

0
Hx(s, ξ(s, a∗))ds

]
, (3.9)

where a∗ = 1[τ>1]f(Z1) and ξ(t, a) is the unique solution of H(t, ξ(t, a)) = a for all a in the range
of h or in the interval (infx h(x), supx h(x)) and t < 1.

Proof. We will adapt Wu’s proof of his Lemma 4.2 in [13]. This proof can be splitted into
two main steps.

Step 1. Fix an a in the range of h or in the interval (infx h(x), supx h(x)). Suppose that a is
the maximum of h, then ξ(t, a) =∞ for all t ∈ [0, 1) since H is strictly increasing with supremum
being equal to a. Similarly if a is the minimum of h, then ξ(t, a) = −∞ for all t ∈ [0, 1). If a is
neither the minimum nor the maximum, ξ(t, a) exists since H(t, x) is strictly increasing in x for
each t ∈ [0, 1). Moreover, for all a ∈ (infx h(x), supx h(x)), the mapping t 7→ ξ(t, a) is uniformly
bounded on the interval [0, 1) due to Lemma A.1 and the continuity of H.

Next, consider the function

Φa(t, x) :=

∫ ∞
−∞

∫ y+x

Xa
min

(h(u)− a)
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
du dy, (3.10)

where
Xa
min := inf{x : h(x) ≥ a}.
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Direct calculations show that

Φa
t +

1

2
Φa
xx = 0,

with the boundary condition

Φa(1, x) =

∫ x

Xa
min

(h(u)− a)du.

Therefore, Φa is jointly continuous and nonnegative on [0, 1] × R and C1,2([0, 1) × R). Moreover,
for t < 1,

Φa
x(t, x) = H(t, x)− a,

so that the minimum of Φa is achieved at ξ(t, a).
Suppose that |ξ(t, a)| = ∞ so that a is either the minimum or the maximum of h and that

Φa(1, x) is positive and decreasing as x→ ξ(t, a). Then,

Φa(t, ξ(t, a)) := lim
x→ξ(t,a)

Φa(t, x) = lim
x→ξ(t,a)

∫ ∞
−∞

Φa(1, x+ y)
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
dy

=

∫ ∞
−∞

lim
x→ξ(t,a)

Φa(1, x+ y)
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
dy = 0. (3.11)

Moreover, when ξ(t, a) is finite,

0 ≤ lim
t↑1

Φa(t, ξ(t, a)) ≤ lim
t↑1

Φa(t,Xa
min)

= lim
t↑1

∫ ∞
−∞

∫ y+Xa
min

Xa
min

(h(u)− a)
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
du dy = 0. (3.12)

Next observe that

Φa(t, x)− Φa(t, ξ(t, a)) =

∫ ∞
−∞

1√
2π(1− t)

exp

(
− y2

2(1− t)

)∫ y+x

y+ξ(t,a)
(h(u)− a)du dy

=

∫ ∞
−∞

1√
2π(1− t)

exp

(
− y2

2(1− t)

)∫ x

ξ(t,a)
(h(u+ y)− a)du dy

=

∫ x

ξ(t,a)
(H(t, u)− a)du. (3.13)

Step 2. Consider for all ν < 1

Ψa,ν(t, x) :=

∫ x

ξ(t,a)
(H(t, u)− a)du+

1

2

∫ ν

t
Hx(s, ξ(s, a))ds, t ≤ ν.

Notice that the both integrals in the RHS are well-defined: the first one is well-defined for all values
of ξ(t, a) thanks to Step 1, and the second one is well-defined due to the fact that t 7→ Hx(t, ξ(t, a))
is uniformly bounded on [0, ν]. Direct differentiation with respect to x gives that

Ψa,ν
x (t, x) = H(t, x)− a. (3.14)

Differentiating above with respect to x gives

Ψa,ν
xx (t, x) = Hx(t, x). (3.15)
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Direct differentiation of Ψa,ν(t, x) with respect to t gives

Ψa,ν
t (t, x) =

∫ x

ξ(t,a)
Ht(t, u)du− 1

2
Hx(t, ξ(t, a)) = −1

2
Hx(t, x)

where in order to obtain the last equality we used (3.8). Combining this and (3.15) gives

Ψa,ν
t +

1

2
Ψa,ν
xx = 0.

