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Abstract

We show that several integrable (i.e., exactly solvable) scalar cosmologies considered by Fré, Sagnotti 
and Sorin (Nuclear Physics B 877(3) (2013), 1028–1106) can be generalized to include cases where the 
spatial curvature is not zero and, besides a scalar field, matter or radiation are present with an equation of 
state p(m) = w ρ(m); depending on the specific form of the self-interaction potential for the field, the constant 
w can be arbitrary or must be fixed suitably.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Scalar fields in cosmology. The consideration of scalar fields in cosmological models has 
a long history, and arises from different motivations. On one hand the inflaton, i.e., the entity 
driving inflation, is often modeled as a scalar field. This approach originates from the work of 
some scholars at the beginning of the 1980’s: let us mention, in particular, Linde [22], Madsen 
and Coles [24]. On the other hand, a scalar field can be used as a model for dark energy. This 
idea seems to have appeared in a 1988 paper by Ratra and Peebles [32]; Caldwell, Dave and 
Steinhardt [6] are credited for introducing, ten years later, the term “quintessence” to indicate a 
scalar model of dark energy.
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It is hardly the case to recall that the notion of dark energy was experimentally consolidated 
during the same years, following the publication (between 1998 and 1999) of the observational 
results by the High-Z Supernova Search Team [33] and the Supernova Cosmology Project [28].
To our knowledge, Saini, Raychaudhury, Sahni and Starobinsky [36] were the first to set up a 
strictly quantitative connection between a scalar field model of dark energy and the observational 
data of [28,33]. More precisely, the paper [36] determines the most probable shape of the self-
interaction potential for the dark energy scalar field, fitting the data of [28,33] on luminosity 
distance and redshift for the epoch ranging from present time to the time when the scale factor 
was half of its present value.
Most of the papers cited before and in the sequel, as well as the present work, rely on a paradigm 
in which the universe is homogeneous and isotropic at each time, and the scalar field (modeling 
the inflaton or dark energy) is treated classically (2). Due to the assumptions of homogeneity and 
isotropy, the spacetime metric has the form of Friedmann-Lemaître-Robertson-Walker (FLRW), 
possibly with non zero spatial curvature. For the same reasons, it is assumed that the scalar field 
only depends on time. These cosmological models might involve, besides the scalar field, some 
other form of matter described as a perfect fluid. Here and in the sequel the term “matter” is 
used in a broad sense, and includes the case of a radiation gas. The presence of matter fluids is 
typical of models where the scalar field represents dark energy; these often encompass the whole 
history of the universe, except for the very early stages, and include epochs in which the matter 
contribution is dominant with respect to that of dark energy. On the contrary, models for the 
very early, inflationary stage of the universe typically ignore the role of matter and just focus the 
attention on the inflaton scalar field.
All the above models give rise to systems of ODEs, describing the time evolution of the main 
actors, which include, especially, the scale factor in the FLRW metric and the scalar field.
Let us point out some additional features of these cosmological models. It is commonly assumed 
that the scalar field is minimally coupled to gravity, and that it does not interact directly with 
matter, if the latter is present; correspondingly, the stress energy tensors of the scalar field and of 
the matter fluid are separately conserved. In absence of different indications, all papers cited in 
the sequel fit into the scheme just outlined (spatial homogeneity and isotropy, minimal coupling 
of the scalar field with gravity, no direct interaction between the field and matter).

Integrable scalar cosmologies. Since the late 1980’s, the rising physical interest for cosmologies 
with scalar fields stimulated the search for integrable models, in which the evolution equations 
can be solved explicitly. It turned out that this is possible for models with certain features, like a 
special functional form for the self-interaction potential of the scalar field. Of course, the avail-
ability of exact solutions is a significant advantage with respect to numerical integration, since it 
allows to identify details and conceptual aspects that could be missed otherwise.
Since the very beginning of these investigations, it was understood that exact solutions can be 
obtained assuming an exponential form for the self-interaction potential of the scalar field. Let 
us describe these results with the normalizations of the present work, which we borrow from 

2 An alternative approach treats the scalar field as a quantum object, and replaces the deterministic values of the related 
classical observables with the expectation values arising from the underlying quantum theory. It is a well known fact 
that the computation of these expectation values is typically plagued by the occurrence of divergences, which must be 
treated with some kind of renormalization procedure. In this connection, let us mention that zeta-function regularization 
provides a very elegant approach, allowing to cure the said divergences by pure analytic continuation (see, e.g., [5,14,15]
and the references cited therein). We will not discuss these issues any further in this work.
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[16] where a suitable dimensionless version ϕ of the scalar field is introduced (for the precise 
definition see subsection 2.2, especially Eq. (2.2.9)).
In 1987 Barrow [1] assumed a potential of the form V(ϕ) = const. e−λϕ (with λ another arbitrary 
constant), and a vanishing spatial curvature; he presented a particular exact solution of the evolu-
tion equations (but not the general solution) for the case of a scalar field alone. In the previously 
mentioned paper [32] of 1988, Ratra and Peebles considered the same exponential potential as in 
[1] (with λ > 0) and zero spatial curvature; they presented some particular exact solutions of the 
evolution equations, both for the case of a scalar field alone and for a model with a scalar field 
and pressure-less matter (dust) (3). In the same year, Burd and Barrow [4] considered again the 
potential V(ϕ) = const. e−λϕ (with λ > 0), with possibly non-zero spatial curvature in arbitrary 
spacetime dimension n +1; they proposed a detailed stability analysis of the model and presented 
some new exact solutions exhibiting the transition to power-law inflation at late times.
In 1990 de Ritis, Marmo, Platania, Rubano, Scudellaro and Stornaiolo [8] investigated a cosmol-
ogy with a scalar field (and no matter) in the case of zero spatial curvature, suggesting its use as 
an inflationary model. To analyze the evolution equations, these authors proposed a systematic 
use of the Lagrangian viewpoint. In this way they proved that the only potentials giving rise to 
a Noether symmetry for the system have the form (with the normalizations of the present work) 
V(ϕ) = const. eϕ + const. e−ϕ + const. . Moreover, they constructed the general solution of the 
evolution equations for this class of potentials. The same authors extended these results to the 
case of a field with non-minimal coupling to gravity in [9].
In 1996 Zhuk et al. [20,40] (see also [21]) examined cosmological models where the spacetime 
was the product of a time line with an arbitrary number of Einstein spaces of arbitrary dimen-
sions, and the content of the universe was described by a family of scalar fields. The scalar fields 
were assumed to be minimally-coupled to gravity, self-interacting with a potential to be specified 
(yet, with no mutual interactions), and to fulfill each one a prescribed equation of state. Under 
additional constraints, some classical (and quantum) integrable cases were obtained, deducing 
a posteriori the corresponding self-interaction potentials for the fields. The resulting solutions 
described inflationary cosmologies in some cases, and wormholes in other cases.
In 1998 Chimento [7] analyzed some cosmological models driven by two scalar fields, one of 
them self-interacting with an exponential potential of the form V(ϕ) = const. e−λϕ (as in [1,3,
32]) and the other one free and with non-zero mass. Exact general solutions were obtained and 
examined in detail; remarkably, these solutions show a transition from expansion dominated by 
the free scalar field to that dominated by the self-interacting field, yielding a power-law inflation.
The potential V(ϕ) = const. eϕ + const. e−ϕ + const. was reconsidered in 2002 by Rubano and 
Scudellaro [34], and in 2012 by Piedipalumbo, Scudellaro, Esposito and Rubano [30], again 
for zero spatial curvature. These authors showed that the solvability of the evolution equations 
is preserved by the addition of dust; they proposed this model for describing dark energy and 
matter up to the present time.
With the notable exceptions of [4,20,40] (and [21]), all papers [1,7–9,30,32,34] mentioned above 
deal with spacetimes of dimension 3 + 1.

The integrable cosmologies of Frè, Sagnotti and Sorin [16]. The cited paper (published in 
2013) considers the FLRW cosmologies with a self-interacting scalar field, no matter and zero 
spatial curvature, in arbitrary spacetime dimension n + 1. The analysis of these models is based 

3 In this connection, let us recall that the solution derived in presence of matter was regarded by the authors as too 
peculiar to be physically relevant.
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on the Lagrangian formalism, and on the possibility of using gauge transformations for the time 
coordinate. More precisely, the approach of [16] describes a cosmology of the above type as a La-
grangian system with two degrees of freedom plus the constraint of zero energy; the Lagrangian 
coordinates are, basically, the instantaneous values of the scale factor and of the scalar field. The 
Lagrangian depends on the scalar field self-potential and on a gauge function (describing the 
choice of the time coordinate), to be specified according to convenience in the investigation of 
integrable cases.
For nine classes of self-potentials individuated in [16] (see, in particular, Table 1 on page 1048 
of this work) the Lagrange equations are solvable by quadratures, for arbitrary initial data. The 
reason of solvability is that, after a convenient choice of the gauge function and a suitable change 
of the Lagrangian coordinates, one of the following features (i-iv) occurs:
i) the Lagrangian is quadratic, so it gives rise to linear evolution equations;
ii) the Lagrange equations have a triangular structure, which essentially means that one of the 
equations involves only one of the (new) Lagrangian coordinates;
iii) the Lagrangian is separable, i.e., it is the sum of a Lagrangian depending only on the first 
coordinate and a Lagrangian depending only on the second one. In this case there are two inde-
pendent subsystems, each one with just one degree of freedom and a conserved energy, which 
can be used to reduce to quadratures the corresponding evolution equation.
iv) the Lagrangian is a function of a complex coordinate (equivalent to a pair of real coordinates), 
with a suitable “holomorphic structure”; this fact ensures the conservation of a complex valued 
“energy” function, which allows to solve by quadratures the evolution equations.
With the notations of [16] and of the present work, the first one of the nine potential classes is 
formed by functions of the form V(ϕ) = const. eϕ + const. e−ϕ + const.; this case is solvable 
by the linearity of the Lagrange equations (see (i)), and this result extends to any spacetime 
dimension the previous results of [30,34] on these potentials in dimension 3 + 1.
The second potential class of [16] is formed by potentials of the form V(ϕ) = const. e2γ ϕ + 
const. e(1+γ )ϕ , with γ another arbitrary constant; this case is solvable due to the triangular struc-
ture of the Lagrange equations (see the previous item (ii)).
It is not the case to illustrate now the remaining seven classes of potentials described by [16]; we 
will meet each one of them in the sequel of this paper. Here we only highlight that such potentials 
are built using the exponential and some functions closely related to it (namely, hyperbolic or 
trigonometric functions), together with their inverses.
Paper [16] subsequently passes from the Lagrangian to the Hamiltonian formalism and investi-
gates the Liouville integrable cases, i.e., the cases in which there is a second constant of motion 
besides the Hamiltonian; this second constant of motion (when its exists) is automatically in 
involution with the Hamiltonian and, since the system under analysis has two degrees of free-
dom, the standard theories of Liouville and Hamilton-Jacobi allow to solve Hamilton’s equations 
by quadratures. In this investigation, the authors of [16] benefit from the existing literature on 
Hamiltonian systems with two degrees of freedom which possess a second constant of motion. 
They extract from the previous literature 26 “sporadic” classes of Hamiltonian systems with such 
features; these correspond to cosmological models with 26 classes of self-interaction potentials 
V(ϕ), which are referred to as the “sporadic potentials”.
Remarkably, the last two sporadic potentials considered in [16] have elementary trigonometric 
forms, and the associated cosmological models are related via suitable transformations to two 
Toda-type lattices. At least one of these two trigonometric potentials has a close relation with the 
integrable models of class 9 mentioned before, a fact already noticed in [16]. It was later demon-
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strated by Sokolov and Sorin [37] that all the “sporadic potentials” can actually be regarded as 
particular or limit cases of the nine non-sporadic integrable classes.
The present paper: adding matter or curvature to the Frè-Sagnotti-Sorin integrable cos-
mologies. Gravity and the self-interacting scalar field are the only actors in the cosmologies of 
[16]. It is natural to wonder if the integrable models of [16] can be generalized adding a (ho-
mogeneous) matter fluid and/or removing the assumptions of zero spatial curvature. This is the 
subject addressed in the present work; here we extend a more limited analysis of the same issue 
performed in the PhD thesis of one of us (M.G.) [18], that was supervised by the other authors 
of the present work (D.F. and L.P.).
As for the matter fluid, we admit a standard equation of state of the form p(m) = w ρ(m), where 
p(m) is the pressure, ρ(m) is the density and w is a constant; moreover, we consider an unspecified 
value k for the spatial curvature.
We assume no direct interaction between the matter fluid and the scalar field so that, as already 
observed, there are separate conservation laws for the corresponding stress-energy tensors. The 
conservation equation for the matter fluid can be directly integrated, yielding the explicit depen-
dence of the density ρ(m) on the scale factor. This information, as well as the presence of spatial 
curvature, can be implemented in the Lagrangian formalism; in the end, any cosmology of the 
type outlined above is described as a Lagrangian system with two degrees of freedom, in which 
the basic coordinates are (again) the instantaneous values of the scale factor and of the scalar 
field.
The Lagrangian derived in this way contains, as in [16], an unspecified “gauge function” related 
to the choice of the time coordinate; in comparison with the cited work, our Lagrangian has two 
additional terms depending on the scale factor and on the gauge function, corresponding to the 
matter fluid and to the spatial curvature. (4)
The next step in this construction is the reconsideration of the nine potential classes of [16], 
with the related choices of the gauge function and of new Lagrangian coordinates. It is natural to 
wonder if such choices, allowing to solve the evolution equations in the purely scalar models of 
[16], do in fact ensure solvability also in presence of matter and/or spatial curvature, for one of 
the reasons (i-iv) listed in the previous paragraph.
This problem is addressed in the PhD thesis [18] for the first two potential classes of [16]. Con-
cerning the class 1 potentials V(ϕ) = const. eϕ + const. e−ϕ + const., it is found that the model 
is still solvable with zero spatial curvature and the addition of matter with w = 0 (dust), due to 
the linearity of the evolution equation; indeed, the linearizability of this cosmological model in 
spacetime dimension 3 + 1 had already been established in [30], so we are just extending the 
result of the cited papers to an arbitrary dimension n + 1.
Concerning the class 2 potentials V(ϕ) = const. e2γϕ + const. e(1+γ )ϕ , the thesis [18] finds that 
the system maintains its integrability features (of the type indicated in (ii)) for suitable values of 
the parameter γ in presence of zero spatial curvature and matter with arbitrary w, or in presence 
of arbitrary spatial curvature and matter with w = 1/n or w = 2/n − 1 (n + 1 is again the 
spacetime dimension). It should be noted that the case w = 1/n, in which the stress-energy 
tensor of matter has zero trace, can be interpreted as a radiation gas. In all these cases, the value 
of γ must be appropriately fixed (for example, γ = w in the case with w arbitrary).
The present work reports the above results from the thesis [18], completes the analysis of class 
2 potentials finding further integrable cases and then discusses the remaining seven classes of 

4 The matter term also depends on an unspecified constant, related to the matter density at some reference time.
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potentials listed by [16] showing that, for each one of these classes, there are several integrable 
extensions of the model with spatial curvature and/or matter.

Detailed discussion of the solutions. Of course, after discovering the mechanism ensuring the 
integrability of a cosmological model it is essential to write explicitly its solution and to analyze 
it from a qualitative and quantitative viewpoint, so as to answer questions like the following: 
Does the model exhibit a Big Bang? Is there a Big Crunch, or does the universe exist forever 
(in terms of the cosmic time)? What about the asymptotic behavior of the scale factor and of the 
energy densities of matter and of the scalar field near the Big Bang, near the Big Crunch, or in 
the infinitely far future? Which type of energy is dominating in these limits? Is there a particle 
horizon associated to the Big Bang? Is the model realistic for the whole history of universe, for 
most of it or al least for some stage? If so, can one fix the free parameters and/or the constants of 
integration in the solution of the model so as to fit the available observational data?
The integrable cases found in this paper adding matter or spatial curvature to models from [16]
are a lot, so it is not possible to treat explicitly the above issues for all of them. Therefore, we 
perform the above mentioned discussion just for some case studies.
Firstly, we consider the case of self-interaction potential V(ϕ) belonging to class 1, with dust 
and no spatial curvature. If one identifies dust with ordinary matter and the scalar field with dark 
energy, this model describes with a good approximation the content of the universe for most of its 
history, from the end of the radiation dominated era to the very far future. The analysis presented 
here follows the thesis [18], and somehow refines the investigation of the authors who discovered 
this integrable case [30,34]. The behavior of the solution of this model depends on the parameters 
in the potential V(ϕ) and on the integration constants; we show how to choose them so that the 
early universe is dominated by matter, the late universe by dark energy and the (dimensionless) 
energy densities of these two entities at present time have the values suggested by observational 
evidence (of course, in this computation we assume that the spacetime dimension is 3 + 1).
Next, we consider a scalar field with a class 2 potential and the addition of matter and curvature. 
Among the many integrable cases of this model, listed elsewhere in the paper, we choose the one 
with zero spatial curvature and matter with arbitrary equation of state parameter w (and with the 
parameter γ in V(ϕ) fixed by the previously mentioned prescription γ = w, which ensures the 
triangular structure of the Lagrange equations). Again, there are many subcases of this model: 
we choose one with 0 < w < 1 and suitable signs of the coefficients in the potential V(ϕ), which 
exhibits a Big Bang and no Big Crunch. The asymptotic behavior of the relevant observables 
near the Big Bang and in the very far future is determined for arbitrary w ∈ (0, 1). Sticking to 
this subcase, we subsequently fix the spacetime dimension to be 3 +1 and set w = 1/3 (radiation 
gas). With these choices, we individuate a solution of the Lagrange equations that, although being 
entirely built with elementary functions, has a rather complicated structure implying a stage in 
which the scale factor grows exponentially with the cosmic time, preceded and followed by 
epochs in which the scale factor behaves like a power of the cosmic time. We show that the free 
parameters of the model and the constants of integration appearing in this solution can be adjusted 
so that the exponential growth occurs in the very early universe and the scale factor is increased, 
say, by a factor 3 ×1020 in a time interval between 0.5 ×10−34 seconds and 1.5 ×10−34 seconds 
after the Big Bang. This is the behavior postulated by inflationary theories: we think it can be of 
some interest to obtain such a behavior from an exact solution of the Einstein equations with the 
simultaneous presence of radiation and of a scalar field; clearly, the latter ought to be interpreted 
as the inflaton in this model.
The last case study considered in this paper is associated to class 7 potentials; the spatial cur-
vature is zero and a type of matter is present with w = (� − 1)/(� + 1), where � � 2 is an 
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integer. This case is discussed since it provides a rather interesting example of separable system 
(see item (iii) in the second last paragraph). Indeed, upon introducing a suitable pair (x, y) of 
Lagrangian coordinates, the Lagrangian is found to be the sum of two Lagrangians depending 
separately on x, y (and their time derivatives). The first Lagrangian describes a non-linear repul-
sor with potential energy proportional to −x2�; the second one describes a non-linear oscillator 
with potential energy proportional to y2�. Using the conservation of energy for these separate 
subsystems, we derive quadrature formulas for their motions and then return to the original vari-
ables of the model, i.e., the scale factor and the scalar field, ultimately performing a qualitative 
and quantitative analysis of their behavior. In this way we find, for example, that the system ex-
hibits a Big Bang and an exponential growth of the scale factor (as a function of cosmic time) in 
the very far future; at intermediate times, there is a competition between the behaviors associated 
to the previously mentioned repulsor and oscillator, whose effects depend on the parameters in 
the potential V(ϕ) and on the values assumed for the constants of integration.
Organization of the paper. Section 2 and the related Appendix A present some general facts 
on cosmologies with a scalar field minimally coupled to gravity and with a matter fluid (not 
interacting directly with the scalar field, with a given equation of state p(m) = p(m)(ρ(m))). After 
some generalities about the action functional and the stress-energy tensors of the field and of 
the matter fluid, we focus the attention on the homogeneous and isotropic case, in which the 
spacetime metric has the FLRW form, and the equation of state for matter is assumed to have the 
form p(m) = w ρ(m); this yields the Lagrangian setting with two degrees of freedom mentioned in 
the previous paragraphs.
Section 3 considers the nine potential classes of Frè, Sagnotti and Sorin, and lists the integrable 
cases that we have obtained adding matter or curvature. Section 4 and the related Appendices B, 
C, D present the explicit solutions for some integrable cases of Section 3, accompanied by a 
qualitative and quantitative analysis. Here we present the results mentioned in the previous para-
graph, i.e.: a review of the Rubano-Scudellaro-Piedipalumbo-Esposito model with dust [30,34]
(subsection 4.1), with a somehow refined qualitative and quantitative analysis; a general discus-
sion of class 2 potentials with the addition of matter (subsection 4.2), that includes the previously 
mentioned model for inflation (paragraph 4.2.3); an analysis of an integrable case with a class 7 
potential and matter, yielding the previously mentioned model with a nonlinear repulsor and a 
nonlinear oscillator (subsection 4.3).

Final remarks. (a) One could wonder if the present integrability results (or those of [16]) could 
be extended to the case of non minimal coupling between gravity and the scalar field; we refer 
mainly to the case of a standard curvature coupling, in which the action functional for the system 
contains a term proportional to R ϕ2 (R is the scalar curvature). This problem certainly deserves 
further investigation. There is some hope to obtain such extensions for the purely scalar models of 
[16], using some formal transformations proposed in the literature [17,25] to connect minimally 
coupled theories to systems with curvature coupling. However, the cited transformations refer to 
systems with no type of matter fluid, so they cannot be used for the cosmologies with matter of 
this work.
(b) We already pointed out that no direct interaction between the matter fluid and the scalar field is 
ever considered in this paper. However, let us mention that some integrable FLRW cosmological 
models with such an interaction have previously appeared in the literature; we refer in particular, 
to the very recent work of Piedipalumbo, De Laurentis and Capozziello [29], where the scalar 
field represents dark energy and a possible interaction with (dark) matter is considered (see also 
the references cited therein).
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(c) In most of the integrable cases presented in this work, a particle horizon appears; this fact 
can be checked by hand noting that the reciprocal of the scale factor, viewed as a function of 
cosmic time, diverges in a non-integrable way at the Big Bang. In the case of non-positive spatial 
curvature, the deep reason for this fact is explained in [13]; therein it is shown that a particle 
horizon occurs in all homogeneous and isotropic cosmologies with non positive spatial curva-
ture, a self-interacting scalar field minimally coupled to gravity and a matter fluid with equation 
of state p(m) = w ρ(m), fulfilling the strong energy condition. As shown in [13], the particle hori-
zon is absent if, instead of a canonical scalar field, one considers a phantom field whose action 
functional contains an anomalous term corresponding to a negative kinetic energy. It would be of 
some interest to search for FLRW integrable cosmologies with a phantom scalar field and matter; 
this subject is left to future investigations.
(d) In the present work, in [16] and in most of the other previously cited papers, the attention 
is focused on a “direct problem”: find for arbitrary initial data the solution of a cosmological 
model with a pre-assigned potential for the scalar field and, possibly, with matter having a suit-
able equation of state. On the other hand, there is also an “inverse problem”: find the scalar field 
self-potential producing a time evolution with a prescribed feature in a FLRW cosmology with 
a purely scalar content, or including a matter fluid. To our knowledge, the first examples of this 
inverse approach date back to 1980’s and 1990’s: we will mention, in particular, the papers by 
Lucchin and Matarrese [23], Barrow [2], Ellis and Madsen [12], Eashter [11]. More recently, 
nice “inverse” results have been obtained by Dimakis, Karagiorgos, Zampeli, Paliathanasis, 
Christodoulakis and Terzis [10], and by Barrow and Paliathanasis [3]; the same approach is also 
partly employed in [13], for the case of a phantom field. The feature specified in the cited papers 
to determine the scalar field potential is, for example, the dependence on cosmic time of one of 
the following observables: the scale factor, the Hubble parameter, the ratio between the pressure 
and the density produced by the scalar field alone, or jointly by scalar field and matter. The dis-
tinction between the “direct” and “inverse” problems outlined above is essential to understand 
the difference between the present work and the ones we have just mentioned.

2. The reference framework

2.1. A general cosmological model with matter and a scalar field

Throughout this paper we employ units in which the speed of light and the reduced Planck’s 
constant are c = 1 and h̄ = 1. As a consequence, indicating with L, T and M the spaces of 
lengths, times and masses we have L =T = M−1.
Let us introduce a cosmological model living in a spacetime of dimension

d = n + 1 , with n = 2,3,4, ... (2.1.1)

(of course, n stands for the spatial dimension). Spacetime coordinates are typically indicated 
with (xμ), and the line element reads ds2 = gμν dxμdxν . The metric (gμν) has signature 
(−, +, ..., +) and the corresponding covariant derivative, Ricci tensor and scalar curvature are 
respectively denoted with ∇μ, Rμν and R.
We assume that the content of the universe consists of:

(i) a scalar field φ (of dimension L−(n−1)/2), minimally coupled to gravity and self-interacting 
with potential V (φ) (of dimension L−(n+1));
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(ii) some kind of matter which can be described as a perfect fluid with mass-energy ρ(m) and 
pressure p(m), fulfilling an assigned equation of state p(m) = p(m)(ρ(m)). Such matter does not 
interact directly with the scalar field. Let us also remark that here and in the sequel the term 
“matter” is used in a very generic sense (e.g., it possibly refers to a radiation gas).

The action functional S for the above model depends on the spacetime metric, on the scalar field 
history and on the matter history (defined as in [19]) with the law

S :=
∫

dn+1x
√|g|

[
R

2κ2
n

− 1

2
gμν∂μφ ∂νφ − V (φ) − ρ(m)

]
, (2.1.2)

where g := det(gμν) and κn (of dimension L(n−1)/2) is, up to a numerical factor, the square root 
of the universal gravitational constant. Note that S is dimensionless in our units with h̄ = 1.
Demanding S to be stationary under variations of the metric (gμν) entails the Einstein equations

Rμν − 1

2
gμνR = κ2

n

(
T (φ)

μν + T (m)
μν

)
, (2.1.3)

where the r.h.s. contains the stress-energy tensors of the scalar field and of the matter fluid:

T (φ)
μν := ∂μφ ∂νφ − 1

2
gμν ∂αφ ∂ αφ − gμν V (φ) ; (2.1.4)

T (m)
μν := (

p(m)+ρ(m)
)
UμUν + p(m)gμν , (2.1.5)

with Uμ indicating the (n + 1)-velocity of the fluid.
The stationary condition for S with respect to variations of the field φ gives the Klein-Gordon-
type equation

�φ = V ′(φ) , (2.1.6)

where � φ := ∇μ∇μφ = 1√|g| ∂μ

(√|g|gμν ∂νφ
)

(recall that g := det(gμν)).

Finally, the stationarity of S under variations of the matter history gives the conservation law for 
the stress-energy tensor of the matter fluid, namely

∇μ T (m)μ
ν = 0 . (2.1.7)

Of course the Einstein equations (2.1.3), along with the Bianchi identity, imply the conservation 
of the total stress-energy tensor T (φ)

μν + T (m)
μν . Combined with Eq. (2.1.7), this implies

∇μ T (φ)μ
ν = 0 . (2.1.8)

On the other hand, from the explicit expression (2.1.4) of T (φ)
μν one gets

∇μ T (φ)μ
ν = (�φ − V ′(φ)

)
∂νφ . (2.1.9)

Thus, Eqs. (2.1.3), (2.1.6) and (2.1.7) are not independent: in fact, one has the chain of implica-
tions 

(
(2.1.3) and (2.1.7)

) ⇒ (2.1.8) ⇒ (2.1.6) (at points where ∂νφ 	= 0). These considerations 
on Eqs. (2.1.3) (2.1.6) (2.1.7) have partial converses which are easily described for special ge-
ometries, such as a FLRW spacetime: in this case, to be addressed in the following, Eqs. (2.1.6)
(2.1.7) imply that some of the Einstein equations (2.1.3) are actually constraints, holding at all 
times if and only if they are fulfilled at a particular time.
From here to the end of the paper, we assume that the equation of state for the matter fluid reads

p(m) = w ρ(m) , (2.1.10)
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for some suitable real constant w, in principle arbitrary. When w = 0, the fluid is a dust; if w =
1/n the trace T (m)μ

μ vanishes, as typical of a radiation gas; for w = 1 one speaks of stiff matter; if 
w = −1 matter behaves like a cosmological constant (see the forthcoming Eqs. (2.2.21)-(2.2.24)
and the related discussion). Besides, let us mention that the weak, dominant and strong energy 
conditions for T (m)

μν are respectively equivalent to (see, e.g., [19,26])

ρ(m) � 0 , w �−1 , (2.1.11)

ρ(m) � 0 , −1 �w � 1 , (2.1.12)

ρ(m) � 0 , w � 2

n
− 1 . (2.1.13)

Comparison with [16] As already stressed, [16] considers a scalar field as the only content of 
the universe; thus, any statement of the present paper involving the matter fluid has no counterpart 
in the cited work.
Here and in the sequel, we employ notations as close as possible to those of [16]; however 
there are a few minor differences, to be pointed out step by step. For the moment, let us men-
tion that our convention (−, +, +, ..., +) for the metric signature is opposite to the convention 
(+, −, −, ...) employed in [16]. Following [16], we indicate with d the spacetime dimension; 
however, differently from [16] we often refer to the space dimension n and write d = n + 1. In 
particular, our constant κn coincides with the quantity kd of [16] (with d = n + 1).
In the sequel, as in [16] we restrict our attention to the case of a FLRW geometry that we describe 
using similar notations, apart from the symbol τ for cosmic time replacing the notation tc of [16]. 
In addition, let us stress that we admit arbitrary values for the constant, spatial sectional curvature, 
while [16] discusses only the case of zero curvature.

2.2. The homogeneous and isotropic case

From here to the end of the paper, the general model of the previous subsection is specialized 
to the case of a spatially homogeneous and isotropic universe.

Spacetime and its metric To implement the above assumptions we consider a FLRW spacetime, 
given by the product of the time line and of a (simply connected) Riemannian manifold Mn

k of 
constant sectional curvature k (of dimension L−2). Using the cosmic time τ and any system of 
coordinates x = (xi)i=1,...,d for Mn

k , we have

ds2 = −dτ 2 + a2(τ ) d�2 = −dτ 2 + a2(τ )hij (x) dxidxj , (2.2.1)

where d�2 = hij (x) dxidxj is the line element of Mn
k and a(τ) > 0 is the dimensionless scale 

factor; typically, the latter is fixed so that a(τ∗) = 1 at some reference time τ∗.
For our purposes it is convenient to use in place of τ a dimensionless “time” coordinate t , im-
plicitly defined by

dτ = θ eB(t) dt , (2.2.2)

where B(t) is a dimensionless “gauge function”, to be fixed according to convenience, and θ
is a constant of dimension T ≡ L. This re-parametrization of time is suggested in [16] where, 
however, the analogue of Eq. (2.2.2) contains no dimensional constant θ and reads dτ = eB(t)dt ; 
due to this, the coordinate t of [16] has dimension T .
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Having θ at our disposal, we re-express the scalar curvature k in terms of a dimensionless coef-
ficient k, setting

k = k

θ2 ; (2.2.3)

to compare with [16], let us recall that k = 0 therein.
Having introduced the time coordinate t , we can regard the scale factor as a function of it, i.e., 
a = a(t); inspired again by [16], we write

a(t) = eA(t)/n , (2.2.4)

where A is a dimensionless function. Substituting Eqs. (2.2.2) and (2.2.4) into Eq. (2.2.1), we 
obtain for the spacetime metric the representation

ds2 = − θ2 e2B(t)dt2 + e2A(t)/nd�2 ≡ − θ2 e2B(t)dt2 + e2A(t)/n hij (x) dxidxj , (2.2.5)

which coincides with the one given in [16] apart from the presence of the constant θ and from 
the extension to non-zero values for the curvature k of d�2.
In the sequel we always use the spacetime coordinate system

(xμ) ≡ (x0, xi) := (t,x) (μ = 0, ..., n; i = 1, ..., n) , (2.2.6)

where, as above, x = (xi) are coordinates on Mn
k ; Greek indexes always range from 0 to n, Latin 

indexes from 1 to n. Moreover, we indicate derivatives with respect to t with dots, namely,

˙ ≡ d

dt
. (2.2.7)

In Appendix A we report the explicit expressions of the Ricci tensor Rμν and of the scalar 
curvature R for the metric (2.2.5).
Let us indicate with Uμ the (n +1)-velocity of the FLRW frame (i.e., the future-directed, timelike 
vector field tangent to the lines with x = const., normalized so that UμUμ = −1); we have

Uμ = θ−1 e−B(t) δ
μ
0 , Uμ = − θ eB(t) δμ0 . (2.2.8)

Scalar field and matter content Let us now introduce the dimensionless rescaled versions ϕ, V
of the field and of the potential, defined so that

φ =
√

n − 1

n

ϕ

κn

, V (φ) = n − 1

n

V(ϕ)

κ2
n θ2 . (2.2.9)

In the sequel, the terms “scalar field” and “potential” will be frequently employed to indicate 
these rescaled quantities. Let us also remark that in [16] there are similar rescaled objects ϕ[16] =
ϕ and V[16](ϕ[16]) = V(ϕ)/θ2.
To comply with the hypothesis of spatial homogeneity, we assume that the field and the matter 
density depend only on time:

ϕ = ϕ(t) , ρ(m) = ρ(m)(t) . (2.2.10)

In addition, we assume the matter fluid to be at rest in the FLRW frame, which entails that 
its (n + 1)-velocity Uμ is fixed as in Eq. (2.2.8). Let us also recall that we are considering an 
equation of state of the form p(m) = w ρ(m) (see Eq. (2.1.10)).
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In Appendix A we compute the stress-energy tensors of the scalar field and matter fluid starting 
from the general expressions (2.1.4) (2.1.5) and implementing the assumptions (2.1.10) (2.2.9)
(2.2.10). The conclusion is that T (φ)

μν has the form of the stress-energy tensor for a perfect fluid 
with the (n + 1)-velocity Uμ of the FLRW frame (see Eq. (2.2.8)), and with appropriate density 
and pressure; more precisely,

T (φ)
μν = (

p(φ) + ρ(φ)
)
Uμ Uν + p(φ) gμν ,

ρ(φ) := 1

κ2
n θ2

n − 1

n

(
e−2B(t) ϕ̇2

2
+V(ϕ)

)
, p(φ) := 1

κ2
n θ2

n − 1

n

(
e−2B(t) ϕ̇2

2
−V(ϕ)

)
.

