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Abstract

Given a Markovian Brownian martingale Z, we build a process X which is a martingale in its
own filtration and satisfies X1 = Z1. We call X a dynamic bridge, because its terminal value Z1

is not known in advance. We compute explicitly its semimartingale decomposition under both
its own filtration FX and the filtration FX,Z jointly generated by X and Z. Our construction is
heavily based on parabolic PDE’s and filtering techniques. As an application, we explicitly solve
an equilibrium model with insider trading, that can be viewed as a non-Gaussian generalization
of Back and Pedersen’s [3], where insider’s additional information evolves over time.
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1 Introduction

Consider two independent Brownian motions B and β over the time interval [0, 1] and define a
signal process Z as the unique strong solution to

dZt = σ(t)a(V (t), Zt)dβt,

where σ : [0, 1] 7→ R+ is a deterministic function, V (t) := c +
∫ t

0 σ
2(s) ds for some constant c > 0,

and a : [0, 1] × R 7→ R is regular enough for ensuring the existence of a unique strong solution.
Moreover, σ, V and a are required to satisfy further regularity conditions precise statements of
which are given in Assumptions 2.1, 2.2 and 2.3.

We are interested in the construction of a Markov process X which is a martingale in its own
filtration and such that X1 = Z1. This construction will be performed adding a well-chosen drift to
a suitable Brownian martingale corresponding to B. Such a drift will be a nonlinear function of Zt
and Xt. Our goal is to obtain the Doob-Meyer decomposition of X under both filtrations FX and
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FX,Z , i.e. that generated by X itself and that generated jointly by X and the signal Z. We called
such a process a dynamic Markov bridge because it is Markov and especially because its terminal
value is not fixed in advance but it is dynamic itself, being the terminal value of the process Z.
This construction is obtained in Theorem 2.1, which is the main result of the mathematical part of
the paper.

This study has a two-fold motivation, probabilistic and financial. First, the purely probabilistic
one: in the paper by Föllmer et al. [11], a thorough investigation of this problem has been done
in the case a ≡ σ ≡ 1, where Z as well as X are Gaussian processes. More precisely, they studied
solutions X of SDE’s dXt = dBt + αtdt, where αt depends linearly on X and Z = β. They obtain
a characterization of such linear drifts αt making X a Brownian motion in its own filtration in
terms of Volterra kernels solutions to some integral equations, that can be reduced in some special
case to a Sturm-Liouville equation. Föllmer et al. were in turn motivated by the following natural
modification of the classical Brownian bridge dynamics

dXt = dBt +
βt −Xt

1− t
dt

where in the drift βt replaces β1 as in the classical “static” Brownian bridge. It has been shown
in [11] that X is still a bridge in the sense that X1 = β1 but it is not a Brownian motion in its
own filtration anymore. They then focused more on general linear drifts preserving the Brownian
property. Considering only linear drifts allows them to use the nice and powerful relation between
Gaussian processes and Volterra kernels. Few questions naturally arise from that work: What
happens if the signal Z is not necessarily Gaussian? Is it still possible to construct a “dynamic”
bridge X with the required properties? It turns out that it is still possible, but using completely
different techniques. Indeed, Z being not Gaussian anymore, one is lead to consider nonlinear drifts
to build the bridge, which makes impossible the use of Gaussian processes theory. However, the
Markov nature of the problem allows us to use techniques from parabolic PDEs and those from
filtering theory in order to carry out our analysis.

The second motivation – that we share with Föllmer et al. [11] – is a financial one: The dynamic
bridge X is the solution of a Kyle-Back type equilibrium model of a gradually informed insider
trading (see [2] for initial information and [3, 23, 9] for the dynamic information case). In such a
model, the insider observes a signal process (unknown to the market) Z as above with a ≡ 1 driven
by the Brownian motion β. She applies a well-chosen drift, modelling her strategy, to the Brownian
motion B in such a way that (i) the resulting process X ends up in Z1 and (ii) the distribution of the
process remains unchanged, i.e. X is again a Brownian motion in its own filtration. Condition (i)
guarantees that the strategy maximizes the insider’s expected gain. On the other hand, condition
(ii) means that the strategy of the insider, i.e. the drift, is “inconspicuous”, and this corresponds
to the notion of equilibrium as defined in [2, 3]. The reader is referred once more to the papers
[2, 3, 23, 9] for more financial as well as mathematical details. Our probabilistic construction of
the dynamic bridge X leads to an interesting generalization of such a model, where the signal
modelling insider’s dynamic information is not necessarily Gaussian. Even in this more general
framework, we are able to give an explicit solution for the equilibrium total demand and optimal
insider’s strategy in our main result of the financial part of the paper, Theorem 5.1. Interestingly,
the existence of a solution for insider’s maximization problem imposes a very precise structure on
the form of the signal volatility a(t, Zt) (see Section 5), resulting in the insider’s signal being a
function of a Gaussian process. This seems to indicate that a non-trivial generalization beyond a
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Gaussian setting is impossible. Nonetheless, we would like to stress the fact that while the financial
application forces the signal to be ‘almost-Gaussian’ as explained in Remark 5.5, the construction
we perform in Section 2 is much more general, since it includes signals which are not necessarily
Gaussian.

The paper is structured as follows: Section 2 contains the motivation and formal definition of
such a bridge. A new proof of Gaussian bridge construction is given in Section 3, while in the
Section 4 the general construction is proved. At the end of this section, we also give an application
of our result to build an Ornstein-Uhlenbeck bridge. Finally, in Section 5 we shortly introduce the
financial model and we apply the main result contained in Section 2 to find the equilibrium total
demand and optimal insider’s strategy.

2 Formulation of the problem and some auxiliary results

Let (Ω,G, (Gt),Q) be a filtered probability space satisfying the usual conditions. Note that we do
not require G0 to be trivial. Assume that on this probability space there exist two independent
standard Brownian motions, B and β, and a random variable Z0 in G0, which implies that Z0 is
independent from B and β.

