
Noname manuscript No.
(will be inserted by the editor)

Insider trading in an equilibrium model with default: a
passage from reduced-form to structural modelling

Luciano Campi · Umut Çetin
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Abstract We study an equilibrium model for the pricing of a defaultable zero coupon

bond issued by a firm in the framework of Back [2]. The market consists of a risk-

neutral informed agent, noise traders and a market maker who sets the price using

the total order. When the insider does not trade, the default time possesses a default

intensity in market’s view as in reduced-form credit risk models. However, we show

that, in the equilibrium, the modelling becomes structural in the sense that the default

time becomes the first time that some continuous observation process falls below a

certain barrier. Interestingly, the firm value is still not observable. We also establish

the no expected trade theorem that the insider’s trades are inconspicuous.
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1 Introduction

In the valuation of credit derivatives the key issue is the calculation of the probabilities

associated to the default event for which the product is written. There are essentially

two approaches in the literature to model the default probabilities: structural approach

and reduced-form approach. The structural approach dates back to Black and Scholes

[4] and Merton [19] while the reduced-form models originated with Jarrow and Turnbull

[14]. As argued by Jarrow and Protter [13] the difference between these two approaches

lies on the amount of information available to the modeler. Structural models assume

the modeler has the same information as the manager of the firm and, thus, has the
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continuous knowledge of the firm’s assets and liabilities. In these models the default

time is modelled to be the first time that the firm’s value falls below a certain barrier.

Consequently, this approach might come up with a model, e.g. if the firm value is

assumed to be continuous, where the default time is predictable to the modeler. This

feature of the model makes the yield spreads on the defaultable bonds approach to zero

very quickly as one gets close to maturity. However, such behavior in the yield spreads

is not common in practice (see, e.g. [11]).

In contrast the reduced-form models in general take the default time as exogenous

and model the information available to the modeler. The modeler does not have the

full information that the manager of the firm possesses but only a subset generated

by the default process and several other related state variables. This approach was

originated by Jarrow and Turnbull [14] and there has been a considerable literature

on these models since then. In this respect one can mention the works of Jarrow and

Turnbull [15], Artzner and Delbaen [1], Duffie, et al. [10], Lando ([17], [18]) and Duffie

and Singleton [9] to name a few. The common characteristic of these models is that

there exists a default arrival intensity as a function of state variables and the default

process. This aspect of reduced form modelling excludes such abnormal behavior of

yield spreads as observed in the structural models. The existence of the default intensity

implies that, in mathematical terms, the default time is a totally inaccessible stopping

time1. Consequently, the default time cannot be anticipated by the market and comes

as a total surprise.

Although they seem conceptually different, one may pass from a structural model

to a reduced form model. One can do this by assuming that the market’s information

set is that of the manager plus some noise as in Duffie and Lando [7], or restricting

the information set of the market by assuming that the market only knows whether

the firm is in financial distress or not as in Çetin, et al. [5]. The common feature of

the both models is that they start with a structural model to define the default time,

however, they are still able to come up with default intensities although the firm value

is assumed to be continuous. We will not elaborate further on the differences of these

two model but refer the reader to the recent works by Bielecki and Rutkowski [3],

Duffie and Singleton [8] and Jarrow and Protter [13].

In the model of Duffie and Lando [7] the market has imperfect information about the

default event due to the noisy and infrequent accounting data. Duffie and Lando assume

that managers/owners, who have the perfect information about firm value, is precluded

from trading in order to avoid complex equilibrium problems involving asymmetric

information. In this paper we address such asymmetric information problem in a market

for a defaultable bond. We suppose that the default time is exogenously given to the

market. However, there is one trader, that we call insider, who has an extra information

about the default time. The other two market participants are the noise traders who

trade for liquidity reasons and the market maker who clears the market given the total

demand. The insider is assumed to know the default time. The default event is obviously

predictable to the insider as is the case in the structural models with continuous firm

value, but it is totally inaccessible to the market maker when the insider doesn’t trade,

and it has an intensity, as in reduced form credit risk models. The market maker

chooses a pricing rule and the insider chooses a trading strategy where the cumulative