(2.2.11)

In the sequel, we often refer to the “equation of state coefficient”

w(φ) := p(φ)

ρ(φ)
, (2.2.12)

depending on t and defined whenever ρ(φ)(t) 	= 0.

Evolution equations We refer to Appendix A for all the statements reported in this paragraph. 
Let us first notice that the conservation law (2.1.7) for the stress-energy tensor of the matter 
fluid is fulfilled if and only if ρ(m)(t) = ρ

(m)∗ e−(w+1)A(t), where ρ(m)∗ is an integration constant 
with the dimension of ρ(m), i.e., M/Ln = L−(n+1). For future convenience we set ρ(m)∗ = n(n −
1) �(m)∗ /(2 κ2

n θ2), with �(m)∗ a dimensionless constant, so that

ρ(m) = n(n − 1)�
(m)∗

2κ2
n θ2 e−(w+1)A . (2.2.13)

Note that sgn(ρ(m)) = sgn
(
�

(m)∗
)

at all times; unless otherwise stated, in the sequel we will typi-
cally assume �(m)∗ ≥ 0.
Next, let us consider the Einstein equations (2.1.3), that we re-write using the above expression 
for ρ(m) and the related expression for p(m) = w ρ(m). There are just two independent equations, 
respectively corresponding to the group of indexes (μ, ν) =(i, j) ∈{1, ..., n}2 and (μ, ν) =(0, 0)

in Eq. (2.1.3):

A = 0 ,

A := Ä+ Ȧ2

2
− Ȧ Ḃ + ϕ̇2

2
− e2B V(ϕ) + n2 �

(m)∗ w

2
e2B−(w+1)A + n(n − 2) k

2
e2B−2A/n ;

(2.2.14)

E= 0 ,

E := Ȧ2

2
− ϕ̇2

2
− e2B V(ϕ) − n2 �

(m)∗
2

e2B−(w+1)A + n2 k

2
e2B−2A/n .

(2.2.15)

Finally, note that the field equation (2.1.6) becomes (with V′ := dV/dϕ)

F = 0 , F := ϕ̈ + (Ȧ− Ḃ) ϕ̇ + e2B V′(ϕ) . (2.2.16)

Before proceeding, let us point out that a triple equivalent to the above set of equations (2.2.14)
(2.2.15) (2.2.16) is obviously given by A − E = 0, 2E = 0, F = 0; for �(m)∗ = 0 and k = 0, the 
latter triple coincides with that reported in Eq. (2.12) of [16].
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An anticipation For the moment, B is treated as an unspecified function of t (the same view-
point is assumed in Appendix A). Starting from the forthcoming subsection 2.4 to the end of the 
paper, following [16] we will assume B(t) = B(A(t), ϕ(t)) for some assigned function B, and 
refer to this procedure as a gauge fixing. Thus, A and ϕ will be ultimately recognized as the true 
degrees of freedom of the model.

Independence considerations Regardless of the previously mentioned gauge fixing,
Eqs. (2.2.14) (2.2.15) (2.2.16) are not independent, as illustrated in the forthcoming items (i)(ii).

(i) We already pointed out that, in view of Eqs. (2.1.8)(2.1.9), the field equation F = 0 (equiv-
alent to Eq. (2.1.6)) is in fact a consequence of the other evolution equations A = 0, E = 0
(equivalent to Eqs. (2.1.3)(2.1.7)) in the spacetime region where the scalar field is non-
constant. As a matter of fact, in the present setting it can be checked by direct computations 
that ϕ̇ F = ȦA − Ė− (Ȧ− 2Ḃ) E, yielding

A= 0, E= 0 ⇒ F = 0 when ϕ̇ 	= 0 . (2.2.17)

(ii) As a partial converse, let us consider the relations A = 0, F = 0 supplemented with the initial 
condition E(t0) = 0 (requiring E to vanish at some given time t0); we claim that

A= 0, F = 0, E(t0) = 0 ⇒ E= 0 at all times. (2.2.18)

To prove this, let us reconsider the identity in the text line before Eq. (2.2.17). If A = 0, 
F = 0 (at all times), this implies Ė + (Ȧ − 2Ḃ) E = 0 whence (d/dt)(eA−2BE) = 0; the 
latter relation, supplemented with the initial condition E(t0) = 0, gives E = 0 at all times.

In the sequel we stick to the viewpoint expressed in item (ii): we regard A = 0 and F = 0 as the 
authentic evolution equations for the model, and E = 0 as a constraint that is fulfilled at all times 
as soon as it is fulfilled by the initial data at some fixed time t0.

Solutions with maximal domain; Big Bang and Big Crunch Of course, each solution
(A(t), B(t), ϕ(t)) of the system A = 0, F = 0 (and E = 0) is well defined for t in a suitable 
interval I ⊂ R. From now on, when we speak of a solution we always assume I to be max-
imal (i.e., that the solution cannot be extended to a larger interval). Let I = (tin, tf in), where 
−∞ � tin < tf in � +∞. Recall that a(t) ≡ eA(t)/n is the scale factor and that t , τ are related by 
Eq. (2.2.2), which is equivalent to

τ(t) = θ

t∫
tr

dt ′ eB(t ′) (2.2.19)

(here tr is chosen arbitrarily). If a(t) → 0 (i.e., A(t) → −∞) for t → t+in and eB(t) is integrable 
in a right neighborhood of tin (initial singularity at a finite cosmic time), we say that the model 
has a Big Bang at t = tin. If a(t) = eA(t)/n vanishes and eB(t) is integrable for t → t−f in (final 
singularity at a finite cosmic time), we say that the model has a Big Crunch at t = tf in.

Particle horizon Suppose the model has a Big Bang at τin = τ(tin). The lapse of conformal 
time that has passed from the Big Bang to any cosmic time τ = τ(t) is
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�(τ) :=
τ∫

τin

dτ ′

a(τ ′)
= θ

t∫
tin

dt ′ eB(t ′)−A(t ′)/n . (2.2.20)

The above integral can be finite or infinite. The interpretation of �(τ) is well known, and can 
be summarized as follows, writing p0, p, etc. for the points of Mn

k and dist for the distance 
on Mn

k related to the metric d�2 (see Eq. (2.2.1)): for each p ∈Mn
k , the ball B(p, τ) := {p0 ∈

Mn
k | dist(p0, p) ≤ �(τ)} is the subset of Mn

k formed by the points p0 which had the time to 
interact causally with p from the Big Bang up to τ (5). This subset is the whole Mn

k if and only 
if �(τ) � δk, where δk := sup{dist(p0, p) | p0 ∈Mn

k } is the diameter of Mn
k , in fact independent 

of p. One has δk = +∞ if k � 0 and δk = π/
√

k = θπ/
√

k if k > 0.
Of course the situation where �(τ) � δk is of special interest, since it allows to explain the 
homogeneity of the universe at time τ by standard thermodynamical arguments. In the opposite 
case �(τ) < δk, we say that there is a particle horizon at time τ ; when k � 0 the condition for a 
particle horizon reads �(τ) < +∞, and this happens at some time τ if and only if it happens at 
all times τ after the Big Bang.
Many FLRW cosmologies present particle horizons; it was shown in [13] that any FLRW cos-
mology with k � 0, a (minimally coupled) scalar field and a matter fluid with equation of state 
p(m) = wρ(m) has a particle horizon (�(τ) < +∞ for all τ after the Big Bang) if the matter 
fluid fulfills in the strict sense the strong energy condition (i.e., if the inequalities for ρ(m), w in 
Eq. (2.1.13) hold strictly, with � replaced by >).

Cosmological constant behavior for matter Let us specialize our considerations to the case 
where the parameter in the equation of state (2.1.10) for matter is

w = −1 . (2.2.21)

With this position, the equation of state itself and Eq. (2.2.13) reduce to

p(m) = const. = −ρ(m) , ρ(m) = const. = n(n − 1)�
(m)∗

2κ2
n θ2 , (2.2.22)

which entail for the matter stress-energy tensor the expression

T (m)
μν := −n(n − 1)�

(m)∗
2κ2

n θ2 gμν . (2.2.23)

Moving this term from the left-hand side to the right-hand side of the Einstein equations (2.1.3)
we get

Rμν − 1

2
gμνR + n(n − 1)�

(m)∗
2 θ2 gμν = κ2

n T (φ)
μν , (2.2.24)

corresponding to a model with cosmological constant � = n(n − 1) �(m)∗ /(2 θ2) (of dimension 
L−2).

5 In fact, it can be shown that there exists a causal curve starting from p0 at a time τ0 ∈ (τin, τ) and ending at p at time 
τ if and only if dist(p0, p) ≤ �(τ).
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Cosmological constant behavior for the field Let us now search for a solution with

ϕ(t) = const. ≡ ϕ0 . (2.2.25)

Eq. (2.2.16) entails that the above condition can be fulfilled if and only if

V′(ϕ0) = 0 . (2.2.26)

In this case, the field stress-energy tensor becomes (recall Eq. (2.2.11))

T (φ)
μν = − n − 1

nκ2
n θ2 V(ϕ0) gμν . (2.2.27)

Bringing this term to the right-hand side of the Einstein equations (2.1.3) we obtain

Rμν − 1

2
gμνR + n(n − 1)�(�)

2 θ2 gμν = κ2
n T (m)

μν , �(�) := 2

n2 V(ϕ0) , (2.2.28)

corresponding to a model with a cosmological constant � = n(n − 1) �(�)/(2 θ2) (note that �(�)

is dimensionless while � has dimension L−2, as expected).
Let us also mention that, according to Eqs. (2.2.11) (2.2.12)

ϕ = const. = ϕ0 ⇔ p(φ) = −ρ(φ) ⇔ w(φ) = −1 , (2.2.29)

where the second equivalence holds under the complementary assumption ρ(φ) 	= 0, or V(ϕ0) 	= 0.

Hubble parameter The time-dependent Hubble parameter is given by

H := 1

a

da

dτ
= e−BȦ

nθ
. (2.2.30)

Here the first equality is the standard definition in terms of the scale factor a and cosmic time τ , 
while the second equality follows from Eqs. (2.2.2) (2.2.4).

The dimensionless density parameters These are the time-dependent quantities

�(m) := 2κ2
n

n(n − 1)

ρ(m)

H 2 , �(φ) := 2κ2
n

n(n − 1)

ρ(φ)

H 2 , �(k) := − k

θ2H 2 a2 . (2.2.31)

From Eqs. (2.2.4), (2.2.11), (2.2.13) and (2.2.30) we get

�(m) = n2 �
(m)∗ e2B−(w+1)A

Ȧ2
, �(φ) = ϕ̇2 + 2 e2B V(ϕ)

Ȧ2
, �(k) = − n2 k e2B−2A/n

Ȧ2
.

(2.2.32)

By comparison with Eq. (2.2.15), we see that

E= 0 ⇔ �(m) + �(φ) + �(k) = 1 . (2.2.33)

The parameters �(m) and �(k) are standard objects in cosmology (see, e.g., [39]). �(φ) plays a 
role similar to the dimensionless parameter �(�) := 2 �/(n(n − 1)H 2) usually considered when 
a cosmological term � gμν is present in the Einstein equations.
In agreement with the remark after Eq. (2.2.1), in the sequel we often set a(t∗) = 1, i.e. A(t∗) =
0, at some reference time t∗. Moreover, fixing θ := 1/|H(t∗)| , from Eq. (2.2.30) we obtain 
|Ȧ(t∗)| = n eB(t∗) . By comparison with the first relation in Eq. (2.2.32), these facts entail the 
identity

�(m)(t∗) = �(m)∗ . (2.2.34)
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2.3. Lagrangian viewpoint

Let us return to the general expression (2.1.2) for the action functional, and evaluate it on a 
history of the type considered in subsection 2.2. A computation sketched in Appendix A yields

S = 1

κ2
n θ

∫
dnx

√
h(x)

∫
dt

[
n − 1

n
L(A, ϕ,B, Ȧ, ϕ̇) + d

dt

(
eA−BȦ

)]
, (2.3.1)

where h(x) := det(hij (x)) and

L(A, ϕ,B, Ȧ, ϕ̇) := eA−B
(

− Ȧ2

2
+ ϕ̇2

2

)
− eA+B V(ϕ) − n2 �

(m)∗
2

e−wA+B

+ n2 k

2
e

n−2
n

A+B .

(2.3.2)

In Eq. (2.3.1), the integral 
∫
dnx 

√
h(x) is an irrelevant multiplicative factor (although infinite if 

k�0); the total t-derivative in the integral is also irrelevant. In conclusion, S is related to the 
(dimensionless) Lagrangian function L written in Eq. (2.3.2), which is degenerate since it does 
not depend on Ḃ.
Independently of the previous considerations, it can be checked by direct computations that the 
Lagrange equations induced by L are equivalent to the evolution equations of the model under 
analysis. In fact, the Lagrangian derivatives

δL
δq

:= − d

dt

(
∂L
∂q̇

)
+ ∂L

∂q
(q = A, ϕ,B) (2.3.3)

are such that
δL
δA = eA−BA ,

δL
δϕ

= − eA−B F ,
δL
δB = eA−B E , (2.3.4)

which ensures the equivalence between the Lagrange equations δL/δq = 0 (q = A, ϕ, B) and 
the evolution equations A = 0, F = 0, E = 0 (see Eqs. (2.2.14) (2.2.15) (2.2.16)). We already 
noted that such evolution equations are not independent; from the present Lagrangian viewpoint, 
this is a consequence of the degeneracy of L.
Finally, let us mention that for �(m)∗ = 0 and k = 0 the Lagrangian (2.3.2) coincides with the one 
appearing in Eq. (2.11) of [16].

2.4. Gauge fixing and the energy constraint

From here to the end of this work we assume that

B = B(A, ϕ) , (2.4.1)

where B is a suitable function, referred to as the gauge function in the sequel (the same attitude 
is proposed in [16] for the special case �(m)∗ = k = 0).
Of course, the evolution equations are still A = 0, F = 0, E = 0. Besides, the results of the 
previous paragraphs continue to hold, with B fixed according to Eq. (2.4.1) and

Ḃ = ∂AB(A, ϕ) Ȧ+ ∂ϕB(A, ϕ) ϕ̇ . (2.4.2)

Under the same gauge fixing, the Lagrangian L of Eq. (2.3.2) becomes



18 D. Fermi et al. / Nuclear Physics B 957 (2020) 115095
L(A, ϕ, Ȧ, ϕ̇) := (2.4.3)

eA−B(A,ϕ)

(
− Ȧ2

2
+ ϕ̇2

2

)
− eA+B(A,ϕ) V(ϕ) − n2 �

(m)∗
2

e−wA+B(A,ϕ)

+ n2 k

2
e

n−2
n

A+B(A,ϕ) .

Note that L is a non-degenerate Lagrangian of mechanical type, whose kinetic part is induced by 
a metric of signature (−, +) on the (A, ϕ) configuration space. Let us introduce the Lagrangian 
derivatives (cf. Eq. (2.3.3))

δL

δq
:= − d

dt

(
∂L

∂q̇

)
+ ∂L

∂q
(q = A, ϕ) (2.4.4)

and the energy function

E :=
∑

q =A, ϕ

q̇
∂L

∂q̇
−L (2.4.5)

= eA−B(A,ϕ)

(
− Ȧ2

2
+ ϕ̇2

2

)
+ eA+B(A,ϕ) V(ϕ) + n2 �

(m)∗
2

e−wA+B(A,ϕ)

− n2 k

2
e

n−2
n

A+B(A,ϕ) .

Of course, E is a constant of motion for the Lagrange equations δL/δq = 0 (q = A, ϕ). More-
over, it can be easily checked that

⎛
⎝ δL/δA

δL/δϕ

E

⎞
⎠ = eA−B

⎛
⎝ 1 0 ∂AB

0 −1 ∂ϕB

0 0 −1

⎞
⎠
⎛
⎝A

F

E

⎞
⎠ , (2.4.6)

⎛
⎝A

F

E

⎞
⎠ = eB−A

⎛
⎝ 1 0 ∂AB

0 −1 −∂ϕB

0 0 −1

⎞
⎠
⎛
⎝ δL/δA

δL/δϕ

E

⎞
⎠ , (2.4.7)

where A, F, E are evaluated with B, Ḃ as in Eqs. (2.4.1) (2.4.2).
Summing up: after gauge fixing, the evolution equations A = 0, F = 0, E = 0 are equivalent 
to the Lagrange equations δL/δq = 0 (q = A, ϕ), supplemented with the condition E = 0
(the latter condition is satisfied at all times if and only if it is fulfilled by the initial datum (
A(t0), Ȧ(t0), ϕ(t0), ϕ̇(t0)

)
).

From now on, to analyze the dynamics of our cosmological model we systematically refer to 
the Lagrangian L of Eq. (2.4.3) and to the energy constraint E = 0. Whenever we speak of a 
solution of (one or all) these equations, we always tacitly assume that the interval of definition 
is maximal; this convention is consistent with the domain prescriptions of subsection 2.2, and 
will be applied also to the solutions obtained using Lagrangian coordinates different from (A, ϕ)

(say, the coordinates (x, y) of the next sections). The plan for the sequel is to consider specific 
choices for V, allowing to solve explicitly the corresponding Lagrange equations.
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3. Adding matter and curvature to the integrable models of Fré, Sagnotti and Sorin

Let us repeat once more that [16] considers purely scalar, spatially flat cosmologies, i.e., mod-
els with no matter content and zero spatial curvature. Referring to this framework, Fré, Sagnotti 
and Sorin identified nine classes of self-interaction potentials V(ϕ) for the scalar field that, af-
ter an appropriate gauge fixing B = B(A, ϕ) and a suitable coordinate transformation for the 
Lagrangian L(A, ϕ, Ȧ, ϕ̇), produce solvable Lagrange equations. The gauge function B(A, ϕ)

and the coordinate transformation just mentioned are given explicitly in [16] (together with the 
energy constraint) for each one of the nine potential classes; these results are summarized in [16].
In this section we show that, for all classes of potentials in the cited paper [16], extended cosmo-
logical models including matter and possibly curvature can be introduced and solved explicitly 
using the same coordinate transformations employed in [16] for the corresponding, purely scalar 
cosmologies. In these extended cosmologies the matter fluid has an equation of state of the form 
p(m) = w ρ(m) (see Eq. (2.1.10)), where the coefficient w either has a fixed specific value or re-
mains arbitrary. In the cases with arbitrary w (occurring for three of the nine potential classes), 
some free parameter γ labeling the potentials becomes a prescribed function of w.
To the best of our knowledge, the possibility to build integrable extensions with matter or curva-
ture was previously unknown for all the cosmologies in [16], with the notable exception of class 
1 potentials which was analyzed in [30] a short time before the publication of [16] in the case of 
matter with w = 0 (dust), zero curvature and space dimension n = 3.
The following subsections 3.1-3.9 present extended cosmologies for the nine potential classes in 
[16], starting from the case of [30] (here generalized to an arbitrary space dimension). In each 
subsection we indicate how the Lagrangian function can be reduced by a proper gauge fixing and 
a suitable coordinates transformation to one of the canonical forms analyzed in the forthcoming 
paragraph. Following the strategies outlined in the said paragraph, the Lagrange equations can be 
systematically reduced to quadratures in all cases of interest; in particular, explicit expressions for 
the corresponding solutions can always be derived. These expressions can be used to investigate 
the chief qualitative features of each specific model: presence of a Big Bang and corresponding 
asymptotic behavior; presence of a Big Crunch or, in absence of it, long time evolution of the 
system; behavior of the density parameters. We will exemplify these issues for some subcases of 
the nine classes in Section 4.

Solvable Lagrangian systems arising in the analysis of the nine potential classes In the subse-
quent subsections 3.1–3.9 we will replace the Lagrangian coordinates A, ϕ with either a new pair 
of real coordinates or with a complex one, with the rationale of obtaining simple canonical forms 
for the Lagrange equations. Under these coordinate transformations, the Lagrangian function L
assumes one of the forms described below (which are actually the same forms occurring in [16]
in the case of zero spatial curvature and no matter content).
Let us point out a fact that will never be mentioned again in the sequel: like the quantities 
A, ϕ, V(ϕ), the new Lagrangian coordinates x, y, ξ, η, etc. introduced in the sequel are all di-
mensionless.

a) Quadratic Lagrangian. Assume that there exist two real Lagrangian coordinates x, y such 
that L(x, y, ẋ, ẏ) is the difference between two quadratic functions of the variables (ẋ, ẏ) and 
(x, y). In this case the Lagrange equations are linear and can be decoupled via additional linear 
coordinate transformations. It is unnecessary to give further details on this elementary case, that 
will appear in subsection 3.1.
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b) Triangular Lagrangian. Assume that there exist two real Lagrangian coordinates x, y such 
that

L(x, y, ẋ, ẏ) = −μẋ ẏ + u(x)y − h(x) , (3.0.1)

for some μ ∈ R\{0} and some pair of smooth functions u, h. The corresponding energy function 
is

E(x, y, ẋ, ẏ) = −μẋ ẏ − u(x)y + h(x) , (3.0.2)

while the Lagrange equations δL/δy = 0 and δL/δx = 0 are, respectively,

μẍ + u(x) = 0 , (3.0.3)

μÿ + u′(x) y = h′(x) (3.0.4)

(u′, h′ are the derivatives of u, h). The system (3.0.3) (3.0.4) is clearly triangular, since Eq. (3.0.3)
involves only the unknown function x(t); the system can be reduced to quadratures, following 
the procedure described hereafter. Firstly, note that Eq. (3.0.3) describes a one-dimensional con-
servative system, admitting as a constant of motion the energy

F(x, ẋ) := 1

2
μẋ2 + U(x) , with U s.t. U ′ = u . (3.0.5)

Any solution t �→x(t) of Eq. (3.0.3) with energy F(x(t), ẋ(t)) ≡ F fulfills (2/μ)(F−U(x(t)) =
ẋ2(t) � 0, and thus it takes values within a connected component of the region {x | (2/μ)(F −
U(x)) � 0}. For any such solution, let t0 < t1 be fixed instants in its domain of definition and 
assume that (6)

x(t0) = x0, sgn ẋ(t) = const. ≡ σ ∈ {±1} for all t ∈ (t0, t1) . (3.0.6)

Then,

ẋ(t) = σ

√
2

μ

(
F − U

(
x(t)

))
for all t ∈ (t0, t1) , (3.0.7)

which entails

√
μ

2

x(t)∫
x0

dx√
F − U(x)

= σ (t − t0) for all t ∈ [t0, t1] . (3.0.8)

Next, let t �→ y(t) be a map forming, together with the previous function t �→ x(t), a solution of 
the system (3.0.3) (3.0.4) and consider the total energy E(x(t), y(t), ẋ(t), ẏ(t)) ≡ E . Since ẋ(t)

does not vanish and has constant sign for t ∈ (t0, t1), there exists a smooth function

Y : J → R , J := {
x(t)

∣∣ t ∈ (t0, t1)
}
, (3.0.9)

such that

y(t) = Y
(
x(t)

)
for all t ∈ (t0, t1) . (3.0.10)

6 Throughout the paper, sgn indicates the sign function. This is such that: sgn(z) =−1 for z<0, sgn(z) =0 for z=0
and sgn(z) =+1 for z>0.
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Correspondingly we have ẏ = Y ′(x) ẋ, whence ẋ ẏ = Y ′(x) ẋ2 = (2/μ)
(
F −U(x)

)
Y ′(x). Insert-

ing the latter expression for ẋ ẏ and the relation (3.0.10) for y into Eq. (3.0.2), for x = x(t) ∈ J

we obtain

E = −2
(
F − U(x)

)
Y ′(x) − u(x)Y (x) + h(x) ; (3.0.11)

equivalently, recalling that u = U ′, we have

Y ′(x) = − U ′(x)

2
(
F − U(x)

) Y(x) − E − h(x)

2
(
F − U(x)

) for x ∈ J . (3.0.12)

Noting that the latter is a linear inhomogeneous ODE for Y , by elementary arguments we get

Y(x) = √
F − U(x)

(
P(E,F;x) + K

)
for x ∈ J ;

K ∈ R , P (E,F; · ) s.t. ∂xP (E,F;x) = − E − h(x)

2
(
F − U(x)

)3/2 .
(3.0.13)

Eqs. (3.0.7) (3.0.10) (3.0.13) give the desired reduction to quadratures of the system (3.0.3)
(3.0.4) (on any time interval where ẋ has constant sign).
Of course, a Lagrangian of the form

L(x, y, ẋ, ẏ) = −μẋ ẏ + u(y)x − h(y) (3.0.14)

can be treated in a similar way, interchanging the roles of x and y.

c) Harmonic triangular Lagrangian. A very simple subcase of the previous framework occurs if 
the Lagrangian has the triangular form (3.0.1) with u(x) = λ x − ν for some λ, ν ∈ R, so that

L(x, y, ẋ, ẏ) = −μẋ ẏ + (λx − ν)y − h(x) , (3.0.15)

where μ ∈R\{0} and h is a smooth function. The Lagrange equations (3.0.3) (3.0.4) become

μẍ + λx = ν , (3.0.16)

μÿ + λy = h′(x) . (3.0.17)

The above system is again triangular, but in this case both equations (3.0.16) (3.0.17) are elemen-
tary. Depending on the sign of λ/μ, Eq. (3.0.16) describes a harmonic oscillator, a “free particle” 
or a harmonic repulsor, with a constant external force ν. In the sequel, for the sake of brevity we 
will use the term “harmonic system” to indicate a system of any one of the three kinds just men-
tioned. Regarding x = x(t) as a known function, Eq. (3.0.17) describes another harmonic system 
with a time-dependent external force h′(x(t)).
As an example, assume that λ/μ > 0 and set

ω := √
λ/μ ; (3.0.18)

then, up to a time shift t �→ t + const., the general solution of Eq. (3.0.16) is of the form

x(t) = A sin(ωt) + ν

λ
, (3.0.19)

where A ∈ R is an arbitrary constant. Let t0 ∈ R and J ⊂ R be any open real interval such that 
t0 ∈ J and the integral appearing in the forthcoming Eq. (3.0.20) exists for all t ∈ J ; then, the 
general solution on J of the evolution equation obtained inserting the expression (3.0.19) for 
x(t) into Eq. (3.0.17) is given by
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y(t) = B cos(ωt) + C sin(ωt) + 1

μω

t∫
t0

ds sin
(
ω(t − s)

)
h′(A sin(ωs) + ν

λ

)
, (3.0.20)

where B, C ∈ R are arbitrary constants.
Of course, we obtain a system with similar solvability features interchanging the roles of x and 
y in the Lagrangian (3.0.15).

d) Separable Lagrangian. Assume there exist two real Lagrangian coordinates x1, x2 such that 
(7)

L(x1, x2, ẋ1, ẋ2) = L1(x1, ẋ1)+L2(x2, ẋ2)−C , Li (xi, ẋi ) := 1

2
μi ẋ

2
i −Ui(xi) (3.0.21)

where C∈R, μi ∈R\{0} and Ui is a smooth real function for i = 1, 2. The Lagrange equations 
0 = δL/δxi (i = 1, 2) describe two decoupled subsystems admitting as constants of motion the 
energies

Ei (xi, ẋi) := 1

2
μi ẋ

2
i + Ui(xi) . (3.0.22)

Of course, the total energy corresponding to the Lagrangian (3.0.21) is given by

E(x1, x2, ẋ1, ẋ2) = E1(x1, ẋ1) + E2(x2, ẋ2) + C . (3.0.23)

Any pair of motions xi(t) (i = 1, 2) of the separate subsystems with corresponding energies Ei

are confined within connected regions where sgn(μi)(Ei − U(xi)) � 0, and can be reduced to 
quadratures via the relations

√
μi

2

xi (t)∫
xi (t0)

dxi√
Ei − Ui(xi)

= σi(t − t0) , (3.0.24)

for any t such that σi := sgn ẋi (t) = const. ∈ {±1} on (t0, t).

e) One-dimensional, holomorphic conservative system. From here to the end of the paper, �z, �z

and z indicate the real part, the imaginary part and the conjugate of any complex number z. 
Assume that there exist an open subset D⊂C and a complex Lagrangian coordinate z∈D such 
that (8)

L(z, ż) = −�
(

1

2
μ ż2 − U(z)

)
− C (z ∈D, ż ∈ C) , (3.0.25)

where μ ∈ C\{0}, C ∈ R and U : D → C is an holomorphic function. Let us point out that 

L(z, ̇z) = − 1
2i

( 1
2 μ ż2 − U(z)

) + 1
2i

(
1
2 μ̄ ˙̄z2 − U(z)

)
(where ż := ż ); so the Lagrange equations 

δL/δz = 0 and δL/δz = 0 respectively read

7 Additive constants appearing in a Lagrangian, like the term −C in Eq. (3.0.21), are usually regarded as irrelevant. 
However, in the applications considered in this paper we will always be interested in solutions of the Lagrange equa-
tions fulfilling the energy constraint E = 0 (see subsection 2.4); in this connection, additive constants appearing in 
the definition of the Lagrangian L(x1, x2, ̇x1, ̇x2) cannot be neglected, since they contribute to the energy function 
E := ∑2

i=1 ẋi (∂L/∂ẋi ) −L (see, e.g., Eq. (3.0.23)).
8 Also in this case, the constant C in Eq. (3.0.25) is not irrelevant for our purposes: see footnote 7.
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μ z̈ = −U ′(z) , (3.0.26)

μ̄ z̈ = −U ′(z) (3.0.27)

(U ′ is the complex derivative of U ) (9). It appears that Eq. (3.0.27) is the complex conjugate of 
Eq. (3.0.26), therefore the cited equations are fully equivalent.
From now on we fix the attention on Eq. (3.0.26). This possesses as a constant of motion the 
“complexified” energy

E(z, ż) = 1

2
μ ż2 + U(z) ∈ C . (3.0.28)

Starting from here, we derive a quadrature formula by a natural adaptation to the complex frame-
work of the approach usually employed for real, one dimensional conservative systems. More 
precisely, consider an open set P ⊂ C\{0} such that the map p �→ p2 is biholomorphic between 
P and P2 := {p2 | p ∈ P}; denote with 

√ : P2 → P the inverse of this map. Let z be any so-
lution of Eq. (3.0.26) (hence, of Eq. (3.0.27)) with complex energy E(z(t), ̇z(t)) ≡ E; moreover, 
let O ⊂ C be an open, simply connected subset such that (2/μ) (E − U)(O) ⊂ P2 and assume 
that z(t ′) ∈ O, ż(t ′) ∈ P for all t ′ ∈ [t0, t]. Then, we have

√
μ

2

z(t)∫
z(t0)

dz√
E− U(z)

= t − t0 , (3.0.29)

where 
∫ z(t)

z(t0)
indicates the integration along any path in O with initial point z(t0) and final point 

z(t) (the integral is independent of the chosen path).
To proceed, let us remark that the usual energy function E := ż ∂L/∂ż + ż ∂L/∂ż −L associated 
to the Lagrangian (3.0.25) is given by

E(z, ż) = −�
(

1

2
μ ż2 + U(z)

)
+ C = −�E(z, ż) + C . (3.0.30)

Of course, there are subcases in which Eqs. (3.0.26) (3.0.27) can be integrated by elementary 
means without even referring to Eq. (3.0.29). In particular, if

U(z) = 1

2
ς z2 (ς ∈ C) , (3.0.31)

Eq. (3.0.26) has the elementary form

μ z̈ + ς z = 0 ; (3.0.32)

we refer to this system as a “complex harmonic system”.

3.1. Class 1 potentials

The first class of potentials in [16] has the form

V(ϕ) := V1 eϕ + V2 e−ϕ + 2V0 (V0,V1,V2 ∈ R) . (3.1.1)

For these potentials, the cited reference suggests to introduce the gauge function B and the coor-
dinates x, y, defined by

9 Note that ∂z U(z) = 0 and ∂z̄ U(z) = U ′(z).
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B(A, ϕ) := 0 ; (3.1.2)

A = log(x y) , ϕ = log(x/y) (x, y>0) . (3.1.3)

In the case of no matter and zero curvature (�(m)∗ = 0, k = 0), the above positions give rise to a 
quadratic Lagrangian and, consequently, to linear evolution equations for x and y. Let us imple-
ment the same positions in our framework with matter and curvature, searching for additional 
cases with a quadratic Lagrangian. Eqs. (3.1.1), (3.1.2) and (3.1.3) yield the following expres-
sions for the Lagrangian (2.4.3) and the energy function (2.4.5):

L(x, y, ẋ, ẏ) = −2 ẋ ẏ − V1 x2 − V2 y2 − 2V0 x y − n2 �
(m)∗

2
(x y)−w + n2k

2
(x y)

n−2
n ;

(3.1.4)

E(x, y, ẋ, ẏ) = −2 ẋ ẏ + V1 x2 + V2 y2 + 2V0 x y + n2 �
(m)∗

2
(x y)−w − n2k

2
(x y)

n−2
n .

(3.1.5)

The Lagrangian (3.1.4) is still quadratic, up to additive constants, in the following cases with 
matter or curvature (i.e., with (�(m)∗ , k) not constrained to be (0, 0)):

i) k = 0, w = 0 (dust);
ii) k = 0, w = −1 (cosmological constant);
iii) n = 2, w = 0 (dust);
iv) n = 2, w = −1 (cosmological constant);
v) �(m)∗ = 0, n = 2.