Let Z = (Ω,G, (Gt), (Zt), (P z)z∈R) be a diffusion process with values in R. Here we are using the
formulation of a Markov process as given in, e.g., Blumenthal and Getoor [7] or Sharpe [21]. Time
varies in the finite interval [0, 1]. We will use the notation R+ for [0,∞) and FYt for σ(Ys; s ≤ t)
for any (possibly, vector-valued) stochastic process Y .

We further assume that Z is the unique strong solution on (Ω,G, (Gt),Q) of

dZt = σ(t)a(V (t), Zt)dβt, t ∈ (0, 1], (2.1)

with Z0 ∈ G0 being a random variable with distribution, µ, and where σ : [0, 1] 7→ R+ is a
deterministic function, V (t) := c +

∫ t
0 σ

2(s) ds for some constant c > 0, and a : [0, 1] × R 7→ R
is regular enough for ensuring the existence of a unique strong solution. Moreover, σ, V and
a are required to satisfy further regularity conditions precise statements of which are given in
Assumptions 2.1, 2.2 and 2.3 below.

The rest of this section will be devoted to the construction of a process X and a probability
measure µ on R satisfying the following three conditions:

C1 For every T < 1, X is the unique strong solution of the SDE

Xt =
∫ t

0
a(s,Xs)dBs +

∫ t

0
α(s,Xs, Zs)ds, for t ∈ (0, T ]

for some Borel measurable real valued function α. Moreover, (X,Z) is a Markov process. More
precisely, (Ω,G, (Gt), (Xt, Zt), (P x,z)(x,z)∈R2) is a Markov process with values in R2 endowed
with its Borel σ-algebra, with an initial distribution given by δ0 ⊗ µ where δ0 is the Dirac
measure at 0.

C2 limt↑1Xt exists P 0,z-a.s. and X1 := limt↑1Xt = Z1, P 0,z-a.s..

C3 (Xt)t∈[0,1] is a local martingale in its own filtration.
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Remark 2.1 In view of Theorem 8.1 in [16] the condition C3 implies that X, if exists, will be a
diffusion process with diffusion coefficient a and no drift in its own filtration. As C2 is also in place
this diffusion process will be conditioned to hit Z1 at time 1. If we have allowed X to be adapted
to the filtration generated by Z1 and B such a process can be obtained using the available theory
of ‘static’ Markov bridges (see, e.g., [10] and Proposition 37 in [5]) with a drift α(t,Xt, Z1) since
Z1 and B are independent. However, the condition C1 stipulates that X should be adapted to the
filtration generated by the independent processes Z and B. This forces us to develop a theory of
‘dynamic’ Markov bridges as we will describe in the subsequent sections.

Remark 2.2 The main difficulty with the construction of the process X is that all the conditions
C1-C3 have to be met simultaneously. To illustrate this point consider the simple case a = σ = 1.

If one allows the drift, α, in condition C1 to depend on Z1, then

Xt = Bt +
∫ t

0

Z1 −Xs

1− s
ds (2.2)

has a unique strong solution over [0, 1) and its solution can be continuously extended to the full
interval [0, 1] since conditioned on Z1 = z this is the SDE for a Brownian bridge from 0 to z over
the interval [0, 1]. This is a Markovian bridge conditioned to hit Z1 at t = 1 and, moreover, it is a
martingale in its own filtration (see expression (10) and the discussion after it in [11]).

If we replace Z1 with Zt in the above formulation we obtain the SDE

Xt = Bt +
∫ t

0

Zs −Xs

1− s
ds

which has a unique strong solution which satisfies C1 and C2 (see Lemma 2.1 in [11]). However,
X does not satisfy C3 (see Lemma 2.2 in [11]).

One is also tempted to think that a projection of the solution of (2.2) onto the filtration generated
by X and Z could give us the construction that we seek. Note that the solution of (2.2) is adapted
to the filtration (FB,Zt ) enlarged with Z1. In this enlarged filtration Z has the decomposition

Zt = β̄t +
∫ t

0

Z1 − Zs
1− s

ds

where β̄ is a standard Brownian motion adapted to this filtration (see Theorem 3 in Chap. VI of
[19]) and independent of B. Comparison of the SDEs for X and Z reveals an inherent symmetry
of these two processes. Thus, the semimartingale decomposition of these two processes with respect
to (FX,Zt ) should have a symmetric structure, in particular if one is a martingale with respect to
(FX,Zt ) so is the other. However, this is inconsistent with the structural assumptions we have on
X and Z which are manifested in C1 and (2.1).

These examples, in particular the last one, demonstrate that the solution to our problem cannot
be obtained via a combination of available enlargement of filtration and nonlinear filtering tech-
niques.

We would like to stress here that the functions σ and V that appeared in the dynamics of Z play a
crucial role in the existence of the solution of the problem above. Indeed, suppose that σ ≡ 1 and
V (t) = t for each t ≥ 0, and a(t, z) is regular enough to ensure the existence of a square integrable
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non-constant solution to (2.1). Suppose that there exists a solution to the problem defined by
conditions C1-C3. Consider the probability measure P defined on (Ω,FX1 ∨ FZ1 ) by

P(E) =
∫

R
P 0,z(E)µ(dz), ∀E ∈ FX1 ∨ FZ1 .

Note that X1 = Z1, P
0,z-a.s. for every z ∈ R implies that X1 = Z1,P-a.s., therefore, for any

bounded measurable function f ,
E[f(Z1)] = E[f(X1)] (2.3)

where E is the expectation operator with respect to P. One one hand,

E[f(Z1)] = E[E[f(Z1)|Z0]] =
∫

R
EP

z
[f(Z1)]µ(dz) =

∫
R

∫
R
f(y)p(z, y) dy µ(dz)

where p(z, y) dy = P z(Z1 ∈ dy). On the other hand, conditions C1 and C3 imply that

Xt =
∫ t

0
a(s,Xs)dBX

s

for some Brownian motion BX adapted to FX . Comparing this to (2.1) we see that the law of Xt

is that of Zt conditioned on Z0 = 0 for any t ∈ [0, 1]. Therefore,

E[f(X1)] =
∫

R
f(y)p(0, y) dy. (2.4)

Let f(y) = eiry. Then, in view of (2.3) we have∫
R
eiryp(0, y) dy =

∫
R

∫
R
eiryp(z, y) dy µ(dz)

=
∫

R
eiry

(∫
R
p(z, y)µ(dz)

)
dy.