1 Default intensity could exist in a structural model if the firm value is allowed to jump,
see, e.g., Huang and Huang [12]; hence, the essential difference between the structural and the
reduced form models is the level of the information available to the market.
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demand of the noise traders is modelled by a Brownian motion. The equilibrium is

defined similar to that in Back [2]. We show that in the equilibrium the insider’s trades

cannot be seen in the market and the default time becomes the first time that the

continuous total order process falls below a certain barrier. Consequently, the model

becomes structural although the firm value is still not observable. We also show that

the equilibrium total order process is a Brownian motion in its own filtration, hence the

insider’s trades are inconspicuous, but a 3-dimensional Bessel bridge of length τ in the

insider’s view, where τ is the default time (see Theorem 3.6 for the precise statement).

The outline of the paper is as follows. Section 2 introduces the model. Section 3 solves

the equilibrium pricing rule and the demand for the defaultable bond while Section 4

concludes.

2 The model

A company issues a bond that pays 1 unit of a currency at time 1 unless it defaults be-

fore that time. We suppose that the defaultable bond’s recovery rate is 0 for simplicity.

The company’s default time is modelled by a random time τ defined on a probability

space (Ω,F ,P). The equilibrium framework of our model follows closely that of Back

[2]. We refer the reader to Back [2] for motivation and details that are not explained

in what follows. We suppose the default time is given by

τ := inf{t > 0 : Zt = −1}, (2.1)

where Z is a standard Brownian motion with Z0 = 0. It is well-known that

P[τ > 1|Zt] = 1[τ>t]F (t, Zt),

where

F (t, y) :=

∫ ∞

1−t

y + 1√
2πx3

e−
(y+1)2

2x dx. (2.2)

We may view Z as the value of the firm under a risk-neutral measure and −1 can be

considered as default barrier. More general forms for the firm’s value process can be

chosen. However, we retain this Brownian assumption for the firm’s value process for

transparency of our results.

Three types of agents act in this market:

1. The noise traders: as in Back’s model [2], they can only observe their own cumu-

lative demands and whether the default has happened or not. Their cumulative

demand is modelled by a standard Brownian motion B, with B0 = 0, whose com-

pleted natural filtration is denoted by FB = (FB
t )t≥0 and independent of Z.

2. The informed trader: apart from observing continuously in time the defaultable

bond prices, the insider knows the default time, τ . We denote FI her filtration and

assume that she is risk-neutral, so that her objective is to maximize her expected

profit.

3. The market maker: the market maker observes the total order of the noise traders

and the insider and sets the price of the risky asset to clear the market.

We further suppose Z0 is known to the market maker and the insider at time 0.
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Insider’s objective. As in Back’s model [2], insider’s trading strategies, denoted with θ,

will be assumed to be absolutely continuous for optimality reasons so that dθt = αtdt,

where α is an FI -adapted process such that
∫ 1
0 |αt|dt < ∞.

Being risk-neutral, the insider has the objective to maximize her expected wealth

at time 1. We suppose the default-free interest rate equals 0. Note that the value of

the zero-coupon bond to the insider equals 1[τ>1] all the time. Using this insight and

following the arguments leading to the wealth process of the insider in Back [2], we

find that

W θ
1 =

∫ 1

0
(1[τ>1] − St)αtdt, (2.3)

where St denotes the market price of the defaultable bond at time t, which is assigned

by the market-maker. We will give the precise definition of admissible strategies for

the insider after explaining what a pricing rule is in this framework.

Market maker’s objective. The market maker sets the price of the defaultable bond

using his information set, which consists of two parts. The first component is the

total order of the noise traders and the insider, which is denoted with Y and has the

decomposition

Y = Y θ = Bτ + θτ ,

where θ is the position of the insider in the defaultable bond so that the total demand

right before the insider starts trading at time 0 equals 0. Note that we stop the market

at time τ so that there is no trading in the defaultable bond once the default has

occurred. We denote the minimal right continuous and complete filtration generated

by Y θ with FY , where we suppress the dependency on θ in the notation. The second

part of the market maker’s information comes from the observation of the default

event, i.e. the market maker also observes whether the default has happened or not.