In each one of these cases, the Lagrange equations in the coordinates x, y form a linear system, 
and can be decoupled via further linear coordinate changes. Let us stress that the admissible 
solutions must fulfill the energy constraint E = 0, as well as the conditions x(t), y(t) > 0 (cf. 
Eq. (3.1.3)).
As an example, let us consider case (i), providing (at least if n = 3) a rather realistic model 
of the universe for most of its history; this is just the case considered (for n = 3) in [30]. The 
Lagrangian (3.1.4) and the energy (3.1.5) reduce, respectively, to

L(x, y, ẋ, ẏ) = −2 ẋ ẏ − V1 x2 − V2 y2 − 2V0 x y − n2 �
(m)∗

2
, (3.1.6)

E(x, y, ẋ, ẏ) = −2 ẋ ẏ + V1 x2 + V2 y2 + 2V0 x y + n2 �
(m)∗

2
. (3.1.7)

The Lagrange equations decouple under a further, linear change of coordinates (x, y) �→ (u, v). 
For example, if V1V2 > 0 we can put

x = 1

2

(
V2

V1

)1/4

(u − v) , y = 1

2

(
V1

V2

)1/4

(u + v) , (3.1.8)

which transforms the Lagrangian (3.1.6) and the energy (3.1.7) into

L(u, v, u̇, v̇) = L1(u, u̇) +L2(v, v̇) − n2

2
�(m)∗ ,

L1(u, u̇) := − 1

2
u̇2 −

√
V1V2 + V0

2
u2 , L2(v, v̇) := 1

2
v̇2 −

√
V1V2 − V0

2
v2 ;
(3.1.9)
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E(u, v, u̇, v̇) = E1(u, u̇) + E2(v, v̇) + n2

2
�(m)∗ ,

E1(u, u̇) := − 1

2
u̇2 +

√
V1V2 + V0

2
u2 , E2(v, v̇) := 1

2
v̇2 +

√
V1V2 − V0

2
v2 .

(3.1.10)

The separable Lagrangian (3.1.9) gives rise to the system of decoupled equations

ü − (√
V1V2 + V0

)
u = 0 , v̈ + (√

V1V2 − V0
)
v = 0 , (3.1.11)

whose solutions can be determined by elementary means. Let us point out that in the present case, 
the admissible solutions are those fulfilling u(t) > |v(t)| (which is equivalent to x(t), y(t) >0). 
More details about the qualitative behavior of such solutions will be given in subsection 4.1.

3.2. Class 2 potentials

The second class of potentials in [16] is formed by the functions

V(ϕ) := V1 e2γ ϕ + V2 e(1+γ )ϕ
(
V1,V2 ∈ R , γ ∈ R\{±1}) . (3.2.1)

Ref. [16] suggests to study these potentials fixing the gauge function B and introducing new 
coordinates x, y as follows:

B(A, ϕ) := −γ ϕ ; (3.2.2)

A = log
(
x

1
1+γ y

1
1−γ

)
, ϕ = log

(
x

1
1+γ y

− 1
1−γ

)
(x, y > 0) . (3.2.3)

In the case of no matter and zero curvature, the Lagrangian obtained via these prescriptions has 
the harmonic triangular form (3.0.15).
Let us now apply the same prescriptions (3.2.2) (3.2.3) in our framework with matter and cur-
vature, and search for additional triangular cases. The Lagrangian (2.4.3) and the energy (2.4.5)
become, respectively,

L(x, y, ẋ, ẏ) =
− 2 ẋ ẏ

1 − γ 2 − V1 x y − V2 x
2

1+γ − n2 �
(m)∗

2
x

− w+γ
1+γ y

− w−γ
1−γ + n2k

2
x

n(1−γ )−2
n(1+γ ) y

n(1+γ )−2
n(1−γ ) ,

(3.2.4)
E(x, y, ẋ, ẏ) =
− 2 ẋ ẏ

1 − γ 2 + V1 x y + V2 x
2

1+γ + n2 �
(m)∗

2
x

− w+γ
1+γ y

− w−γ
1−γ − n2k

2
x

n(1−γ )−2
n(1+γ ) y

n(1+γ )−2
n(1−γ ) . (3.2.5)

The Lagrangian (3.2.4) has a triangular structure in the cases with matter or curvature listed be-
low. In each one of these cases, the admissible solutions are those fulfilling the energy constraint 
E = 0 and the conditions x(t), y(t) > 0 (cf. Eq. (3.2.3)).

i) k = 0, γ = w 	= ±1 The Lagrangian (3.2.4) and the energy (3.2.5) become

L(x, ẋ, y, ẏ) = − 2

1−w2 ẋ ẏ − V1 x y − V2 x
2

1+w − n2 �
(m)∗

2
x− 2w

1+w , (3.2.6)

E(x, ẋ, y, ẏ) = − 2

1−w2 ẋ ẏ + V1 x y + V2 x
2

1+w + n2 �
(m)∗

2
x− 2w

1+w . (3.2.7)
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The Lagrangian (3.2.6) has the harmonic triangular structure (3.0.15) and the related equations 
δL/δy = 0, δL/δx = 0 read, respectively,

ẍ − (1 − w2)V1

2
x = 0 ,

ÿ − (1 − w2)V1

2
y = (1 − w)V2 x

1−w
1+w − w (1 − w)n2 �

(m)∗
2

x− 1+3w
1+w .

(3.2.8)

The equation in the first line of (3.2.8) describes a harmonic system (10); when its general solution 
is substituted into the equation in the second line of (3.2.8), the latter can be interpreted in terms 
of a forced harmonic system. Notably, the system (3.2.8) can be treated by elementary means.

ii) γ = w = 1
n

(radiation gas) The Lagrangian (3.2.4) and the energy (3.2.5) reduce to

L(x, ẋ, y, ẏ) = − 2n2

n2−1
ẋ ẏ −

(
V1 x − n2k

2
x

n−3
n+1

)
y −

(
V2 x

2n
n+1 + n2 �

(m)∗
2

x− 2
n+1

)
,

(3.2.9)

E(x, ẋ, y, ẏ) = − 2n2

n2−1
ẋ ẏ +

(
V1 x − n2k

2
x

n−3
n+1

)
y +

(
V2 x

2n
n+1 + n2 �

(m)∗
2

x− 2
n+1

)
.

(3.2.10)

The present Lagrangian has the triangular form (3.0.1), and can be treated with the methods 
described below the cited equation; in particular, note that Eqs. (3.0.1) (3.0.5) are fulfilled in the 

present case with u(x) = −V1 x + n2

2 k x
n−3
n+1 and U(x) = −V1

2 x2 + n2(n+1) k
4(n−1)

x
2(n−1)
n+1 .

ii0) n = 3, γ = w = 1
3 In this particular subcase of case (ii), the Lagrangian (3.2.4) and the 

energy function (3.2.5) read

L(x, ẋ, y, ẏ) = − 9

4
ẋ ẏ −

(
V1 x − 9 k

2

)
y − V2 x3/2 − 9�

(m)∗
2

x−1/2 , (3.2.11)

E(x, ẋ, y, ẏ) = − 9

4
ẋ ẏ +

(
V1 x − 9 k

2

)
y + V2 x3/2 + 9�

(m)∗
2

x−1/2 . (3.2.12)

The Lagrangian (3.2.11) is of the harmonic triangular form (3.0.15) and the related equations 
δL/δy = 0, δL/δx = 0 read

ẍ − 4V1

9
x = −2 k , ÿ − 4V1

9
y = 2V2

3
x1/2 − �(m)∗ x−3/2 . (3.2.13)

The first equation in (3.2.13) describes a harmonic system with a constant “curvature force”; once 
x(t) has been determined, the second equation in (3.2.13) describes another forced harmonic 
system. Also in this case, we have a pair of equations which can be solved by elementary means.

10 In the generalized sense stipulated for this term in the discussion after Eqs. (3.0.16) (3.0.17); the specific kind of this 
harmonic system depends on the sign of (1 − w2) V1. Similar explanations will never be repeated in the sequel.



D. Fermi et al. / Nuclear Physics B 957 (2020) 115095 27
iii) γ = w = 2
n

− 1 (11) The Lagrangian (3.2.4) and the energy (3.2.5) take the form

L(x, ẋ, y, ẏ) = − n2

2(n−1)
ẋ ẏ − V1 x y − V2 xn − n2(�

(m)∗ − k)

2
xn−2 , (3.2.14)

E(x, ẋ, y, ẏ) = − n2

2(n−1)
ẋ ẏ + V1 x y + V2 xn + n2(�

(m)∗ − k)

2
xn−2 . (3.2.15)

The Lagrangian (3.2.14) has the harmonic triangular form (3.0.15) and the related equations 
δL/δy = 0, δL/δx = 0 give

ẍ − 2 (n − 1)V1

n2 x = 0 ,

ÿ − 2 (n − 1)V1

n2 y = 2 (n − 1)V2

n
xn−1 + (n − 2)(n − 1)

(
�(m)∗ − k

)
xn−3 .

(3.2.16)

Again, the equation for x(t) describes a harmonic system and, once this function has been deter-
mined, the equation for y(t) describes a forced harmonic system.

iv) γ = 2
n

− 1, w = 4
n

− 3 The Lagrangian (3.2.4) and the energy (3.2.5) are, respectively,

L(x, ẋ, y, ẏ) = − n2

2(n−1)
ẋ ẏ −

(
V1 x + n2 �

(m)∗
2

x2n−3

)
y −

(
V2 xn − n2k

2
x−2n

)
,

(3.2.17)

E(x, ẋ, y, ẏ) = − n2

2(n−1)
ẋ ẏ +

(
V1 x + n2 �

(m)∗
2

x2n−3

)
y +

(
V2 xn − n2k

2
x−2n

)
.

(3.2.18)
The Lagrangian (3.2.17) has the triangular structure (3.0.1), an can be treated with the cor-
responding methods; in particular, Eqs. (3.0.1) (3.0.5) are fulfilled in the present case with 

u(x) = −V1 x − n2 �
(m)∗

2 x2n−3 and U(x) = −V1
2 x2 − n2 �

(m)∗
4(n−1)

x2n−2.

iv0) n = 2, γ = 0, w = −1 (cosmological constant) This is the subcase of case (iv) correspond-
ing to n = 2. The Lagrangian (3.2.4) and the energy function (3.2.5) reduce to

L(x, ẋ, y, ẏ) = −2 ẋ ẏ − (
V1 + 2�(m)∗

)
x y − V2 x2 + 2 k , (3.2.19)

E(x, ẋ, y, ẏ) = −2 ẋ ẏ + (
V1 + 2�(m)∗

)
x y + V2 x2 − 2 k . (3.2.20)

The Lagrangian (3.2.19) has the harmonic triangular form (3.0.15). The related equations 
δL/δy = 0, δL/δx = 0 read

ẍ −
(

V1

2
+ �(m)∗

)
x = 0 , ÿ −

(
V1

2
+ �(m)∗

)
y = V2 x ; (3.2.21)

they describe, respectively, a harmonic system and another harmonic system with an external 
force proportional to x(t). Up to a constant, the Lagrangian (3.2.19) also belongs to the class of 
the quadratic Lagrangians.

11 The position w = 2/n − 1 makes this case perhaps less interesting than the previous ones, since it gives w < 0 for 
n � 3 (for n = 2 one has w = 0, typical of a dust fluid). Nonetheless, if w = 2/n − 1 and we assume �(m)∗ � 0 in 
Eq. (2.2.13) (non-negative matter density), the requirements (2.1.11) (2.1.12) corresponding to the weak and dominant 
energy conditions are both fulfilled for any n � 2 (in fact, for n � 1).
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v) k = 0, γ = w+1
2 	= ±1 The Lagrangian (3.2.4) and the energy (3.2.5) become

L(x, ẋ, y, ẏ) = − 8

(1−w)(3+w)
ẋ ẏ −

(
V1 x + n2 �

(m)∗
2

x− 1+3w
3+w

)
y − V2 x

4
3+w , (3.2.22)

E(x, ẋ, y, ẏ) = − 8

(1−w)(3+w)
ẋ ẏ +

(
V1 x + n2 �

(m)∗
2

x− 1+3w
3+w

)
y + V2 x

4
3+w . (3.2.23)

The Lagrangian (3.2.22) has the triangular form (3.0.1), an can be treated with the corresponding 
methods; in particular, Eqs. (3.0.1) (3.0.5) are fulfilled in the present case setting u(x) = −V1 x −
n2 �

(m)∗
2 x− 1+3w

3+w and U(x) = −V1
2 x2 − (3+w)n2 �

(m)∗
4(1−w)

x
2(1−w)

3+w .

v0) k = 0, γ = 1
3 , w = − 1

3 This is a subcase of case (v), corresponding to w = −1/3. The 
Lagrangian (3.2.4) and the energy (3.2.5) reduce to

L(x, ẋ, y, ẏ) = − 9

4
ẋ ẏ −

(
V1 x + n2 �

(m)∗
2

)
y − V2 x3/2 , (3.2.24)

E(x, ẋ, y, ẏ) = − 9

4
ẋ ẏ +

(
V1 x + n2 �

(m)∗
2

)
y + V2 x3/2 . (3.2.25)

The Lagrangian (3.2.24) has the harmonic triangular form (3.0.15). The equations δL/δy = 0, 
δL/δx = 0 read

ẍ − 4V1

9
x = 2n2 �

(m)∗
9

, ÿ − 4V1

9
y = 2V2

3
x1/2 (3.2.26)

and describe two forced harmonic systems, the first one with a constant external force and the 
second one with an external force depending on x(t).

vi) γ = 1
n

, w = 2
n

− 1 The Lagrangian (3.2.4) and the energy (3.2.5) read

L(x, ẋ, y, ẏ) = − 2n2

n2−1
ẋ ẏ −

(
V1 x + n2(�

(m)∗ − k)

2
x

n−3
n+1

)
y − V2 x

2n
n+1 , (3.2.27)

E(x, ẋ, y, ẏ) = − 2n2

n2−1
ẋ ẏ +

(
V1 x + n2(�

(m)∗ − k)

2
x

n−3
n+1

)
y + V2 x

2n
n+1 . (3.2.28)

The Lagrangian (3.2.27) has the triangular structure (3.0.1), and can be treated with the cor-
responding methods; in particular, Eqs. (3.0.1) (3.0.5) are fulfilled in the present case with 

u(x) = −V1 x − n2(�
(m)∗ −k)
2 x

n−3
n+1 and U(x) = −V1

2 x2 − (n+1) n2(�
(m)∗ −k)

4(n−1)
x

2(n−1)
n+1 .

vi0) n = 3, γ = 1
3 , w = − 1

3 This is the subcase of case (vi) corresponding to n = 3. The La-
grangian (3.2.4) and the energy (3.2.5) reduce to

L(x, ẋ, y, ẏ) = − 9

4
ẋ ẏ −

(
V1 x + 9 (�

(m)∗ − k)

2

)
y − V2 x3/2 , (3.2.29)

E(x, ẋ, y, ẏ) = − 9

4
ẋ ẏ +

(
V1 x + 9 (�

(m)∗ − k)

2

)
y + V2 x3/2 . (3.2.30)
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The Lagrangian (3.2.29) has the harmonic triangular form (3.0.15) and the equations δL/δy = 0, 
δL/δx = 0 give

ẍ − 4V1

9
x = 2

(
�(m)∗ − k

)
, ÿ − 4V1

9
y = 2V2

3
x1/2 . (3.2.31)

Again, we have a harmonic system with a constant external force and another harmonic system 
with an external force depending on x(t).

3.3. Class 3 potentials

Let us now consider potentials of the form

V(ϕ) = V1 e2ϕ + V2 (V1,V2 ∈ R) . (3.3.1)

Ref. [16] treats these potentials fixing the gauge function B and introducing a pair of Lagrangian 
coordinates x, y, in the following way:

B(A, ϕ) := −ϕ , (3.3.2)

A = 1

2
(logx) + y ; ϕ = 1

2
(logx) − y (x>0 , y∈R) . (3.3.3)

In the case of no matter and zero curvature, the Lagrangian obtained with the above positions 
has the harmonic triangular form (3.0.15). Let us make the same positions in our framework with 
matter and curvature, and search for other triangular cases. Eqs. (3.3.1)(3.3.2)(3.3.3) yield for 
the Lagrangian (2.4.3) and for the energy (2.4.5) the following expressions:

L(x, ẋ, y, ẏ) = − ẋ ẏ − V1 x − V2 e2y − n2 �
(m)∗

2
x− 1+w

2 e(1−w)y + n2k

2
x− 1

n e
2(n−1)

n
y ;
(3.3.4)

E(x, ẋ, y, ẏ) = − ẋ ẏ + V1 x + V2 e2y + n2 �
(m)∗

2
x− 1+w

2 e(1−w)y − n2k

2
x− 1

n e
2(n−1)

n
y .

(3.3.5)

It is evident that the Lagrangian (3.3.4) cannot have a triangular structure when k 	= 0; thus, we 
set k = 0 and search for triangular cases with matter, i.e., with �(m)∗ 	= 0. Below we give a list 
of such cases; in each one of these cases, the admissible solutions are those fulfilling the energy 
constraint E = 0 and the condition x(t) > 0 (see Eq. (3.3.3)).

i) k = 0, w = −1 (cosmological constant) The Lagrangian (3.3.4) and the energy (3.3.5) read

L(x, y, ẋ, ẏ) = − ẋ ẏ − V1 x −
(

V2 + n2 �
(m)∗

2

)
e2y , (3.3.6)

E(x, y, ẋ, ẏ) = − ẋ ẏ + V1 x +
(

V2 + n2 �
(m)∗

2

)
e2y . (3.3.7)

The Lagrangian (3.3.6) has the harmonic triangular form (3.0.14). The related equations 
δL/δx = 0, δL/δy = 0 read

ÿ = V1 , ẍ = 2

(
V2 + n2 �

(m)∗
2

)
e2y ; (3.3.8)
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their general solution is

x(t) =
(

V2 + n2 �
(m)∗

2

)
e

2β− α2
V1

V1

(√
π (V1 t+α)√

V1
Erfi

(V1 t+α√
V1

)
− e

(V1 t+α)2

V1

)
+ γ t + δ ,

y(t) = V1

2
t2 + α t + β ,

(3.3.9)

where α, β, γ, δ are arbitrary integration constants and Erfi is the imaginary error function.
Eqs. (3.3.7) and (3.3.9) imply E = V1 δ − α γ , so the energy constraint E = 0 holds if and only 
if V1 δ = α γ . The issue of finding a maximal interval where x(t) > 0 is strictly related to the 
choice of the integration constants in Eq. (3.3.9).

ii) k = 0, w = −3 The Lagrangian (3.3.4) and the energy (3.3.5) become, respectively,

L(x, y, ẋ, ẏ) = − ẋ ẏ −
(

V1 + n2 �
(m)∗

2
e4y

)
x − V2 e2y , (3.3.10)

E(x, y, ẋ, ẏ) = − ẋ ẏ +
(

V1 + n2 �
(m)∗

2
e4y

)
x + V2 e2y . (3.3.11)

The Lagrangian (3.3.10) has the triangular structure (3.0.14), an can be treated with the corre-
sponding methods; in particular, Eq. (3.0.14) and the analogue of Eq. (3.0.5) are fulfilled in the 

present case with u(y) = −V1 − n2 �
(m)∗

2 e4y and U(y) = −V1 y − n2 �
(m)∗

8 e4y .

iii) k = 0, V2 = 0, w = 1 (stiff matter) In this case the potential does also belong to the class 2 
discussed in subsection 3.2 (since V(ϕ) is of the form (3.2.1) with V2 = 0 and γ = 1).
The Lagrangian (3.3.4) and the energy (3.3.5) read, respectively,

L(x, y, ẋ, ẏ) = − ẋ ẏ − V1 x − n2 �
(m)∗

2
x−1 , (3.3.12)

E(x, y, ẋ, ẏ) = − ẋ ẏ + V1 x + n2 �
(m)∗

2
x−1 . (3.3.13)

We have a harmonic triangular Lagrangian, of the form (3.0.15) with λ = σ = 0. The correspond-
ing equations δL/δy = 0, δL/δx = 0 are

ẍ = 0 , ÿ = V1 − n2 �
(m)∗

2
x−2 . (3.3.14)

Again, the general solution can be expressed in terms of elementary functions and reads

x(t) = α t +β , y(t) = 1

2α2

(
V1 (α t +β)2 +n2 �(m)∗ log(α t +β)

)
+γ t +δ , (3.3.15)

where α, β, γ, δ are integration constants. Eqs. (3.3.13) (3.3.15) imply E = −α γ , showing that 
the energy constraint E = 0 holds only if α γ = 0. Finding a maximal interval where x(t) > 0 is 
a trivial task, once the integration constants in Eq. (3.3.15) have been assigned.
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3.4. Class 4 potentials

Let us consider the potential

V(ϕ) = V ϕ e2ϕ (V ∈ R) . (3.4.1)

Ref. [16] suggests to treat these potentials using the gauge function B and the coordinates x, y, 
defined by

B(A, ϕ) := − (A+ 2ϕ) , (3.4.2)

A = 1

4
(logx) + y , ϕ = 1

4
(logx) − y (x>0 , y∈R) . (3.4.3)

In the case with no matter and zero curvature, these prescriptions yield again a harmonic trian-
gular Lagrangian of the form (3.0.15).
Also in this case, we extend the treatment of [16] to our framework with matter and curvature 
and search for additional triangular cases. With the positions (3.4.1)(3.4.2)(3.4.3), the Lagrangian 
(2.4.3) and the energy (2.4.5) become, respectively,

L(x, ẋ, y, ẏ) = − 1

2
ẋ ẏ − V

(
1

4
logx − y

)
− n2 �

(m)∗
2

x− 3+w
4 e(1−w)y + n2k

2
x− n+1

2n e
2(n−1)

n
y ,

(3.4.4)

E(x, ẋ, y, ẏ) = − 1

2
ẋ ẏ + V

(
1

4
logx − y

)
+ n2 �

(m)∗
2

x− 3+w
4 e(1−w)y − n2k

2
x− n+1

2n e
2(n−1)

n
y .

(3.4.5)

In presence of matter (�(m)∗ >0), the only case where the Lagrangian (3.4.4) has a triangular 
structure is the following.

i) k = 0, w = 1 (stiff matter) The Lagrangian (3.4.4) and the energy (3.4.5) reduce to

L(x, y, ẋ, ẏ) = − 1

2
ẋ ẏ + V y −

(
V

4
logx + n2 �

(m)∗
2

x−1

)
, (3.4.6)

E(x, y, ẋ, ẏ) = − 1

2
ẋ ẏ − V y +

(
V

4
logx + n2 �

(m)∗
2

x−1

)
. (3.4.7)

The Lagrangian (3.4.6) has the harmonic triangular form (3.0.15). The related equations δL/δy =
0, δL/δx = 0 entail

ẍ = −2V , ÿ = V

2
x−1 − n2 �(m)∗ x−2 , (3.4.8)

and their general solution is given by

x(t) = −V t2 + α t + β , (3.4.9)

y(t) = γ t + δ + 1

4
log

(− V t2+α t+β
)

− (4n2 �
(m)∗ − �)(α−2V t)

4�3/2 log

(√
� + α − 2V t√
� − α + 2V t

)
,
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where α, β, γ, δ are integration constants and � := α2 +4Vβ . From Eqs. (3.4.5) (3.4.9) it follows 
that E = [4 n2 �

(m)∗ V − � (α γ + 2 δ V )]/(2 �), which shows that the energy constraint E = 0
holds if and only if α γ = 2 V (2 n2 �

(m)∗ − δ �)/�. Again, finding a (maximal) interval where 
x(t) > 0 is an elementary task, once the integration constants in Eq. (3.4.9) have been assigned.

3.5. Class 5 potentials

This class is formed by potentials of the form

V(ϕ) = V1 log(cothϕ) + V2 (V1,V2∈R) . (3.5.1)

It should be noted that V(ϕ) is well defined only for ϕ ∈ (0, ∞) (apart from the trivial case where 
V1 = 0, entailing V(ϕ) = constant = V2). Ref. [16] suggests to analyze these potentials by means 
of the gauge function B and of the new coordinates x, y defined by

B(A, ϕ) := −A , (3.5.2)

A = 1

2
log

(
x2− y2

2

)
, ϕ = 1

2
log

(
x + y

x − y

)
(x>y>0) . (3.5.3)

In absence of matter and curvature, the Lagrangian L(x, y, ẋ, ẏ) obtained via these prescriptions 
is separable. Following our general approach, let now us implement the prescriptions of [16] in 
our framework with matter and curvature, and search for additional separable cases. Eqs. (3.5.1)
(3.5.2) (3.5.3) yield for the Lagrangian (2.4.3) and for the energy (2.4.5) the expressions

L(x, ẋ, y, ẏ) =
ẏ2− ẋ2

4
− V1 (logx − logy) − V2 − n2 �

(m)∗
2

(
x2−y2

2

)− 1+w
2

+ n2k

2

(
x2−y2

2

)− 1
n

,

(3.5.4)
E(x, ẋ, y, ẏ) =
ẏ2− ẋ2

4
+ V1 (logx − logy) + V2 + n2 �

(m)∗
2

(
x2−y2

2

)− 1+w
2

− n2k

2

(
x2−y2

2

)− 1
n

.

(3.5.5)

The Lagrangian (3.5.4) is given by the sum of two functions depending separately on (x, ẋ) and 
(y, ẏ), plus two additional terms proportional to �(m)∗ and k, respectively, both consisting of suit-
able powers of x2 − y2. Besides the case with �(m)∗ = 0 and k = 0, the only cases where the latter 
additional terms are themselves separable or disappear, yielding again a separable Lagrangian of 
the form (3.0.21), are those where k = 0 and the exponent −(1 +w)/2 equals 0 or 1. We discuss 
these two cases in the sequel, keeping in mind that the corresponding Lagrange equations can be 
reduced to quadratures as indicated in Eq. (3.0.24); let us also repeat that admissible solutions 
must also fulfill the energy constraint E = 0 and the conditions x(t) >y(t) >0 (cf. Eq. (3.5.3)).

i) k = 0, w = −1 (cosmological constant) The Lagrangian (3.5.4) and the energy (3.5.5) be-
come, respectively,

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − V2 + 2n2 �(m)∗ ,

L1(x, ẋ) = − 1
ẋ2 − V1 logx , L2(y, ẏ) = 1

ẏ2 + V1 logy ; (3.5.6)
4 4
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E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + V2 − 2n2 �(m)∗ ,

E1(x, ẋ) = − 1

4
ẋ2 + V1 logx , E2(y, ẏ) = 1

4
ẏ2 − V1 logy .

(3.5.7)

ii) k = 0, w = −3 The Lagrangian (3.5.4) and the energy (3.5.5) become

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − V2 , (3.5.8)

L1(x, ẋ) = − 1

4
ẋ2 − V1 logx + 4n2 �(m)∗ x2 , L2(y, ẏ)= 1

4
ẏ2+ V1 logy− 4n2 �(m)∗ y2 ;

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + V2 , (3.5.9)

E1(x, ẋ) = − 1

4
ẋ2 + V1 logx − 4n2 �(m)∗ x2 , E2(y, ẏ) = 1

4
ẏ2− V1 logy+ 4n2 �(m)∗ y2 .

3.6. Class 6 potentials

Let us consider potentials of the form

V(ϕ) = V1 arctan e−2ϕ + V2 (V1,V2∈R) . (3.6.1)

In connection with this class, [16] suggests to consider the gauge function

B(A, ϕ) := −A (3.6.2)

and to replace the Lagrangian coordinates (A, ϕ) with a conveniently defined, complex variable 
z. Regarding this complex setting, it can be useful to specify the following conventions, somehow 
implicit in the cited reference:

� C× := C\(−∞, 0] is the open region in the complex plane C obtained removing the negative 
real semi-axis. Correspondingly, we consider the determination of the argument function 
given by

arg : C×\(−∞,0] → (−π,π) , z �→ arg z . (3.6.3)

This is such that arg z = 0 for z ∈ (0, ∞) and arg(z̄) = − arg z for all z ∈ C×.
� The usual, natural logarithm log : (0, ∞) → R possesses the extension

log : C× → R + i(−π,π), z �→ log z := log |z| + i arg z , (3.6.4)

with arg as in Eq. (3.6.3). Such an extension is a holomorphic function fulfilling elogz = z

and log z̄ = log |z| − i arg z = log z for all z ∈ C×.

Keeping these premises in mind, the complex formalism of [16] can be described as follows: the 
coordinates (A, ϕ) ∈ R2 are replaced by a complex coordinate z ∈ D with

D := {z ∈ C | �z,�z > 0} ⊂ C× , (3.6.5)

related to (A, ϕ) by

A = 1

2
log

(
z2 − z̄2

2i

)
= 1

2
log

(
2�z�z

)
, ϕ = 1

2
log

(
i
z + z̄

z − z̄

)
= 1

2
log

(�z

�z

)
.

(3.6.6)
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The correspondence z �→ (A, ϕ) defined above is one-to-one between D and R2, with inverse

z = 1√
2

(
eA+ϕ + i eA−ϕ

)
. (3.6.7)

Let us note that the second relation in Eq. (3.6.6) implies e−2ϕ = �z/�z, which allows to express 
the potential (3.6.1) as

V(ϕ) = V1 arctan
�z

�z
+ V2 = V1 arg z + V2 = V1 � log z + V2 . (3.6.8)

In absence of matter and curvature, [16] expresses the Lagrangian function associated to a po-
tential of the form (3.6.1) fixing the gauge and introducing a complex coordinate z as above; 
the Lagrangian L(z, ̇z) obtained in this way is of the holomorphic type (3.0.25). Following our 
general mindset, hereafter we try to generalize the results of [16] to cases with matter or cur-
vature. To this purpose, let us first note that the prescriptions (3.6.2) (3.6.6) yield the following 
expressions for the Lagrangian (2.4.3) and for the energy (2.4.5):

L(z, ż) = −�
(

1

2
ż2 + V1 log z

)
− n2 �

(m)∗
2

(�z2)− 1+w
2 + n2k

2

(�z2)− 1
n − V2 , (3.6.9)

E(z, ż) = −�
(

1

2
ż2 − V1 log z

)
+ n2 �

(m)∗
2

(�z2)− 1+w
2 − n2k

2

(�z2)− 1
n + V2 (3.6.10)

(here and in the sequel, �z2 stands for �(z2)). Let us point out that Eqs. (3.6.9) (3.6.10) have the 
same structure as Eqs. (3.5.4)(3.5.5) in the previous section, with the replacement (x, y) →(z, ̄z).
We are interested in cases in which the Lagrangian (3.6.9) maintains the holomorphic structure 
(3.0.25) even in presence of matter or curvature. Clearly, this occurs only if k = 0 and the ex-
ponent −(1 + w)/2 equals 0 or 1, which yields the cases discussed below. Let us recall that 
admissible solutions must fulfill the energy constraint E = 0, besides the condition z(t) ∈D.

i) k = 0, w = −1 (cosmological constant) The Lagrangian (3.6.9) and the energy (3.6.10) be-
come, respectively,

L(z, ż) = −�
(

1

2
ż2 + V1 log z

)
− n2 �

(m)∗
2

− V2 , (3.6.11)

E(z, ż) = −�
(

1

2
ż2 − V1 log z

)
+ n2 �

(m)∗
2

+ V2 . (3.6.12)

One can apply the methods described below Eq. (3.0.25) to solve the corresponding Lagrange 
equations by quadratures; in the present case the holomorphic function U and the complexified 
energy E of Eqs. (3.0.25) (3.0.28) are U(z) = −V1 log z , E(z, ̇z) = 1

2 ż2 − V1 log z.

ii) k = 0, w = −3 The Lagrangian (3.6.9) and the energy (3.6.10) reduce to

L(z, ż) = −�
(

ż2

2
+ V1 log z + n2 �

(m)∗
2

z2

)
− V2 , (3.6.13)

E(z, ż) = −�
(

ż2

2
− V1 log z − n2 �

(m)∗
2

z2

)
+ V2 . (3.6.14)
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Again, one should refer to the methods reported below Eq. (3.0.25); in the present case the 
holomorphic function U and the complexified energy function E of Eqs. (3.0.25) (3.0.28) are 

given by U(z) = −V1 log z − n2 �
(m)∗

2 z2 , E(z, ̇z) = 1
2 ż2 − V1 log z − n2 �

(m)∗
2 z2.

3.7. Class 7 potentials

Let us consider a potential of the form

V(ϕ) = V1
(
cosh(γ ϕ)

) 2
γ

−2 + V2
(
sinh(γ ϕ)

) 2
γ

−2 (
V1,V2∈R , γ ∈R\{0}) ; (3.7.1)

here and in the sequel we assume

ϕ ∈ Iγ,V2 , Iγ,V2 :=

⎧⎪⎪⎨
⎪⎪⎩

(−∞,+∞) if
2

γ
− 2 ∈ {0,1,2, ...} or V2 = 0 ,

sgn(γ ) (0,+∞) if
2

γ
− 2 /∈ {0,1,2, ...} and V2 	= 0 ,

(3.7.2)

where sgn(γ ) (0, +∞) := {
sgn(γ )ψ | ψ ∈ (0, +∞)

}
(this set equals (0, +∞) if γ > 0, and 

(−∞, 0) if γ <0). In any case, Iγ,V2 is a maximal interval where the function V in Eq. (3.7.1) is 
well defined and smooth. Let us also note that

2

γ
− 2 = h ∈ {0,1,2, ...} ⇔ γ = 2

h + 2
, h ∈ {0,1,2, ...} . (3.7.3)

To treat a potential of the above form, [16] suggests to use the gauge function B and the real 
coordinates x, y, determined as follows:

B(A, ϕ) = (1 − 2γ )A ; (3.7.4)

A = 1

2γ
log(x2− y2) , ϕ = 1

2γ
log

(
x + y

x − y

)
, (x, y) ∈ Dγ,V2 ⊂ R2. (3.7.5)

The domain Dγ,V2 is not indicated explicitly in [16], but it is evident that

Dγ,V2 :=

⎧⎪⎪⎨
⎪⎪⎩
{
(x, y)∈R2

∣∣ x > 0 , −x < y < x
}

if
2

γ
− 2 ∈ {0,1,2, ...} or V2 = 0 ,

{
(x, y)∈R2

∣∣ x > y > 0
}

if
2

γ
− 2 /∈ {0,1,2, ...} and V2 	= 0 .