Therefore from (3.14) and Itô’s formula it follows that

Ψa,ν(ν,Xν)−Ψa,ν(0, 1) =

∫ ν

0
(H(u,Xu)− a)dXu,

and in particular, when a := 1[τ>1]f(Z1), ν(t) = t ∧ V (τ),

lim
t↑1

(
Ψa,ν(t)(t ∧ V (τ), Xt∧V (τ))−Ψa,ν(t)(0, 1)

)
=

∫ 1∧V (τ)

0
(H(t,Xt)− 1[τ>1]f(Z1))dXt. (3.16)

By the admissibility properties of θ, in particular dθt = αtdt, the insider’s optimization problem
becomes

sup
θ∈A(H)

E[W θ
1 ] = sup

θ∈A(H)
E

[
(f(Z1)1[τ>1] − S1∧V (τ)−)θ1∧V (τ) +

∫ V (τ)∧1−

0
θsdSs

]

= sup
θ∈A(H)

E

[∫ V (τ)∧1

0
(f(Z1)1[τ>1] −H(t,Xt))αtdt

]

where we used integration-by-parts formula and the fact that θ0 = 0 to obtain the second equality.
Due to above and (3.16), we have

E[W θ
1 ] = −E

[
lim
t↑1

(
Ψa,ν(t)(t ∧ V (τ), Xt∧V (τ))−Ψa,ν(t)(0, 1)

)]
. (3.17)

Notice that all the Brownian integrals vanish due to (2.7) in Definition 2.2, and

E

[(∫ 1∧τ

0
f(Z1)dBt

)2
]
≤ E

[
f(Z1)

2
]
E[B2

1 ] <∞,

since Z and B are independent.
The conclusion follows from the fact that limt↑1 Ψa,ν(t)(t ∧ V (τ), Xt∧V (τ)) is nonnegative and

equals 0 if limt↑1H(V (τ) ∧ t,X∗V (τ)∧t) = f(Z1)1[τ>1]. Indeed, observe that

lim
t↑1

Ψa,ν(t)(t ∧ V (τ), Xt∧V (τ)) = lim
t↑1

∫ Xt∧V (τ)

ξ(t∧V (τ),a)
(H(t ∧ V (τ), u)− a)du.
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On the set [V (τ) ≥ 1] we have

lim
t↑1

Ψa,ν(t)(t ∧ V (τ), Xt∧V (τ)) = lim
t↑1

∫ Xt

ξ(t,a)
(H(t, u)− a)du

= lim
t↑1
{Φa(t,Xt)− Φa(t, ξ(t, a))} = Φa(1, X1),

which is nonnegative and is 0 if limt↑1H(t,X∗t ) = f(Z1) in view of Lemma A.1. Observe that we
used (3.13) for the second equality above while (3.11) and (3.12) for the third one.

On the set [V (τ) < 1],

lim
t↑1

∫ Xt∧V (τ)

ξ(t∧V (τ),a)
(H(t ∧ V (τ), u)− a)du =

∫ XV (τ)

ξ(V (τ),a)
(H(V (τ), u)− a)du,

which is nonnegative and equals 0 if XV (τ) = ξ(V (τ), a) due to the invertibility of H. Therefore,
an insider trading strategy which gives limt↑1H(V (τ) ∧ t,X∗V (τ)∧t) = f(Z1)1[τ>1] is optimal. �

Remark 3 The same results as in Proposition 3.1 above apply when the initial insider’s informa-
tion FI0 is not trivial provided one replaces expectations with conditional expectations given FI0 in
the statement as well as in its proof.

Combining Proposition 3.1 and the dynamic Bessel bridge construction performed in [5], we
can finally state and prove the main result of this paper. Before that, we need some preliminary
notation.

Recall that τ = inf{t > 0 : Zt = 0}. Since Z is a time-changed Brownian motion, one can
characterize the distribution of τ using the well-known distributions of first hitting times of a
standard Brownian motion. To this end let

P [Ta > t] =

∫ ∞
t

`(u, a) du, (3.18)

for a > 0 where

Ta := inf{t > 0 : Bt = a}, and `(t, a) :=
a√
2πt3

exp

(
−a

2

2t

)
.

Another formulation for the distribution of Ta can be stated in terms of the transition density of a
Brownian motion killed at 0. Recall that this transition density is given by

q(t, x, y) :=
1√
2πt

(
exp

(
−(x− y)2

2t

)
− exp

(
−(x+ y)2

2t

))
,

for x > 0 and y > 0 (see Exercise (1.15), Chapter III in [12]). Then one has the identity

P [Ta > t] =

∫ ∞
0

q(t, a, y) dy. (3.19)

Moreover, if f is a function satisfying the conditions in Assumption 2.1, then one can define

P (t, z) :=

∫ ∞
0

f(y)q(1− V (t), z, y)dy (3.20)
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so that 1[τ>t]P (t, Zt) is the value of the defaultable claim for the insider at time t and the process
(1[τ>t]P (t, Zt))t∈[0,1] is a martingale for the insider’s filtration.