In mathematical terminology, this makes τ a stopping time in his filtration. Therefore,

the market maker’s information is modelled by the filtration FM = (FM
t )0≤t≤1 where

FM
t := FY

t ∨ σ(τ ∧ t).

Let Dt = 1[τ>t] denote the indicator function of no-default by time t. The modelling

idea, as borrowed from Back [2], is that the market maker assigns the price looking at

the current total order and whether the default has happened. Thus, St denoting the

market price of the bond at time t, we expect

St = DtH(t, Yt),

where H : [0, 1] × R 7→ R is the pricing rule of the market maker. This justifies the

following definition:

Definition 2.1 A measurable function H : [0, 1]× R 7→ R is a pricing rule if

1. H ∈ C1,2([0, 1)× R) and H(1, ·) ≡ 12;

2. E[D1H(1, B1)] < ∞ and E[
∫ 1
0 DtH(t, Bt)

2dt] < ∞;

3. y 7→ H(t, y) is strictly increasing for every t ∈ [0, 1).

Moreover, let θ be a trading strategy of the insider. Given θ, a pricing rule H is

said to be rational if it satisfies

DtH(t, Yt) = E[1[τ>1]|FM
t ], t ∈ [0, 1]. (2.4)

2 Note that these two conditions ensure that (H(t, Yt))t∈[0,1] is a semimartingale.
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Remark 2.2 Since the insider observes the price and the pricing rule is monotone over

[0,1) and B is continuous, the insider’s filtration, FI , is generated by B and τ . Since B

and τ are independent, B is also an FI -Brownian motion. Thus, the total order Y is

the sum of a FI -Brownian motion and an absolutely continuous FI -adapted process.

Now, a classical result in optimal filtering implies all FY -martingales are continuous

(see e.g. Corollary 8.10 in Sect. VI.8 of Rogers and Williams [20]).

We are now able to give the definitions of admissible trading strategies for the

insider, and equilibrium in this setting:

Definition 2.3 An insider’s admissible trading strategy is an FI -adapted process θ

such that

1. dθt = αtdt for α an FI -adapted process with E
∫ 1
0 |αt|dt < ∞,

2. the corresponding total order Y θ is (in its own filtration) a Markov process given

τ ,

3. for every pricing rule H, one has

E

[∫ 1

0
DtH(Y θ

t , t)2dt

]
< ∞.

The set of all admissible strategies is denoted with A.

The condition 3 above is set to rule out doubling strategies. For a more detailed

discussion of this condition, we refer the reader to Back [2].

Definition 2.4 A pair (H∗, θ∗) is said to form an equilibrium if H∗ is a pricing rule,

θ∗ ∈ A, and the following conditions are satisfied:

1. Market efficiency condition: given θ∗, H∗ is a rational pricing rule.

2. Insider optimality condition: given H∗, θ∗ solves the insider optimization problem:

W θ∗
1 = sup

θ∈A
E[W θ

1 |FI
0 ].

3 Equilibrium

In this section, we will look for the existence of an equilibrium as defined in Definition

2.4. We’ll first address the optimality condition for the insider. Throughout this section,

we will use the standard notation [[0, τ ]] := {(ω, t) ∈ [0, 1]×Ω : τ(ω) ≥ t}. This is clearly

a measurable subset of (Ω × [0, 1],F ⊗ B([0, 1]), dPdt).

3.1 Optimality conditions for the insider’s problem

Let us fix a pricing rule H. Using (2.3) and noting that lims↑t H(s, Ys) = H(t, Yt) for

all t ∈ (0, 1), the insider’s problem becomes

sup
α∈A

E

[∫ 1−

0

{
1[τ>1] −Dt−H(t, Yt)

}
αtdt

∣∣∣∣∣F
I
0

]
(3.1)



6

For a given strategy α, let us write for t < 1

J(t, Yt,1[τ>1]) = ess supα(t)∈A(t,α)E

[∫ 1∧τ

t∧τ
1[u<1]

{
1[τ>1] −H(u, Yu)

}
α

(t)
u du

∣∣∣∣∣F
I
t

]
,

where A(t, α) = {α(t) ∈ A : α
(t)
u = αu, 0 ≤ u ≤ t}, t ≥ 0, and define

J(1, Y1,1[τ>1]) := lim
t↑1

J(t, Yt,1[τ>1]).