(3.7.6)

In fact, it can be readily checked that the map (x, y) �→ (A, ϕ) described in Eq. (3.7.5) is a 
smooth diffeomorphism between the open sets Dγ,V2 and R × Iγ,V2 , with inverse function given 
by

x = 1

2

(
eγ (A+ϕ) + eγ (A−ϕ)

)
, y = 1

2

(
eγ (A+ϕ) − eγ (A−ϕ)

)
. (3.7.7)

In the case of no matter and zero curvature, the Lagrangian L(x, y, ẋ, ẏ) obtained with the above 
prescriptions is separable. As usual, let us try to use the same prescriptions adding matter and cur-
vature. Eqs. (3.7.1)(3.7.4)(3.7.5) allow to express the Lagrangian (2.4.3) and the energy (2.4.5), 
respectively, as
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L(x, ẋ, y, ẏ) =
ẏ2−ẋ2

2γ 2 − V1 x
2
γ

−2− V2 y
2
γ

−2 − n2 �
(m)∗

2
(x2− y2)

1−2γ−w
2γ + n2k

2
(x2− y2)

n(1−γ )−1
nγ ,

(3.7.8)
E(x, ẋ, y, ẏ) =
ẏ2−ẋ2

2γ 2 + V1 x
2
γ

−2+ V2 y
2
γ

−2 + n2 �
(m)∗

2
(x2− y2)

1−2γ−w
2γ − n2k

2
(x2− y2)

n(1−γ )−1
nγ .

(3.7.9)

Similarly to the case of class 5 potentials dealt with in subsection 3.5, the Lagrangian (3.7.8) is 
given by the sum of two functions depending separately on (x, ẋ) and on (y, ẏ), plus two extra 
terms proportional to �(m)∗ and k, respectively, which consist of powers of x2 − y2 with expo-
nents 1−2γ−w

2γ
and n(1−γ )−1

nγ
. Besides the case with �(m)∗ = 0 and k = 0, the only situations in 

which these extra terms are themselves separable or disappear, yielding a separable Lagrangian 
of the form (3.0.21), are listed in the following. The resulting (decoupled) Lagrange equations 
for x(t), y(t) can be reduced to quadratures as indicated in Eq. (3.0.24); the admissible solu-
tions must also fulfill the condition (x(t), y(t)) ∈ Dγ,V2 (cf. Eqs. (3.7.5)(3.7.6)) and the energy 
constraint E = 0.

i) k = 0, γ = 1−w
2 	= 0 The Lagrangian (3.7.8) and the energy (3.7.9) take the form

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − n2 �
(m)∗

2
,

L1(x, ẋ) = − 2

(1−w)2 ẋ2 − V1 x
2(1+w)

1−w , L2(y, ẏ) = 2

(1−w)2 ẏ2 − V2 y
2(1+w)

1−w ;
(3.7.10)

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + n2 �
(m)∗

2
,

E1(x, ẋ) = − 2

(1−w)2 ẋ2 + V1 x
2(1+w)

1−w , E2(y, ẏ) = 2

(1−w)2 ẏ2 + V2 y
2(1+w)

1−w .

(3.7.11)

Let us mention that in the subcases w = −1 (cosmological constant), w = −1/3 and w = 0
(dust), the exponent of x in L1(x, ẋ) and of y in L2(y, ẏ) becomes, respectively, 0, 1 and 2, so 
that the Lagrange equations are elementary.

ii) k = 0, γ = 1−w
4 	= 0 The Lagrangian (3.7.8) and the energy (3.7.9) become

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) , (3.7.12)

L1(x, ẋ) = − 8

(1−w)2 ẋ2 − V1 x
2(3+w)

1−w − n2 �
(m)∗

2
x2 ,

L2(y, ẏ) = 8

(1−w)2 ẏ2 − V2 y
2(3+w)

1−w − n2 �
(m)∗

2
y2 ;

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) , (3.7.13)

E1(x, ẋ) = − 8
2 ẋ2 + V1 x

2(3+w)
1−w + n2 �

(m)∗
x2 ,
(1−w) 2
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E2(y, ẏ) = 8

(1−w)2 ẏ2 + V2 y
2(3+w)

1−w + n2 �
(m)∗

2
y2 .

The subcases w = −3, −5/3, −1 are elementary, since x and y appear in L1(x, ẋ) and L2(y, ẏ)

with exponent 2, or with exponents 1 and 2.

iii) �(m)∗ = 0, γ = n−1
n

The Lagrangian (3.7.8) and the energy (3.7.9) reduce to

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) + n2k

2
,

L1(x, ẋ) = − n2

2(n−1)2 ẋ2 − V1 x
2

n−1 , L2(y, ẏ) = n2

(n−1)2 ẏ2 − V2 y
2

n−1 ;
(3.7.14)

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) − n2k

2
,

E1(x, ẋ) = − n2

2(n−1)2 ẋ2 + V1 x
2

n−1 , E2(y, ẏ) = n2

(n−1)2 ẏ2 + V2 y
2

n−1 .

(3.7.15)

In the subcases n = 2 and n = 3 the exponent of x in L1(x, ẋ) and of y in L2(y, ẏ) becomes, 
respectively, 2 and 1, so the Lagrange equations are elementary.

iv) �(m)∗ = 0, γ = n−1
2n

The Lagrangian (3.7.8) and the energy (3.7.9) read

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) , (3.7.16)

L1(x, ẋ) = − 2n2

2(n−1)2 ẋ2 − V1 x
2(n+1)
n−1 + n2k

2
x2 ,

L2(y, ẏ) = 2n2

2(n−1)2 ẏ2 − V2 y
2(n+1)
n−1 − n2k

2
y2 ;

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) , (3.7.17)

E1(x, ẋ) = − 2n2

2(n−1)2 ẋ2 + V1 x
2(n+1)
n−1 − n2k

2
x2 ,

E2(y, ẏ) = 2n2

2(n−1)2 ẏ2 + V2 y
2(n+1)
n−1 + n2k

2
y2 .

v) γ = −n−1
n

, w = −n−2
n

The Lagrangian (3.7.8) and the energy (3.7.9) take the forms

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − n2 (�
(m)∗ − k)

2
,

L1(x, ẋ) = − n2

2(n−1)2 ẋ2 − V1 x
2

n−1 , L2(y, ẏ) = n2

(n−1)2 ẏ2 − V2 y
2

n−1 ;
(3.7.18)

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + n2 (�
(m)∗ − k)

2
,

E1(x, ẋ) = − n2

2(n−1)2 ẋ2 + V1 x
2

n−1 , E2(y, ẏ) = n2

(n−1)2 ẏ2 + V2 y
2

n−1 .

(3.7.19)

Let us note the close similarities with case (iii): L1 and L2 coincide with the homonymous 
functions in (3.7.14), and L is like the homonymous Lagrangian in the same equation with k
replaced by k − �

(m)∗ . The subcases n = 2, 3 are elementary, for the same reasons indicated in 
subcase (iii).
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vi) γ = n−1
n

, w = − 3n−4
n

The Lagrangian (3.7.8) and the energy (3.7.9) become

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) + n2k

2
, (3.7.20)

L1(x, ẋ) = − n2

2(n−1)2 ẋ2 − V1 x
2

n−1 − n2 �
(m)∗

2
x2 ,

L2(y, ẏ) = n2

(n−1)2 ẏ2 − V2 y
2

n−1 + n2 �
(m)∗

2
y2 ;

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) − n2k

2
, (3.7.21)

E1(x, ẋ) = − n2

2(n−1)2 ẋ2 + V1 x
2

n−1 + n2 �
(m)∗

2
x2 ,

E2(y, ẏ) = n2

(n−1)2 ẏ2 + V2 y
2

n−1 − n2 �
(m)∗

2
y2 .

The subcases n =2, 3 are elementary, since x, y appear in L1(x, ẋ), L2(y, ẏ) with exponent 2, or 
with exponents 1, 2.

vii) γ = −n−1
2n

, w = 1
n

(radiation gas) The Lagrangian (3.7.8) and the energy (3.7.9) read

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − n2 �
(m)∗

2
, (3.7.22)

L1(x, ẋ) = − 2n2

2(n−1)2 ẋ2− V1 x
2(n+1)
n−1 + n2

2
k x2 ,

L2(y, ẏ) = 2n2

2(n−1)2 ẏ2 − V2 y
2(n+1)
n−1 − n2k

2
y2 ;

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + n2 �
(m)∗

2
, (3.7.23)

E1(x, ẋ) = − 2n2

2(n−1)2 ẋ2+ V1 x
2(n+1)
n−1 − n2k

2
x2 ,

E2(y, ẏ) = 2n2

2(n−1)2 ẏ2 + V2 y
2(n+1)
n−1 + n2k

2
y2 .

Note the strong similarities with case (iv): L1 and L2 are as in Eq. (3.7.16), while L is like the 
homonymous Lagrangian in the same equation with the additional constant −n2

2 �
(m)∗ .

viii) γ = n−1
2n

, w = −n−2
n

The Lagrangian (3.7.8) and the energy (3.7.9) reduce to

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) , (3.7.24)

L1(x, ẋ) = − 2n2

2(n−1)2 ẋ2− V1 x
2(n+1)
n−1 − n2 (�

(m)∗ −k)

2
x2 ,

L2(y, ẏ) = 2n2

2(n−1)2 ẏ2− V2 y
2(n+1)
n−1 + n2 (�

(m)∗ −k)

2
y2 ;
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E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) , (3.7.25)

E1(x, ẋ) = − 2n2

2(n−1)2 ẋ2+ V1 x
2(n+1)
n−1 + n2 (�

(m)∗ −k)

2
x2 ,

E2(y, ẏ) = 2n2

2(n−1)2 ẏ2+ V2 y
2(n+1)
n−1 − n2 (�

(m)∗ −k)

2
y2 ;

Note that L1, L2 and L are like the homonymous Lagrangians in Eq. (3.7.16), with k replaced 
by k − �

(m)∗ .

3.8. Class 8 potentials

Let us consider potentials of the form

V(ϕ) = C
(
cosh(2γ ϕ)

) 1
γ

−1 sin

[( 1

γ
− 1

)
arctan

( 1

sinh(2γ ϕ)

)
+ ϑ

]
(
C ∈ [0,+∞),ϑ ∈ [0,2π) , γ ∈ R\{0}) .

(3.8.1)

These make sense for ϕ ∈ R\{0}. However it is natural to require that ϕ ranges within a connected 
domain; so, we assume ϕ ∈ sgn(γ ) (0, +∞) (see the explanation after Eq. (3.7.2); this means 
ϕ∈(0, +∞) if γ >0 and ϕ∈(−∞, 0) if γ <0). The alternative choice ϕ∈sgn(γ ) (−∞, 0), of 
obvious meaning, could be treated similarly.
Like the class 6 potentials addressed in subsection 3.6, the present class 8 can be treated using a 
complex formalism. To this purpose, let C×, arg and log be defined as in Eqs. (3.6.3) (3.6.4) of 
subsection 3.6 (see also the related comments); in addition, let us put

zλ := eλ log z for z∈C×, λ∈R. (3.8.2)

For any z, λ as above, the map z �→ zλ is holomorphic on C× and we have zλ = |z|λ eiλargz, 
zλ = z̄λ.
Potentials of the form (3.8.1) were treated in [16] fixing the gauge function B and replacing the 
Lagrangian coordinates (A, ϕ) with a complex variable z, setting

B(A, ϕ) = (1 − 2γ )A ; (3.8.3)

A = 1

2γ
log

(
z2−z̄2

2i

)
= 1

2γ
log

(
2�z�z

)
, ϕ = 1

2γ
log

(
i
z + z̄

z − z̄

)
= 1

2γ
log

(�z

�z

)
(3.8.4)

(here and in the sequel �z2, �z2 stand for �(z2), �(z2)). In the above, z is assumed to belong to 
a suitable domain D ⊂ C, which is not described explicitly in [16] and that we take as follows:

D := {
z∈C

∣∣ �z>�z>0
} = {

z∈C×
∣∣ 0<arg z<π/4

} ; (3.8.5)

the coordinate transformation (3.8.4) is one-to-one between the domain D and the set {(A, ϕ) |A ∈
R, ϕ ∈ sgn(γ ) (0, +∞)}.
From here to the end of this subsection, we stick to the position (3.8.5). The inverse of the map 
(A, ϕ) �→ z ∈D described in Eq. (3.8.4) is given by

z = 1√
(
eγ (A+ϕ) + i eγ (A−ϕ)

)
. (3.8.6)
2
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To proceed, we claim that Eqs. (3.8.1) (3.8.4) entail the following identities (12):

eA = (�z2)
1

2γ ; V(ϕ) =
�
(
V z

2
γ

−2
)

(�z2)
1
γ

−1
with V := C eiθ . (3.8.7)

The main result of [16] about potentials of the form (3.8.1) with no matter and zero curvature 
is that the Lagrangian L(z, ̇z) arising from the gauge choice (3.8.3) and the coordinate change 
(3.8.4) is of the holomorphic type (3.0.25). As usual, we try to generalize this result using the 
prescriptions of [16] in presence of matter and curvature. Using Eqs. (3.8.1)(3.8.3)(3.8.4) and 
some related identities, especially Eq. (3.8.7)), the Lagrangian (2.4.3) and the corresponding 
energy (2.4.5) become

L(z, ż) = −�
(

1

2γ 2 ż2 + V z
2
γ

−2
)

− n2 �
(m)∗

2
(�z2)

1−2γ−w
2γ + n2k

2
(�z2)

n(1−γ )−1
nγ , (3.8.8)

E(z, ż) = −�
(

1

2γ 2 ż2 − V z
2
γ

−2
)

+ n2 �
(m)∗

2
(�z2)

1−2γ−w
2γ − n2k

2
(�z2)

n(1−γ )−1
nγ . (3.8.9)

Let us note the close analogies between the present Lagrangian (3.8.8) and the Lagrangian 
(3.7.8); in fact, writing �z2 = (z2 − z̄2)/(2i) and using similar relations (in particular for �ż2) 
we see that the role played in Eq. (3.8.8) by the complex pair (z, ̄z) is similar to the role played 
in Eq. (3.7.8) by the real pair (x, y).
We now search for cases with matter or curvature, in which the Lagrangian (3.8.8) has the holo-
morphic structure (3.0.25). The problem is similar to that of finding the separable cases for the 
Lagrangian (3.7.8); it can be treated fixing the attention on the terms in Eq. (3.8.8) containing 
�z2, which have coefficients proportional to �(m)∗ or k and exponents 1−2γ−w

2γ
and n(1−γ )−1

nγ
. 

It appears that the Lagrangian (3.8.8) has the holomorphic structure (3.0.25) if k = 0 and 
1−2γ−w

2γ
∈ {0, 1}, or �(m)∗ = 0 and n(1−γ )−1

nγ
∈ {0, 1}, or 1−2γ−w

2γ
∈ {0, 1} and n(1−γ )−1

nγ
∈ {0, 1}. 

This yields the following 8 cases, which can be all reduced to quadratures following the prescrip-
tions below Eq. (3.0.25).

12 The first identity in Eq. (3.8.7) follows trivially from the expression for A in Eq. (3.8.4) and from the basic equality 
(z2 − z̄2)/(2i) = �z2. To obtain the second identity in Eq. (3.8.7), first notice that the expression for ϕ in Eq. (3.8.4)
entails e2γϕ = (�z)/(�z); writing cosh and sinh in terms of exponentials, from the latter identity we infer

cosh(2γ ϕ) = (�z)2 + (�z)2

2�z�z
= |z|2

�z2
, sinh(2γ ϕ) = (�z)2 − (�z)2

2�z�z
= �z2

�z2
.

In view of the above relations, starting from Eq. (3.8.1) and setting C := V e−iθ we infer the following chain of identities:

V(ϕ) = (
cosh(2γ ϕ)

) 1
γ −1 �

(
V e

i
(

1
γ −1

)
arctan

(
1

sinh(2γ ϕ)

))
= |z| 2

γ −2

(�z2)
1
γ −1

�
⎛
⎝V e

i
(

1
γ −1

)
arctan

(
�z2

�z2

)⎞
⎠

= |z| 2
γ −2

(�z2)
1
γ −1

�
(

V e
i
(

1
γ −1

)
arg z2

)
=

�
(

V |z| 2
γ −2

e
i
(

2
γ −2

)
arg z

)

(�z2)
1
γ −1

=
�
(

V z
2
γ −2

)

(�z2)
1
γ −1

.

.
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i) k = 0, γ = 1−w
2 	= 0 The Lagrangian (3.8.8) and the energy (3.8.9) reduce to

L(z, ż) = −�
(

2

(1−w)2 ż2 + V z
2(1+w)

1−w

)
− n2 �

(m)∗
2

, (3.8.10)

E(z, ż) = −�
(

2

(1−w)2 ż2 − V z
2(1+w)

1−w

)
+ n2 �

(m)∗
2

. (3.8.11)

Let us mention that in the subcases w = −1 (cosmological constant), w = −1/3 and w = 0
(dust), the exponent of z in L becomes, respectively, 0, 1 and 2, so that the Lagrange equations 
are elementary. For example, if w = 0 we have L(z, ̇z) = −�(2 ̇z2 + V z2) − n2

2 �
(m)∗ and the 

Lagrange equations reduce to z̈ = V
2 z, thus describing a complex harmonic system.

ii) k = 0, γ = 1−w
4 	= 0 The Lagrangian (3.8.8) and the energy (3.8.9) become

L(z, ż) = −�
(

8

(1−w)2 ż2 + V z
2(3+w)

1−w + n2 �
(m)∗

2
z2

)
, (3.8.12)

E(z, ż) = −�
(

8

(1−w)2 ż2 − V z
2(3+w)

1−w − n2 �
(m)∗

2
z2

)
. (3.8.13)

The subcases w = −3, −5/3, −1 are elementary, since z appears in L(z, ̇z) with exponents 
0, 1, 2.

iii) �(m)∗ = 0, γ = n−1
n

The Lagrangian (3.8.8) and the energy (3.8.9) take the forms

L(z, ż) = −�
(

n2

2(n−1)2 ż2 + V z
2

n−1

)
+ n2k

2
, (3.8.14)

E(z, ż) = −�
(

n2

2(n−1)2 ż2 − V z
2

n−1

)
− n2k

2
. (3.8.15)

The subcases n =2 and n =3 are elementary, since z appears in L(z, ̇z) with exponent 2 and 1, 
respectively.

iv) �(m)∗ = 0, γ = n−1
2n

The Lagrangian (3.8.8) and the energy (3.8.9) reduce to

L(z, ż) = −�
(

2n2

(n − 1)2 ż2 + V z
2(n+1)
n−1 − n2k

2
z2
)

, (3.8.16)

E(z, ż) = −�
(

2n2

(n − 1)2 ż2 − V z
2(n+1)
n−1 + n2k

2
z2
)

. (3.8.17)

v) γ = −n−1
n

, w = −n−2
n

The Lagrangian (3.8.8) and the energy (3.8.9) become

L(z, ż) = −�
(

n2

2(n−1)2 ż2 + V z
2

n−1

)
− n2 (�

(m)∗ −k)

2
, (3.8.18)

E(z, ż) = −�
(

n2

2(n−1)2 ż2 − V z
2

n−1

)
+ n2 (�

(m)∗ −k)

2
. (3.8.19)

The Lagrangian (3.8.18) is like the Lagrangian (3.8.14), with k replaced by k − �
(m)∗ . Besides, 

let us mention that the subcases n = 2, 3 are elementary, for the same reasons indicated in (iii).
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vi) γ = n−1
n

, w = − 3n−4
n

The Lagrangian (3.8.8) and the energy (3.8.9) take the forms

L(z, ż) = −�
(

n2

2(n−1)2 ż2 + V z
2

n−1 + n2 �
(m)∗

2
z2

)
+ n2k

2
, (3.8.20)

E(z, ż) = −�
(

n2

2(n − 1)2 ż2 − V z
2

n−1 − n2 �
(m)∗

2
z2

)
− n2k

2
. (3.8.21)

The subcases n = 2 and n = 3 are elementary, since z appears in L(z, ̇z) with exponents 2 and 1.

vii) γ = −n−1
2n

, w = 1
n

(radiation gas) The Lagrangian (3.8.8) and the energy (3.8.9) read

L(z, ż) = −�
(

2n2

(n−1)2 ż2 + V z
2(n+1)
n−1 − n2k

2
z2
)

− n2 �
(m)∗

2
, (3.8.22)

E(z, ż) = −�
(

2n2

(n−1)2 ż2 + V z
2(n+1)
n−1 − n2k

2
z2
)

+ n2 �
(m)∗

2
. (3.8.23)

The Lagrangian (3.8.22) is like the Lagrangian (3.8.16) with the additional constant −n2

2 �
(m)∗ .

viii) γ = n−1
2n

, w = −n−2
n

The Lagrangian (3.8.8) and the energy (3.8.9) become

L(z, ż) = −�
(

2n2

(n−1)2 ż2 + V z
2(n+1)
n−1 − n2 (�

(m)∗ −k)

2
z2

)
, (3.8.24)

E(z, ż) = −�
(

2n2

(n−1)2 ż2 − V z
2(n+1)
n−1 + n2 (�

(m)∗ −k)

2
z2

)
. (3.8.25)

Note that the Lagrangian (3.8.24) is like the Lagrangian (3.8.16), with k replaced by k − �
(m)∗ .

3.9. Class 9 potentials

Let us finally consider potentials of the form

V(ϕ) = V1 e2γ ϕ + V2 e
2
γ

ϕ (
V1,V2∈R , γ ∈(−1,1)\{0}) . (3.9.1)

Ref. [16] treats this class of potentials fixing the gauge function B and introducing new La-
grangian coordinates (x, y) related to (A, ϕ) by a “Lorentz transformation”, in the following 
way:

B(A, ϕ) = A ; (3.9.2)

A = x − γ y√
1 − γ 2

, ϕ = y − γ x√
1 − γ 2

(x, y∈R) . (3.9.3)

In absence of matter and curvature, the Lagrangian L(x, y, ẋ, ẏ) obtained in this way in [16] is 
separable. We now add matter and curvature, and use again the above prescriptions trying to find 
new separable cases. Eqs. (3.9.1)(3.9.2)(3.9.3) yield the following expressions for the Lagrangian 
(2.4.3) and the energy (2.4.5):
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L(x, ẋ, y, ẏ) =
ẏ2−ẋ2

2
− V1 e2

√
1−γ 2 x − V2 e

2
√

1−γ 2

γ
y − n2 �

(m)∗
2

e

1−w√
1−γ 2

(x−γ y)

+ n2k

2
e

2(n−1)

n

√
1−γ 2

(x−γ y)

;
(3.9.4)

E(x, ẋ, y, ẏ) =
ẏ2−ẋ2

2
+ V1 e2

√
1−γ 2 x + V2 e

2
√

1−γ 2

γ
y + n2 �

(m)∗
2

e

1−w√
1−γ 2

(x−γ y)

− n2k

2
e

2(n−1)

n

√
1−γ 2

(x−γ y)

.

(3.9.5)

The only situation with matter or curvature where the Lagrangian (3.9.4) is separable, is the one 
described hereafter.

i) k = 0, w = 1 (stiff matter) The Lagrangian (3.9.4) and the energy (3.9.5) reduce to

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − n2 �
(m)∗

2
,

L1(x, ẋ) := − 1

2
ẋ2 − V1 e2

√
1−γ 2 x , L2(y, ẏ) := 1

2
ẏ2 − V2 e2

√
1−γ 2 y ;

(3.9.6)

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + n2 �
(m)∗

2
,

E1(x, ẋ) := − 1

2
ẋ2 + V1 e2

√
1−γ 2 x , E2(y, ẏ) := 1

2
ẏ2 + V2 e2

√
1−γ 2 y .

(3.9.7)

4. Explicit form and detailed analysis of some spatially flat solutions

In the previous section, we provided lists of integrable cases with matter or space curvature 
associated to the nine potential classes of Frè-Sagnotti-Sorin. Let us recall that each one of these 
cases is solvable for one of the reasons (a–e) indicated at the beginning of section 3 (linearity 
of the Lagrange equations, triangular or harmonic triangular Lagrangian, separable Lagrangian, 
one-dimensional holomorphic and conservative system).
Of course, after indicating a reason for the solvability of the Lagrange equations one should de-
rive the explicit form of the (general) solution and analyze it both qualitatively and quantitatively. 
In particular, one should investigate the occurrence of an initial Big Bang singularity and the re-
lated presence of a particle horizon (see Eqs. (2.2.19) (2.2.20) and the associated comments), 
as well as the possible development of a Big Crunch or, in absence of it, the evolution of the 
system for long times. In connection with these issues, it is essential to determine the asymptotic 
behavior of the main elements of the model: the scale factor a, the scalar field ϕ and the related 
equation of state parameter w(φ) (see Eqs. (2.2.11)(2.2.12)), together with the density parameters 
�(m), �(φ), �(k). If the model turns out to be physically plausible, at least for some epoch in the 
evolution of the universe, one should also make sensible choices for the parameters in the po-
tential V(ϕ) and for the constants of integration of the solution, so as to make contact with the 
available observational data. In the forthcoming subsections 4.1-4.3 we discuss the above issues 
(or some of them) for some specific cases, taken as examples.
All the cases to be analyzed in the sequel have vanishing scalar curvature, i.e.,

k = 0 , (4.0.1)

and possess a Big Bang (to which we devote most of our attention) at
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t = tin = 0 . (4.0.2)

Following Eq. (2.2.19), we define the cosmic time as

τ(t) := θ

t∫
0

dt ′ eB(t ′) , (4.0.3)

keeping in mind that the integrability of eB in a right neighborhood of t = 0 is required by the 
very definition of Big Bang. Of course, τ(t) → 0+ for t → 0+ and we can speak of the inverse 
function t = t (τ ).
In the sequel we always require for matter a positive density: �(m) > 0 at all times, which happens 
if and only if

�(m)∗ > 0 . (4.0.4)

Let us note that the assumption (4.0.1) and Eq. (2.2.32) give �(k) = 0; from here and from (2.2.33)
we infer that, at all times,

�(m)+ �(φ) = 1 . (4.0.5)

Making reference to the above relation, we will say that matter dominates at the Big Bang if 
�(m)(t) → 1 (or equivalently, �(φ)(t) → 0) for t → 0+; conversely, we will say that the scalar 
field dominates at the Big Bang if �(φ)(t) → 0 (or equivalently, �(m)(t) → 1) in the same limit. 
The cases where matter or the scalar field dominate at the Big Crunch, if this exists, can be 
defined similarly.
In general, the discussion on the notion of particle horizon requires to consider, at any time 
τ = τ(t), the integral

�(τ) :=
τ∫

0

dτ ′

a(τ ′)
= θ

t∫
0

dt ′ eB(t ′)−A(t ′)/n ; (4.0.6)

see Eq. (2.2.20) and the related comments. The above integral converges at some time τ > 0
if and only if it converges at all times, and in this case there is a particle horizon. According 
to the result of [13] mentioned after Eq. (2.2.20), a particle horizon occurs if the strong energy 
condition (2.1.13) is fulfilled strictly by the matter fluid; we have already assumed a positive 
density for this fluid, so (2.1.13) holds strictly if and only if

w >
2

n
− 1 . (4.0.7)

4.1. Solutions for class 1 potentials with dust

Let us consider an (n +1)-dimensional, spatially flat cosmology with matter content described 
by a dust fluid; accordingly, besides Eq. (4.0.1) we posit

w = 0 . (4.1.1)

Moreover, we assume that the self-interaction potential for the field is given by

V(ϕ) = V1 eϕ + V2 e−ϕ , with V1,V2 > 0 ; (4.1.2)
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for notational convenience, in the sequel we shall put

V := √
V1 V2 > 0 . (4.1.3)

The model depicted above was previously studied by Rubano and Scudellaro [34], and by Piedi-
palumbo, Scudellaro, Esposito and Rubano [30], in the physically most relevant case with spatial 
dimension n = 3. Hereafter, we review within our framework the results of [30,34], generalizing 
them to the case of arbitrary n � 2; in addition, we discuss the asymptotic behavior of the density 
parameters �(m), �(φ) near the Big Bang.
To begin with, let us notice that the potential (4.1.2) is clearly of the form (3.1.1) (with 
V0 = 0 and the conditions stated above on V1, V2); to be more precise, as a consequence of 
Eqs. (4.0.1)(4.1.1), the cosmological model under analysis belongs to the integrable subcase 
(i) of class 1, discussed previously in subsection 3.1. In this connection, let us recall that it is 
convenient to fix the gauge function B(A, ϕ) as in Eq. (3.1.2), which gives B = 0. In view of 
Eq. (2.2.2), this implies that the cosmic time τ and the coordinate time t are linearly related:

t = τ/θ . (4.1.4)

According to subsection 3.1, the Lagrangian function for the model that we are considering is 
separable and can be reduced to quadratures by introducing a new pair of coordinates u, v, related 
to A, ϕ via (cf. Eqs. (3.1.3) (3.1.8))

A = log

(
u2 − v2

4

)
, ϕ = log

(√
V2

V1

u − v

u + v

)
. (4.1.5)

The Lagrange equations have the form (3.1.11) that, with the previous assumptions, reduces to

ü − V u = 0 , v̈ + V v = 0 ; (4.1.6)

the corresponding solutions are readily found to be

u(t) = A cosh
(√

V t
)+ B sinh

(√
V t

)
, v(t) = C cos

(√
V t

)+ D sin
(√

V t
)
,

(4.1.7)

where A, B, C, D ∈ R are suitable integration constants.
From Eqs. (3.1.10)(4.1.7), by elementary computations we infer the following expression for the 
energy E ≡ E(u, v, u̇, v̇) of the system:

E = V

2

(
A2 − B2 + C2 + D2)+ n2 �

(m)∗
2

. (4.1.8)

Taking the above relation into account, to fulfill the energy constraint E = 0 we set

�(m)∗ = V

n2

(
B2 − A2 − C2 − D2) . (4.1.9)

Furthermore, for fixed values of the parameters we take as a domain for the solutions (4.1.7) the 
maximal interval I ⊂ R such that (see the comment at the end of subsection 3.1)

tin ≡ 0 ∈ I and u(t) > |v(t)| for all t ∈ I . (4.1.10)

Finally let us mention that Eqs. (2.2.11) (2.2.12) (2.2.32) with B = 0 and Eqs. (4.1.2) (4.1.5)
give the following representations for the coefficient w(φ) in the field equation of state and for the 
matter density parameter �(m):
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w(φ) = (u̇ v − u v̇)2 − V (u4− v4)

(u̇ v − u v̇)2 + V (u4− v4)
, (4.1.11)

�(m) = n2 �
(m)∗ (u2 − v2)

(u u̇ − v v̇)2 . (4.1.12)

4.1.1. Big Bang analysis
Let us wonder under which conditions the solution (4.1.7) produces a Big Bang at some 

instant, that we conventionally choose as the time origin t = 0 (cf. Eq. (4.0.2)). It is required that 
a(t) → 0 (i.e., A(t) → −∞) for t → 0+ and, even prior to this, that a(t) (hence, A(t)) is well 
defined in a right neighborhood of t = 0; in terms of the functions u(t), v(t), this amounts to 
demand

u2(t) − v2(t) → 0 and u(t) > |v(t)| for t → 0+ (4.1.13)

(here and in the sequel, an expression of the form “f (t) > 0 for t → 0+” means that there exists
some ε > 0 such that f (t) > 0 for all t ∈ (0, ε)).
On the other hand, from the explicit expressions written in Eq. (4.1.7), it follows straightfor-
wardly that

u(t) = A+B
√

V t + 1

2
VAt2+O(t3) , v(t) = C+D

√
V t − 1

2
V C t2+O(t3) for t → 0+.

(4.1.14)

The above relations show that the first condition in Eq. (4.1.13) is fulfilled if and only if A2 −
C2 = 0, while it is necessary to assume that A � 0 in order to satisfy the second condition in the 
same equation; thus, we require

A = |C| � 0 . (4.1.15)

In the sequel we will distinguish three subcases fulfilling the latter constraint.

i) A = C > 0 In this case the second condition in Eq. (4.1.13) holds if and only if B ≥D. 
It should be noticed that for B =D the energy constraint written in the form (4.1.9) entails 
�

(m)∗ = − 2
n2 V A2<0; since this contradicts our general assumption (4.0.4), from now we assume

B > D . (4.1.16)

To go on, we note that the previously mentioned expressions for A, ϕ, w(φ) and �(m) (see 
Eqs. (4.1.5) (4.1.9) (4.1.11) (4.1.12)) imply the following, for t → 0+:

A(t) = log t + log

(
A(B − D)

√
V

2

)
+ O(t) ; (4.1.17)

ϕ(t) = log t + log

(
(B − D)V

3/4
2

2AV
1/4
1

)
+ O(t) ; (4.1.18)

w(φ)(t) = 1 − 8A
√

V

B − D
t + O(t2) ; (4.1.19)

�(m)(t) = 2 (B2 − D2 − 2A2)
√

V

A(B − D)
t + O(t2) . (4.1.20)
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Of course, similar expansions in terms of the cosmic time τ can be obtained simply recalling that 
t = τ/θ (see Eq. (4.1.4)); in particular, from Eqs. (2.2.4)(4.1.17) we obtain

a(τ) =
(

A(B − D)
√

V

2

)1/n

(τ/θ)1/n + O
(
(τ/θ)(1/n)+1

)
for τ/θ → 0+ . (4.1.21)

From Eqs. (4.0.6)(4.1.21), noting that 1/n < 1 for n � 2 we infer the existence of a particle 
horizon (13). Eq. (4.1.20) shows that �(m)(t) → 0, indicating that the scalar field dominates close 
to the Big Bang.

ii) A = −C > 0 This is qualitatively very similar to the previous case. The second condition in 
Eq. (4.1.13) holds only if B≥−D; yet, for B=−D the energy constraint (4.1.9) yields a negative 
matter density �(m)∗ < 0, thus violating our hypothesis (4.0.4). So, we assume

B > −D . (4.1.22)

Then, for t → 0+ we have

A(t) = log t + log

(
A(B + D)

√
V

2

)
+ O(t) ; (4.1.23)

ϕ(t) = − log t − log

(
(B + D)V

3/4
1

2AV
1/4
2

)
+ O(t) ; (4.1.24)

w(φ)(t) = 1 − 8A
√

V

B + D
t + O(t2) ; (4.1.25)

�(m)(t) = 2 (B2 − D2 − 2A2)
√

V

A(B + D)
t + O(t2) . (4.1.26)

Correspondingly, from Eqs. (2.2.4)(4.1.4)(4.1.23) we get

a(τ) =
(

A(B + D)
√

V

2

)1/n

(τ/θ)1/n + O
(
(τ/θ)(1/n)+1

)
for τ/θ → 0+ , (4.1.27)

which allows us to infer that there is a particle horizon. Moreover, Eq. (4.1.26) shows that the 
scalar field dominates at the Big Bang.

iii) A = C = 0 In this setting the second condition in Eq. (4.1.13) holds if and only if

B > |D| � 0 , D ∈ R . (4.1.28)

As a consequence, we have a strictly positive matter density �(m)∗ = (B2 − D2) V/n2 >0 (see 
Eq. (4.1.9)), in agreement with the general condition stated in Eq. (4.0.4).
Regarding the asymptotic behavior of the system near the Big Bang, note that for t → 0+ we 
have

13 Making reference to the comments related to Eq. (4.0.7), let us remark that in the present case the strong energy 
condition is in fact fulfilled as an equality for n = 2 and as a strict inequality for n � 3 (since w = 0 > 2 − 1).
n
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A(t) = 2 log t + log

(
(B2 − D2)V

4

)
+ O(t2) ; (4.1.29)

ϕ(t) = log

(
B − D

B + D

√
V2

V1

)
+ O(t2) ; (4.1.30)

w(φ)(t) = −1 + 8B2D2 V

9 (B4 − D4)
t2 + O(t4) ; (4.1.31)

�(m)(t) = 1 − (B2 + D2)V

B2 − D2 t2 + O(t4) . (4.1.32)

Furthermore, Eqs. (2.2.4)(4.1.4)(4.1.29) entail

a(τ) = eA(τ/θ)/n =
(

(B2 − D2)V

4

)1/n

(τ/θ)2/n + O
(
(τ/θ)(2/n)+2

)
for τ/θ → 0+ .