For reader’s convenience, we recall here the main result of the paper [5]. This is the key
ingredient to solve our equilibrium model.

Theorem 3.1 ([5]) Suppose that V (t) > t for all t > 0 and satisfies Assumption 2.1.2. Then,
there exists a unique strong solution to

Xt = 1 +Bt +

∫ τ∧t

0

qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)
ds+

∫ V (τ)∧t

τ∧t

`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
ds.

Moreover,

i) Let FXt = N
∨
σ(Xs; s ≤ t), where N is the set of P-null sets. Then, X is a standard

Brownian motion with respect to FX = (FXt );

ii) V (τ) = inf{t > 0 : Xt = 0}.

Notice that we cannot apply directly the previous result to get the solution to our equilibrium
problem, since we impose V (1) = 1 for the time-change V (t). Nonetheless, Theorem 3.1 will be
very useful to prove our main result, which is stated in the following theorem.

Theorem 3.2 Under Assumption 2.1 there exists an equilibrium (H∗, θ∗), where

(i) H∗(t, x) = P (V −1(t), x) where P (t, x) is given by (3.20) for (t, x) ∈ [0, 1]× R.

(ii) θ∗t =
∫ t
0 α
∗
sds where

α∗s =
qx(V (s)− s,X∗s , Zs)
q(V (s)− s,X∗s , Zs)

1[s≤τ∧1] +
`a(V (τ)− s,X∗s )

`(V (τ)− s,X∗s )
1[τ∧1<s≤V (τ)∧1] (3.21)

where the process X∗ is the unique strong solution under insider’s filtration FX,Z of the
following SDE:

Xt = 1 +BV (τ)∧t +

∫ τ∧t

0

qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)
ds+

∫ V (τ)∧t

τ∧t

`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
ds. (3.22)

Moreover, V (τ) = inf{t ∈ [0, 1] : X∗t = 0}, where inf ∅ = 1 by convention, and one has limt↑1X
∗
t =

Z1 on the set of non-default [τ > 1]. As a consequence, V (τ) is a predictable stopping time in the
market filtration FM .

Furthermore, the expected profit of the insider is

E

[∫ 1

ξ(0,a∗)
(H∗(0, u)− a∗)du+

1

2

∫ 1∧V (τ)

0
H∗x(s, ξ(s, a∗))ds

]
, (3.23)

where a∗ = 1[τ>1]f(Z1) and ξ(t, a) is the unique solution of H(t, ξ(t, a)) = a for all a ≥ 0.

10



Proof. Observe that

H∗(t, x) =

∫ ∞
−∞

f̃(x+ y)
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
dy,

where

f̃(y) =

{
f(y), y ≥ 0;

−f(−y), y < 0.

Thus, clearly, H∗ ∈ C1,2([0, 1) × R), E[D1H
∗(1, B1)] < ∞, and E[

∫ 1
0 DtH

∗(t, Bt)
2dt] < ∞. To

show that it is a pricing rule in the sense of Definition 2.1, it is enough to show that it is strictly
increasing for any t ∈ [0, 1). We have, due Assumption 2.1.3, for x > z and t < 1,

H(t, x)−H(t, z) =

∫ ∞
−∞

(f̃(x+ y)− f̃(z + y))
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
dy ≥ 0.

Note that the above holds in equality if and only if f̃(x + y) = f̃(z + y) for almost all y, which is
not possible due to the construction of f̃ and the assumption on f . Therefore H∗ is a pricing rule
in the sense of Definition 2.1.

Moreover, direct calculations show that H∗ as defined above satisfies (3.8). Since the process
(1[τ>t]P (t, Zt))t∈[0,1] is a martingale for the insider’s filtration, (DtH

∗(t,X∗t ))t∈[0,1] will be an FM -
martingale as soon as we show that (X∗t )t∈[0,1] is a Brownian motion stopped at V (τ) in its own

filtration, where V (τ) is the first time that it hits 0. This implies that FX∗ = FM and that H∗

is a rational pricing rule in the sense of Definition 2.1 and that the proposed optimal strategy is
admissible for the insider.