Note that the interchange of integrals is justified since |eiryp(z, y)| < p(z, y) and
∫

R
∫

R p(z, y) dy µ(dz) =
1. This implies that the characteristic functions of the measures p(0, y) dy and

(∫
R p(z, y)µ(dz)

)
dy

are the same. We can assume, without substantial loss of generality, that p is continuous in both
parameters1. Therefore, we can invert the Fourier transform to identify µ as the Dirac measure at
0 and conclude that X and Z have the same law.

However, under the assumption µ = δ0, Remark 5.2 (i) in [11] shows that such a construction
is not possible. Indeed, Remark 5.2 (i) in [11] contains the following statement: Given filtration Ft
and a square integrable Ft-adapted processes X and M with the same second moments such that
i) X is a local martingale in its own filtration, ii) M is an Ft-martingale, and iii) M1 = X1, then
Mt = Xt for all t ∈ [0, 1]. Applying this result to our setting we get Xt = Zt for all t ∈ [0, 1] and,
thus, ∫ t

0
a(s, Zs)dβs = Zt = Xt =

∫ t

0
a(s, Zs)dBs +

∫ t

0
α(s, Zs, Zs)ds.

1This can be achieved by standard regularity assumptions on a which will ensure that p is a continuous solution
of a Kolmogorov equation (see Theorem 3.2.1 in [22])
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This implies that
∫ t

0 α(s, Zs, Zs)ds is a continuous martingale with finite variation, therefore it is
identically 0. Thus, ∫ t

0
a(s, Zs)dβs = Zt = Xt =

∫ t

0
a(s,Xs)dBs.

Since B and β are independent, this yields that [Z,X] ≡ 0. However, as Z = X, we have [Z,Z] ≡ 0,
which implies X = Z ≡ 0, which is a contradiction.

This example highlights that the relationship between V (t) and t is very important for the
existence of a solution to the problem we aim to solve. The following assumption formalizes this
relationship along with imposing some regularity conditions. In particular, Assumption 2.1.1 rules
out the above pathology, Assumption 2.1.2 controls the speed of convergence of V (t) − t to 0 as
t→ 1 (for an earlier use of this assumption see [9]), and Assumptions 2.1.3 to 2.1.5 ensure sufficient
regularity for the problem.

Assumption 2.1 Fix a real number c ∈ (0, 1]. σ : [0, 1] 7→ R+ and a : [0, 1] × R 7→ R+ are two
measurable functions such that:

1. V (t) := c+
∫ t

0 σ
2(u)du > t for every t ∈ [0, 1), and V (1) = 1;

2. limt↑1 λ
2(t)Λ(t) log(Λ(t)) = 0, where λ(t) = exp

{
−
∫ t

0
1

V (s)−sds
}

and Λ(t) =
∫ t

0
1+σ2(s)
λ2(s)

ds;

3. σ2(t) is bounded on [0, 1];

4. a(t, z) is uniformly bounded away from zero, i.e. there exists a constant ε > 0 such that
a(t, z) ≥ ε for all t ∈ [0, 1] and z ∈ R;

5. a(·, ·) ∈ C1,2 and has enough regularity in order for (2.1) has a unique strong solution2.

Remark 2.3 Notice that Assumption 2.1.2 is, in fact, an assumption on Λ(t), since we always
have that limt↑1 λ(t) = 0. Indeed, since V (t) is increasing and V (1) = 1, we have that V (t) ≤ 1 for
t ∈ [0, 1] and therefore

λ(t) ≤ 1− t (2.5)

which leads to conclusion that limt↑1 λ(t) = 0. For another use of this assumption and further
discussion see [9].

Although Assumption 2.1.2 seems to be involved, it is satisfied in many cases. The following remark
states a sufficient condition for this assumption to be satisfied.

Remark 2.4 Note that when limt↑1 Λ(t) < ∞ the condition is automatically satisfied due to the
preceding remark. Next, suppose that limt↑1 Λ(t) = ∞, σ is continuous in a vicinity of 1 and
σ(1) 6= 1. Then, an application of de L’Hôpital rule yields

0 ≤ lim
t↑1

Λ(t) log(Λ(t))
λ−2(t)

=
1 + σ2(1)

2
lim
t↑1

log(Λ(t))
(V (t)− t)−1

.

2A sufficient condition ensuring strong solution is given in Assumption 2.2.
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Then note that since limt↑1 λ
2(t)Λ(t) = 0, Λ(t) ≤ λ−2(t) for t close to 1. Thus,

0 ≤ lim
t↑1

Λ(t) log(Λ(t))
λ−2
t

≤ 1 + σ2(1)
2

lim
t↑1

log(λ−2(t))
(V (t)− t)−1

= (1 + σ2(1))limt↑1

∫ t
0

1
V (s)−sds

(V (t)− t)−1
= 0,

after another application of de L’Hôpital rule since σ2(1) 6= 1. This in particular shows that
Assumption 2.1.2 is satisfied when σ is a constant.

Before we present our main result we shall collect some preliminary results on the transition density
of the diffusion

dξt = a(t, ξt)dβt.

We are in particular interested in the existence and smoothness of this transition density. The natu-
ral way to obtain these results is to use the link between the transition density and the fundamental
solution of

wu(u, z) =
1
2
(
a2(u, z)w(u, z)

)
zz
, (2.6)

established in Corollary 3.2.2 in [22]. However, as we do not assume a to be bounded, this theorem
is not applicable. On the other hand, since a is bounded away from 0, the following function

A(t, x) :=
∫ x

0

1
a(t, y)

dy (2.7)

is well defined and the transformation defined by ζt := A(t, ξt) will yield, via Itô’s formula,

dζt = dβt + b(t, ζt)dt, (2.8)

where
b(t, x) := At(t, A−1(t, x))− 1

2
az(t, A−1(t, x)), (2.9)

and A−1, the inverse of A, is taken with respect to the space variable. This transformation along
with the next assumption is going to provide a uniformly elliptic operator which via Theorem 10 in
Chap. I of [12] and Theorem 3.2.1 of [22] would imply the existence and smoothness of transition
density of ξ.