(4.1.33)

From Eqs. (4.0.6)(4.1.33) we infer that a particle horizon is present if n � 3, and absent if n = 2
(in the latter case the integral in Eq. (4.0.6) diverges logarithmically) (14). Eq. (4.1.31) indicates 
a field equation of state close to that of a cosmological constant (recall Eq. (2.2.29)). On the other 
hand, Eq. (4.1.32) shows that �(m)(t) → 1; thus, differently from the previous cases, here matter 
dominates near the Big Bang.

4.1.2. Far future analysis
First of all, let us remark that the bare solutions written in Eq. (4.1.7) make sense for any 

t ∈ R. However, one should not forget that the second condition in Eq. (4.1.10) puts severe 
restrictions on the maximal admissible domain I ⊂ R for such solutions. In presence of a Big 
Bang at t = 0, the most enticing scenarios are those corresponding to an endless evolution of the 
universe, namely,

I = (0,+∞) . (4.1.34)

In the sequel we restrict the attention to cases where the integration constants A, B, C, D char-
acterizing the solutions (4.1.7) are such that the condition (4.1.34) is verified (15), and proceed 
to investigate the asymptotic behavior of the corresponding cosmological model for t → +∞.
From the explicit expressions for u(t), v(t) written in Eq. (4.1.7) we easily infer the following: 
u(t) = A+B

2 e
√

V t + O
(
e−√

V t
)

for t → +∞; v(t) is an oscillatory motion, with |v(t)| � |C| +
|D| for all t ∈ (0, +∞). Thus, we see a posteriori that the second condition in Eq. (4.1.10) is 
fulfilled in a neighborhood of +∞ if and only if

14 Since we are assuming w = 0, for n = 2 the strong energy condition is only fulfilled as an equality (see Eq. (4.0.7)). 
Due to this, the hypothesis in [13, Eq. (34)] is not satisfied, which explains why the general conclusions of [13, Prop. 1]
do not hold in this case. This suggests that the hypotheses underlying [13, Prop. 1] are somehow optimal.
15 As a matter of fact, there do exist such admissible choices of A, B, C, D. For example, making reference to the cases 
analyzed in the previous subsection 4.1.1, it can be checked by direct inspection that Eq. (4.1.34) certainly holds if

A = C > 0 , B > D > 0 or A = −C > 0 , B > −D > 0 or A = C = 0 , B > |D| > 0 .

In all the cases mentioned above, noting that cosh(z) >| cos(z)| and sinh(z) >| sin(z)| for any z>0, it can be proved via 
explicit computations that u(t) > |v(t)| for all t ∈ (0, ∞).
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A + B > 0 , (4.1.35)

which we assume from now on. With this assumption the solutions (4.1.7) are admissible, at 
least, in neighborhood of infinity and we have the following asymptotics for t → +∞ (recall 
Eqs. (4.1.5) (4.1.9) (4.1.11) (4.1.12)):

A(t) = 2
√

V t + 2 log

(
A + B

4

)
+ O

(
e−2

√
V t

) ; (4.1.36)

ϕ(t) = log

√
V2

V1
+ O

(
e−√

V t
) ; (4.1.37)

w(φ)(t) = −1 + O
(
e−2

√
V t

) ; (4.1.38)

�(m)(t) = 4
(
B2 − A2 − C2 − D2

)
V

(A + B)2 e−2
√

V t + O
(
e−4

√
V t

)
. (4.1.39)

It is straightforward to derive similar expansions in terms of the cosmic time τ , recalling that 
Eq. (4.1.4) gives t = τ/θ . From Eqs. (2.2.4)(4.1.36) we deduce

a(τ) =
(

A + B

4

)2/n

e(2/n)
√

V (τ/θ) + O
(
e−(n−1)(2/n)

√
V (τ/θ)

)
for τ/θ → +∞ .

(4.1.40)

From the above relations we infer, especially, that for large times the scale factor diverges, the 
scalar field behaves as a cosmological constant and becomes the dominant contribution (since 
�(φ) = 1 −�(m) → 1 for t → +∞; see Eq. (4.0.5)). All these features are attained with exponen-
tial speed.

4.1.3. Quantitative analysis of one of the previous cases
Hereafter we reconsider the general model described at the beginning of the present subsection 

4.1 and show how to fix all the (so far unspecified) associated parameters n, θ, �(m)∗ , V1, V2, A, B,

C, D so as to provide a physically plausible scenario.
To this purpose, we restrict the attention to the case of space dimension and spatial curvature 
respectively given by (see Eq. (4.0.1))

n = 3 , k = 0 . (4.1.41)

Furthermore, we require that a Big Bang singularity occurs at t = 0; correspondingly, we assume 
matter to be dominant near the Big Bang, i.e., �(m)(t) → 1 for t → 0+. The analysis of subsection 
4.1.1 (see, especially, case (iii) therein) indicates that the above conditions can be realized only 
if

A = 0 and C = 0 . (4.1.42)

To proceed let us remark that, on account of the gauge invariance ϕ �→ ϕ + const., without any 
loss of generality we can assume that (see Eq. (4.1.3))

V1 = V2 = V > 0 . (4.1.43)

Then, the potential (4.1.2) reduces to

V(ϕ) = 2V coshϕ , (4.1.44)
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and the associated solution (4.1.7) reads (see also Eq. (4.1.28))

u(t) = B sinh
(√

V t
)
, v(t) = D sin

(√
V t

)
with B > |D|� 0 . (4.1.45)

Furthermore, note that the zero-energy constraint (4.1.9) becomes

�(m)∗ = V

9

(
B2 − D2) > 0 . (4.1.46)

Next, let us introduce a reference time t∗ > 0 that we identify with the present epoch; we pre-
scribe⎧⎨

⎩
a(t∗) = 1 ,

ϕ(t∗) = ϕ∗ ,

H(t∗) = 1/θ

(4.1.47)

where θ is the usual time constant (see Eq. (4.1.4)) and ϕ∗ ∈ R is an arbitrary parameter; in the 
sequel we shall discuss as examples a couple of sensible choices of ϕ∗. Expressing a ≡ eA/3, ϕ
and H ≡ Ȧ/(3 θ) (see Eqs. (2.2.4)(2.2.30) and recall that here B ≡ 0) in terms of the Lagrangian 
variables u, v (see Eq. (4.1.5)), the above conditions (4.1.47) read⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u2(t∗) − v2(t∗) = 4 ,

u(t∗) − v(t∗)
u(t∗) + v(t∗)

= eϕ∗ ,

u(t∗) u̇(t∗) − v(t∗) v̇(t∗)
u2(t∗) − v2(t∗)

= 3

2
.

(4.1.48)

By simple algebraic manipulations (recalling the constraint u > |v| � 0), we infer⎧⎪⎨
⎪⎩

u(t∗) = 2 cosh(ϕ∗/2) ,

v(t∗) = −2 sinh(ϕ∗/2) ,

cosh(ϕ∗/2) u̇(t∗) + sinh(ϕ∗/2) v̇(t∗) = 3 .

(4.1.49)

Taking into account the explicit expressions for u(t∗) and v(t∗) (see Eq. (4.1.45)), the first two 
relations in Eq. (4.1.49) can be trivially solved in terms of the two unknown parameters B, D; 
more precisely, introducing the short-hand notation

s∗ := √
V t∗ , (4.1.50)

we get

B = 2 cosh(ϕ∗/2)

sinh(s∗)
, D = − 2 sinh(ϕ∗/2)

sin(s∗)
. (4.1.51)

Substituting the above expressions for B, D in the zero-energy constraint (4.1.46) and solving 
for V , we obtain

V = 9�
(m)∗ sinh2(s∗) sin2(s∗)

4
(

cosh2(ϕ∗/2) sin2(s∗) − sinh2(ϕ∗/2) sinh2(s∗)
) . (4.1.52)

Finally, the above relations (4.1.51) (4.1.52) and the last identity in Eq. (4.1.49) give
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√
cosh2(ϕ∗/2) sin2(s∗) − sinh2(ϕ∗/2) sinh2(s∗)

=
√

�
(m)∗

[
cosh2(ϕ∗/2) cosh(s∗) sin(s∗) − sinh2(ϕ∗/2) sinh(s∗) cos(s∗)

]
(4.1.53)

For assigned values of ϕ∗ and �(m)∗ , one can look for a solution s∗ of the above equation by 
numerical methods (assuming that the said solution exists). In the following we analyze in more 
detail a couple of examples corresponding, respectively, to the choices ϕ∗ = 0 and ϕ∗ = 1/2.

The case ϕ∗ = 0 First of all let us remark that this particular choice of ϕ∗ corresponds to the 
(unique) minimum of the potential (4.1.44). Note that Eq. (4.1.53) reduces to

cosh(s∗) = 1√
�

(m)∗
. (4.1.54)

Assuming �(m)∗ <1, the above equation can be solved analytically, which yields

s∗ = arccosh

(
1√
�

(m)∗

)
. (4.1.55)

Substituting this solution in the expressions (4.1.51)(4.1.52) for B, D and V we obtain

B = 2

√
�

(m)∗
1 − �

(m)∗
, D = 0 , V = 9

4

(
1 − �(m)∗

) ; (4.1.56)

besides, from Eq. (4.1.50) we infer

t∗ = 2

3
√

1 − �
(m)∗

arccosh

(
1√
�

(m)∗

)
. (4.1.57)

On account of the relation D = 0 in Eq. (4.1.56) and of Eqs. (4.1.7)(4.1.42), we have

v(t) = 0 for all t ∈ (0,∞) . (4.1.58)

Recalling as well the expression for ϕ in terms of the Lagrangian coordinates u, v (see 
Eq. (4.1.5)), this implies

ϕ(t) = const. = 0 = ϕ∗ . (4.1.59)

Therefore, making reference to Eqs. (2.2.25)-(2.2.29) and to the related comments, we can say 
that in the present setting the field ϕ plays the role of a cosmological constant. Correspondingly, 
it can be checked by direct computations that (see Eqs. (4.1.11)(4.1.12); cf. also Eq. (2.2.29))

w(φ)(t) = const. = −1 , (4.1.60)

�(m)(t) = 9�
(m)∗

u̇2 = cosh−2
(

3

2

√
1−�

(m)∗ t

)
. (4.1.61)

To say more, notice that the previous relations (4.1.55)-(4.1.57) allow to express each of the 
parameters s∗, B, D, V, t∗ in terms of �(m)∗ ; this is the matter density at present time t = t∗ (see 
Eq. (2.2.34)), and choosing for the latter the accepted value (see, e.g., [38, p. 128], [31])

�(m)∗ = 0.308 , (4.1.62)

the said relations give
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s∗ = 1.194 ... , B = 1.334 ... , D = 0 , V = 1.557 , t∗ = 0.957 ... .

(4.1.63)

Notably, setting (see, e.g., [38, p. 128], [31])

H(t∗) ≡ H∗ = 67.89
km

s · Mpc
� 2.20017 × 10−18 s−1 (4.1.64)

one finds that the age of the universe in the cosmological model under analysis is

τ∗ := θ t∗ = t∗
H∗

� 4.34975 × 1017s � 13.793 × 109 years , (4.1.65)

in agreement with the accepted value for this quantity (cf., e.g., [38, p. 129]).

The case ϕ∗ = 1/2 In this case, once we have fixed �(m)∗ = 0.308 as in Eq. (4.1.62), solving 
Eq. (4.1.53) for s∗ yields

s∗ = 1.09829 ... . (4.1.66)

Substituting the above value in the explicit expressions (4.1.51)(4.1.52) we obtain

B = 1.54775 ... , D = −0.56739 ... , V = 1.33682 ... , (4.1.67)

and from Eq. (4.1.50) it follows that

t∗ = 0.949905 ... . (4.1.68)

Fixing H∗ as in Eq. (4.1.64), the latter value for t∗ corresponds to an age of the universe of about

τ∗ := θ t∗ = t∗
H∗

� 4.31743 × 1017s � 13.6905 × 109 years . (4.1.69)

Further considerations on the previous cases with ϕ∗ = 0 and ϕ∗ = 1/2 Figs. 1 and 2 give the 
plot of a(τ) as a function of the dimensionless ratio τ/θ on two different intervals (namely, for 
τ/θ ∈ (0, 1) and τ/θ ∈ (0, 10)), in the two cases with ϕ∗ = 0 and ϕ∗ = 1/2 analyzed previously. 
By close inspection of these figures it appears that after the Big Bang at τ = 0 (a(τ) → 0+
for τ/θ → 0+) the universe experiences an initial phase of decelerated expansion (see Fig. 1), 
followed by an endless accelerated expansion (see Fig. 2).
Fig. 3 gives plots of the (rescaled) scalar field ϕ(τ) for τ/θ ∈ (0, 10) in the two cases with ϕ∗ = 0
and ϕ∗ = 1/2. Let us recall that for ϕ∗ = 0 we get ϕ = const. ≡ 0 by purely analytic means (see 
Eq. (4.1.59)). On the other hand when ϕ∗ = 1/2 we have, in particular, ϕ(τ) → log

(
B−D
B+D

) =
0.76896 ... for τ/θ → 0+ and ϕ → 0 for τ/θ → ∞.
Fig. 4 gives plots of the equation of state coefficient w(φ)(τ ) for the field (see, especially, 
Eq. (4.1.11)) for τ/θ ∈ (0, 10) (with ϕ∗ = 0 and ϕ∗ = 1/2). We already mentioned that w(φ) =
const. ≡ −1 when ϕ∗ = 0 (see Eq. (4.1.60)). In the case with ϕ∗ = 1/2, we have the following 
features: w(φ) → −1 for τ/θ → 0+; w(φ)(τ∗) = − 0.93632 ... at the present cosmic time τ∗ given 
in Eq. (4.1.69); w(φ) → −1 for τ/θ → ∞. So, in both the previous limits the scalar field behaves 
like a cosmological constant (see the discussion after Eq. (2.2.12)).
Figs. 5 and 6 give plots of the matter density parameter �(m)(τ ) (see Eq. (4.1.12)), respectively 
for τ/θ ∈ (0, 1) and τ/θ ∈ (0, 10) (with ϕ∗ = 0 and ϕ∗ = 1/2). From these figures we infer that 
the universe is initially filled almost exclusively with matter (�(m)(τ ) → 1−, �(φ)(τ ) → 0+ for 
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Fig. 1. a(τ) as a function of τ/θ , with ϕ∗ = 0 (in red) and ϕ∗ = 1/2 (in blue). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 2. a(τ) as a function of τ/θ , with ϕ∗= 0 (in red) and ϕ∗= 1/2 (in blue).

Fig. 3. ϕ(τ) as a function of τ/θ , with ϕ∗= 0 (in red) and ϕ∗= 1/2 (in blue).

τ/θ → 0+). Afterwards, matter continues to dominate over the scalar field (which is supposed to 
model dark energy) until the cosmic time τ̄ implicitly defined by the equality

�(m)
(
τ̄
) = �(φ)

(
τ̄
) = 1/2 ; (4.1.70)
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Fig. 4. w(φ)(τ ) as a function of τ/θ , with ϕ∗= 0 (in red) and ϕ∗= 1/2 (in blue).

Fig. 5. �(m)(τ ) as a function of τ/θ , with ϕ∗= 0 (in red) and ϕ∗= 1/2 (in blue).

Fig. 6. �(m)(τ ) as a function of τ/θ , with ϕ∗= 0 (in red) and ϕ∗= 1/2 (in blue).

more precisely, from Eqs. (4.1.4)(4.1.47)(4.1.61) we deduce

τ̄ = 2 arccosh
√

2√
(m)

� 10.18 × 109 years for ϕ∗ = 0 , (4.1.71)

3H∗ 1 − �∗
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while by numerical methods from Eqs. (4.1.4)(4.1.47)(4.1.12) we get

τ̄ � 9.90505 × 109 years for ϕ∗ = 1/2 . (4.1.72)

Of course, since �(m)∗ = 0.308, at present time we have �(φ)(τ∗) = 1 − �(m)(τ∗) = 1 − �
(m)∗ =

0.692 (see Eq. (4.0.5)), so the scalar field (namely, dark energy) is the dominant contribution at 
the present time. In the future, the field continues to be dominant and eventually fills the whole 
universe (�(m)(τ ) → 0+, �(φ)(τ ) → 1− for τ/θ → ∞).

4.2. Solutions for class 2 potentials with a matter fluid

In this subsection we analyze cosmological models corresponding to the integrable case (i) of 
subsection 3.2 for potentials of class 2. So, spacetime is (n + 1)-dimensional, it is spatially flat 
(k = 0), the matter fluid has an arbitrary equation of state parameter w, and the scalar field has 
self-interaction potential

V(ϕ) = V1 e2w ϕ + V2 e(1+w)ϕ
(
V1,V2 ∈ R

)
. (4.2.1)

The cited case (i) of subsection 3.2 prescribes w 	= ±1; here we make the more restrictive as-
sumption

−1 < w < 1 , (4.2.2)

which generates two benefits. First of all, this restriction ensures that all the hypergeometric 
functions appearing in the sequel are non-singular (16); secondly, it simplifies the qualitative 
discussion of the solutions.
Making reference to the analysis of subsection 3.2, we fix the gauge function B(A, ϕ) as in 
Eq. (3.2.2) and introduce the pair of Lagrangian coordinates x, y related to A, ϕ via Eq. (3.2.3); 
let us remark that these coordinates must fulfill the condition

x, y > 0 . (4.2.3)

With the above positions the Lagrangian function has the harmonic triangular structure (3.0.15), 
and the related Lagrange equations (3.2.8) become

ẍ − sgn (V1) ω2 x = 0 , (4.2.4)

ÿ − sgn (V1) ω2 y = (1 − w)V2 x
1−w
1+w − w(1 − w)n2 �

(m)∗
2

x− 1+3w
1+w , (4.2.5)

where for notational convenience we have put

ω :=
√

(1 − w2) |V1|
2

. (4.2.6)

The corresponding solutions can be determined explicitly, treating separately the cases V1>0, 
V1 = 0 and V1 <0. Before providing a detailed analysis of these cases, let us point out that 
Eqs. (2.2.11) (2.2.12) (2.2.32) (3.2.2) (3.2.3) (4.2.1) yield the following expression for the coef-
ficient w(φ) and for the matter density parameter �(m):

16 Recall that 2F1(a, b, c; z) is singular if c = 0, −1, −2, .... The values of c considered in this subsection depend on 
w, and our assumption (4.2.2) ensures that c 	= 0, −1, −2, ... .
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w(φ)= e2w ϕ ϕ̇2−2V(ϕ)

e2w ϕ ϕ̇2+2V(ϕ)
=

(
(1−w) ẋ y−(1+w)x ẏ

)2−2 (1−w2)2
(
V1 x2y2+V2 x

3+w
1+w y

)
(
(1−w) ẋ y−(1+w)x ẏ

)2+2 (1−w2)2
(
V1 x2y2+V2 x

3+w
1+w y

) ,

(4.2.7)

�(m) = n2 �
(m)∗ e−2w ϕ−(1+w)A

Ȧ2
= (1−w2)2 n2 �

(m)∗ x
1−w
1+w y(

(1−w) ẋ y + (1+w)x ẏ
)2 . (4.2.8)

In the forthcoming paragraphs we present analytic expressions for the solutions x(t), y(t) of 
the Lagrange equations (4.2.4)(4.2.5). Afterwards, in subsections 4.2.1, 4.2.2 we investigate the 
presence of a Big Bang and the long time behavior in an example, to be specified below (see 
Eq. (4.2.41)).

i) V1 > 0 In this case Eqs. (4.2.4)(4.2.5) read

ẍ − ω2 x = 0 , (4.2.9)

ÿ − ω2 y = (1 − w)V2 x
1−w
1+w − w(1 − w)n2 �

(m)∗
2

x− 1+3w
1+w . (4.2.10)

After possibly a time translation t → t + const. and a time reflection t → −t , any solution of 
Eqs. (4.2.9)(4.2.10) compatible with Eq. (4.2.3) can be written in one of the following forms (see 
Appendix B for the derivation of the following expressions):

x(t) = A sinh(ω t) (A > 0) , (4.2.11)

y(t) = C cosh(ω t) + D sinh(ω t)

+ V2

V1
A

1−w
1+w sinh

3+w
1+w (ω t)

[
1 − 2

3 + w
cosh(ω t) 2F1

(
1

2
,

3 + w

2 + 2w
,

5 + 3w

2 + 2w
;− sinh2(ω t)

)]

+ n2 �
(m)∗

2V1
A− 1+3w

1+w sinh
1−w
1+w (ω t)

[
1

+ 2w

1 − w
cosh(ω t) 2F1

(
1

2
,

1 − w

2 + 2w
,

3 + w

2 + 2w
;− sinh2(ω t)

)]
;

x(t) = A cosh(ω t) (A > 0) , (4.2.12)

y(t) = C cosh(ω t) + D sinh(ω t)

+ V2

V1
A

1−w
1+w

[
cosh(ω t)

(
1 − cosh

2
1+w (ω t)

)

+ 2

1+w
sinh2(ω t) 2F1

(
1

2
,− 1 − w

2 + 2w
,

3

2
;− sinh2(ω t)

)]

+ n2 �
(m)∗

2V1
A− 1+3w

1+w

[
cosh(ω t)

(
1 − cosh− 2w

1+w (ω t)
)

− 2w

1+w
sinh2(ω t) 2F1

(
1

2
,

1 + 3w

2 + 2w
,

3

2
;− sinh2(ω t)

)]
;

x(t) = Aeω t (A > 0) , (4.2.13)

y(t) = C cosh(ω t) + D sinh(ωt)

+ V2
A

1−w
1+w

1 + w
[

cosh(ω t) + 1 − w
sinh(ω t) − e

1−w
1+w

ω t

]

V1 2w 1 + w
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+ n2 �
(m)∗

4V1
A− 1+3w

1+w
1 + w

1 + 2w

[
cosh(ω t) − 1 + 3w

1 + w
sinh(ω t) − e− 1+3w

1+w
ω t

]
.

In the above Eqs. (4.2.11)(4.2.12)(4.2.13), ω is defined as in Eq. (4.2.6), A, C, D are real inte-
gration constants, 2F1 is the ordinary, Gaussian hypergeometric function and it is assumed

t ∈ I , (4.2.14)

where I is a maximal interval such that

I ⊂ (0,+∞) in the case (4.2.11) , I ⊂ R in the cases (4.2.12)(4.2.13) ,

and y(t) > 0 for all t ∈ I .
(4.2.15)

(Note that the assumption A > 0 and the above conditions on I grant x(t) > 0.)
Let us also remark that Eq. (4.2.13) must be intended in a limit sense for w = 0 and w = −1/2; 
more precisely, we understand that[

1 + w

2w

(
cosh(ω t) + 1 − w

1 + w
sinh(ω t) − e

1−w
1+w

ω t

)]
w =0

:=

lim
w→0

[
1 + w

2w

(
cosh(ω t) + 1 − w

1 + w
sinh(ω t) − e

1−w
1+w

ω t

)]
= ω t eω t − sinh(ω t) , (4.2.16)

[
1 + w

1 + 2w

(
cosh(ω t) − 1 + 3w

1 + w
sinh(ω t) − e− 1+3w

1+w
ω t

)]
w =−1/2

:=

lim
w→−1/2

[
1 + w

1 + 2w

(
cosh(ω t) − 1 + 3w

1 + w
sinh(ω t) − e− 1+3w

1+w
ω t

)]
= 2

(
ω t eω t − sinh(ω t)

)
(4.2.17)

To go on, let us recall the expression (3.2.7) for the energy E ; from here and from Eqs. (4.2.11)
(4.2.12) (4.2.13) we obtain, respectively, (17)

E = −V1 AD , (4.2.18)

E = A

(
n2 �

(m)∗
2

A− 1+3w
1+w + V2 A

1−w
1+w + V1 C

)
, (4.2.19)

E = A

(
n2 �

(m)∗
2

A− 1+3w
1+w + V2 A

1−w
1+w + V1 (C − D)

)
; (4.2.20)

so, to fulfill the energy constraint E = 0 we must put in Eqs. (4.2.11) (4.2.12) (4.2.13), respec-
tively,

D = 0 , (4.2.21)

C = − V2

V1
A

1−w
1+w − n2 �

(m)∗
2V1

A− 1+3w
1+w , (4.2.22)

C = D − V2

V1
A

1−w
1+w − n2 �

(m)∗
2V1

A− 1+3w
1+w . (4.2.23)

17 For this computation, it is convenient to keep in mind that E is a constant of motion. Therefore, it suffices to compute 
E ≡ E(x(t), ̇x(t), y(t), ̇y(t)) for any given t or in a suitable limit, e.g. for t → 0+ . The facts mentioned in the present 
footnote apply to all the subsequent energy computations in this work, but they will never be repeated.



58 D. Fermi et al. / Nuclear Physics B 957 (2020) 115095
ii) V1 = 0 Eqs. (4.2.4)(4.2.5) reduce to

ẍ = 0 , (4.2.24)

ÿ = (1 − w)V2 x
1−w
1+w − w(1 − w)n2 �

(m)∗
2

x− 1+3w
1+w . (4.2.25)

After a time translation t → t + const. and possibly a time reflection t → −t , any solution of 
Eqs. (4.2.24) (4.2.25) compatible with Eq. (4.2.3) can be written in one of the following forms 
(see Appendix B for more details):

x(t) = At (A > 0) , (4.2.26)

y(t) = C + D t + V2 (1 + w)2 (1 − w)

2 (3 + w)
A

1−w
1+w t

3+w
1+w + (1 + w)2 n2 �

(m)∗
4

A− 1+3w
1+w t

1−w
1+w ;

x(t) = A (A > 0) , (4.2.27)

y(t) = C + D t + t2

2

(
V2 (1 − w)A

1−w
1+w − w(1 − w)n2 �

(m)∗
2

A− 1+3w
1+w

)
.

In both Eqs. (4.2.26)(4.2.27), ω is defined as in Eq. (4.2.6), A, C, D are real integration constants 
and it is assumed

t ∈ I , (4.2.28)

where I is a maximal interval such that

I ⊂ (0,+∞) in the case (4.2.26) , I ⊂ R in the case (4.2.27) ,

and y(t) > 0 for all t ∈ I .
(4.2.29)

(Note that the assumption A > 0 and the above conditions on I grant x(t) > 0.)
Recalling once more Eq. (3.2.7) for the energy E , from Eqs. (4.2.26)(4.2.27) we obtain, respec-
tively,

E = − 2

1 − w2 AD ; (4.2.30)

E = A− 2w
1+w

(
V2 A2 + n2 �

(m)∗
2

)
. (4.2.31)

Thus, to fulfill the zero-energy constraint E = 0 we must require, respectively,

D = 0 ; (4.2.32)

V2 < 0 and A =
√

n2 �
(m)∗

2 |V2| . (4.2.33)

(Let us recall that throughout this subsection we are assuming �(m)∗ > 0.)

iii) V1 < 0 In this case, Eqs. (4.2.4) (4.2.5) become

ẍ + ω2x = 0 , (4.2.34)

ÿ + ω2y = (1 − w)V2 x
1−w
1+w − w(1 − w)n2 �

(m)∗
2

x− 1+3w
1+w . (4.2.35)
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After a time translation t → t + const., any solution of Eqs. (4.2.34)(4.2.35) compatible with 
Eq. (4.2.3) can be written as follows (see Appendix B):

x(t) = A sin(ω t) (A > 0) , (4.2.36)

y(t) = C cos(ω t) + D sin(ω t)

+ V2

V1
A

1−w
1+w sin

3+w
1+w (ω t)

[
1 − 2 cos(ω t)

3 + w
2F1

(
1

2
,

3 + w

2 + 2w
,

5 + 3w

2 + 2w
; sin2(ω t)

)]

− n2 �
(m)∗

2V1
A− 1+3w

1+w sin
1−w
1+w (ω t)

[
1 + 2w cos(ω t)

1 − w
2F1

(
1

2
,

1 − w

2 + 2w
,

3 + w

2 + 2w
; sin2(ω t)

)]
.

Also in this case, ω is defined as in Eq. (4.2.6), A, C, D are real integration constants, 2F1 denotes 
the Gaussian hypergeometric function and it is assumed

t ∈ I , (4.2.37)

where I is a maximal interval such that

I ⊂ (0,π/ω) and y(t) > 0 for all t ∈ I . (4.2.38)

(Note that the assumption A > 0 and the first condition on I grant x(t) > 0.)
To proceed, let us mention that Eqs. (3.2.7) (4.2.36) imply

E = V1 AD ; (4.2.39)

therefore, to fulfill the energy constraint E = 0 we must require

D = 0 . (4.2.40)

4.2.1. Big Bang analysis
Recalling the general assumptions �(m)∗ > 0 and −1 < w < 1 (see Eqs. (4.0.4)(4.2.2)), in the 

present subsection we proceed to investigate the presence of an initial Big Bang singularity and 
the asymptotic behavior close to it for one of the previous solutions, taken as an example. More 
precisely, we assume

V1 > 0 , (4.2.41)

we restrict the attention to the corresponding solution described in Eqs. (4.2.11)(4.2.21) and 
proceed to examine the circumstances in which a Big Bang occurs at t = 0 (cf. Eq. (4.0.2)). To 
this purpose, let us first remark that the expressions for x(t) and y(t) in Eq. (4.2.11) and the 
constraint in Eq. (4.2.21) yield the following asymptotics, for t → 0+ (18):

x(t) = Aω t + 1

6
A(ω t)3 + O(t5) , (4.2.42)

y(t) = C + 1

2
C (ω t)2 + (1 + w)n2 �

(m)∗
2 (1 − w)V1

A− 1+3w
1+w (ω t)

1−w
1+w + O

(
t
min

{
4, 3+w

1+w

})
. (4.2.43)

While the hypothesis A > 0 in Eq. (4.2.11) grants that x(t) >0 for all t ∈ (0, ∞), the above 
expansion for y(t) makes evident that, under the assumptions (4.2.41), the analogous condition 
y(t) >0 (cf. Eq. (4.2.3)) can be fulfilled in a right neighborhood of t = 0 if and only if

18 To derive the expansions (4.2.42)(4.2.43) it is useful to recall that the Gauss series for 2F1 (see, e.g., [27, Eq. 15.2.1]) 
yields 2F1(a, b, c; z) = 1 + O(z) for z→0 and any a, b∈R, c∈R\{0, −1, −2, ...}.
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C � 0 . (4.2.44)

Hereafter we analyze separately the cases C > 0 and C = 0.

i) C > 0 From Eqs. (3.2.3)(4.2.42)(4.2.43) we infer, for t → 0+,

A(t) = 1

1+w
log t + log

(
(Aω)

1
1+w C

1
1−w

)
+ O

(
tmin{2, 1−w

1+w
}) , (4.2.45)

ϕ(t) = 1

1+w
log t + log

(
(Aω)

1
1+w C− 1

1−w

)
+ O

(
tmin{2, 1−w

1+w
}) . (4.2.46)

In view of Eqs. (2.2.4)(3.2.2) and of the above expansions, we further obtain

a(t) = (Aω)
1

n(1+w) C
1

n(1−w) t
1

n(1+w) + O

(
t
min

{
2n(1+w)+1

n(1+w)
,
n(1−w)+1
n(1+w)

})
, (4.2.47)

eB(t) = (Aω)−
w

1+w C
w

1−w t−
w

1+w + O
(
tmin{ 2+w

1+w
, 1−2w

1+w
}) . (4.2.48)

Recalling again that −1 <w<1, Eq. (4.2.47) shows that a(t) → 0 for t → 0+, while Eq. (4.2.48)
proves that eB(t) is integrable in a right neighborhood of t = 0. Therefore, making reference to 
the arguments related to Eq. (2.2.19), we can properly speak of a Big Bang at t = 0. In this 
connection, let us further remark that Eqs. (4.2.45) and (4.2.48) imply, for t → 0+,

eB(t)−A(t)/n = (Aω)
− 1+nw

n(1+w) C
− 1−nw

n(1−w) t
− 1+nw

n(1+w) + O

(
t
min

{
n(2+w)−1
n(1+w)

,
n(1−2w)−1

n(1+w)

})
. (4.2.49)

On account of Eq. (2.2.20) and of the fact that 1+nw
n(1+w)

< 1 (in our case with n ≥ 2 and −1 < w <

1), the latter relation ensures the presence of a particle horizon.
Next, let us note that Eqs. (4.2.7)(4.2.8) and the asymptotic expansions in Eqs. (4.2.42)(4.2.43)
(see also Eq. (4.2.6)) give

w(φ)(t) = 1 − 8

(
1+w

1−w

)
(ω t)2 + O

(
t
min

{
4, 3+w

1+w

})
, (4.2.50)

�(m)(t) = (1+w)2 n2 �
(m)∗

C (Aω)
1+3w
1+w

t
1−w
1+w + O

(
t
min

{
3+w
1+w

,
2(1−w)

1+w

})
. (4.2.51)

Eq. (4.2.50) suggests that the scalar field behaves as stiff matter close to the Big Bang. On the 
other hand, Eq. (4.2.51) indicates that �(m)(t) → 0 for t → 0+; together with Eq. (4.0.5), this 
implies �(φ)(t) → 1 for t → 0+, thus showing that the scalar field is dominant at the Big Bang.
Regarding the cosmic time τ ≡ τ(t), let us notice that Eqs. (2.2.19)(4.2.48) imply

τ(t)/θ = (1+w) C
w

1−w

(Aω)
w

1+w

t
1

1+w + O
(
tmin{ 3+2w

1+w
, 2−w

1+w
}) for t → 0+ , (4.2.52)

which can be locally inverted to give

t (τ ) = (Aω)w

(1+w)1+w C
w(1+w)

1−w

(τ/θ)1+w + O
(
(τ/θ)min{2,3(1+w)}) for τ/θ → 0+.