To do so, we prove that there exists a unique strong solution of (3.22) on [0, 1), X∗, satisfying
the following properties:

1) limt↑1X
∗
t∧V (τ) = 0 a.s. on [τ < 1],

2) limt↑1X
∗
t = Z1 a.s. on the set [τ > 1],

3) (X∗t )t∈[0,1] is a Brownian motion stopped at V (τ) in its own filtration.

This will establish (H∗, θ∗) as an equilibrium in view of Proposition 3.1, where h(x) is chosen to
be equal to f̃(x), since, due to 1) and 2), we have limt↑1H

∗(t ∧ V (τ), Xt∧V (τ)) = 1[τ>1]f(Z1).
Moreover, the expected profit of the insider is given by (3.23) due to (3.9).

Due to Theorem 3.1 there exists unique strong solution, X∗, to (3.22) on [0, 1). Moreover,
V (τ) = inf{t > 0 : X∗t = 0} on the set [τ < 1], so that property 1) above is satisfied.

On the non-default set [τ > 1], which is the same as [V (τ) > 1], the SDE (3.22) becomes

Xt = 1 +Bt +

∫ t

0

qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)
ds, t ∈ [0, 1).

The function qx(t,x,z)
q(t,x,z) appearing in the drift above can be decomposed as follows

qx(t, x, z)

q(t, x, z)
=
z − x
t

+ b(t, x, z) :=
z − x
t

+
exp

(−2xz
t

)
1− exp

(−2xz
t

) 2z

t
.

11



We want to prove that limt↑1X
∗
t = Z1 a.s. on the set [τ > 1]. Consider the process

Rt := X∗t − λ(t)

∫ t

0
b(V (s)− s,X∗s , Zs)

ds

λ(s)
,

where

λ(t) = exp

(
−
∫ t

0

ds

V (s)− s

)
.

Direct calculations give that, on [τ > 1], dRt = Zt−Rt
V (t)−tdt + dBt, thus we can apply the results in

Back and Pedersen [2] (see also [4], Proposition 3.2) to conclude that Rt goes to Z1 as t ↑ 1 a.s. on
the set of non-default [τ > 1]. To deduce from it that Xt → Z1 a.s. on [τ > 1] when t ↑ 1, we have
to show

lim
t↑1

λ(t)

∫ t

0
b(V (s)− s,X∗s , Zs)

ds

λ(s)
= 0,

a.s. on [τ > 1].

Observe that b(V (t)− t,X∗t , Zt) = g
(

2X∗t Zt
V (t)−t

)
1
X∗t

, with g(u) = e−u

1−e−uu, and g(u) ∈ [0, 1] for all

u ∈ [0,+∞]. Since on the set [τ > 1] we have inft∈[0,1] Zt > 0 and inft∈[0,1]X
∗
t ≥ 0 (as, due to

Theorem 3.1, inft∈[0,1)X
∗
t > 0), we obtain inft∈[0,1] b(V (t)− t,X∗t , Zt) ≥ 0 on [τ > 1], and therefore

the following two cases are possible:

• Case 1: limt↑1
∫ t
0 b(V (s)− s,X∗s , Zs) ds

λ(s) <∞. Then, since

0 ≤ lim
t↑1

λ(t) ≤ lim
t↑1

exp

(
−
∫ t

0

ds

1− s

)
= 0,

we are done.

• Case 2: limt↑1
∫ t
0 b(V (s)− s,X∗s , Zs) ds

λ(s) =∞. Since both λ(t) and
∫ t
0 b(V (s)− s,X∗s , Zs) ds

λ(s)

are differentiable for fixed ω in [τ > 1], we can use de l’Hôpital’s rule to get:

lim
t↑1

λ(t)

∫ t

0
b(V (s)− s,X∗s , Zs)

ds

λ(s)
ds = lim

t↑1
(V (t)− t)b(V (t)− t,X∗t , Zt) = 0 (3.24)

a.s. on the set of non-default [τ > 1] provided lim supt↑1 b(V (t)− t,X∗t , Zt) <∞ a.s..

Since b(V (t)−t,X∗t , Zt) = g
(

2X∗t Zt
V (t)−t

)
1
X∗t

with g being a bounded function on [0,+∞], to show

that lim supt↑1 b(V (t) − t,X∗t , Zt) < ∞, it is sufficient to demonstrate that lim inft↑1X
∗
t > 0

on [τ > 1].

To prove it, consider two processes X̂ and Y which follow

dX̂t =

[
Zt − X̂t

V (t)− t
+ g

(
2X̂tZt
V (t)− t

)
1

X̂t

]
1[τ>t]dt+ dBt, t ∈ [0, 1),

dYt =
Zt − Yt
V (t)− t

1[τ>t]dt+ dBt, t ∈ [0, 1].