Assumption 2.2 b and bx are uniformly bounded on [0, 1] × R and bx is Lipschitz continuous
uniformly in t.

Due to this assumption Corollary 3.2.2 of [22] implies that the transition density of ζ is the
fundamental solution of

wu(u, z) =
1
2
wzz(u, z)− (b(u, z)w(u, z))z. (2.10)

For the reader’s convenience we recall the definition (p. 3 of [12]) of fundamental solution, Γ(t, x;u, z),
of (2.10) as the function satisfying

1. For fixed (t, x), Γ(t, x;u, z) satisfies (2.10) for all u > t;

2. For every continuous and bounded f : R 7→ R

lim
u↓t

∫
R

Γ(t, x;u, z)f(x)dx = f(z). (2.11)
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The following proposition provides the existence of the transition density of ξ and formalizes the
smoothness requirement on the transition density together with some properties that we will use
later.

Proposition 2.1 Under Assumptions 2.1 and 2.2 there exists a fundamental solution, Γ ∈ C1,2,1,2,
to (2.10) which also solves the adjoint equation

vt(t, x) + b(t, x)vx(t, x) +
1
2
vxx(t, x) = 0. (2.12)

Moreover, the function G(t, x;u, z) defined by

G(t, x;u, z) := Γ(t, A(t, x);u,A(u, z))
1

a(u, z)
, (2.13)

satisfies (2.6) for fixed (t, x) and it is the transition density of ξ, i.e.

G(t, x;u, z)dz = P (ξu ∈ dz|ξt = x) for u ≥ t.

Furthermore, Gx(t, x;u, z) exists and satisfies∫
R
Gx(t, x;u, z)dz = 0 =

∫
R

Γx(t, x;u, z)dz. (2.14)

Proof. Since b and bx are bounded and Hölder continuous under the assumptions of the propo-
sition, it follows from Theorem 10 in Chap. I of [12] that the fundamental solution, Γ(t, x;u, z), to
(2.10) exists and is also the fundamental solution of (2.12) by Theorem 15 in Chap. I of [12]. In
particular, Γ ∈ C1,2,1,2. Moreover, Assumption 2.2 also implies, due to Corollary 3.2.2 in [22], that
Γ is the transition density of ζ.

Define G(t, x;u, z) by (2.13) and observe that G(t, x;u, z) for fixed (t, x) solves (2.6). Since by
definition ζt = A(t, ξt) and A is strictly increasing

G(t, x;u, z) dz = Γ(t, A(t, x);u,A(u, z))
1

a(u, z)
dz

= Γ(t, A(t, x);u,A(u, z)) dA(u, z)
= P (ζu ∈ dA(u, z)|ζt = A(t, x))
= P (A(u, ξu) ∈ dA(u, z)|A(t, ξt) = A(t, x))
= P (ξu ∈ dz|ξt = x),

which establishes that G is the transition density of ξ.
Moreover, equations (6.12) and (6.13) following Theorem 11 in Chapter I of [12] give the fol-

lowing estimates:

Γ(t, x;u, z) ≤ C
1√
u− t

exp
(
−c(x− z)2

2(u− t)

)
, and (2.15)

|Γx(t, x;u, z)| ≤ C
1

u− t
exp

(
−c(x− z)2

2(u− t)

)
, (2.16)
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for some positive C, depending on c, and any c < 1. Note that
∫

RG(t, x;u, z)dz = 1 =
∫

R Γ(t, x;u, z)dz
since both G and Γ are transition densities. Thus, (2.14) will hold if one can interchange the deriva-
tive and the integral. This is justified since due to (2.16) |Γx| ≤ K exp

(
−c1z

2
)

when x is restricted
to a bounded interval and where the constants K and c1 do not depend on x and might depend
on u and t. The result then follows from an application of the Dominated Convergence Theorem. �

In order to motivate our main result let’s first consider the special case of σ ≡ 0 so that Z1 = Z0.
In terms of the insider trading models that we have in mind this corresponds to the case when the
insider has the complete information at time-0 regarding the time-1 value of the traded asset as in
[2]. If µ(dz) = G(0, 0; 1, z)dz, then there exists a unique strong solution to

dXt = a(t,Xt)dBt + a2(t,Xt)
Gx(t,Xt, 1, Z0)
G(t,Xt; 1, Z0)

dt,

with the initial condition X0 = 0, which satisfies all the properties stated in C1-C3 (see Proposition
37 in [5] for a proof of this and other related results. Observe that this result does not require
uniform ellipticity of a, thus the extension to time inhomogeneous case is immediate).

The specific form of the drift term in the SDE above thus gives us a hint to formulate the
solution of the original problem stated at the beginning of this section. Before we state our main
result we introduce one last assumption.

Assumption 2.3 b(t, x) is absolutely continuous with respect to t for each x, i.e. there exists a
measurable function bt : [0, 1]× R 7→ R such that

b(t, x) = b(0, x) +
∫ t

0
bt(s, x) ds,

for each x ∈ R. Moreover, bt is uniformly bounded.

Theorem 2.1 Suppose µ(dz) = G(0, 0; c, z)dz where c ∈ (0, 1) is the real number fixed in Assump-
tion 2.1 and G is given by (2.13). Let for t < 1

dXt = a(t,Xt)dBt + a2(t,Xt)
ρx(t,Xt, Zt)
ρ(t,Xt, Zt)

dt, (2.17)

where
ρ(t, x, z) := G(t, x;V (t), z). (2.18)

Under Assumption 2.1, 2.2 and 2.3, on every interval [0, T ] with T < 1, there exists a unique strong
solution to the above SDE with the initial condition X0 = 0. Moreover, the conditions C1-C3 are
satisfied.