(4.2.53)

Using Eq. (4.2.53) for t = t (τ ), the expansions (4.2.47)-(4.2.51) can be reformulated in terms of 
the cosmic time τ ; for example, Eq. (4.2.47) yields
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a(τ) =
(

CAω

1+w

)1/n

(τ/θ)1/n + O

(
(τ/θ)

min
{

2n(1+w)+1
n

,
n(1−w)+1

n

})
for τ/θ → 0+.

(4.2.54)

ii) C = 0 First notice that Eqs. (3.2.3)(4.2.42)(4.2.43) imply, for t → 0+,

A(t) = 2

1 + w
log t + 1

1 − w
log

(
(1+w)2 n2 �

(m)∗
4 (Aω)

4w
1+w

)
+ O(t2) , (4.2.55)

ϕ(t) = − 1

1 − w
log

(
(1+w)2 n2 �

(m)∗
4 (Aω)2

)
+ O(t2) . (4.2.56)

On account of Eqs. (2.2.4)(3.2.2), the above expansions allow us to infer that

a(t) =
(

n2 �
(m)∗ (1+w)2

4

) 1
n(1−w)

(Aω)
− 4w

n(1−w2) t
2

n(1+w) + O

(
t

2+2n(1+w)
n(1+w)

)
, (4.2.57)

eB(t) =
(

(1+w)2 n2 �
(m)∗

4 (Aω)2

) w
1−w

+ O(t2) . (4.2.58)

Similarly to the case with C>0 discussed in the previous paragraph, the above relations show 
that a(t) → 0 for t → 0+ and even imply the integrability of eB(t) in a right neighborhood of 
t = 0 (for −1 < w < 1); so, we have a Big Bang at t = 0. To say more, Eqs. (4.2.55)(4.2.58)
give, for t → 0+,

eB(t)−A(t)/n=
(

(1+w)2 n2 �
(m)∗

4

) nw−1
n(1−w)

(Aω)
2w(2−n(1+w))

n(1−w2) t
− 2

n(1+w) + O

(
t

2n(1+w)−2
n(1+w)

)
,

(4.2.59)

which, together with Eq. (2.2.20), indicates that a particle horizon occurs whenever 2
n(1+w)

< 1. 
In our case with n ≥ 2 and −1 < w < 1, this is equivalent to w > (2/n) − 1 (cf. Eq. (4.0.7) and 
the related comments); especially, let us point out that the latter condition is fulfilled in the case 
of radiation where w = 1/n.
Concerning the coefficient in the field equation of state and the matter density parameter, from 
Eqs. (4.2.7)(4.2.8)(4.2.42)(4.2.43) we obtain

w(φ)(t) = −1 +
2
(

1+w
3+w

)2
(

2w
1−w

+ 2V2 A2

n2 �
(m)∗

)2

(
1+w
1−w

+ 2V2 A2

n2 �
(m)∗

) (ω t)2 + O(t4) , (4.2.60)

�(m)(t) = 1 −
(

1+w

1−w
+ 2V2 A2

n2 �
(m)∗

)
(ω t)2 + O(t4) . (4.2.61)

The above relations indicate, respectively, that close to the Big Bang the scalar field ϕ behaves 
as a cosmological constant whereas the dominant contribution comes from the matter fluid.
To conclude, from Eqs. (2.2.19) and (4.2.58) we readily infer

τ(t)/θ =
(

(1+w)2 n2 �
(m)∗

4 (Aω)2

) w
1−w

t + O(t2) for t → 0+ , (4.2.62)
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which entails, by inversion,

t (τ ) =
(

(1+w)2 n2 �
(m)∗

4 (Aω)2

)− w
1−w

(τ/θ) + O
(
(τ/θ)2) for τ/θ → 0+ . (4.2.63)

Of course, the previous expansions (4.2.57)-(4.2.61) can be rephrased in terms of the cosmic 
time τ , using Eq. (4.2.63); for example, we have

a(τ) =
(

(1+w)2 n2 �
(m)∗

4

) 1
n(1+w)

(τ/θ)
2

n(1+w) + O

(
(τ/θ)

2+n(1+w)
n(1+w)

)
for τ/θ → 0+.

(4.2.64)

4.2.2. Far future analysis
The qualitative behavior on large time scales of the model under analysis depends sensibly on 

the choice of the parameters which characterize the solutions x(t), y(t) of the Lagrange equations 
(4.2.4)(4.2.5). In the sequel we account (at least partially) for this rather predictable fact, referring 
once more to the exemplary case whose Big Bang phenomenology was examined in the previous 
paragraph.
Correspondingly, we assume again that �

(m)∗ > 0, −1 < w < 1 and V1 > 0 (see
Eqs. (4.0.4)(4.2.2)(4.2.41)), and consider the solution given in Eqs. (4.2.11)(4.2.21) with the 
condition C � 0 (see Eq. (4.2.44)), which grants the occurrence of a Big Bang t = 0.

A discussion of the maximal domain Let us recall that the domain of definition for the said 
solutions x(t), y(t) is a maximal interval I ⊂ (0, +∞) such that y(t) > 0 for all t ∈ I (see 
Eq. (4.2.15)). In general, the maximal interval where the expression for y(t) in Eq. (4.2.11) gives 
y(t) > 0 cannot be determined by purely analytical means and one must perform a numerical 
investigation. On the other hand, let us notice that for t → +∞ we have (19)

y(t) = (4.2.65)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
C

2
+ A

1−w
1+w

4
√

π
�

(
1+2w

1+w

)
�

(
1−w

2(1+w)

)(
1−w

w
V2 + n2 �

(m)∗
A2

)]
eω t

+O
(
e

1−w
1+w

ω t
) for 0<w<1 ,

(1−w2)AV2

2ω2 t eω t + O(eω t ) for w = 0 ,

− (1−w)(1+w)2 A
1−w
1+w V2

4w ω2 e
1−w
1+w

ω t + O
(
e( 1−w

1+w
−1)ω t

)
for −1<w<0 .

19 To derive the expansions in Eq. (4.2.65) one should recall that for z → −∞ (see, e.g., [27, Eqs. (15.2.2)(15.8.2)])

2F1(a, b, c; z) = �(c)�(b − a)�(1 − (b − a))

�(b)�(c − a)�(a − b + 1)
(−z)−a − �(c)�(b − a)�(1 − (b − a))

�(a)�(c − b)�(b − a + 1)
(−z)−b

+ O
(
(−z)−min{a+1,b+1}) .
.
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Keeping in mind the previous assumptions on the parameters, the above asymptotics show that 
the inequality y(t) > 0 holds only if (20)⎧⎪⎨

⎪⎩
V2 > − w

1−w

[
2
√

π

�
( 1+2w

1+w

)
�
( 1−w

2(1+w)

) C

A
1−w
1+w

+ n2 �
(m)∗

A2

]
for 0 < w < 1 ,

V2 > 0 for −1 < w ≤ 0 .

(4.2.66)

Recalling that C � 0, we see that the above condition on V2 for 0 <w<1 is certainly fulfilled if

V2 > 0 . (4.2.67)

Whenever the conditions in Eq. (4.2.66) are violated, y(t) eventually becomes negative; since 
y(t) is positive close to the Big Bang (for t → 0+), it follows that y(t) must vanish at some finite 
time, namely,

∃ t∗ ∈ (0,+∞) such that y(t∗) = 0 . (4.2.68)

In this case the maximal admissible interval I is a subset of (0, t∗). Besides, given that x(t) =
A sinh(ω t) is strictly positive and finite for all t ∈ (0, t∗), from Eqs. (2.2.4)(3.2.3) we see that

a(t) = x(t)
1

n(1+w) y(t)
1

n(1−w) → 0 for t → t−∗ . (4.2.69)

The above relation suggests that a Big Crunch could occur at t = t∗; in this regard, it should 
be recalled that the very definition of Big Crunch also requires eB(t) to be integrable in a left 
neighborhood of t∗. Since Eqs. (3.2.2)(3.2.3) give

eB(t) = e−w ϕ(t) = x(t)−
w

1−w y(t)
w

1−w , (4.2.70)

it follows that eB(t) is certainly integrable for t → t−∗ if 0 �w < 1, while a finer analysis is needed 
to ascertain the integrability of eB(t) when −1 <w<0.
On the other side, let us stress that the fulfillment of the conditions in Eq. (4.2.66) is certainly 
not sufficient to ensure y(t) > 0 for all t ∈ (0, +∞). Notwithstanding, in the upcoming subsec-
tion 4.2.3 we are going to show that this condition is actually attained at least for a specific choice 
of the parameters; for such a choice, the maximal admissible domain is in fact

I = (0,+∞) . (4.2.71)

By continuity arguments, the same happens when the parameters are close to the above men-
tioned choice.

Asymptotic expansions Assuming Eq. (4.2.71) and restricting the attention to the case

0 < w < 1 , (4.2.72)

of interest for the subsequent applications, for t → +∞ we obtain

A(t) = 2

1−w2 ω t (4.2.73)

+ 1

1−w
log

[
A

1−w
1+w

2
2

1+w

(
C + A

1−w
1+w

2
√

π
�

(
1+2w

1+w

)
�

(
1−w

2(1+w)

)(
1−w

w
V2 + n2 �

(m)∗
A2

))]

20 In this connection, note that � 
(

1+2w
)

� 
(

1−w
)

> 0 for all 0 < w < 1.
1+w 2(1+w)
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+ O
(
e− 2w

1+w
ω t

)
,

ϕ(t) = − 2w

1−w2 ω t (4.2.74)

− 1

1−w
log

[
A− 1−w

1+w

2
2w

1+w

(
C + A

1−w
1+w

2
√

π
�

(
1+2w

1+w

)
�

(
1−w

2(1+w)

)(
1−w

w
V2 + n2 �

(m)∗
A2

))]

+ O
(
e− 2w

1+w
ω t

)
,

w(φ)(t) = −1 + 2w2 + O
(
e− 2w

1+w
ω t

)
(4.2.75)

�(m)(t) = (4.2.76)

2 (1−w2)2 n2 �
(m)∗ (A/2)

1−w
1+w

(Aω)2

(
C+ A

1−w
1+w

2
√

π
�
(

1+2w
1+w

)
�
(

1−w
2(1+w)

)(
1−w
w

V2+ n2 �
(m)∗

A2

)) e− 2(1+2w)
1+w

ω t +O
(
e− 2(1+3w)

1+w
ω t
)

.

In particular, note that the field ϕ is the dominant contribution for t → +∞ (�(φ) = 1 −�(m) → 1
for t → ∞; see Eq. (4.0.5)).
Also in this case, the previous asymptotic expansions can be rephrased using of the cosmic time 
τ ; to this purpose, one should first notice that Eqs. (2.2.2)(3.2.2)(4.2.74) entail, for t → +∞, 
(21)

τ(t)/θ = (4.2.77)

1−w2

2
1+w2

1−w2 w2A
w

1+w ω

(
C+ A

1−w
1+w

2
√

π
�

(
1+2w

1+w

)
�

(
1−w

2(1+w)

)(
1−w

w
V2+ n2�

(m)∗
A2

)) w
1−w

e
2w2

1−w2 ω t

+O

(
(eω t )

max
{

0,
2w(2w−1)

1−w2

})

As an example, let us mention that by inverting the above relation, from Eqs. (2.2.4)(4.2.73) we 
get the following, for τ/θ → +∞:

21 Let us give some hints about the derivation of the asymptotic expansion (4.2.77), understanding that the maximal 
domain of definition of the solution is I = (0, +∞) as in Eq. (4.2.71). Firstly notice that Eqs. (2.2.2)(3.2.2) imply, for 
any fixed t∗>0 and for all t >0,

τ(t)/θ = τ(t∗)/θ +
t∫

t∗
dt ′ e−wϕ(t ′) .

Then, Eq. (4.2.77) can be derived substituting the expansion (4.2.74) for ϕ(t ′) in the above identity and integrat-

ing each term separately; in this connection, it is worth noting that τ(t∗)/θ = O(1) and 
∫ t
t∗dt ′ O

(
e

2w(2w−1)

1−w2 ω t ′) =

O
(
e

2w(2w−1)

1−w2 ω t)+ O(1) ≡ O
(
(eω t )

max
{

0,
2w(2w−1)

1−w2

})
for t → +∞.
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a(τ) = (4.2.78)⎛
⎜⎜⎝ A

(
2w2 ω
1−w2

)1/w

C+ A
1−w
1+w

2
√

π
�
(

1+2w
1+w

)
�
(

1−w
2(1+w)

)(
1−w
w

V2+ n2 �
(m)∗

A2

)
⎞
⎟⎟⎠

1
nw

(τ/θ)
1

nw2

+O

(
(τ/θ)

max
{

1−nw2

nw2 ,
1−nw(1−w)

nw2

})
.

4.2.3. Qualitative analysis of one of the previous cases. A model for inflation
We now proceed to examine in more detail a particular case of the cosmological model an-

alyzed before in the present subsection 4.2, selecting specific values for the associated free 
parameters. Let us anticipate that the rationale behind the said choice of parameters is to re-
alize an inflationary scenario, in a very early stage of the universe. This scenario would allow, 
among else, to resolve the flatness, horizon and monopole problems. The above considerations 
and the arguments to be presented in the sequel are largely inspired by the model portrayed in 
[35, Sec. 11.4], where inflation is triggered by a true cosmological constant; on the contrary, 
here we plan to mimic this cosmological constant contribution using the scalar field ϕ with a 
self-interaction potential of the form (4.2.1).
To begin with, let us fix the space dimension and the spatial curvature as (see Eq. (4.0.1))

n = 3 , k = 0 . (4.2.79)

We further suppose that the ordinary matter content of the universe can be described by means 
of a perfect fluid of radiation type, i.e., we posit

w = 1/3 . (4.2.80)

To proceed, let us refer to the considerations related to Eqs. (2.2.25)-(2.2.29); these indicate 
that the field ϕ can effectively reproduce a cosmological constant contribution whenever the 
self-interaction potential V(ϕ) possesses a stationary point (see Eq. (2.2.26)), which can be as-
sumed to be zero after a translation ϕ �→ ϕ + const.. More precisely, we require the potential in 
Eq. (4.2.1) to attain a maximum at ϕ = 0, which happens if

V1 = 2V , V2 = −V for some V > 0 . (4.2.81)

With the above choices, the potential (4.2.1) reduces to

V(ϕ) = V
(

2 e
2
3 ϕ − e

4
3 ϕ

)
(4.2.82)

(see Fig. 7 for the plot of the map ϕ ∈ R �→ V(ϕ)/V ).
Since the condition V1 > 0 is certainly fulfilled in the case under analysis, we can refer to 
the Lagrange equations (4.2.9)(4.2.10) and to the corresponding solutions x(t), y(t) written in 
Eq. (4.2.11); taking also into account the associated zero-energy constraint (4.2.21) and using 
some known relations for the hypergeometric functions 2F1 appearing in Eq. (4.2.11) (22), we 
obtain

22 In particular, the derivation of the expression for y(t) in Eq. (4.2.83) relies on the identity

2F1

(
1

,
5

,
9 ; z

)
= 5

[
2F1

(
1

,
1

,
5 ; z

)
− √

1 − z

]
for z ∈ R .
2 4 4 3 z 2 4 4
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Fig. 7. Plot of the map ϕ �→ V(ϕ)/V , for V(ϕ) as in Eq. (4.2.82).

x(t) = A sinh(ω t) ,

y(t) = C cosh(ω t) +
√

A

2

(
1 + 9�

(m)∗
2A2 V

)√
sinh(ω t)

−
√

A

2

(
1 − 9�

(m)∗
2A2 V

)√
sinh(ω t) cosh(ω t) 2F1

(
1

2
,

1

4
,

5

4
;− sinh2(ω t)

)
,

(4.2.83)

where, according to Eq. (4.2.6),

ω = 2
√

2V

3
. (4.2.84)

Choice of a special solution Quite understandably, the analysis of the model at issue becomes 
significantly simpler if the parameter A (left unspecified until now) is fixed so as to get rid of the 
hypergeometric function 2F1 appearing in the expression for y(t) in Eq. (4.2.83); to this purpose, 
we set

�(m)∗ > 0 , A =
√

9�
(m)∗

2V
≡ 2

√
�

(m)∗
ω

. (4.2.85)

Next, let us require a Big Bang to occur at t = 0 and recall that this can happen only if C � 0
(see Eq. (4.2.44)); accordingly, for later convenience we put

C = √
A ζ ≡

(
4�

(m)∗
ω2

)1/4

ζ for ζ � 0 . (4.2.86)

With the above choices (4.2.85)(4.2.86), Eq. (4.2.83) reduces to

This identity can be derived with some elementary computations starting from the Gauss series representation of 2F1
(see, e.g., [27, Eq. 15.2.1]) and using some known relations for the Euler gamma functions � appearing therein. The 
same identity could also be derived (with some more effort) from the relations for contiguous hypergeometric functions 
(see, e.g., [27, § 15.5(ii)]).
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x(t) = 2
√

�
(m)∗

ω
sinh(ω t) , y(t) =

(
4�

(m)∗
ω2

)1/4 √
sinh(ω t)

[
1 + ζ

cosh(ω t)√
sinh(ω t)

]
.

(4.2.87)

It is evident that the above expressions fulfill x(t) >0 and y(t) >0 for all t >0 (cf. Eq. (4.2.3)); 
so, we can understand the solution (4.2.87) to be defined on the maximal admissible domain

I = (0,+∞) . (4.2.88)

To go on, let us note that Eqs. (2.2.2)(3.2.2)(3.2.3) and Eq. (4.2.87) give the following expression 
for the cosmic time:

τ(t)/θ =
t∫

0

dt ′ x−1/4(t ′) y1/2(t ′) =
t∫

0

dt ′
√

1 + ζ
cosh(ω t ′)√

sinh(ω t ′)
. (4.2.89)

Concerning the scale factor and the field, from Eq. (2.2.4), Eq. (3.2.3) (with γ = w = 1/3) and 
Eqs. (4.2.84) (4.2.87) we infer

a(t) = x1/4(t) y1/2(t) =
(

4�
(m)∗

ω2

)1/4√
sinh(ω t)

√
1 + ζ

cosh(ω t)√
sinh(ω t)

, (4.2.90)

ϕ(t) = log
(
x3/4(t) y−3/2(t)

) = − 3

2
log

[
1 + ζ

cosh(ω t)√
sinh(ω t)

]
. (4.2.91)

Finally, the equation of state coefficient for the scalar field and the density parameter of radiation 
can be determined using Eqs. (4.2.7)(4.2.8) and (4.2.87), which gives

w(φ)(t) = −1 + 2 ζ 2
(
1−sinh2(ω t)

)2

4 sinh3(ω t) + 12 ζ cosh(ω t) sinh5/2(ω t) + ζ 2
(
1+3 sinh2(ω t)

)2 ,

(4.2.92)

�(m)(t) = sinh(ω t) + ζ cosh(ω t)
√

sinh(ω t)(
cosh(ω t)

√
sinh(ω t) + ζ

2

(
1+3 sinh2(ω t)

))2 . (4.2.93)

In the sequel we first discuss the exceptional case ζ = 0, and then proceed to analyze the more 
generic configuration with ζ > 0.

The case ζ = 0 This case deserves a special mention because it corresponds to a scenario where 
the field ϕ behaves exactly as a cosmological constant. Eqs. (4.2.89)-(4.2.93) with ζ = 0 give the 
following results, for t ∈ (0, +∞):

τ(t)/θ = t , (4.2.94)

and a(t) = (4 �(m)∗ /ω2)1/4 √
sinh(ω t), ϕ(t) = const. = 0, w(φ)(t) = const. = −1, �(m)(t) =

1/ cosh2(ω t). Equivalently, viewing these observables as functions of the cosmic time τ ∈
(0, +∞):

a(τ) =
(

4�
(m)∗

ω2

)1/4√
sinh(ω τ/θ) , ϕ(τ) = const. = 0 ,

w(φ)(τ ) = const. = −1 , �(m)(τ ) = 1
2 .

(4.2.95)
cosh (ω τ/θ)
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In particular, from the above explicit expression for a(τ) we infer (23)

a(τ) =
{(

4�(m)∗
)1/4

(τ/θ)1/2 + O
(
τ 5/2) for τ/θ → 0+ ,

(�(m)∗ /ω2)1/4 e
ω
2 (τ/θ) + O

(
e− 3ω

2 τ/θ
)

for τ/θ → +∞ .
(4.2.96)

The case ζ > 0 Let us return to Eqs. (4.2.89)-(4.2.93), that we now use with ζ > 0. We first 
derive the asymptotic expansions of τ(t)/θ , a(t), w(φ)(t), �(m)(t) in the limit of small and large t .
The behavior of τ(t)/θ in these limits can be derived from the general asymptotic expansions 
(4.2.52) (4.2.77), which in the present setting reduce to (24)

τ(t)/θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

3

(
ζ 2

ω

)1/4

t3/4 + O
(
t5/4) for t → 0+ ,

27/4 ζ 1/2

ω
e

1
4 ω t + O(1) for t → +∞ .

(4.2.97)

The behavior of a(t), w(φ)(t), �(m)(t) for small and large t is obtained by direct inspection of 
Eqs. (4.2.90) (4.2.92)(4.2.93) which give, respectively:

a(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
ζ

(
4�

(m)∗
ω

)1/4
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(
t3/4) for t → 0+ ,

√
ζ

(
�
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2ω2

)1/4

e
3
4 ω t + O

(
e

1
4 ω t

)
for t → +∞ ;

(4.2.98)

w(φ)(t) =
⎧⎨
⎩

1 − 16ω2 t2 + O(t5/2) for t → 0+ ,

− 7

9
+ O

(
e− 1

2 ω t
)

for t → +∞; (4.2.99)

�(m)(t) =

⎧⎪⎪⎨
⎪⎪⎩

4
√

ω

ζ
t1/2 + O(t) for t → 0+ ,

32

9
√

2 ζ
e− 5

2 ω t + O
(
e−3ω t

)
for t → +∞ .

(4.2.100)

For our purposes it is also important to consider the behavior of the above observables when t
ranges in a compact interval, and ζ is small. Indeed, let us fix any two times 0 < t1 < t2; then, 
from Eqs. (4.2.89)(4.2.90)(4.2.92)(4.2.93) it readily follows that

τ(t)/θ = t + O(ζ) , a(t) =
(

4�
(m)∗

ω2

)1/4√
sinh(ω t) + O(ζ) ,

w(φ)(t) = −1 + O(ζ 2) , �(m)(t) = 1

cosh2(ω t)
+ O(ζ) ,

for ζ → 0+, uniformly in t ∈ [t1, t2].

(4.2.101)

23 One cannot naively refer to the asymptotic expansions in Eqs. (4.2.73)-(4.2.78) for ζ = 0, since in this case the 
dominant contribution written in Eq. (4.2.65) for 0 <w<1 vanishes identically.
24 More precisely, the asymptotics in Eq. (4.2.97) follow from the cited Eqs. (4.2.52) and (4.2.77) fixing n = 3, w = 1/3, 
V1 = 2 V and V2 = − V (with V >0), A = (

9 �(m)∗ /2V
)1/2 and C = (

9 �(m)∗ /2V
)1/4

ζ (with �(m)∗ >0), in agreement 
with Eqs. (4.2.79)(4.2.80)(4.2.81)(4.2.85)(4.2.86).
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Let us rephrase the previous results viewing the above observables as functions of cosmic time. 
From Eqs. (4.2.97) and (4.2.98)-(4.2.100) we deduce

a(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
3 ζ√
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)1/3 (
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)1/4
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(
(τ/θ)2) for τ/θ → +∞ ;

(4.2.102)

w(φ)(τ ) =
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1 −
(

9ω2

2 ζ

)4/3

(τ/θ)8/3 + O
(
(τ/θ)10/3) for τ/θ → 0+ ,

− 7

9
+ O

(
(τ/θ)−2) for τ/θ → +∞;

(4.2.103)

�(m)(τ ) =

⎧⎪⎪⎪⎨
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(
6ω
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)2/3

(τ/θ)2/3 + O
(
(τ/θ)4/3) for τ/θ → 0+ ,

4 ζ 3/2

9 (ω/4)10 (τ/θ)−10 + O
(
(τ/θ)−11) for τ/θ → +∞ .

(4.2.104)

Eq. (4.2.101) implies the following, for any pair 0 < τ1 < τ2 of cosmic time instants:

a(τ) =
(

4�
(m)∗

ω2

)1/4√
sinh(ω τ/θ) + O(ζ) ,

w(φ)(τ ) = −1 + O(ζ 2) , �(m)(τ ) = 1

cosh2(ω τ/θ)
+ O(ζ) , (4.2.105)

for ζ → 0+, uniformly in τ ∈ [τ1, τ2].
Let us briefly comment the above results. According to Eq. (4.2.105), on each compact interval 
[τ1, τ2], with τ1 > 0 so as to ensure a strict separation from the Big Bang, for ζ sufficiently 
small the scale factor a(τ) grows exponentially and w(φ)(τ ) is close to −1, indicating that the 
field plays the role a cosmological constant. As a consequence, the behavior of the system for 
τ ∈ [τ1, τ2] and small ζ is similar to that described in the previous paragraph for ζ = 0 and all 
τ ∈ (0, +∞). The situation is completely different if we approach the Big Bang, or if we consider 
the very far future; for example, Eq. (4.2.102) shows that a(τ) has a power law dependence on 
τ/θ with exponents 1/3 and 3, respectively, for τ/θ → 0+ and τ/θ → +∞.
The presence of an epoch of exponential growth for a(τ), preceded and followed by periods with 
slower expansion rates, is typical of inflationary models. In the sequel we will show that one can 
adjust the parameters of the system so as to obtain a rather realistic model for inflation, even 
from a quantitative point of view.

An interlude on the quantitative determination of cosmic time Let us recall that τ(t)/θ is 
expressed via Eq. (4.2.89) as a nontrivial integral over the interval (0, t]. The numerical com-
putation of this integral (for specified values of all parameters) is problematic, especially in the 
situation of greatest interest for us. In fact, for t ′ → 0+ the integrand function in Eq. (4.2.89)
behaves like 

√
ζ (ωt ′)−1/4, the product of the divergent factor (ωt ′)−1/4 by the parameter 

√
ζ . 

To make things worse, in the sequel we are mostly interested in a case where ζ is very small.
Fortunately, the problem that we have just outlined can be overcome. In fact, starting from the 
integral representation (4.2.89) it is possible to determine analytically two elementary functions 
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T ±
ζ such that T −

ζ (t) � τ(t)/θ � T +
ζ (t) for arbitrary ζ, t > 0; we refer to Appendix C for a 

detailed description of such functions. The same Appendix shows that, in the application with 
small ζ considered in next paragraph, T +

ζ (t) and T −
ζ (t) are very close for all the considered 

values of t , so that the mean (1/2)(T −
ζ + T +

ζ )(t) is a very accurate approximant for τ(t)/θ . In 
the calculations mentioned in the next paragraph, τ(t)/θ has always been approximated with the 
previous mean.

A plausible scenario with inflation Let us now present a reasonable choice of the parameters 
not yet specified for the model under analysis, which can in fact lead to a physically plausible 
inflationary scenario. The key idea that we are going to pursue is that the scale factor grows 
exponentially in a compact interval of cosmic time, at least for very small values of ζ (a fact 
made evident by the asymptotic expansion written in Eq. (4.2.90)).
Inspired by standard arguments (see, e.g., [35, Sec. 11.4]), we set the time parameter θ equal to 
the alleged time of Grand Unified Theory (GUT), namely,

θ = 10−36 sec , (4.2.106)

and presume that the universe undergoes an inflationary expansion at least during the interval 
of cosmic time approximately comprised between τ � θ and τ � N θ , for some given N large 
enough. In the sequel we will refer to the case where

N = 100 ; (4.2.107)

analogous results could be derived for other values of N , with the same order of magnitude. 
Correspondingly, let us assume that the dimensionless parameter ζ introduced in Eq. (4.2.86) is 
exponentially small with respect to N ; more precisely, we put

ζ = e−N � 3.72008 ... × 10−44 . (4.2.108)

On the contrary, let �(m)∗ and V be independent of N and comparable to unity, so that the same 
holds true for ω (due to Eq. (4.2.84)); as an example, let us fix

�(m)∗ = 0.308 , V = 1 , ω = 2
√

2V

3
� 0.9428 ... . (4.2.109)

Having fixed all the involved parameters, for any given t we can calculate the numerical values 
of the quantities τ(t)/θ , a(t), w(φ)(t), �(m)(t). For τ(t)/θ we use, in place of the integral repre-
sentation (4.2.89), the very accurate approximation method mentioned in the previous paragraph 
and described in Appendix C; for a(t), w(φ)(t) and �(m)(t) we use Eqs. (4.2.90)(4.2.92)(4.2.93).
Figs. 8–11 give a(τ) as a function of the dimensionless quantity τ/θ , for different ranges of 
the latter; these figures have been obtained drawing the curve t �→(

τ(t)/θ, a(τ(t))
)

for t within 
different intervals (namely, for t ∈ (0, 10−90), t ∈ (0, 200), t ∈ (0, 240) and t ∈ (0, 400)). Log-
arithmic scales are used for both τ/θ and a(τ) in Fig. 11; this makes evident that there is a 
comparatively short interval of cosmic time where the scale factor increases abruptly. Just to 
give an idea of the orders of magnitude involved in these arguments, let us mention that

τ1 = 50 θ , τ2 = 150 θ ⇒ a(τ2)

a(τ1)
= 2.97056 ... × 1020 . (4.2.110)

Fig. 12 and Fig. 13 refer to the equation of state parameter for the field; more precisely they 
give w(φ)(τ ) as a function of τ/θ , for the latter variable ranging in two different intervals. Again, 
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Fig. 8. a(τ) as a function of τ/θ .

Fig. 9. a(τ) as a function of τ/θ .

Fig. 10. a(τ) as a function of τ/θ .

these graphs have been obtained as parametric plots (the curve t �→ (
τ(t)/θ, w(φ)(τ (t))

)
has 

been plotted for t ∈ (0, 10−29) and t ∈ (0, 230), respectively). In particular, Fig. 12 suggests 
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Fig. 11. a(τ) as a function of τ/θ . Logarithmic scales are used on both axes.

Fig. 12. w(φ)(τ ) as a function of τ/θ .

Fig. 13. w(φ)(τ ) as a function of τ/θ .

w(φ)(τ ) → 1− for τ/θ → 0+, in agreement with Eq. (4.2.103). On the other hand, Fig. 13 exhibits 
a sharp transition from w(φ) = −1 to w(φ) = −7/9 � −0.777...; this behavior corresponds to the 
general features previously pointed out in Eqs. (4.2.101)(4.2.103).
Finally, let us consider the density parameter �(m) for the radiation content of the universe. Fig. 14
and Fig. 15 represent �(m)(τ ) as a function of τ/θ (and have been obtained plotting the curve 
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Fig. 14. �(m)(τ ) as a function of τ/θ .

Fig. 15. �(m)(τ ) as a function of τ/θ .

t �→ (
τ(t)/θ, �(m)(τ (t))

)
for t ∈ (0, 10−86) and t ∈ (0, 7), respectively). Fig. 14 makes evident 

that �(m)(τ ) → 0+ for τ/θ → 0+ (see Eq. (4.2.104) for the leading order in the corresponding 
asymptotic expansion). Fig. 15 shows instead that �(m)(τ ) � 1 for small (though, not too small) 
values of τ/θ and �(m)(τ ) rapidly vanishes for larger values of the cosmic time, in accordance 
with the general features mentioned in Eqs. (4.2.101)(4.2.103).