12



The process X̂ is well defined and is strictly positive for all t ∈ [0, 1) due to the Theorem 3.1.
Moreover, for all t ∈ [0, 1) we have Yt1[τ>1] = Rt1[τ>1] and X̂t1[τ>1] = X∗t 1[τ>1] and therefore

it is sufficient to show that lim inft↑1 X̂t > 0 on [τ > 1].

Observe that

d(Yt − X̂t) =

[
X̂t − Yt
V (t)− t

− g

(
2X̂tZt
V (t)− t

)
1

X̂t

]
1[τ>t]dt,

and g and X̂ are strictly positive, so that by Tanaka’s formula (see Theorem 1.2 in Chap. VI
of [12])

(Yt − X̂t)
+ =

∫ t

0
1[Ys>X̂s]

[
X̂s − Ys
V (s)− s

− g

(
2X̂sZs
V (s)− s

)
1

X̂s

]
1[τ>s]ds

≤
∫ t

0
1[Ys>X̂s]

[
X̂s − Ys
V (s)− s

]
1[τ>s]ds ≤ 0

since the local time of Y − X̂ at 0 is identically 0 (see Corollary 1.9 in Chap. VI of [12]).

Thus, on the set [τ > 1] we have

lim inf
t↑1

X∗t = lim inf
t↑1

X̂t ≥ Y1 = R1 = Z1 > 0

as required.

Recall that P[τ = 1] = 0, therefore, one has V (τ) = inf{t ∈ [0, 1] : X∗t = 0}, where inf ∅ = 1 by
convention. This makes V (τ) a stopping time with respect to FX∗ and yields that FX∗ = FM . To
complete the proof we need to show that X∗ is a Brownian motion in its own filtration, stopped
at V (τ). Notice first that the construction of the dynamic Bessel bridge in [5] implies in particular
that X∗ is a Brownian motion in its own filtration over each interval [0, T ] for every T < 1, i.e.
(X∗t∧V (τ))t∈[0,1) is a Brownian motion. As we have seen, limt↑1X

∗
t∧V (τ) = Z1∧τ ; thus, it follows

from Fatou’s lemma that (X∗t∧V (τ))t∈[0,1] is a supermartingale. In order to obtain the martingale

property over the whole interval [0, 1], it suffices to show that E[X∗1∧V (τ)] = 1. However, since
X∗1∧V (τ) = Z1∧τ , this follows from the fact that Z is a martingale. In view of Lévy’s characterization,

we conclude that X∗ is a Brownian motion in its own filtration, stopped at V (τ). �
In the next section we will compare properties of the equilibriums with dynamic versus static

private information. However, we will analyze the effect of default on the market parameters such
as volatility and market depth in the next remark.

Remark 4 In order to understand the effect of default risk on the market parameters, let us choose
an absolutely continuous pay-off f(x) which is null on (−∞, 0]. We have seen in the theorem above
that the equilibrium price of this defaultable claim is given by

H∗(t, x) =

∫ ∞
0

f(y)
1√

2π(1− t)
exp

(
−(y − x)2

2(1− t)

)
dy−

∫ 0

−∞
f(−y)

1√
2π(1− t)

exp

(
−(y − x)2

2(1− t)

)
dy

while equation (9) in [2] gives the price of this claim in the absence of default as

Ĥ(t, x) =

∫ ∞
0

f(y)
1√

2π(1− t)
exp

(
−(y − x)2

2(1− t)

)
dy.
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It is clear from above that H∗(t, x) is smaller than Ĥ(t, x). Kyle’s λ which measures the market
depth is given by 1/Hx where H is the equilibrium price in the corresponding market. Direct
calculations show that

Ĥx −H∗x = −
∫ 0

−∞
f ′(−y)

1√
2π(1− t)

exp

(
−(y − x)2

2(1− t)

)
dy < 0.

Thus, the market depth decreases with default risk. This is quite intuitive, since the presence of
default risk increases market makers’ informational disadvantage thereby causing them to decrease
the market depth to compensate for the additional risk and informational disadvantage. Similarly
default risk also increases the volatility of the log-returns of prices. Indeed, the above comparisons
lead to H∗x/H

∗ > Ĥx/Ĥ.

4 Comparison of dynamic and static private information

In this section we compare the expected profits of the insider in the cases of dynamic and static
private information. By static private information we mean that the insider knows τ and Z1 in
advance. In order to do the comparison, we first need to obtain the equilibrium and the associated
expected profit when the private information is static. The concepts of equilibrium, admissibility
and the market microstructure are analogous to the definitions in Section 2.