Note that we are in a similar situation as in Back [2] (see also [6]). Using the arguments

therein, the solution to (3.1) exists if the following system has a solution:

∂

∂y
J(t ∧ τ, y,1[τ>1]) + 1[τ>1] −H(t ∧ τ, y) = 0, for t < 1, (3.2)

∂

∂t
J(t ∧ τ, y,1[τ>1]) +

1

2

∂2

∂y2
J(t ∧ τ, y,1[τ>1]) = 0, for t < 1. (3.3)

This implies that for any total order process Y , associated to an admissible strategy

of the insider, H satisfies

∂

∂t
H(t, Yt) +

1

2

∂2

∂y2
H(t, Yt) = 0, t ∈ [[0, τ ]] ∩ [0, 1). (3.4)

Although the dependency of J on 1[τ>1] is obvious, we’ll suppress this dependency in

the notation as long as no confusion arises.

Lemma 3.1 (Theorem 2, Back [2]) If a pricing rule H verifies equation (3.4), then

there exist a function J satisfying the system given by (3.2) and (3.3). Moreover, one

has

J(τ ∧ 1, Yτ∧1) ≥ 0, (3.5)

for all admissible Y and the equality holds if and only if Y satisfies limt↑1 H(τ ∧
t, Yτ∧t) = 1[τ>1].

Proof Keeping in mind that τ ∧ 1 ∈ FI
0 , we refer to Back [2] (Theorem 2, p. 396) or

Cho [6] (Lemmas 4, 5, p. 56).

In the sequel, a rational pricing rule H will be given. We will investigate what

properties an admissible insider strategy should satisfy in order to be optimal.

Proposition 3.2 Let H be a rational pricing rule and assume limt↑1 H(τ ∧t, Yτ∧t) =

1[τ>1]. The following are equivalent:

1. H satisfies (3.4).

2. Inconspicuous insider trade theorem holds, i.e. E[αt|FM
t ] = 0 dPdt-a.e. on [[0, τ ]].

3. Y stopped at τ is a Brownian motion for the market maker, more precisely there

exists an FM -Brownian motion BM such that Yt∧τ = BM
t∧τ for every t ∈ [0, 1].



7

Proof First, we prove that 1 and 2 are equivalent. Itô’s formula applied to DtH(t, Yt)

gives, for t < 1,

dDtH(t, Yt) = Dt−
{

∂

∂t
H(t, Yt) +

1

2

∂2

∂y2
H(t, Yt)

}
dt

+Dt−
∂

∂y
H(t, Yt)dYt + H(t, Yt)dDt.

Therefore, letting H−(t, Yt) = lims↑t H(s, Ys) and ∂
∂tH−(t, Yt) := lims↑t ∂

∂tH(s, Ys),

and defining ∂2

∂y2 H−(t, Yt) and ∂
∂y H−(t, Yt) analogously, we have the following decom-

position for DtH(t, Yt) on the whole interval [0, 1]:

dDtH(t, Yt) = Dt−
{

∂

∂t
H−(t, Yt) +

1

2

∂2

∂y2
H−(t, Yt)

}
dt + Dt−

∂

∂y
H−(t, Yt)dYt

+1[t=1]D1−(1−H−(1, Y1)) + H−(t, Yt)dDt

+ {H(t, Yt)−H−(t, Yt)} (Dt −Dt−)

= Dt−
{

∂

∂t
H−(t, Yt) +

1

2

∂2

∂y2
H−(t, Yt)

}
dt + Dt−

∂

∂y
H−(t, Yt)dYt

+H−(t, Yt)dDt + 1[t=1]D1(1−H−(1, Y1)). (3.6)

By standard filtering arguments it is not difficult to see that

Yt = BM
t +

∫ t

0
α̂udu, t ∈ [0, 1], (3.7)

for an FM -Brownian motion BM and α̂t := E[αt|FM
t ], t ∈ [0, 1]. To see this, consider

the process

Nt := E
[∫ t

0
αsds

∣∣∣∣FM
t

]
−

∫ t

0
α̂sds.