4.3. Solutions for class 7 potentials with a matter fluid. The nonlinear repulsor/oscillator model

In this section, we refer to the integrable subcase (i) in the analysis of class 7 potentials (see 
page 36), with an additional prescription: the exponent 2/γ −2 in the potential V of Eq. (3.7.1) is 
required to be an even integer 2� � 4. Here are some motivations for this additional requirement:
i) The map ξ �→ ξ2/γ−2, appearing in Eqs. (3.7.1)(3.7.8)(3.7.9), is well defined, smooth and 
bounded from below for ξ ranging throughout the whole real axis if and only if 2/γ − 2 = 2� ∈
{0, 2, 4, ...}.
ii) For 2/γ − 2 = 0 (i.e., γ =1), the potential V of Eq. (3.7.1) is constant. For 2/γ − 2 = 2 (i.e. 
γ =1/2), Eq. (3.7.1) gives V(ϕ) = (1/2)(V1 − V2) + (1/2)(V1 + V2) coshϕ; thus, V becomes a 
class 1 potential (cf. Eq. (3.1.1)), to be treated with the simpler methods already described for that 
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class. Summing up, the cases 2/γ − 2 = 0, 2 can be regarded as trivial; excluding them from the 
considerations in the previous item (i), we are left with the condition 2/γ −2 = 2� ∈ {4, 6, 8, ...}.
To proceed, let us recall that the subcase (i) of page 36 requires k = 0, γ = (1 − w)/2; on top of 
that, we assume V1 and V2 to be positive. Thus, the complete list of our choices is the following:

V1 > 0 , V2 > 0 , k = 0 , γ = 1

� + 1
, w = � − 1

� + 1
, � ∈ {2,3,4, ...} . (4.3.1)

In particular, note that 1/3 �w < 1 for all � ∈ {2, 3, 4, ...} and w = 1/3 if and only if � = 2.
With the above choices (4.3.1), Eqs. (3.7.1)(3.7.4) and (3.7.6) for the potential V(ϕ), the gauge 
function B ≡ B and the coordinate change (x, y) �→ (A, ϕ) respectively reduce to:

V(ϕ) = V

[(
cosh

( ϕ

�+1

))2�

+
(

sinh
( ϕ

�+1

))2�
]

, ϕ ∈ Iγ,V2 ≡ (−∞,+∞) ;
(4.3.2)

B = � − 1

2
log

(
x2− y2) ; (4.3.3)

A = � + 1

2
log

(
x2− y2) , ϕ = � + 1

2
log

(
x + y

x − y

)
; (4.3.4)

(x, y) ∈ Dγ,V2 ≡ D := {
(x, y) ∈ R2

∣∣ x > 0 , − x < y < x
}

. (4.3.5)

Note that, for A as above one has A → −∞ when x2− y2 → 0+. Correspondingly, noting that 
the scale factor for the cosmology under analysis is given by (see Eq. (2.2.4))

a = (
x2 − y2) �+1

2n , (4.3.6)

we have a→0+ for x2 − y2→0+; this fact is especially relevant for the presence of a Big Bang. 
To say more, assuming that a Big Bang does actually occur at t = 0 in agreement with Eq. (4.0.2)
(25) and adding the conventional prescription τ(t) → 0+ for t → 0+, from Eqs. (4.0.3)(4.3.3) we 
derive the following expression for the cosmic time coordinate:

τ(t)/θ =
t∫

0

dt ′
(
x2(t ′) − y2(t ′)

) �−1
2 . (4.3.7)

Next let us recall that, in the subcase (i) for the potentials of class 7, the Lagrangian (3.7.8) and 
the corresponding energy (3.7.9) take the separable forms (3.7.10)(3.7.11). With the prescriptions 
stated in Eq. (4.3.1), the cited Eqs. (3.7.10)(3.7.11) give:

L(x, y, ẋ, ẏ) = L1(x, ẋ) +L2(y, ẏ) − n2 �
(m)∗

2
,

L1(x, ẋ) = − (� + 1)2

2
ẋ2 − V1 x2� , L2(y, ẏ) = (� + 1)2

2
ẏ2 − V2 y2� ;

(4.3.8)

E(x, y, ẋ, ẏ) = E1(x, ẋ) + E2(y, ẏ) + n2 �
(m)∗

2
,

E1(x, ẋ) = − (� + 1)2

2
ẋ2 + V1 x2� , E2(y, ẏ) = (� + 1)2

2
ẏ2 + V2 y2� .

(4.3.9)

25 We will show in the sequel that this condition can in fact be attained.
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In the sequel we discuss the solutions of the Lagrange equations corresponding to the above 
Lagrangians L1, L2, providing explicit quadrature formulas for them and discussing their asymp-
totic behaviors in different regimes of interest for the applications to be discussed in the sequel.
Before proceeding with this analysis, let us express in terms of the coordinates x, y two other 
relevant observables: namely, the coefficient w(φ) in the equation of state for the field and the di-
mensionless density parameter for matter �(m). The general relations (2.2.12)(2.2.31), combined 
with Eqs. (4.3.1)(4.3.3)(4.3.4) for the case under analysis, yield the following results:

w(φ) = (� + 1)2 (x ẏ − ẋ y)2 − 2 (x2 − y2)(V1 x2� + V2 y2�)

(� + 1)2 (x ẏ − ẋ y)2 + 2 (x2 − y2)(V1 x2� + V2 y2�)
, (4.3.10)

�(m) = n2 �
(m)∗ (x2 − y2)

(� + 1)2 (x ẋ − y ẏ)2 . (4.3.11)

4.3.1. Constants of motion and quadrature formulas
From here to the end of the present subsection 4.3, we stick to the configuration described by 

Eq. (4.3.1) and refer to Eqs. (4.3.8)(4.3.9) for the Lagrangian L and the corresponding energy E .
The Lagrangian system described by L can be analyzed in terms of the separate 1-dimensional 
subsystems with Lagrangians L1, L2, whose energies E1, E2 are constants of motion. Of course, 
the Lagrangians L1, L2 (as well as the energies E1, E2) are well defined and smooth for any real x
and y. Keeping this in mind, in the sequel we shall first study separately the subsystems with La-
grangians L1, L2 assuming x, y∈(−∞, +∞), and reserve to a second step the implementation 
of the condition (x, y) ∈Dγ,V2 (see Eq. (4.3.5)).
From the expression (4.3.9) for the total energy E , we see that the constraint E = 0 is fulfilled if 
and only if E1 and E2 are expressed as follows:

E1 = −E , E2 = F , E := F + n2 �
(m)∗

2
. (4.3.12)

The expression for E2 in Eq. (4.3.9) makes evident that F� 0, and that F = 0 only along motions 
with y(t) = 0 and ẏ(t) = 0 for all t ; in the sequel we exclude such motions, fixing

F ∈ (0,+∞) . (4.3.13)

Since we are assuming �(m)∗ > 0 (see Eq. (4.0.4)), the above condition also grants that E ∈
(0, +∞).
Let us now consider two motions t �→ x(t) and t �→ y(t) fulfilling the Lagrange equations, with 
energies fixed according to the above prescriptions (and t ranging within suitable intervals). 
Then, from Eqs. (4.3.9)(4.3.12) we infer

(� + 1)2

2
ẋ2 − V1 x2� = E ,

(� + 1)2

2
ẏ2 + V2 y2� = F . (4.3.14)

The above equations can be interpreted as the conservation laws for the energies of two fictitious 

mechanical systems with kinetic energies (�+1)2

2 ẋ2, (�+1)2

2 ẏ2 and potential energies −V1 x2�, 
V2 y2�, that we can denominate, respectively, a nonlinear repulsor and a nonlinear oscillator.
From the second equality in Eq. (4.3.14) we see that t �→ y(t) is an oscillatory motion such that

y(t) ∈
[
−(

F/V2
)1/(2�)

,
(
F/V2

)1/(2�)
]

for all t (4.3.15)

(the above interval is the set {y∈R | V2 y2��F} and the times t such that y(t) = ±(
F/V2

)1/(2�)

are inversion times for the motion). Since V1 x2� � 0 and E > 0, from the first equality in 
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Eq. (4.3.14) we infer ẋ2(t) >0, i.e. ẋ(t) 	= 0 for all t . Thus ẋ(t) has a constant sign, and the 
function t �→ x(t) is strictly monotonic.
From Eq. (4.3.14) we also infer quadrature formulas containing the hypergeometric-type function

F�(z) := 2F1

(
1

2
,

1

2�
,

1

2�
+ 1 , z

)
. (4.3.16)

More precisely, we have the following implications (26):

x(t) is well defined for t ∈ [t1, t2] and sgn ẋ(t) = ξ ∈ {±1} for all t ∈ (t1, t2) (4.3.17)

⇒ ξ (t2 − t1) = � + 1√
2E

[
x(t2)F�

(
−(V1/E) x2�(t2)

)
− x(t1)F�

(
−(V1/E) x2�(t1)

)]
;

y(t) is well defined for t ∈ [t1, t2] and sgn ẏ(t) = σ ∈ {±1} for all t ∈ (t1, t2) (4.3.18)

⇒ σ (t2 − t1) = � + 1√
2F

[
y(t2)F�

(
(V2/F) y2�(t2)

)
− y(t1)F�

(
(V2/F) y2�(t1)

)]
.

For future use, let us mention the asymptotic expansion (27)

F�(−z) = C�

z1/(2�)
− 1

(� − 1)
√

z
+ O

(
1

z3/2

)
for z → +∞ , (4.3.19)

C� := 1√
π

�

(
� − 1

2�

)
�

(
2� + 1

2�

)
;

here the dominant term is C�/z
1/(2�), since 0 <1/(2�) �1/4. Again for future use, let us also 

mention the special value (28)

F�(1) =
√

π �
( 2�+1

2�

)
�
(

�+1
2�

) . (4.3.20)

4.3.2. Choosing the initial data
We now fix the attention on the solutions t �→ x(t) and t �→ y(t) of the Lagrange equations 

for L1, L2 with energies as in Eqs. (4.3.12)(4.3.13) and with the following initial data, specified 
at time t = 0 by convention:

x(0) = y(0) = Y ∈
(

0, (F/V2)
1/(2�)

)
, ẋ(0) = u > 0 , ẏ(0) = v > 0 . (4.3.21)

The upper bound (F/V2)
1/(2�) prescribed here for Y is motivated by Eq. (4.3.15). The equality 

x(0) = y(0) will be employed in the sequel to infer that the scale factor a(t) vanishes for t → 0+

26 Let us give a few details on the derivation of Eq. (4.3.17). To express the integral in Eq. (4.3.17) in terms 
of F� write 

∫ x(t2)

x(t1)
dx/

√
E+V1x2� = 1√

E

(∫ x(t2)
0 −∫ x(t1)

0

)
dx/

√
1+(V1/E)x2� and then use for i = 1, 2 the fol-

lowing relations, based on the change of variable x = x(ti ) s1/(2�) with s ∈ [0, 1]: ∫ x(ti )

0 dx/
√

1+(V1/E) x2� =
x(ti )

2�

∫ 1
0 ds s

1
2�

−1
/
√

1+(V1/E) x2�(ti ) s = x(ti ) F�

( − (V1/E) x2�(ti )
)
. One proceeds similarly to express in terms of 

F� the integral in Eq. (4.3.18).
27 This expansion follows from the definition (4.3.16) of F� and from some known identities about hypergeometric 
functions, namely: a Kummer transformation (see, e.g., [27, Eq. 15.8.2]) and the elementary relations 2F1 (a,0, c, ζ ) = 1
for all ζ , 2F1 (a, b, c, ζ ) = 1 + O(ζ) for ζ → 0.
28 Eq. (4.3.20) follows from the definition (4.3.16) of F� and from a general result about 2F1 (a, b, c,1) (see, e.g., [27, 
Eq. 15.4.20]).
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(see the considerations after Eqs. (4.3.3)-(4.3.5)), a fact related to the occurrence of a Big Bang. 
Let us also point out that Eq. (4.3.14) for the energies (here employed at time t = 0) and the 
assumptions in Eq. (4.3.21) give

u =
√

2

� + 1

√
E+ V1 Y 2� , v =

√
2

� + 1

√
F − V2 Y 2� . (4.3.22)

Each one of the solutions t �→ x(t) and t �→ y(t) is intended to be defined on the maximal 
admissible domain, that is on the largest interval containing t = 0 on which the solution is well 
defined.
The discussion of subsection 4.3.1, combined with the present assumptions, ensures that t �→
x(t) is a strictly increasing function, while t �→ y(t) oscillates.
The map t �→ x(t) has a bounded domain of the form

(tmin, tmax) with − ∞ < tmin < 0 < tmax < +∞ . (4.3.23)

The finite times tmin, tmax are characterized by the fact that

x(t) → −∞ for t → t+min , x(t) → +∞ for t → t−max . (4.3.24)

To determine tmax , it suffices to employ the quadrature formula (4.3.17) with ξ = +1, t1 = 0, 
t2 = tmax and x(t1), x(t2) replaced by Y, +∞, respectively; in this way we obtain

tmax = � + 1√
2

+∞∫
Y

dx√
E+V1x2�

= � + 1√
2E

[
lim

x→+∞x F�

(
−(V1/E) x2�

)
− Y F�

(
−(V1/E)Y 2�

)]

= � + 1√
2E

[
C�

(V1/E)1/(2�)
− Y F�

(
−(V1/E)Y 2�

)]
(4.3.25)

(the limit x → +∞ indicated above is computed using the asymptotic expansion written in 
Eq. (4.3.19); the cited equation also defines the constant C�). The time tmin could be determined 
by similar computations, but is irrelevant for the subsequent applications.
Let us now pass to the function t �→ y(t), which oscillates in the range indicated by Eq. (4.3.15). 
This function is well defined for all t ∈ (−∞, +∞) and periodic:

y(t + T ) = y(t) . (4.3.26)

The period T is twice the time needed for y(t) to pass from the minimum to the maximum of 
the interval in Eq. (4.3.15), and this time can be computed using the quadrature formula (4.3.18); 
this gives

T = 2
� + 1√

2

(F/V2)
1/(2�)∫

−(F/V2)
1/(2�)

dy√
F−V2 y2�

= 2
√

2 (� + 1)F�(1)√
F (V2/F)1/(2�)

, (4.3.27)

with F�(1) given by Eq. (4.3.20).
From here to the end of the present Section 4.3, x(t) and y(t) are the functions discussed above, 
i.e., the solutions of maximal domain of the Lagrange equations with initial data (4.3.21) and 
energies (4.3.12)(4.3.13).
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Behavior of x(t) for positive times. The limits t → 0+ and t → t−max For t∈(0, tmax) the func-
tion x(t) increases, starting from the initial value x(0) = Y > 0 and ultimately diverging. The 
small t behavior of x(t), ẋ(t) is determined by the smoothness of these functions and by the 
initial data (4.3.21), which of course imply

x(t) = Y + u t + O(t2) , ẋ(t) = u + O(t) for t → 0+ . (4.3.28)

On the other hand, the quadrature formula (4.3.17) with ξ = +1, t1 = 0, t2 = t ∈ (0, tmax) and 
x(t1) = Y gives

t = � + 1√
2

x(t)∫
Y

dx√
E+V1x2�

= � + 1√
2E

[
x(t)F�

(
−(V1/E) x2�(t)

)
− Y F�

(
−(V1/E)Y 2�

)]
.

(4.3.29)

From here and from Eq. (4.3.25) for tmax , we obtain

tmax − t = � + 1√
2E

[
C�

(V1/E)1/(2�)
− x(t)F�

(
−(V1/E) x2�(t)

)]
for all t ∈ (0, tmax) .

(4.3.30)

We know that x(t) → +∞ for t → t−max ; this fact, together with the asymptotics (4.3.19), entails

tmax − t = � + 1

(� − 1)
√

2V1

1

x�−1(t)
+ O

(
1

x3�−1(t)

)
, (4.3.31)

whence (29)

x(t) =
(

� + 1

(� − 1)
√

2V1

) 1
�−1 1

(tmax − t)
1

�−1

+ O
(
(tmax − t)

2�−1
�−1

)
for t → t−max .

(4.3.32)

The above result also allows to determine the behavior of ẋ(t) as t approaches tmax . In fact, from 
Eq. (4.3.14) and from the positivity of ẋ(t) we infer ẋ(t) =

√
2

�+1

√
E+V1x2�(t), which together 

with Eq. (4.3.32) gives

ẋ(t) =
(

� + 1

(� − 1)�
√

2V1

) 1
�−1 1

(tmax − t)
�

�−1

+ O
(
(tmax − t)

�
�−1

)
for t → t−max .

(4.3.33)

Behavior of y(t) for positive times. The limit t → 0+ Since ẏ(0) > 0 (see Eq. (4.3.21)), ẏ(t)

will be positive from t = 0 up to the first positive inversion time

t∗ := min
{
t∈(0,+∞) | ẏ(t) = 0

}
(4.3.34)

29 To invert the asymptotic relation between tmax − t and x(t) one should note that, since tmax − t = const.
x�−1(t)

(
1 +

O
(
x−2�(t)

))
for some nonzero constant, it follows x(t) = const.

1/(�−1)

(
1 + O

(
(tmax − t)2�/(�−1)

))
.

(tmax−t)
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at which y attains its maximum value y(t∗) = (F/V2)
1/(2�). The small t behavior of y(t), ẏ(t) is 

determined by the same smoothness considerations that, combined with the initial data (4.3.21), 
give

y(t) = Y + v t + O(t2) , ẏ(t) = v + O(t) for t → 0+ . (4.3.35)

On the other hand, using the quadrature formula (4.3.18) with σ = +1, t1 = 0, t2 = t ∈ (0, t∗)
and y(t1) = Y , we get

t = � + 1√
2

y(t)∫
Y

dy√
F−V2 y2�

= � + 1√
2F

[
y(t)F�

(
(V2/F) y2�(t)

)
− Y F�

(
(V2/F)Y 2�

)]
.

(4.3.36)

Taking the limit t → t∗ in the last equation we get

t∗ = � + 1√
2

(F/V2)
1/(2�)∫

Y

dy√
F−V2 y2�

= � + 1√
2F

[
(F/V2)

1/2� F�(1) − Y F�

(
(V2/F)Y 2�

)]
.

(4.3.37)

After the inversion time t∗, y(t) decreases until it reaches the subsequent inversion time, and 
so on. Note that, depending on the choices of the parameters, it can be t∗ < tmax , or tmax > t∗, 
or even t∗ = tmax ; in the sequel we will give explicit examples of the first two alternatives (see 
Eqs. (4.3.63)(4.3.64) and the related comments). When t∗ < tmax , y(t) has enough time to invert 
its motion (at least once) before the explosion of x(t).
In any case, the smoothness of y(t) for all t ∈ (−∞, +∞) ensures the finiteness of y(tmax), 
ẏ(tmax) and yields the obvious relations

y(t) = y(tmax)+O(t − tmax) , ẏ(t) = ẏ(tmax)+O(t − tmax) for t → tmax . (4.3.38)

The condition (x(t), y(t)) ∈D We now claim that the functions t �→ x(t), y(t) fulfill

x(t) > 0 and − x(t) < y(t) < x(t) for all t ∈ (0, tmax) . (4.3.39)

This means that, 
(
x(t), y(t)

)∈D (see Eq. (4.3.5)) for all t ∈ (0, tmax), a mandatory require-
ment for associating to the motion t �→ (x(t), y(t)) a cosmological model via the transformation 
(4.3.3)-(4.3.4). For the proof of Eq. (4.3.39), we refer to Appendix D.

4.3.3. Big Bang analysis
From now on we consider the cosmology corresponding to the motion t ∈ (0, tmax) �→

(x(t), y(t)) ∈ D described in the preceding subsection.
The asymptotic behavior of x(t) and y(t) for t → 0+ is obviously determined by
Eqs. (4.3.28)(4.3.35), which involve the parameters Y, u, v introduced in Eqs. (4.3.21)(4.3.22); 
in the sequel we will frequently use the related quantity

Z := (u − v)Y > 0 . (4.3.40)

From Eqs. (4.3.6)(4.3.10)(4.3.11) we deduce the following, for t → 0+:
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a(t) = (2Z)
�+1
n t

�+1
n + O

(
t

n+�+1
n

)
; (4.3.41)

w(φ)(t) = 1 − 8 (V1+V2)Y 2�

(� + 1)2 Z
t + O(t2) ; (4.3.42)

�(m)(t) = 2n2 �
(m)∗

(� + 1)2 Z
t + O(t2) . (4.3.43)

It is convenient to describe the limit t → 0+ in terms of the cosmic time τ . This can be done 
starting from Eq. (4.3.7), that gives an integral representation for τ(t); from here we obtain

τ(t)/θ =
t∫

0

dt ′
[
(2Z)

�−1
2 (t ′)

�−1
2 + O

(
(t ′)

�+1
2

)]
= (2Z)

�+1
2

(� + 1)Z
t

�+1
2 +O

(
t

�+3
2

)
for t → 0+.

(4.3.44)

The above relation shows, in particular, that τ(t) → 0+ for t → 0+. Considering the inverse 
function t �→ t (τ ), one readily checks that Eq. (4.3.44) implies

t (τ ) = (� + 1)
2

�+1

2Z
�−1
�+1

(
τ/θ

) 2
�+1 + O

((
τ/θ

) 4
�+1

)
for τ → 0+ . (4.3.45)

To go on, let us view the observables of the model as functions of the cosmic time τ ; inserting 
the asymptotic relation (4.3.45) into Eqs. (4.3.41)-(4.3.43), we find the following for τ → 0+:

a(τ) = (
(� + 1)Z

) 2
n (τ/θ)

2
n + O

(
(τ/θ)

2(n+�+1)
n(�+1)

)
; (4.3.46)

w(φ)(τ ) = 1 + O
(
(τ/θ)

2
�+1

)
; (4.3.47)

�(m)(τ ) = n2 �
(m)∗(

(� + 1)Z
) 2�

�+1

(τ/θ)
2

(�+1) + O
(
(τ/θ)

4
�+1

)
. (4.3.48)

From the above expansions it appears that, for τ → 0+: the scale factor a(τ) vanishes, which 
indicates the occurrence of a Big Bang; the reciprocal 1/a(τ) diverges in a non-integrable way if 
n = 2, indicating the absence of a particle horizon in the case of a (2 +1)-dimensional spacetime, 
while it diverges in an integrable way if n > 2, showing that a particle horizon occurs when the 
space dimension is equal to or greater than 3; �(m)(τ ) → 0, which on account of Eq. (4.0.5)
proves that the field energy density dominates on matter density close to the Big Bang.

4.3.4. Far future analysis
From Eqs. (4.3.6)(4.3.10)(4.3.11) and (4.3.32)(4.3.38) we infer that the scale factor, the equa-

tion of state coefficient for the field and the matter density parameter behave, respectively, as 
follows for t → t−max :

a(t) =
(

� + 1

(� − 1)
√

2V1

) �+1
n(�−1)

(tmax − t)
− �+1

n(�−1) + O

(
(tmax − t)

2n−(�+1)
n(�−1)

)
; (4.3.49)

w(φ)(t) = −1 + O
(
(tmax − t)

2
�−1

)
; (4.3.50)

�(m)(t) = n2 �(m)∗ (2V1)
1

�−1

(
�−1

�+1

) 2�
�−1

(tmax − t)
2�

�−1 + O
(
(tmax − t)

2(�+1)
�−1

)
. (4.3.51)
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It is convenient to describe the limit t → t−max in terms of the cosmic time. To this purpose, we 
must first determine the asymptotics of τ(t) in this limit starting from the integral representation 
(4.3.7); since it is not so obvious how to proceed, we have given some detail on this computation 
in Appendix D. Here we only report the final result, which reads

τ(t)/θ = � + 1

(� − 1)
√

2V1
log

(
tmax

tmax − t

)
+ P + O

(
(tmax − t)

2
�−1

)
for t → t−max,

(4.3.52)

P :=
tmax∫
0

dt ′
[(

x2(t ′) − y2(t ′)
) �−1

2 − � + 1

(� − 1)
√

2V1
(tmax − t ′)−1

]
.

Thus τ(t) → +∞ for t → t−max . Considering the inverse function t �→ t (τ ), it can be checked 
that Eq. (4.3.52) implies the following, for τ → +∞:

tmax− t (τ ) = Q e− (�−1)
√

2V1
�+1 (τ/θ)+O

(
e−√

2V1 (τ/θ)
)

, Q := tmax e
(�−1)

√
2V1

�+1 P . (4.3.53)

Inserting the above relation into Eqs. (4.3.49)-(4.3.51), we find the following for τ → +∞:

a(τ) =
(

� + 1

(� − 1)
√

2V1 Q

) �+1
n(�−1)

e

√
2V1
n

(τ/θ) + O

(
e

(�+1−2n)
√

2V1
n(�+1)

(τ/θ)

)
; (4.3.54)

w(φ)(τ ) = −1 + O

(
e− 2

√
2V1

�+1 (τ/θ)

)
; (4.3.55)

�(m)(τ ) = n2 �(m)∗ (2V1)
1

�−1

(
(� − 1)Q

� + 1

) 2�
�−1

e− 2�
√

2V1
�+1 (τ/θ) + O

(
e−2

√
2V1 (τ/θ)

)
. (4.3.56)

Thus, for τ → +∞ the following phenomena occur with exponential speed: the scale factor 
diverges, the field behaves like a cosmological constant (w(φ)(τ ) → −1) and the field energy 
density dominates on matter density.

4.3.5. Some numerical examples
Let us now restrict the attention to realistic, 3-dimensional scenarios; to this purpose, we put 

(cf. Eq. (4.1.62))

n = 3 , �(m)∗ = 0.308 . (4.3.57)

In the sequel we consider two exemplary configurations corresponding, respectively, to the fol-
lowing choices of the parameters �, V1, V2 which characterize the potential V(ϕ) of Eq. (4.3.2):

l = 2 , V1 = 1 , V2 = 0.1 ; (4.3.58)

l = 2 , V1 = 1 , V2 = 103 . (4.3.59)

Making reference to Eq. (4.3.12), we specify the energies of the two Lagrangian subsystems 
setting

F = 10 , E = F + n2 �
(m)∗

2
= 11.386 . (4.3.60)

Furthermore, keeping in mind the upper bound in Eq. (4.3.21) we choose
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Fig. 16. Plot of x(t), with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and either Eq. (4.3.58) or Eq. (4.3.59). 
Recall that tmax = 2.0782 ....

Y = 0.1 . (4.3.61)

Let us remark that on account of Eqs. (4.3.21)(4.3.22), the above choices (4.3.57)-(4.3.61) com-
pletely determine the initial data:

x(0) = y(0) = Y = 0.1 , (4.3.62)

ẋ(0)=
√

2

�+1

√
E+V1 Y 2� = 1.5906 ... ,

ẏ(0)=
√

2

�+1

√
F−V2 Y 2� =

{
1.4907 ... for V2 = 0.1,

1.4832 ... for V2 = 103.

Concerning the final time tmax and the inversion time t∗ described, respectively, by Eqs. (4.3.25)
and (4.3.34)(4.3.37), let us point out that the two cases (4.3.58)(4.3.59) (together with the other 
choices specified above) describe qualitatively different scenarios. In fact, tmax = 2.0782 ... for 
V1 = 1 (and any V2), while t∗ = 2.7140 ... for V2 = 0.1 and t∗ = 0.2109 ... for V2 = 103 (inde-
pendently of V1). Thus, we have

tmax < t∗ for V1 = 1, V2 = 0.1 , (4.3.63)

tmax > t∗ for V1 = 1, V2 = 103 . (4.3.64)

Figs. 16 and 17 give plots of the Lagrangian coordinates x(t), y(t) for t ∈ (0, tmax). Especially, 
Fig. 17 makes evident that y(t) is strictly increasing for t ∈ (0, tmax) if �, V1, V2 are fixed as in 
Eq. (4.3.58), while y(t) oscillates if �, V1, V2 are as in Eq. (4.3.59). This fact is in agreement 
with the previous considerations related to Eqs. (4.3.63)(4.3.64).
Figs. 18–29 represent the observables a(τ), w(φ)(τ ), �(m)(τ ) as functions of τ/θ . For each 
one of these observables we consider the choices (4.3.57)(4.3.60)(4.3.61) and both choices 
(4.3.58)(4.3.59) for the involved parameters; in addition, for each one of the previous choices we 
consider two possible ranges for τ/θ , corresponding in terms of the coordinate time t to the inter-
vals (0, tmax/2) (figures with an odd numbering) and (0, ϑ tmax) (figures with an even number-
ing), with ϑ = 0.999 so that τ/θ ∈ (0, 12.8673 ...) in the case (4.3.58) and τ/θ ∈ (0, 14.0804 ...)
in the case (4.3.59). As a matter of fact, all these figures were obtained plotting the curves 
t �→ (τ (t)/θ, a(t)), (τ (t)/θ, w(φ)(t)), (τ (t)/θ, �(m)(t)) for t ∈ (0, tmax/2) or t ∈ (

0, ϑtmax

)
.
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Fig. 17. Plot of y(t), with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58) (in red) or (4.3.59) (in blue). 
Recall that tmax = 2.0782 ....

Fig. 18. a(τ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58).

Fig. 19. a(τ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58).
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Fig. 20. w(φ)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58).

Fig. 21. w(φ)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58).

Fig. 22. �(m)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58).
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Fig. 23. �(m)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.58).

Fig. 24. a(τ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.59).

Fig. 25. a(τ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.59).
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Fig. 26. w(φ)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.59).

Fig. 27. w(φ)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.59).

Fig. 28. �(m)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.59).
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Fig. 29. �(m)(τ ) as a function of τ/θ , with parameters fixed as in Eqs. (4.3.57)(4.3.60)(4.3.61) and (4.3.59).
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Appendix A. On the setting of Section 2

We consider the spacetime metric (2.2.5) and the coordinate system (2.2.6) (recalling that 
Greek indexes range from 0 to n, while Latin indexes range from 1 to n). Moreover, we make all 
the assumptions stated in Section 2 about the scalar field and the matter fluid.

The metric gμν From Eq. (2.2.5) we infer (for i, j = 1, ..., n)

g00 = − θ2 e2B , g0i = gi0 = 0 , gij = e2A/n hij . (A.1)

Recall that A, B are functions of x0 ≡ t , while the coefficients hij are functions of the space co-
ordinates (xi) ≡ x. For future use, let us mention that g := det(gμν) can be expressed as follows 
in terms of h := det(hij ) >0:

g = − θ2e2A+2B h . (A.2)
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Ricci tensor Rμν and scalar curvature R Given the metric (A.1), these are (i, j =1, ..., n):

R00 = − Ä+ Ȧ Ḃ − 1

n
Ȧ2 , Rij =

[
1

n
e2A/n−2B (Ä+Ȧ2− Ȧ Ḃ) + (n − 1) k

]
hij

θ2 ,

R0i = Ri0 = 0 ; R = e−2B

θ2

(
2Ä− 2ȦḂ + n + 1

n
Ȧ2

)
+ n(n − 1) k

θ2 e−2A/n .

(A.3)

Note that (n − 1) k hij /θ
2 = (n − 1) k hij is the Ricci tensor of the Riemannian manifold 

(Mn
k , hij ).

Stress-energy tensor for the scalar field Eqs. (2.1.4)(2.2.9) imply

T (φ)
μν = n − 1

nκ2
n

[
∂μϕ ∂νϕ − 1

2
gμν ∂αϕ ∂αϕ − 1

θ2 gμνV(ϕ)

]
. (A.4)

Since ϕ depends only on t as indicated in Eq. (2.2.10) and gμν is as in Eq. (A.1), for i, j = 1, ..., n
we have

T (φ)
00 = n − 1

nκ2
n

(
1

2
ϕ̇2 + e2B V(ϕ)

)
, T (φ)

0i = T (φ)
i0 = 0 ,

T (φ)
ij = n − 1

nκ2
nθ2

(
1

2
ϕ̇2 − e2B V(ϕ)

)
e2A/n−2B hij .

(A.5)

Comparing this result with Eq. (2.2.8) for Uμ and Eq. (A.1) for gμν , it follows that T (φ)
μν can 

be written in the fluid-like form

T (φ)
μν = (

p(φ) + ρ(φ)
)
Uμ Uν + p(φ) gμν , (A.6)

with p(φ), ρ(φ) as in Eq. (2.2.11).

Stress-energy tensor for the matter fluid This has the form (2.1.5), where the pressure and 
density are related by the equation of state p(m) = w ρ(m) (see Eq. (2.1.10)). Using Eq. (2.2.8) for 
Uμ and Eq. (A.1) for gμν , we obtain

T (m)
00 = θ2 e2Bρ(m) , T (m)

0i = T (m)
i0 = 0 , T (m)

ij = w e2A/nρ(m) hij ; (A.7)

recall that, according to (2.2.10), ρ(m) depends only on t .

Conservation law for the stress-energy tensor of the matter fluid Let ∇μ be the covariant deriva-
tive associated to the metric (A.1); then, from Eq. (A.7) for T (m)

μν we get the following:

∇μT (m)μ
0 = −E(m) , ∇μT (m)μ

i = 0 ; E(m) := ρ̇(m)+ (w + 1) Ȧρ(m) . (A.8)

So, the conservation law ∇μT (m)μ
ν =0 is equivalent to E(m) =0; clearly, the latter relation holds 

if and only if ρ(m)(t) =ρ
(m)∗ e−(w+1)A(t) for some constant ρ(m)∗ , which can be written in the form 

(2.2.13).
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Einstein equations Let us consider the Einstein equations (2.1.3), i.e.,

Eμν := 0 , Eμν := Rμν − 1

2
gμνR − κ2

n

(
T (φ)

μν + T (m)
μν

)
. (A.9)

From Eqs. (A.3)(A.5)(A.7) for Rμν , R, T (φ)
μν , T (m)

μν and (2.2.13) for ρ(m), we infer (i, j =
1, ..., n):

E00 = n − 1

n
E , E0i = Ei0 = 0 , Eij = − n − 1

nθ2 e2A/n−2B Ahij , (A.10)

with A, E as in Eqs. (2.2.14)(2.2.15). Thus, if we assume Eq. (2.2.13) for ρ(m) (in agreement with 
the conservation law for T (m)

μν ), the Einstein equations are equivalent to A = 0, E = 0.