Recall that the proof of Proposition 3.1 did not depend on the type of the private information,
therefore, the optimality conditions for the insider with a static information are still described by
it after replacing expectations with conditional expectations (see Remark 3).

Theorem 4.1 Suppose that the insider observes τ and Z1 at time 0. Then, under Assumption 2.1
there exists an equilibrium (H∗, θ∗), where

(i) H∗(t, x) = P (V −1(t), x) where P (t, x) is given by (3.20) for (t, x) ∈ [0, 1]× R+.

(ii) θ∗t =
∫ t
0 α
∗
sds for t ∈ [0, 1 ∧ V (τ)],where

α∗s =
qx(1− s,X∗s , Z1)

q(1− s,X∗s , Z1)
1[τ>1] +

`a(V (τ)− s,X∗s )

`(V (τ)− s,X∗s )
1[τ≤1] (4.25)

where the process X∗ is the unique strong solution under insider’s filtration FX,Z1,τ of the
following SDE:

X∗t = 1 +BV (τ)∧t +

∫ V (τ)∧t

0

{
qx(1− s,X∗s , Z1)

q(1− s,X∗s , Z1)
1[τ>1] +

`a(V (τ)− s,X∗s )

`(V (τ)− s,X∗s )
1[τ≤1]

}
ds.

(4.26)

Moreover, V (τ) = inf{t ∈ [0, 1] : X∗t = 0}, where inf ∅ = 1 by convention, and one has limt↑1X
∗
t =

Z1 on the set of non-default [τ > 1]. As a consequence, V (τ) is a predictable stopping time in the
market filtration FM .

Furthermore, the expected profit of the insider is∫ 1

ξ(0,a∗)
(H∗(0, u)− a∗)du+

1

2

∫ 1∧V (τ)

0
H∗x(s, ξ(s, a∗))ds, (4.27)

where a∗ = 1[τ>1]f(Z1) and ξ(t, a) is the unique solution of H(t, ξ(t, a)) = a for all a ≥ 0.
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Proof. Since the optimality conditions for the insider are still described by Proposition 3.1, the
proof will follow the same lines as the proof of Theorem 3.2 once we show that there exist unique
strong solution of (4.26) on [0, 1), X∗, satisfying the following properties:

1) limt↑1X
∗
t∧V (τ) = 0 a.s. on [τ < 1],

2) limt↑1X
∗
t = Z1 a.s. on the set [τ > 1],

3) (X∗t )t∈[0,1] is a Brownian motion stopped at V (τ) in its own filtration.

To see this consider a Brownian motion β, in a possibly different probability space, with β0 = 1
and T0 = inf{t > 0 : βt = 0}. Let (Gt)t≥0 be the minimal filtration satisfying usual conditions and
to which β is adapted and G0 ⊃ σ(β1, T0). Direct calculations show that

P[T0 ∈ du, T0 > 1, β1 ∈ dy|Fβt ] = 1[1∧T0>t]`(u− 1, y)q(1− t, βt, y) dy du+ 1[T0>t≥1]`(u− t, βt) du

P[T0 ∈ du, T0 ≤ 1, β1 ∈ dy|Fβt ] = 1[T0>t]
1√

2π(1− u)
exp

(
− y2

2(1− u)

)
`(u− t, βt) dy du

+1[T0≤t]
1√

2π(1− t)
exp

(
−(y − βt)2

2(1− t)

)
dy

Thus, it follows from Theorem 1.6 in [11] that

βt = 1 + β̃t +

∫ t∧1∧T0

0

{
qx(1− s, βs, β1)
q(1− s, βs, β1)

1[T0>1] +
`a(T0 − s, βs)
`(T0 − s, βs)

1[T0≤1]

}
ds

+

∫ t∧T0

t∧1∧T0

`a(T0 − s, βs)
`(T0 − s, βs)

ds+

∫ t∧1

t∧1∧T0

β1 − βs
1− s

ds,

where β̃ is a G-Brownian motion independent of β1 and T0. Observe that ZV −1(t) is a standard
Brownian motion starting at 1 with V (τ) as its first hitting time of 0. Moreover, the SDE satisfied
by β until T0∧1 is the same as (4.26) until time 1 since (β1, T0, β̃) has the same law as (Z1, V (τ), B)
due to V (1) = 1. Therefore, the law of (X∗t∧V (τ)∧1)t≥0 is the same as that of (βt∧T0∧1)t≥0 since the

solution of the SDE for β has strong uniqueness. In particular, properties 1), 2) and 3) above are
satisfied. �

Now, we are in a position to compare the value of static and dynamic information. This
comparison is relevant to an uninformed and risk-neutral investor at time 0 who is about to decide
whether to purchase a particular private information at a given price. Obviously, as the investor
is uninformed her information prior to making this decision is trivial. Thus, the decision will be
based on the comparison of the expected profits resulting from the purchased information, and the
expectation will be taken with respect to the trivial σ-algebra. Comparison of (3.23) and (4.27)
leads to the immediate conclusion that this risk-neutral investor is indifferent between purchasing
static or dynamic information, whose value is given by (3.23).

This indifference might appear counterintuitive at first. However, it is clear that a necessary
condition for the optimality is that the insider drives the market price to the fundamental value
of the asset at the termination of the market since otherwise she wouldn’t have used all her infor-
mational advantage. On the other hand, Proposition 3.1 demonstrates that this is also sufficient.
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Consequently, the only thing she strives to achieve is to make sure that the price converges to the
fundamental value. This observation together with her risk-neutrality will lead her to value both
types of information same since the variance of the signals does not affect her valuation.

The same phenomenon is also responsible for the fact that the price of information does not
depend on V , which also manifests itself in expression (3.23) since the distribution of V (τ) is the
same as that of the first hitting time of 0 by a Brownian starting at 1. In fact, it is easy to observe
that the static information is the limiting case of dynamic ones characterized by an increasing
sequence of functions V n with limn→∞ V

n(t) = 1 for all t ∈ (0, 1].
The value of information, (3.23), can be computed more explicitly as the following proposition

shows.

Proposition 4.1 Suppose f is invertible with f(0) = 0 and satisfies Assumption 2.1. Then, (3.23)
becomes

E[W θ∗
1 ] = E[F (|1 + β1|)]− E

[
F
(
|β1|
√

1− V (τ)
)

1[τ<1]

]
− F (1)P[τ > 1]

+E
[
{(Z1 − 1)f(Z1)− (F (Z1)− F (1))}1[τ>1]

]
, (4.28)

where β is a standard Brownian motion independent of BZ with β0 = 0, and F (z) :=
∫ z
0 f(y) dy.

Proof. For any a ≥ 0 let

g(a) :=

∫ 1

ξ(0,a)
(H∗(0, u)− a)du+

1

2

∫ 1∧V (τ)

0
H∗x(s, ξ(s, a))ds.

Since ξ(s, 0) = 0 for any s ≥ 0,

g(0) =

∫ 1

0
H∗(0, u)du+

1

2

∫ 1∧V (τ)

0
H∗x(s, 0)ds.

We will first compute the first term in the equation above.∫ 1

0
H∗(0, u)du =

∫ 1

0

∫ ∞
0

f(y)q(1, u, y) dy du = −
∫ ∞
0

F (y)

∫ 1

0
qy(1, u, y) du dy

=

∫ ∞
0

F (y)
1√
2π

(
e−

(y−1)2

2 + e−
(y+1)2

2

)
dy − 2

∫ ∞
0

F (y)
1√
2π
e−

y2

2 dy

= E[F (|1 + β1|)]− E[F (|β1|)].

In particular, this implies E[F (|1 + β1|)] − E[F (c|β1|)] > 0 for any constant 0 ≤ c ≤ 1 since F is
increasing.

The second term is given by

1

2

∫ 1∧V (τ)

0
H∗x(s, 0)ds =

∫ 1∧V (τ)

0

∫ ∞
0

f(y)`(1− s, y) dy ds =

∫ ∞
0

f(y)

∫ 1∧V (τ)

0
`(1− s, y) ds dy

=

∫ ∞
0

f(y)P[Ty < 1] dy −
∫ ∞
0

f(y)P[Ty < 1− 1 ∧ V (τ)|τ ] dy

=

∫ ∞
0

f(y)
{
P[|β1| > y]− P[|β1−1∧V (τ)| > y|τ ]

}
dy

= E[F (|β1|)]− E[F (
√

1− 1 ∧ V (τ)|β1|)|τ ],
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where in the one to the last equality, we used the reflection principle and the last equality follows
from the scaling property of Brownian motion. Thus,

g(0) = E[F (|1 + β1|)]− E[F (
√

1− 1 ∧ V (τ)|β1|)|τ ]. (4.29)