N is clearly an FM -martingale. As a consequence, we have that

Yt = E[Yt|FM
t ] = E[Bt|FM

t ] + Nt +

∫ t

0
α̂sds.

Now, we observe that Mt := E[Bt|FM
t ] is an FM -martingale which follows from that

B is an FI -Brownian motion and FM ⊂ FI . Moreover, 〈Y 〉t = t. Thus, the continuous

martingale M + N having 〈M + N〉t = 〈Y 〉t = t is an FM -Brownian motion and we

get (3.7).

Using this result, we can rewrite the decomposition of DtH(t, Yt) as follows

dDtH(t, Yt) = Dt−
{

∂

∂t
H−(t, Yt) + α̂t

∂

∂y
H−(t, Yt) +

1

2

∂2

∂y2
H−(t, Yt)

}
dt

+Dt−
∂

∂y
H−(t, Yt)dBM

t

+H−(t, Yt)dDt + 1[t=1]D1(1−H−(1, Y1)).

Under the assumption limt↑1 H(τ∧t, Yτ∧t) = 1[τ>1], the last term in the above decom-

position of DtH(t, Yt) vanishes. Also note that
∫ t
0 H−(s, Ys)dDs = −H−(τ, Yτ )1[τ≤t],
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which equals, for t < 1,−H(τ, Yτ )1[τ≤t]. Observe that for u ∈ [t, 1), H(τ∧u, Yτ∧u)1[τ≤t] =

H(τ, Yτ )1[τ≤t]. Thus,

1[τ≤t] lim
u↑1

H(τ ∧ u, Yτ∧u) = 1[τ≤t]H(τ, Yτ ).

However, by hypotheses, limu↑1 H(τ∧u, Yτ∧u) = 1[τ>1],which in turn implies H(τ, Yτ )1[τ≤t] =

0 for t < 1. Taking limits we have H−(τ, Yτ )1[τ≤1] = 0, as well. Therefore,

dDtH(t, Yt) = Dt−
{

∂

∂t
H−(t, Yt) + α̂t

∂

∂y
H−(t, Yt) +

1

2

∂2

∂y2
H−(t, Yt)

}
dt

+Dt−
∂

∂y
H−(t, Yt)dBM

t . (3.8)

Since H is rational, the process DtH(t, Yt) must be an FM -martingale. Of course, this

is the case if and only if the finite variation part in the above decomposition vanishes,

i.e., for t < 1,

∂H

∂t
(t, Yt) + α̂t

∂H

∂y
(t, Yt) +

1

2

∂2H

∂y2
(t, Yt) = 0 on [τ ≥ t].

This proves that 1 and 2 are equivalent since H is strictly increasing in the second

variable. It remains to show that 2 and 3 are equivalent. For this, it suffices to observe

that, in view of (3.7),
∫ t
0 α̂sds = 0 dPdt-a.e. on [[0, τ ]] if and only if Yt∧τ = BM

t∧τ for

all t ∈ [0, 1].

The next lemma gives a necessary and sufficient condition for an admissible strategy

to be optimal given a rational pricing rule H.

Lemma 3.3 Given a rational pricing rule H, θ∗ ∈ A is an optimal insider strategy if

and only if it satisfies the following two properties:

1. E[α∗t |FM
t ] = 0 dPdt-a.e. on [[0, τ ]], where α∗t = dθ∗

dt ;

2. the corresponding optimal total order Y ∗ satisfies limt↑1 H(τ ∧ t, Y ∗τ∧t) = 1[τ>1].

Proof Let H be a rational pricing rule. Suppose θ∗ is a corresponding optimal strategy

of the insider. HJB equations ((3.2) and (3.3)) require that H satisfies equation (3.4),

and by Lemma 3.1 there exists a function J satisfying the system given by (3.2) and

(3.3).