We will give a proof of this result in the special case a ≡ 1 in Section 3 and a proof of the general
result will be given in Section 4. However, we shall now state and prove two lemmata to show how
the choice of the drift term in (2.17) would imply condition C3, i.e. X as defined in (2.17) is a local
martingale in its own filtration. Before we can formulate them, we need to introduce the following
notation.
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Let F := σ(Xt, Zt; t < 1) and define the probability measure P on (Ω,F) by

P(E) =
∫

R
P 0,z(E)µ(dz), (2.19)

for any E ∈ F . Of course, in order for this construction to make sense we need the existence of
a solution to (2.17). This will be proved in Section 4 in Corollary 4.1, thus, the above probability
space exists and is well defined. Under P, (Xt, Zt)t<1 would still be a strong Markov process (see
Corollary 4.1). Let N be the null sets of P. Proposition 2.7.7 in [13] shows that the filtration
(N ∨ FX,Zt )t<1 is right-continuous. With an abuse of notation we shall still denote the σ-algebra
generated by F and N with F , and denote N ∨ FYt with FYt for any (FX,Zt )t≤1-adapted process
Y . Next, let F̃Xt := ∩1>u>tFXu . We shall see in Remark 4.1 later that the FX is right-continuous,
i.e. FXt = F̃Xt . We say that gt : Ω × R 7→ R is the conditional density of Zt given FXt , if gt is
measurable with respect to the product σ-algebra, FXt × B where B is the Borel σ-algebra of R,
and for any bounded measurable function f

E[f(Zt)|FXt ] =
∫

R
f(z)gt(ω, z) dz,

where E is the expectation operator under P. Note that due to Markov property of (X,Z),
EQ[f(Z1)|FXt ] = E[f(Z1)|FXt ] but we will keep the above notation for the clarity of the expo-
sition. We will often write P[Zt ∈ dz|FXt ] = gt(ω, z) dz in order to refer to the conditional density
property described above. Now, we are ready to state and prove the following lemma.

Lemma 2.1 Suppose there exists a unique strong solution of (2.17). If ρ(t,Xt, ·) given by (2.18)
is the conditional density of Zt given FXt for every t ∈ [0, 1), then (Xt)t∈[0,1) is a local martingale
in its own filtration.

Proof. It follows from standard filtering theory (e.g. Theorem 8.1 in [16]) that

dXt = a(t,Xt)dBX
t + a2(t,Xt)E

[
ρx(t,Xt, Zt)
ρ(t,Xt, Zt)

∣∣∣∣FXt ] dt,
where BX is an FX−Brownian motion. However, if ρ(t,Xt, ·) is the conditional density of Zt,

E
[
ρx(t,Xt, Zt)
ρ(t,Xt, Zt)

∣∣∣∣FXt ] =
∫

R
Gx(t,Xt;V (t), z)dz = 0

due to Proposition 2.1, so that
dXt = a(t,Xt)dBX

t

and, thus, X is a local martingale since a is continuous. �

In view of this lemma we show in Section 4 that ρ(t,Xt, ·) is indeed the conditional density of
Zt given FXt for every t ∈ [0, 1). The following lemma will be key in proving this result.

Lemma 2.2 Suppose there exists a unique strong solution of (2.17). Let Ut := A(V (t), Zt) and
Rt := A(t,Xt), where A is defined by (2.7). Define

p(t, x, z) := ρ(t, A−1(t, x), A−1(V (t), z))a(V (t), A−1(V (t), z)), (2.20)

where ρ is given by (2.18). Then,
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1. p(t, Rt, ·) is the conditional density of Ut given FRt iff ρ(t,Xt, ·) is the conditional density of
Zt given FXt .

2. (p(t, Rt, ·))t∈[0,1) is a weak solution to the following stochastic PDE:

gt(z) = Γ(0, 0; c, z) +
∫ t

0
σ2(s)

{
−(b(V (s), z)gs(z))z +

1
2

(gs(z))zz

}
ds (2.21)

+
∫ t

0
gs(z)

(
px(s,Rs, z)
p(s,Rs, z)

−
∫

R
gs(z)

px(s,Rs, z)
p(s,Rs, z)

dz

)
dIgs ,

where

dIgs = dRs −
(∫

R

[
px
p

(s,Rs, z) + b(s,Rs)
]
gs(z)dz

)
ds.

Proof. Notice that since A(t, ·) is strictly increasing, FRt = FXt for every t ∈ [0, 1) and there is
a one-to-one correspondence between the conditional density of Z and that of U . More precisely,

P[Zt ∈ dz|FXt ] = P[Ut ∈ dA(V (t), z)|FRt ].

Thus, if P[Zt ∈ dz|FXt ] = ρ(t,Xt, z) dz, then

P[Ut ∈ dz|FRt ] = P[Zt ∈ dA−1(V (t), z)|FXt ]
= ρ(t,Xt, A

−1(V (t), z))dA−1(V (t), z)
= ρ(t,Xt, A

−1(V (t), z))a(V (t), A−1(V (t), z)) dz
= ρ(t, A−1(t, Rt), A−1(V (t), z))a(V (t), A−1(V (t), z)) dz
= p(t, Rt, z)dz

by (2.20). The reverse implication can be proved similarly.
In order to prove the second assertion observe that due to (2.13) and (2.20) we have

p(t, x, z) = Γ(t, x;V (t), z). (2.22)

We have seen in Proposition 2.1 that Γ(t, x;u, z) solves (2.10) for fixed (t, x) and it also solves
(2.12) for fixed (u, z). Combining these two facts yields that p satisfies

pt(t, x, z)+b(t, x)px(t, x, z)+
1
2
pxx(t, x, z) = −σ2(t)(b(V (t), z)p(t, x, z))z+

1
2
σ2(t)pzz(t, x, z). (2.23)

Using Itô’s formula and (2.23), we get

p(t, Rt, z) = Γ(0, 0; c, z) +
∫ t

0
σ2(s)

{
−(b(V (s), z)p(s,Rs, z))z +

1
2

(p(s,Rs, z))zz

}
ds

+
∫ t

0
px(s,Rs, z)[dRs − b(s,Rs)ds]

Due to (2.14), dIgs = dRs − b(s,Rs)ds when gt(z) = p(t, Rt, z). By repeating this argument we
arrive at the desired conclusion. �

Before we give a proof of Theorem 2.1, we will first investigate the Gaussian case, i.e. a ≡ 1.
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3 Gaussian case

Under the assumption a ≡ 1, Z becomes a Gaussian martingale and its transition density is given
by G(t, x;u, z) = 1√

2π(u−t)
exp(− (x−z)2

2(u−t) ) since it is a time-changed Brownian motion where the

time-change is deterministic. In this case, the equation (2.17) reduces to

dXt = dBt +
Zt −Xt

V (t)− t
dt. (3.24)

This equation along with various properties of its solution is discussed in Danilova [9], Föllmer, et
al. [11] and Wu [23].