Evolution equation for the scalar field According to Eq. (2.1.6), this is �φ − V ′(φ) = 0. Let 
us recall that �φ = 1√|g| ∂μ

(√|g|gμν ∂νφ
)

with g := det(gμν). Expressing the metric and the 
corresponding determinant as in Eqs. (A.1)(A.2), the field φ and its potential V as in Eq. (2.2.9)
(involving the dimensionless equivalents ϕ, V) and finally recalling that ϕ depends only on t , we 
obtain

�φ − V ′(φ) = −
√

n − 1

n

e−2B

κn θ2 F , (A.11)

with F as in Eq. (2.2.16). Thus, the field equation (2.1.6) is equivalent to F = 0.

Evaluating the action functional on a history as above Let us consider the action functional 
S defined by Eq. (2.1.2), and evaluate it on a history of the type considered in the previous 
paragraphs, so that: the spacetime metric gμν is given by Eq. (A.1) (implying Eqs. (A.2) (A.3)
for the determinant g and the scalar curvature R); the scalar field φ depends only on t and is 
represented with the related potential as in Eq. (2.2.9); the matter density is given by Eq. (2.2.13). 
In this way we obtain (with h := det(hij ))

S = 1

κ2
n θ

∫
dt dnx

√
h(x)

[
eA−B

(
Ä− Ȧ Ḃ + n + 1

2n
Ȧ2 + n − 1

2n
ϕ̇2

)

− n − 1

n
eA+B V(ϕ) − n(n − 1)�

(m)∗
2

e−wA+B + n(n − 1) k

2
e

n−2
n

A+B
]

.

(A.12)

It is straightforward to put the above result in the form (2.3.2).

Appendix B. On the explicit solutions of subsection 4.2

This appendix contains some details on the derivation of the explicit expressions reported in 
subsection 4.2 for the solutions x(t), y(t) of the Lagrange equations (4.2.4)(4.2.5) fulfilling the 
condition x(t), y(t) > 0 stated in Eq. (4.2.3). Let us recall that −1 <w<1 (see Eq. (4.2.2)) and 
treat separately the cases V1>0, V1 = 0, V1<0.

B.1. The case V1 > 0

To begin with, let us recall that in this case Eqs. (4.2.4)(4.2.5) reduce, respectively, to 
Eqs. (4.2.9) (4.2.10). By elementary arguments one infers that any positive solution of Eq. (4.2.9)
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can be written in one of the following forms, after possibly a time translation t → t + const. and 
a time reflection t → −t :

x(t) = A sinh(ω t) for A > 0 and t ∈ (0,+∞) ; (B.1.1)

x(t) = A cosh(ω t) for A > 0 and t ∈ R ; (B.1.2)

x(t) = Aeω t for A > 0 and t ∈ R . (B.1.3)

Supposing that the time coordinate t has been fixed so that the solution of Eq. (4.2.9) takes 
one of the forms (B.1.1)(B.1.2)(B.1.3), we proceed to determine the corresponding solution of 
Eq. (4.2.10) (on the intervals mentioned above) starting from the familiar representation

y(t) = C cosh(ω t) + D sinh(ω t)

+ 1

ω

t∫
0

ds sinh
(
ω(t − s)

)[
(1 − w)V2 x(s)

1−w
1+w − w (1 − w)n2 �

(m)∗
2

x(s)−
1+3w
1+w

]
,

(B.1.4)

where C, D ∈ R are arbitrary constants. This representation is understood to hold for all values of 
w ∈ (−1, 1) granting the convergence of the integral over s ∈ (0, t); in cases (B.1.2)(B.1.3) there 
are no convergence problems, while in case (B.1.1) we must require 1−w

1+w
> −1 and − 1+3w

1+w
>

−1, which happens if and only if −1 < w < 0. Nevertheless, we shall see later that even in the 
case (B.1.1) the final result can be extended to all values w ∈ (−1, 1) by analytic continuation 
(see, especially, the remark at the end of this subsection).
Of course, the evaluation of the integral in Eq. (B.1.4) with x given by one of
Eqs. (B.1.1)(B.1.2)(B.1.3) can be reduced to the computation of the following integrals, for 
η = 1−w

1+w
or η = − 1+3w

1+w
:

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
sinhη(ω s) ,

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
coshη(ω s) ,

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
eηω s . (B.1.5)

On one hand, by basic trigonometric identities, for any ω, t > 0 we have the following relations, 
holding under the condition η > −1 that ensures the convergence of the forthcoming integrals 
(30):

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
sinhη(ω s)

= sinh(ω t)

ω

t∫
0

ds cosh(ω s) sinhη(ω s) − cosh(ω t)

ω

t∫
0

ds sinhη+1(ω s)

30 The last equality in (B.1.6) follows making the change of variable s = 1
ω arcsinh

(
sinh(ω t)

√
v
)

in the second integral 
of the preceding expression. The same change of variable is used to derive the last identity in Eq. (B.1.7).
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= sinhη+2(ω t)

ω2 (η + 1)
− cosh(ω t) sinhη+2(ω t)

2ω2

1∫
0

dv
vη/2√

1 + sinh2(ω t) v
. (B.1.6)

Similarly, for any ω, t > 0 and η ∈ R we get

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
coshη(ω s)

= − cosh(ω t)

ω

t∫
0

ds sinh(ω s) coshη(ω s) + sinh(ω t)

ω

t∫
0

ds coshη+1(ω s)

= cosh(ω t)
(
1 − coshη+1(ωt)

)
ω2 (η + 1)

+ sinh2(ω t)

2ω2

1∫
0

dv

(
1 + sinh2(ω t) v

)η/2

√
v

. (B.1.7)

The integrals over v ∈ (0, 1) appearing in Eqs. (B.1.6)(B.1.7) can be expressed in terms of hy-
pergeometric functions 2F1(α, β, γ ; z), recalling the integral identity (see, e.g., [27, Eqs. 15.1.2 
and 15.6.1])

1∫
0

dv
vβ−1(1−v)γ−β−1

(1 − z v)α
= �(β)�(γ −β)

�(γ )
2F1(α,β, γ ; z) for α,β, γ, z∈R with γ>β>0 .

(B.1.8)

Using the above identity with α = 1/2, β = 1 + η/2, γ = 2 + η/2 and z = − sinh2(ω t) (along 
with the basic relations �(1) = 1, �(2 + η/2) = (1 + η/2) �(1 + η/2) ), from Eq. (B.1.6) we 
infer

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
sinhη(ω s)

= sinhη+2(ω t)

ω2

[
1

η + 1
− cosh(ω t)

η + 2
2F1

(
1

2
,1 + η

2
,2 + η

2
; − sinh2(ω t)

)]
. (B.1.9)

Likewise, using the identity (B.1.8) with α = −η/2, β = 1/2, γ = 3/2 and z = − sinh2(ω t)

(along with the relations �(1/2)/�(3/2) = 2 and 2F1(β, α, γ ; z) = 2F1(α, β, γ ; z) ), from 
Eq. (B.1.7) we infer

1

ω

t∫
0

ds sinh
(
ω (t − s)

)
coshη(ω s)

= 1

ω2

[
cosh(ω t)

(
1 − coshη+1(ωt)

)
η + 1

+ sinh2(ω t) 2F1

(
1

2
,−η

2
,

3

2
;− sinh2(ω t)

)]
.

(B.1.10)

On the other hand, for any ω, t > 0 and η ∈ R, by direct computations we get
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1

ω

t∫
0

ds sinh
(
ω (t − s)

)
eηω s = cosh(ω t) + η sinh(ω t) − eηω t

(1 − η2)ω2 . (B.1.11)

Let us remark that the right-hand sides of Eqs. (B.1.10)(B.1.11) must be intended in a natural 
limit sense for η = ±1; more precisely, we understand that

1 − coshη+1(ω t)

1 + η

∣∣∣∣
η=−1

:= lim
η→−1

1 − coshη+1(ω t)

1 + η
= − log

(
cosh(ω t)

)
,

(B.1.12)

cosh(ω t) + η sinh(ω t) − eηω t

1 − η2

∣∣∣∣
η=±1

:= lim
η→±1

cosh(ω t) + η sinh(ω t) − eηω t

1 − η2

= ± ω t e±ω t − sinh(ω t)

2
. (B.1.13)

Summing up, Eqs. (B.1.1)(B.1.2)(B.1.3) for x(t) and the corresponding expressions for y(t)

descending from Eqs. (B.1.4) and (B.1.9) (B.1.10) (B.1.11) give rise to the explicit solutions 
(4.2.11) (4.2.12) (4.2.13) reported in the main text. Correspondingly, Eqs. (B.1.12)(B.1.13) ac-
count for Eqs. (4.2.16)(4.2.17).

A final remark on the solution (4.2.11) Let us recall that in all the previous manipulations 
yielding the expression (4.2.11) for y(t) to grant the convergence of the involved integrals we 
have assumed 1−w

1+w
> −1 and − 1+3w

1+w
> −1, which happens if and only if −1 < w < 0. However, 

after proving that the expression (4.2.11) for y(t) gives a solution of Eq. (4.2.10) for −1 < w < 0, 
by elementary consideration based on analytic continuation we can infer that the same holds on 
the entire region of analyticity w.r.t. w. Regarding this region, let us recall that for any fixed 
z ∈ (−∞, 1), 2F1(a, b, c ; z) is analytic w.r.t. the parameters a, b ∈ R and c ∈ R\{0, −1, −2, ...}
(see, e.g., [27]). In Eq. (4.2.11) there appear two hypergeometric terms with c = 3+w

2+2w
and c =

5+3w
2+2w

= 3+w
2+2w

+ 1, which are both different from 0, −1, −2, ... if and only if

w 	= −3 + 2h

1 + 2h
for all h ∈ {0,1,2, ...} ; (B.1.14)

so, Eq. (4.2.11) gives the general solution of Eq. (4.2.10) for all w as in Eq. (B.1.14) and, in 
particular, for all −1 < w < 1.

B.2. The case V1 = 0

In this case Eqs. (4.2.4)(4.2.5) respectively reduce to Eqs. (4.2.24) (4.2.25). It appears that, 
after a time translation t → t +const. and possibly a time reflection t → −t , any positive solution 
of Eq. (4.2.24) can be written in one of the following ways:

x(t) = At for A > 0 and t ∈ (0,+∞) ; (B.2.1)

x(t) = A for A > 0 and t ∈ (−∞,+∞) . (B.2.2)

The related solutions of Eq. (4.2.25) can be easily derived via the following integral rep-
resentation, evaluating the basic integrals which result upon substitution of the expressions 
(B.2.1)(B.2.2) for x(t):
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y(t) = C0 + D0 t +
t∫

t0

ds

s∫
t0

ds′
[
(1 − w)V2 x(s′)

1−w
1+w − w(1 − w)n2 �

(m)∗
2

x(s′)−
1+3w
1+w

]
,

(B.2.3)

where C0, D0 ∈ R are integration constants and t0 ∈ (0, +∞) is fixed arbitrarily.
On one hand, from Eqs. (B.2.1)(B.2.3) we infer

y(t) = C + D t + V2 (1 + w)2 (1 − w)

2 (3 + w)
A

1−w
1+w t

3+w
1+w + n2 (1 + w)2 �

(m)∗
4

A− 1+3w
1+w t

1−w
1+w ,

C := C0 + V2 (1 − w2)

3 + w
A

1−w
1+w t

3+w
1+w

0 − n2 (1 + w)w �
(m)∗

2
A− 1+3w

1+w t
1−w
1+w

0 ,

D := D0 − V2 (1 − w2)

2
A

1−w
1+w t

2
1+w

0 − n2 (1 − w2)�
(m)∗

4
A− 1+3w

1+w t
− 2w

1+w

0 . (B.2.4)

On the other hand, Eqs. (B.2.2)(B.2.3) imply

y(t) = C + D t + t2

2

(
(1 − w)V2 A

1−w
1+w − n2

2
(1 − w)w �(m)∗ A− 1+3w

1+w

)
,

C := C0 + t2
0

2

(
(1 − w)V2 A

1−w
1+w − n2

2
(1 − w)w �(m)∗ A− 1+3w

1+w

)
,

D := D0 − t0

(
(1 − w)V2 A

1−w
1+w − n2

2
(1 − w)w �(m)∗ A− 1+3w

1+w

)
. (B.2.5)

The expressions (B.2.1)(B.2.2) for x(t) and (B.2.4)(B.2.5) for y(t) are patently equivalent to the 
explicit solutions (4.2.26)(4.2.27) reported in the main text.

B.3. The case V1 < 0

In this case Eqs. (4.2.4)(4.2.5) reduce, respectively, to Eqs. (4.2.34)(4.2.35). By direct inspec-
tion it appears that any positive solution of Eq. (4.2.34) can be written as follows, after a time 
translation t → t + const.:

x(t) = A sin(ω t) for A > 0 and t ∈ (0,π/ω) . (B.3.1)

For the general solution of Eq. (4.2.35) (on the interval mentioned above), we have the familiar 
representation

y(t) = C cos(ω t) + D sin(ω t)

+ 1

ω

t∫
0

ds sin
(
ω (t − s)

)[
V2 (1 − w)x(s)

1−w
1+w − w(1 − w)n2 �

(m)∗
2

x(s)−
1+3w
1+w

]
,

(B.3.2)

where C, D∈R are integration constants. This representation is understood to hold for all values 
of w∈(−1, 1) granting the convergence of the integral over s∈(0, t). As in a similar situation 
occurring in subsection B.1, convergence holds if and only if 1−w

1+w
> −1 and − 1+3w

1+w
> −1, 

which is equivalent to −1 < w < 0; however, as in the cited subsection the final result will be 
extendable to all −1 < w < 1.
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The calculation of the integral in Eq. (B.3.2) with x as in Eq. (B.3.1) is reduced to the evaluation 
of the subsequent integral, for η = 1−w

1+w
or η = − 1+3w

1+w
:

1

ω

t∫
0

ds sin
(
ω (t − s)

)
sinη(ω s) . (B.3.3)

By arguments similar to those mentioned in subsection B.1, for any ω>0, 0 <t<π/ω and η>−1
we have (31)

1

ω

t∫
0

ds sin
(
ω (t − s)

)
sinη(ω s)

= sin(ω t)

ω

t∫
0

ds cos(ω s) sinη(ω s) − cos(ω t)

ω

t∫
0

ds sinη+1(ω s)

= sinη+2(ω t)

ω2 (η + 1)
− cos(ω t) sinη+2(ω t)

2ω2

1∫
0

dv
vη/2√

1 − sin2(ω t) v
. (B.3.4)

Also in this case, the remaining integral can be expressed in terms of the hypergeometric function 
2F1, resorting to the identity (B.1.8). More precisely, employing the cited identity with α =
1/2, β = 1 + η/2, γ = 2 + η/2 and z = sin2(ω t) (along with the basic relations �(1) = 1, 
�(2 + η/2) = (1 + η/2) �(1 + η/2) ), we obtain

1

ω

t∫
0

ds sin
(
ω (t − s)

)
sinη(ω s)

= sinη+2(ω t)

ω2

[
1

η + 1
− cos(ω t)

η + 2
2F1

(
1

2
,1 + η

2
,2 + η

2
; sin2(ω t)

)]
. (B.3.5)

Eq. (B.3.1) for x(t) and the corresponding expression for y(t) deduced from Eqs. (B.3.2)(B.3.5)
give rise to the explicit solution (4.2.36) reported in the main text.
Considerations of analyticity analogous to those reported in the concluding remark of subsec-
tion B.1 allow us to infer that, although in principle the expression (4.2.36) for y(t) would hold 
only for −1 < w < 0, a posteriori it holds for any w 	= − 3+2h

1+2h
(h = 0, 1, 2, . . .) (cf. Eq. (B.1.14)), 

and in particular for all −1 < w < 1 .

Appendix C. Upper and lower bounds for the integral (4.2.89)

Let us refer to the framework of subsection 4.2.3 and consider the expression for cosmic time 
given in Eq. (4.2.89). With an obvious change of integration variable, this can be written as

τ(t)/θ = 1

ω

ω t∫
0

ds

√
1 + ζ

cosh s√
sinh s

for t ∈ (0,+∞) . (C.1)

31 The condition η > −1 is required to ensure the convergence of the integral in Eq. (B.3.3). Correspondingly, let us note 
that the last identity in the cited equation can be derived making the change of variable s = 1 arccos

(√
1 − sin2(ω t) v

)
.
ω
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From here to the end of this Appendix we assume ζ > 0. Our goal is to derive from Eq. (C.1)
upper and lower bounds T ±

ζ (t) for τ(t)/θ , expressed via elementary functions. To this purpose 
let us introduce the following pair of functions, for z ∈ (0, +∞) :

P(z) :=
√√

z + z

(
1

2
+ √

z

)
− 1

4
log

(
1 + 2

√
z + 2

√√
z + z

)
; (C.2)

Q(z) := 2
√

z + 1 + log

(√
z + 1 − 1√
z + 1 + 1

)
. (C.3)

To go on, let us fix two real parameters �, L such that

0 < � < log
(
1+√

2
)
< L < ∞ , (C.4)

and set

M�,L := max

{
cosh�√

sinh�
,

coshL√
sinhL

}
. (C.5)

Finally let us define two continuous, piecewise smooth functions T ±
ζ on (0, +∞), setting:

T −
ζ (t):=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ 2

ω
P
(

ω

ζ 2 t

)
for 0 < t � �/ω ,

ζ 2

ω
P
(

�

ζ 2

)
+

√
1+ζ

√
2

(
t − �

ω

)
for �/ω < t � L/ω ,

ζ 2

ω
P
(

�

ζ 2

)
+

√
1+ζ

√
2

L − �

ω

+ 2

ω

[
Q
(

ζ√
2

eω t/2
)

−Q
(

ζ√
2

eL/2
)]

for L/ω < t <+∞;
(C.6)

T +
ζ (t):=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ 2 � cosh2�

ω sinh�
P
(

ω sinh�

ζ 2 � cosh2�
t

)
for 0 < t � �/ω ,

ζ 2 � cosh2�

ω sinh�
P
(

sinh�

ζ 2 cosh2�

)
+√

1+ζM�,L

(
t − �

ω

)
for �/ω < t � L/ω ,

ζ 2 � cosh2�

ω sinh�
P
(

sinh�

ζ 2 cosh2�

)
+√

1+ζM�,L

L − �

ω

+ 2

ω

[
Q
(
ζ coshL√

sinhL
e(ω t −L)/2

)
−Q

(
ζ coshL√

sinhL

)]
for L/ω < t <+∞ .

(C.7)

We now claim that

T −
ζ (t) � τ(t)/θ � T +

ζ (t) for t ∈ (0,+∞) . (C.8)

Most of this Appendix is devoted to the proof of this statement. After the end of the proof, in the 
last two paragraphs of the Appendix we discuss the asymptotics of T ±

ζ (t) for small and large t , 
and present a numerical appreciation of these upper and lower bounds.



96 D. Fermi et al. / Nuclear Physics B 957 (2020) 115095
Preliminaries to the proof of Eq. (C.8) Let us consider the function appearing under the square 
root in Eq. (C.1), namely,

J : (0,+∞) → (0,+∞) , J (s) := cosh s√
sinh s

. (C.9)

It can be easily checked that J is a convex function, attaining its global minimum at a point 
s∗ ∈ (0, +∞); more precisely, we have (asinh is the inverse hyperbolic sine function)

s∗ := asinh(1) = log
(
1+√

2
)
, J (s∗) = min

s ∈ (0,+∞)
J (s) = √

2 . (C.10)

Let us note that s∗ appears in the inequalities (C.4) regarding the parameters �, L. The following 
bounds can be deduced by elementary arguments (32):

1√
s
� J (s) �

√
� cosh2�

sinh�

1√
s

for 0 < s � � ; (C.11)

√
2 � J (s) � M�,L for �� s � L ; (C.12)

1√
2

es/2 � J (s) � coshL

eL/2
√

sinhL
es/2 for L� s < +∞ . (C.13)

We now proceed to prove Eq. (C.8), analyzing separately the cases 0 <t��/ω, �/ω<t�L/ω

and L/ω<t�+∞.

Proof of Eq. (C.8) for 0<t��/ω For the said values of t , from Eqs. (C.1)(C.11) we infer

1

ω

ω t∫
0

ds

√
1 + ζ√

s
� τ(t)/θ � 1

ω

ω t∫
0

ds

√√√√
1 +

√
� cosh2�

sinh�

ζ√
s

, (C.14)

which by obvious changes of the integration variables can be rephrased as

ζ 2

ω

ω t/ζ 2∫
0

dσ

√
1 + 1√

σ
� τ(t)/θ � ζ 2 � cosh2�

ω sinh�

(ω t sinh�)/(ζ 2� cosh2�)∫
0

dσ

√
1 + 1√

σ
. (C.15)

Then, noting the basic identity

z∫
0

dσ

√
1+ 1√

σ
=

√√
z + z

(
1

2
+ √

z

)
− 1

4
log

(
1+ 2

√
z + 2

√√
z + z

)
for any z > 0 ,

(C.16)

and recalling the definition of P given in Eq. (C.2), we obtain

ζ 2

ω
P
(

ω

ζ 2 t

)
� τ(t)/θ � ζ 2 � cosh2�

ω sinh�
P
(

ω sinh�

ζ 2 � cosh2�
t

)
for 0 < t � �/ω . (C.17)

32 Let us give a few more details on the derivation of Eqs. (C.11)(C.12)(C.13). To prove Eq. (C.11) it suffices to note 
that the map s ∈ (0, +∞) �→ √

s J (s) is strictly increasing and further fulfills 
√

s J (s) → 1+ for s → 0+ . Eq. (C.12)
follows straightforwardly from the features of J (s) mentioned in the main text. Finally, to infer Eq. (C.13) just notice 
that the map s ∈ (0, +∞) �→ e−s/2 J (s) is strictly decreasing and such that e−s/2 J (s) → (1/

√
2)+ for s → +∞.
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The upper and lower bounds in Eq. (C.17) are just T ±
ζ (t) (for the specified values of t).

Proof of Eq. (C.8) for �/ω<t�L/ω Splitting the integral in the representation (C.1) for τ(t)/θ

at s = � and using the bounds (C.11)(C.12), for the values of t under analysis we obtain

1

ω

�∫
0

ds

√
1 + ζ√

s
+ 1

ω

ω t∫
�

ds

√
1 + ζ

√
2

� τ(t)/θ � 1

ω

�∫
0

ds

√√√√
1 +

√
� cosh2�

sinh�

ζ√
s

+ 1

ω

ω t∫
�

ds
√

1 + ζ M�,L .

(C.18)

Now, evaluating the integrals for s ∈ (0, �) with the same methods presented in the previous 
paragraph, and computing explicitly the trivial integrals for s∈(�, ω t) we readily get

ζ 2

ω
P
(

�

ζ 2

)
+
√

1+ζ
√

2

(
t − �

ω

)
� τ(t)/θ � ζ 2 � cosh2�

ω sinh�
P
(

sinh�

ζ 2 cosh2�

)

+√
1+ζM�,L

(
t − �

ω

)
for �/ω � t � L/ω . (C.19)

The upper and lower bounds in Eq. (C.19) are just T ±
ζ (t) (for the considered values of t).

Proof of Eq. (C.8) for L/ω<t<+∞ Let us separate the integral in Eq. (C.1) at s = � and at 
s = L; then, recalling the bounds (C.11)(C.12)(C.13), for the considered values of t we obtain

1

ω

�∫
0

ds

√
1 + ζ√

s
+ 1

ω

L∫
�

ds

√
1 + ζ

√
2 + 1

ω

ω t∫
L

ds

√
1 + ζ√

2
es/2

� τ(t)/θ � (C.20)

1

ω

�∫
0

ds

√√√√
1 +

√
� cosh2�

sinh�

ζ√
s

+ 1

ω

L∫
�

ds
√

1 + ζ M�,L+ 1

ω

ω t∫
L

ds

√
1 + ζ

coshL

eL/2
√

sinhL
es/2 .

The integrals for s ∈ (0, �) and for s ∈ (�, L) can be treated as described in the previous para-
graph. On the other hand, the integrals for s∈(L, ω t) can both be recast in the following form, 
performing the change of the integration variable σ := η es/2 with η = ζ√

2
and η = ζ coshL

eL/2
√

sinhL
, 

respectively:

ω t∫
L

ds

√
1 + η es/2 = 2

η eω t/2∫
η eL/2

dσ

√
1 + σ

σ
= 2

[
Q
(
η eω t/2)−Q

(
η eL/2)] , (C.21)

where Q is defined as in Eq. (C.3). Summing up, the above arguments allow us to infer that

ζ 2

P
(

�

2

)
+
√

1+ζ
√

2
L − � + 2

[
Q
(

ζ√ eω t/2
)

−Q
(

ζ√ eL/2
)]
ω ζ ω ω 2 2
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� τ(t)/θ � (C.22)

ζ 2 � cosh2�

ω sinh�
P
(

sinh�

ζ 2 cosh2�

)
+√

1+ζM�,L

L − �

ω

+ 2

ω

[
Q
(
ζ coshL√

sinhL
e(ω t −L)/2

)
−Q

(
ζ coshL√

sinhL

)]
,

for L/ω < t < +∞, where the obtained upper and lower bounds coincide with T ±
ζ (t).

The arguments described in the previous paragraphs prove Eq. (C.8) for all t ∈ (0, +∞).

Asymptotics of T ±
ζ (t) for small and large t The asymptotic behavior of P(z), Q(z) for z → 0+

and z → +∞ is readily derived from the definitions (C.2)(C.3). Especially, note that

P(z) = 4

3
z3/4 + O

(
z5/4) for z → 0+, Q(z) = 2

√
z + O

(
z−1/2) for z → +∞ .

(C.23)

From here and from Eqs. (C.6) (C.7) one infers

T −
ζ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

3

(
ζ 2

ω

)1/4

t3/4 + O
(
t5/4) for t → 0+ ,

27/4 ζ 1/2

ω
e

1
4 ω t + O(1) for t → +∞ ;

(C.24)

T +
ζ (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4

3

(
ζ 2 � cosh2�

ω sinh�

)1/4

t3/4 + O
(
t5/4) for t → 0+ ,

4

ω

(
ζ coshL

eL/2
√

sinhL

)1/2

e
1
4 ω t + O(1) for t → +∞ .

(C.25)

By comparison with Eq. (4.2.97) for τ(t)/θ , we see that T −
ζ (t) has just the same asymptotics as 

τ(t)/θ both for small and large t ; on the other hand, the asymptotics of T +
ζ (t) and τ(t)/θ are 

very similar in both limits.

A numerical test Let us consider the following prescriptions for the parameters of the model, 
which are used in the final paragraph of subsection 4.2.3 to get a realistic model of inflation:

ζ = e−100 � 3.72008 ...×10−44 , �(m)∗ = 0.9 , V = 1 , ω = 2
√

2V

3
� 0.9428 ... .

(C.26)

To determine the upper and lower bounds T ±
ζ of Eqs. (C.6)(C.7), let us fix as follows the param-

eters �, L appearing therein (and in Eq. (C.4)):

� = 1

2
log

(
1+√

2
) � 0.4406 ... , L = 2 log

(
1+√

2
) � 1.7627 ... . (C.27)

Fig. 30 and 31 are plots of the functions T ±
ζ over different time intervals (namely: for t ∈

(0, 10−90) and for t ∈ (0, 240), respectively). The graphs of T ±
ζ are very close in Fig. 30, and 

practically coincide in Fig. 31. Let us recall that, according to Eq. (C.8), we have T −(t) �
ζ
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Fig. 30. Plot of T −
ζ (t) (in red) and T +

ζ (t) (in blue).

Fig. 31. Plot of T −
ζ (t) (in red) and T +

ζ (t) (in blue).

τ(t)/θ � T +
ζ (t) for all t > 0. For t in the ranges of the two figures these bounds, being very 

close, determine τ(t)/θ up to a very small uncertainty; in particular, τ(t)/θ is approximated with 
excellent accuracy by the mean value (1/2)(T −

ζ + T +
ζ )(t). We have used this approximation of 

τ(t)/θ (with �, L as in Eq. (C.27)) for all the computations in the final paragraph of subsection 
4.2.3 (and in particular, to construct Figs. 8–15). To conclude, let us remark that Fig. 31 exhibits 
the approximate linear dependence τ(t)/θ � t for positive (not too large) values of the coordinate 
time t , in accordance with the expansion given in Eq. (4.2.101).

Appendix D. On the model of subsection 4.3

Let us keep all the assumptions and notations of the cited subsection; in particular, we consider 
a motion t �→ x(t), y(t) with initial conditions as in (4.3.21) (4.3.22). Hereafter we justify some 
technical statements appearing without proof in subsection 4.3.

D.1. Proof of Eq. (4.3.39): x(t) > 0 and −x(t) < y(t) < x(t) for all t ∈ (0, tmax)

The statement in Eq. (4.3.39) about x(t) is obvious, since x(0) = Y > 0 and t �→ x(t) is a 
strictly increasing function. In the rest of this subsection we show how to derive the inequalities 
−x(t) < y(t) < x(t) for t ∈ (0, tmax). Our arguments also involve the inversion time t∗ of Eqs. 
(4.3.34) (4.3.37); we will treat separately the cases tmax � t∗ and tmax > t∗.
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i) tmax � t∗ . For any t ∈ (0, tmax), we have Y < x(t), Y < y(t) < (F/V )1/(2�) and
Eqs. (4.3.29)(4.3.36) give

x(t)∫
Y

dx√
E+V1x2�

=
√

2

� + 1
t =

y(t)∫
Y

dy√
F−V2 y2�

. (D.1.1)

Clearly, the above chain of identities holds true if and only if

x(t)∫
Y

dz√
E+V1z2�

=
y(t)∫
Y

dz√
F−V2 z2�

for all t ∈ (0, tmax) . (D.1.2)

On the other hand, since 1/
√
E+V1z2� < 1/

√
F−V2 z2� for all z∈ [Y, (F/V2)

1
2� ), the above 

identity (D.1.2) is certainly violated if x(t) � y(t). This suffices to infer that

x(t) > y(t) > Y for all t ∈ (0, tmax) . (D.1.3)

This also implies y(t) > Y > 0 > −x(t). Therefore, summing up we have x(t) > y(t) > −x(t), 
as required.
ii) tmax > t∗ . In this case, the relations written in Eqs. (4.3.29)(4.3.36)(D.1.2) hold true for 
t ∈ (0, t∗) and, by continuity, even for t = t∗. Then, repeating the considerations which led to 
Eq. (D.1.3), we deduce

x(t) > y(t) > Y for all t ∈ (0, t∗] . (D.1.4)

The above inequalities also imply y(t) > Y > 0 > −x(t), which allows us to infer

−x(t) < y(t) < x(t) for all t ∈ (0, t∗] . (D.1.5)

Finally, let t ∈ (t∗, tmax). Recalling that x(t) is a strictly increasing function, and using 
Eq. (D.1.5) at t = t∗ we infer x(t) > x(t∗) > y(t∗) = (F/V2)

1/(2�); on the other hand, from 
Eq. (4.3.15) we know that in any case −(F/V2)

1/(2�) � y(t) � (F/V2)
1/(2�). Summing up, we 

obtain

−x(t) < y(t) < x(t) for all t ∈ (t∗, tmax) (D.1.6)

and this fact, along with Eq. (D.1.5), ensures −x(t) < y(t) < x(t) for all t ∈ (0, tmax).

D.2. Proof of Eq. (4.3.52): asymptotic behavior of τ(t) for t → t−max

Let us consider the integral representation of τ(t) given in Eq. (4.3.7). Due to
Eqs. (4.3.32)(4.3.38), the integrand function therein has the asymptotic expansion

(
x2(t ′)−y2(t ′)

) �−1
2 = � + 1

(� − 1)
√

2V1
(tmax− t ′)−1

(
1+ O

(
(tmax − t ′)

2
�−1

))
for t ′ → t−max .

(D.2.1)

We now re-write Eq. (4.3.7) isolating the dominant contribution for t → t− , which gives
max
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τ(t)/θ =
t∫

0

dt ′
(
x2(t ′) − y2(t ′)

) �−1
2 (D.2.2)

=
t∫

0

dt ′ � + 1

(� − 1)
√

2V1
(tmax − t ′)−1

+
t∫

0

dt ′
[(

x2(t ′) − y2(t ′)
) �−1

2 − � + 1

(� − 1)
√

2V1
(tmax − t ′)−1

]
.

Computing the first integral above and splitting the second one in two parts, we obtain

τ(t)/θ = � + 1

(� − 1)
√

2V1
log

(
tmax

tmax − t

)

+
⎛
⎝ tmax∫

0

−
tmax∫
t

⎞
⎠dt ′

[(
x2(t ′) − y2(t ′)

) �−1
2 − � + 1

(� − 1)
√

2V1
(tmax − t ′)−1

]
.

(D.2.3)

Let us write [...] for the expression appearing above between square brackets; according to 

Eq. (D.2.1) we have [...] = O
(
(tmax − t ′)−1+ 2

�−1
)

for t ′ → t−max , thus 
∫ tmax

0 dt ′[...] is conver-

gent and 
∫ tmax

t
dt ′[...] = ∫ tmax

t
dt ′O

(
(tmax − t ′)−1+ 2

�−1
) = O

(
(tmax − t)

2
�−1

)
for t → t−max . In 

conclusion,

τ(t)/θ = � + 1

(� − 1)
√

2V1
log

(
tmax

tmax − t

)
(D.2.4)

+
tmax∫
0

dt ′
[(

x2(t ′)−y2(t ′)
) �−1

2 − � + 1

(� − 1)
√

2V1
(tmax −t ′)−1

]
+O

(
(tmax −t)

2
�−1

)
,

as stated in Eq. (4.3.52).
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