An application of Itô’s formula for t < 1 gives, on the event [t < τ ] ∈ FI
0 ,

J(τ ∧ 1, Yτ∧1) = J(t, y)−
∫ τ∧1

t
(1[τ>1] − Su)αudu−

∫ τ∧1

t
(1[τ>1] − Su)dBu.

Now, condition 3 of Definition 2.3 implies
∫ s
t (1[τ>1] − Su)dBu, t ≤ s ≤ 1, is an FI -

martingale so that

E

[∫ τ∧1

t
(1[τ>1] − Su)αudu

∣∣∣∣∣F
I
t

]
= J(t, Yt)− E[J(τ ∧ 1, Yτ∧1)|FI

t ].

The expected future wealth reaches its maximum when E[J(τ ∧ 1, Yτ∧1)|FI
t ] reaches

its minimum. In view of Lemma 3.1, E[J(τ ∧ 1, Yτ∧1)|FI
t ] attains its minimum at
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Y ∗τ∧1 if and only if limt↑1 H(τ ∧ t, Y ∗τ∧t) = 1[τ>1]. Thus, by Proposition 3.2, α∗ is

inconspicuous, i.e. E[α∗t |FM
t ] = 0 dPdt-a.e. on [[0, τ ]].

To complete the proof it remains to show that if α∗ satisfies 1 and 2 then it is

optimal given H. Again by Proposition 3.2 one has that H solves (3.4). By Lemma 3.1

α∗ is optimal if and only if limt↑1 H(τ ∧ t, Y ∗τ∧t) = 1[τ>1], Y ∗ being the total order

associated to α∗. This equality is satisfied thanks to property 2.

3.2 The equilibrium and its interpretation

The following lemma is essential in the characterization of the equilibrium.

Lemma 3.4 The couple (H∗, θ∗) is an equilibrium if and only if the following two

conditions hold:

1. H∗ solves (3.4),

2. Y ∗ is an FM -Brownian motion stopped at τ such that limt↑1 H(τ ∧ t, Yτ∧t) =

1[τ>1].

Proof We prove first that if (H∗, θ∗) satisfies 1 and 2 then it is an equilibrium, i.e. H∗

is rational and θ∗ is an optimizer. Condition 2 implies that α̂∗t = 0 on [t ≤ τ ] (use

Proposition 3.2). Moreover, decomposition (3.8) together with Condition 1 gives that

DtH(t, Yt) is an FM -martingale, which implies that H∗ is rational.

Moreover, given H∗ satisfying the conditions in 1 and 2, θ∗ with the associated

total order process Y ∗ satisfying the conditions in 2 is optimal. Indeed, the optimality

of θ∗ is a straightforward consequence of Lemma 3.3.

To finish, it remains to show that if (H∗, θ∗) is an equilibrium then it satisfies

1 and 2. This comes from a combination of Proposition 3.2 and Lemma 3.3. Indeed,

θ∗ optimal given H∗ implies that the inconspicuous trade theorem holds and that

limt↑1 H(τ ∧ t, Yτ∧t) = 1[τ>1]. so that, by Proposition 3.2, H∗ has to satisfy (3.4) and

Y ∗ is an FM -Brownian motion stopped at τ .

Before we show the existence of an equilibrium, we present the following technical

result.

Lemma 3.5 On the probability space (Ω,F ,P) equipped with the filtration FI = FB ∨
σ(τ), there exists a unique strong solution to the SDE

dYt = dBt +

{
1

1 + Yt
− 1 + Yt

τ − t

}
1[t≤τ ]dt , (3.9)

with Y0 = 0.