Theorem 3.1 Suppose a ≡ 1 and ρ is given by (2.18). Then, Theorem 2.1 holds.

The proof of the above theorem will be done in several steps, first of which being the following
proposition.

Proposition 3.1 There exists a unique strong solution to (3.24) over [0,1). Moreover, ((Xt, Zt))t∈[0,1)

is strong Markov.

Proof. Since z−x
V (t)−t is Lipschitz over any [0, T ] for T < 1, there exists a unique strong solution

to the above equation with X0 = 0 by Theorem 38 of Chap. V in [19]. Moreover, Theorem 5.4.20
in [13] yields (X,Z) has strong Markov property. �

The above proposition shows that condition C1 of the bridge construction is satisfied. We next
show that the solution to (3.24) satisfies condition C2 and then conclude this section with a proof
of Theorem 3.1.

Lemma 3.1 Let Assumption 2.1 hold. Let λ(t) = exp
{
−
∫ t

0
1

V (s)−sds
}

and Λ(t) =
∫ t

0
1+σ2(s)
λ2(s)

ds be
as in Assumption 2.1, and ` > 0 be the associated constant in Assumption 2.1. Define

ϕ(t, x, z) =
1√

2(Λ(t) + `)
e

(x−z)2

2λ2(t)(Λ(t)+`) (3.25)

Then, (ϕ(t,Xt, Zt))t∈[0,1) is a positive supermartingale and

lim
t↑1

ϕ(t, x, z) = +∞, x 6= z (3.26)

Proof. Direct calculations give

ϕt(t, x, z) +
z − x
V (t)− t

ϕx(t, x, z) +
1
2
ϕxx(t, x, z) +

σ2(t)
2

ϕzz(t, x, z) = 0 (3.27)

Thus, it follows from Itô’s formula that ϕ(t,Xt, Zt) is a local martingale. Since it is obviously
positive, it is a supermartingale.

In order to prove the convergence in the case of x 6= z, consider two cases:
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• Case 1: limt↑1 Λ(t) < +∞. Then, since due to the Remark 2.3 we have that limt↑1 λ(t) = 0,
we obtain that

lim
t↑1

ϕ(t, x, z) = lim
t↑1

1√
2(Λ(t) + `)

e
(x−z)2

2λ2(t)(Λ(t)+`) = +∞ (3.28)

• Case 2: limt↑1 Λ(t) = +∞. In this case we will have:

lim
t↑1

logϕ(t, x, z) = lim
t↑1

log(2(Λ(t) + `))
[

(x− z)2

2λ2(t)(Λ(t) + `) log(2(Λ(t) + `))
− 1

2

]
= +∞

where the last equality is due to Assumption 2.1.2. Indeed, the condition yields that

lim
t↑1

λ2(t)2(Λ(t) + `) log(2(Λ(t) + `)) = 0

since when limt↑1 Λ(t) = ∞, limt↑1
log(2(Λ(t)+`))

log(Λ(t)) = 1 and limt↑1 λ
2(t)Λ(t) = 0. Therefore we

have limt↑1 ϕ(t, x, z) = +∞

The proof is now complete. �

Proposition 3.2 P 0,z(limt↑1Xt = Z1) = 1 where X is the unique strong solution to (3.24).

Proof. Let Mt := ϕ(t,Xt, Zt). Then, M = (Mt)t∈[0,1) is a positive supermartingale by the
previous lemma. Using the supermartingale convergence theorem, there exists an M1 ≥ 0 such
that limt↑1Mt = M1, P

0,z-a.s.. Using Fatou’s lemma and the fact that M is a supermartingale, we
have

M0 ≥ lim inf
t↑1

E0,z[Mt] ≥ E0,z[M1] = E0,z

[
lim
t↑1

ϕ(t,Xt, Zt)
]
,

where E0,z is the expectation operator with respect to P 0,z. SinceM0 is finite, one has limt↑1 ϕ(t,Xt, Zt)
is finite P 0,z-a.s.. Therefore, P 0,z(limt↑1Xt 6= Z1) = 0 in view of (3.26). �

Proposition 3.3 Let a ≡ 1, µ(dz) = G(0, 0; c, z)dz where c ∈ (0, 1) is the real number fixed in
Assumption 2.1 and G is given by (2.13). Then,

P[Zt ∈ dz|FXt ] = G(t,Xt;V (t), z) dz.

Proof. As (X,Z) is jointly Gaussian the conditional distribution of Zt given FXt is also Gaussian
(see Theorem 11.1 in [16]). Thus, it suffices to find the conditional mean Ẑt and the variance γt in
order to characterize the distribution completely. Theorem 10.3 in [16] yields

dẐt =
γt

V (t)− t

{
dXt −

Ẑt −Xt

V (t)− t
dt

}
, (3.29)

and
dγt
dt

= σ2(t)− γt
V (t)− t

, (3.30)
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with the initial conditions that Ẑ0 = E[Z0] = 0 and γ0 = c due to the choice of µ. In particular, γt
is deterministic. One can verify directly that γt = V (t)− t satisfies (3.30) and the initial condition
since V (0) = c by Assumption 2.1. Thus, (3.29) becomes

dẐt = dXt −
Ẑt −Xt

V (t)− t
dt,

i.e. Ẑ is a solution to the following SDE:

dYt = dXt −
Yt −Xt

V (t)− t
dt, (3.31)

Clearly, choosing Yt = Xt will solve this SDE. Moreover, as the function y−x
V (t)−t is Lipschitz on [0, T ]

for any T < 1, it follows from Theorem 7 in Chap. V of [19] that (3.31) has a unique solution. Thus,
Ẑt = Xt, which in turn yields that the conditional distribution of Zt is Gaussian with mean Xt and
variance V (t)− t. Note that the density associated to this distribution is given by G(t,Xt;V (t), ·)
when a ≡ 1. �

Proof of Theorem 3.1. Propositions 3.1 and 3.2 establish that conditions C1 and C2 are
satisfied. Finally, C3 is satisfied as well due to Proposition 3.3 in view of Lemma 2.1. �

4 The general case

We now go back to proving Theorem 2.1. The proof is structured in several steps in the following
way. We first show that there exists a strong solution, which is also Markov, to the system of
SDEs given by (2.1) and (2.17) on the time interval [0, 1). Then we show that limt↑1Xt exists
and equals Z1, P 0,z-a.s. implying that there is no explosion until time 1 so that the solution can
be continuously extended to the whole interval [0, 1] and satisfies the bridge condition. Then we
characterize the conditional distribution of Zt given FXt and identify it with ρ(t,Xt, ·) which will
in turn imply that X is a local martingale in its own filtration via Lemma 2.1. Finally, we provide
an application of our method to the construction of Ornstein-Uhlenbeck bridges.

4.1 Existence of a strong solution on the time interval [0, 1) and the bridge
property

Recall from Lemma 2.2 that Ut = A(V (t), Zt), Rt = A(t,Xt) where A is defined in (2.7) and ρ
is related to p via (2.20). Since A is strictly increasing, the existence of the strong solution with
Markov property to the system of SDEs given by (2.1) and (2.17) and the convergence of Xt to Z1

is equivalent to the existence of a strong solution with a Markov property of the following system,
which can be obtained by an application of Itô’s formula,

dUt = σ(t)dβt + σ2(t)b(t, Ut)dt

dRt = dBt +
{
px(t, Rt, Ut)
p(t, Rt, Ut)

+ b(t, Rt)
}
dt, (4.32)

and convergence of Rt to U1.
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First observe that due to (2.22), we have px(t,x,z)
p(t,x,z) + b(t, x) = Γx(t,x;V (t),z)

Γ(t,x;V (t),z) + b(t, x). Thus, due to

Lemma A.1 and Assumption 2.2, px(t,x,z)
p(t,x,z) + b(t, x) is locally Lipschitz for t ∈ [0, T ] for any T < 13

and therefore R is the unique strong solution to the corresponding stochastic differential equation
on [0, 1) up to an explosion time (see Theorem 38 of Chap. V in [19]). Moreover, the solution
will have strong Markov property for any stopping time strictly less than the explosion time by
Theorem 5.4.20 in [13]. We shall now see that there won’t be any explosion until time 1 and,
indeed, Rt converges to U1.

Proposition 4.1 Suppose that Assumptions 2.1, 2.2 and 2.3 are satisfied. Then

P 0,z(lim
t↑1

Rt = U1) = 1.

Proof. As observed before there exists a strong solution to (4.32) up to an explosion time.
Let’s denote this explosion time with τ . We will first argue that P 0,z(τ < 1) = 0. Recall that
p(t, x, z) = Γ(t, x;V (t), z) (see (2.22)) and define

h(t, x;u, z) :=
Γ(t, x;u, z)
q(u− t, x, z)

(4.33)

where q is the transition density of a standard Brownian motion. This yields that

px(t, x, z)
p(t, x, z)

=
z − x
V (t)− t

+
hx(t, x;V (t), z)
h(t, x;V (t), z)

.

Proposition A.1 in the Appendix states that hx(t,x;V (t),z)
h(t,x;V (t),z) is uniformly bounded on [0, 1]×R×[0, 1]×R,

thus we can define an equivalent probability measure P
0,z on G1 (recall that all the stochastic

processes have been defined on (Ω,G, (Gt)) which is introduced at the beginning of Section 2) by
the following:

dP
0,z

dP 0,z
:= E

(∫ ·
0
σ(s)b(s, Us)dβs

)
1

E
(∫ ·

0

{
b(s,Rτs ) +

hx(s,Rτs ;V (s), Zs)
h(s,Rτs ;V (s), Zs)

}
dBs

)
1

,

where Rτ is the process R stopped at τ and E(·)t denotes the Doléans-Dade stochastic exponential
taken at time t. Recall that σ and b are bounded by Assumptions 2.1 and 2.2. Under this new
measure P 0,z, (4.32) becomes

dUt = σ(t)dβt

dRτt = dBt +
px(t, Rτt , Ut)
p(t, Rτt , Ut)

dt = dBt +
Ut −Rτt
V (t)− t

dt, (4.34)

where β and B are two (Gt)-Brownian motions under P 0,z. First, observe that if P 0,z(τ < 1) > 0,
so is P 0,z(τ < 1). However, we have shown in Proposition 3.1 that (4.34) has a non-exploding
solution over [0, 1). This contradiction implies that P 0,z(τ < 1) = 0 . Moreover, Proposition 3.2

3Lemma A.1 gives a lower bound for p. This implies that px
p

(t, x, z) has locally bounded derivatives with respect
to x and z since Γ has continuous second derivatives. Moreover, b is Lipschitz by assumption, thus the claim holds.
Note that we require T < 1 so that V (t)− t is bounded away from 0 for t ∈ [0, T ].
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shows that P 0,z(limt↑1Rt = U1) = 1. This yields P 0,z(limt↑1Rt = U1) = 1 due to the equivalence
of the measures.

�

The next proposition and its corollary sum up what we have achieved so far in this section.

Proposition 4.2 Under Assumptions 2.1, 2.2 and 2.3, there exists a unique strong solution to the
SDE

dRt = dBt +
{
px(t, Rt, Ut)
p(t, Rt, Ut)

+ b(t, Rt)
}
dt,

with R0 = 0 such that (R,U) has strong Markov property over the interval [0, 1). Moreover,
P 0,z(limt↑1Rt = U1) = 1.

Proof. Propositions 4.1 and A.1 imply that P 0,z(limt↑1Rt = U1) = 1, which in turn yields that
there is no explosion until time 1. Thus, Theorem 38 of Chap. V in [19] gives that R is indeed the
strong solution of the SDE over the time interval [0, 1). Moreover, due to Theorem 5.4.20 in [13]
(R,U) has strong Markov property. �

The following corollary is immediate due to the one-to-one relationship, via the strictly mono-
tone transformation A, between (R,U) and (X,Z).