Next, observe that

g′(a) = ξ(0, a)− 1 +
1

2

∫ 1∧V (τ)

0
H∗xx(s, ξ(s, a))ξa(s, a) ds.

Differentiating the equality H∗(s, ξ(s, a)) = a with respect to s and a yields

H∗s +H∗xξs = 0, and H∗x =
1

ξa
,

and using the fact that H∗t + 1
2H
∗
xx = 0, we get 1

2H
∗
xxξa = ξs. Therefore,

g′(a) = ξ(0, a)− 1 +

∫ 1∧V (τ)

0
ξs(s, a) ds = ξ(1 ∧ V (τ), a)− 1,

and thus

g(a) = E[F (|1 + β1|)]− E[F (
√

1− 1 ∧ V (τ)|β1|)|τ ] +

∫ a

0
(ξ(1 ∧ V (τ), u)− 1)du.

Plugging a = 1[τ>1]f(Z1) into above yields

g(a) = E[F (|1 + β1|)]− E[F (
√

1− 1 ∧ V (τ)|β1|)|τ ] + 1[τ>1]

∫ f(Z1)

0
(f−1(u)− 1)du

= E[F (|1 + β1|)]− E[F (
√

1− 1 ∧ V (τ)|β1|)|τ ] + 1[τ>1] {(Z1 − 1)f(Z1)− F (Z1)} .

Taking the expectation of above, it is easy to see that the conclusion holds. �

Below are some explicit examples where we can compute the value of information.

Example 1 In the case of defaultable stock, f(x) = x. Then, the value of information becomes

E[W θ∗
1 ] =

1

2

(
E
[
(1 + β1)

2
]
− E

[
β21
]
E
[
(1− V (τ))1[τ<1]

]
+ E

[
(Z2

1 − 2Z1)1[τ>1]

])
= P[V (τ) ≥ 1] + E

[
V (τ)1[V (τ)<1]

]
= E[V (τ) ∧ 1].

According to the last equality above, the longer the defaultable stock is traded, the higher is the
insider’s expected profit. Such a result is to be expected since the insider can speculate on her
private information only when the market operates.

Although Proposition 4.1 requires f is invertible, one can still calculate the value of the information
even if f fails this condition.
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Example 2 Consider the defaultable zero-coupon bond with payoff f ≡ 1. Then, observe that
(4.29) is still valid as we did not use the conditions on f to obtain it. Moreover, in this case a∗

takes values in {0, 1}. Thus, it remains to calculate g(1). First, observe that H is bounded by 1
and strictly increasing, thus, ξ(t, 1) =∞ and Hx(t, ξ(t, 1)) = 0. Therefore,

g(1) =

∫ 1

∞
(H∗(0, u)− 1)du =

∫ ∞
1

∫ ∞
−∞

(1− sgn(y + u))
1√
2π
e−

y2

2 dydu =

√
2

πe
− 2P[β1 < −1].

Thus, the value of information is

E[W θ∗
1 ] = E

[
g(0)1[τ<1] + g(1)1[τ>1]

]
=

√
2

πe
−
√

2

π
E
[√

1− V (τ)1[V (τ)<1]

]
.

The last expectation on the RHS is an indicator on how far is, on average, the default time from
the defaultable bond’s maturity in the case of default before maturity. As in the previous example,
the larger is that expectation, i.e. the larger is the average distance between market’s default time
and the maturity, the lower the value of the private information is.
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A Appendix

Lemma A.1 Suppose that h is a nondecreasing right-continuous function with at most an expo-
nential growth. Let

H(t, x) :=

∫ ∞
−∞

h(x+ y)
1√

2π(1− t)
exp

(
− y2

2(1− t)

)
dy,

and (ξn)n≥1 be a convergent sequence such that limn→∞H(tn, ξn) = a for some a in the range of h
or in the interval (infx h(x), supx h(x)), and some sequence (tn)n≥1 ⊆ [0, 1) converging to 1. Then,

lim
n→∞

ξn ∈ [Xa
min, X

a
max],

where
Xa
min := inf{x : h(x) ≥ a} and Xa

max := sup{x : h(x) ≤ a}.

Proof. Suppose limn→∞ ξn < Xa
min. Then, there exists some ξ such that limn→∞ ξn < ξ < Xa

min.
Since H is nondecreasing in x, one has

lim
n→∞

H(tn, ξn) ≤ lim
n→∞

H(tn, ξ) = h(ξ) < a,

which is a contradiction. Similarly, we have that limn→∞ ξn ≤ Xa
max. �
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