Proof The result follows as soon as one observes that conditioned on [τ = `], 1 + Y is

a 3-dimensional Bessel bridge of length ` starting at 1 at time 0 and ending at 0 at

time `, and that τ is independent of B. ¤

The following theorem is the main result of our paper. It gives the existence and

a characterization of the equilibrium. Moreover, it shows that in the equilibrium the

default time τ is a hitting time of the equilibrium total order process Y ∗ so that the

modelling changes to structural.
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Theorem 3.6 There exists an equilibrium (H∗, θ∗) such that

H∗(t, y) = F (t, y),

for t < 1 and H∗(1, ·) ≡ 1 where F is as defined in (2.2) and the equilibrium total

order Y ∗ solves

dYt = dBt +

{
1

1 + Yt
− 1 + Yt

τ − t

}
1[t≤τ ]dt . (3.10)

Therefore, given τ = `, 1 + Y is a 3-dimensional Bessel bridge of length ` starting at

1 at time 0 and ending at 0 at time `.

Moreover, one has τ = inf{t > 0 : Y ∗t = −1}. As a consequence, τ is a predictable

stopping time under the market maker’s filtration FM .

Proof It is straightforward to show that H∗ is a pricing rule satisfying (3.4). In view

of Lemma 3.4 it remains to show that the unique strong solution to the SDE in

(3.10), which exists by Lemma 3.5, is an FM -Brownian motion stopped at τ with

limt↑1 H∗(τ ∧ t, Yτ∧t) = 1[τ>1]. In order to do so we’ll construct a Brownian motion

that is a weak solution to (3.10) by enlargement of filtration techniques. Observe that

this is the first time we use the assumption that the default time is given by the first

hitting of −1 by the firm value, Z. Let G be the filtration generated by FZ and τ ,

where FZ is the usual augmentation of Z. Then it readily follows from Jeulin [16]

(Lemme 3.25, p. 52) that Z has the following G-decomposition:

dZt = dβt +

(
1

1 + Zt
− 1 + Zt

τ − t

)
1[t≤τ ]dt

where β is a G-Brownian motion and so independent of G0 ⊇ σ(τ). Then, due to the

strong uniqueness of the solution as established in Lemma 3.5, Y ∗ has the same law as

Z; thus, Y ∗ is a Brownian motion in its own filtration. The uniqueness of the solution

implies also that

τ = inf{t > 0 : Y ∗t = −1}.
Thus τ is a stopping time with respect to FY ∗ and the filtrations FY ∗ and FM

coincide, so that Y ∗ is an FM -Brownian motion, too. To finish the proof it remains to

check limt↑1 H∗(τ ∧ t, Y ∗τ∧t) = 1[τ>1]. We leave this simple task to the reader.

Now we turn to the interpretation of the equilibrium. It is easy to see that in the

equilibrium described in Theorem 3.6

1

1 + Y ∗t
= E

[
1 + Y ∗t
τ − t

∣∣∣FM
t

]
(3.11)

since α̂∗ = 0. This is an easy consequence of decomposition (3.10). Thus, conditional

on FM
t , 1

1+Y ∗t
is the best approximation in market’s view to the value

Y ∗t +1
τ−t . Recall

that the default will happen when Y ∗ hits −1. Therefore, Y ∗t + 1 can be viewed as

a metric measuring the distance to default. Moreover, τ − t is the time to default if

default has not happened by time t so that one can define the ratio
Y ∗t +1
τ−t as the true

speed of default. Due to the information structure the true speed of default is known

to the insider. However, the market maker has only an expectation of this speed given

his information. In view of (3.11) the market’s expectation for the speed of default

conditional on FM
t is given by 1

Y ∗t +1 .
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Looking at (3.10), we see that the insider sells when the market’s expectation of

the speed of default is lower than the true speed and buys otherwise. This is quite

intuitive. Indeed, when the market’s expectation for the imminence of the default is

low, the bond is relatively overpriced, so the insider sells to increase her profits.

4 Conclusions

We have analyzed the effects of asymmetric information in defaultable bond pricing. In

an equilibrium setting à la Back [2] we have shown that the information asymmetries

can change the nature of the modelling completely. We solved for the equilibrium

pricing rule for the market maker, optimal strategy for the insider and equilibrium

demand for the defaultable bond. It is shown that it is optimal for the insider to trade

without being seen while driving the total demand to hit a certain level at the default

time. The presence of a strategic insider turns the modelling into structural while the

model is reduced-form in the absence of the insider.
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