Corollary 4.1 Under Assumptions 2.1, 2.2 and 2.3, there exists a unique strong solution to (2.17)
on [0, 1] such that (X,Z) has a strong Markov property. Moreover, limt↑1Xt exists P 0,z-a.s. and
X1 := limt↑1Xt = Z1, P 0,z-a.s..

4.2 Conditional distribution of Z

We now turn to proving ρ(t,Xt, ·) is the conditional density of Zt given FXt , which will in turn imply
that the solution of (2.17) is a local martingale in its own filtration via Lemma 2.1. In order to find
the conditional density of Z we will first find the conditional density of U given (FRt ) and then use
Lemma 2.2. The reader is asked to review the notation introduced after the statement of Theorem
2.1 at this point. Recall that Ut = A(V (t), Zt) and Rt = A(t,Xt) where A is the function defined by
(2.7). Under this transformation U0 has a probability density given by P(U0 ∈ dz) = Γ(0, 0; c, z) dz,
where the measure P is defined by (2.19).

Next, fix a T < 1 and let PT := P|FX,ZT
be the restriction of P to FX,ZT . The reason for

this restriction is due to the fact that the drift term in (4.32) is not defined at t = 1 and this
will lead to inapplicability of the results of [14] that we cite later in this subsection. Note that
P[Ut ∈ dz|FRt ] = PT [Ut ∈ dz|FRt ] for t ∈ [0, T ] and, since T is arbitrary, this identity will allow us
to obtain all the conditional distributions of Zt for t < 1.

The remainder of this subsection is devoted to the proof of that

PT [Ut ∈ dz|FRt ] = p(t, Rt, z) dz,

where p is defined by (2.20). In order to achieve this goal we will use the characterization of the
conditional distributions obtained by Kurtz and Ocone [14]. We refer the reader to [14] for all
unexplained details and terminology.
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Remark 4.1 Let PT be the absolutely continuous measure on the same space defined by the Radon-
Nikodým derivative

exp

{
−1

2

∫ T

0

(
px(s,Rs, Us)
p(s,Rs, Us)

+ b(s,Rs)
)2

ds−
∫ T

0

(
px(s,Rs, Us)
p(s,Rs, Us)

+ b(s,Rs)
)
dBs

}
.

Note that, under PT , R is a Brownian motion independent of U . Moreover, as we have just seen,
there is no explosion before time 1 for the system of SDEs for (U,R). Thus, it follows from the
no-explosion criterion (see Exercise 2.10 in Chap. IX of [20]) that PT is a probability measure
equivalent to PT . As the natural filtration of a Brownian motion is right continuous, this in turn
implies that (FXt )t∈[0,T ] is right continuous, too.

Let P be the set of probability measures on the Borel sets of R topologized by weak convergence.
Given m ∈ P and m−integrable f we write mf :=

∫
R f(z)m(dz). The next result is Lemma 1.1.

in [14]:

Lemma 4.1 There is a P-valued FX-optional process πt(ω, dx) such that

πtf = E[f(Ut)|FRt ]

for all bounded measurable f . Moreover, πt has a right continuous version.

Let’s recall the innovation process

It = Rt −
∫ t

0
πsκsds

where κs(z) := px(s,Rs,z)
p(s,Rs,z)

+ b(s,Rs). The next lemma will show that R is an integrable process and,

thus, πsκs exists for all s < 1 since Z is integrable and px(s,x,z)
p(s,x,z) = z−x

V (s)−s+ a bounded function, due
to Proposition A.1.

Lemma 4.2 Let R be the unique strong solution of (4.32) under Assumptions 2.1, 2.2 and 2.3.
Then, for every T < 1,

E
[
R2
t

]
≤ C(1 + ν−2

T )eCν
−2
T t,

for every t ≤ T where C is a constant and νT := inft≤T (V (t)− t).

Proof. Note that

E
[
R2
t

]
≤ C

(
t+
∫ t

0
E
(
px(s,Rs, Us)
p(s,Rs, Us)

+ b(s,Rs)
)2

ds

)

≤ C

(
1 + ν−2

T + ν−2
T

∫ t

0
E
[
R2
s

]
ds

)
≤ C(1 + ν−2

T ) + Cν−2
T

∫ t

0
E
[
R2
s

]
ds,

where C is a generic constant. The result then follows from Gronwall’s inequality. �
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In order to be able to use the results of [14] we first need to establish the Kushner-Stratonovich
equation satisfied by (πt)t∈[0,T ]. To this end, let B(R2) denote the set of bounded Borel measurable
real valued functions on R2 and consider the operator A0 : B(R+ × R) 7→ B(R2) defined by

A0φ(t, x) =
∂φ

∂t
(t, x) +

1
2
σ2(t)

∂2φ

∂x2
(t, x) + σ2(t)b(t, x)

∂φ

∂x
(t, x),

with the domain D(A0) = C∞c (R+×R), where C∞c is the class of infinitely differentiable functions
with compact support. Due to Assumptions 2.1, 2.2 and 2.3 imposed on σ and b, it is well-known, see
e.g. Remark 5.4.17 in [13], that the martingale problem for A0 is well-posed and its unique solution
is given by (t, Ut). Moreover, the Kushner-Stratonovich equation for the conditional distribution
of U is given by the following:

πtf = π0f +
∫ t

0
πs(A0f)ds+

∫ t

0
[πs(κsf)− πsκsπsf ] dIs, (4.35)

for all f ∈ C∞c (R)(see Theorem 4.3.1 in [6]) Note that f can be easily made an element of D(A0)
by redefining it as fn where n ∈ C∞c (R+) is such that n(t) = 1 for all t ∈ [0, 1]. Thus, the above
expression is rigorous. The following theorem is a corollary to Theorem 4.1 in [14].

Theorem 4.1 Suppose the conditions in Assumptions 2.1, 2.2 and 2.3 hold. Let (mt) be an FX-
adapted càdlàg P-valued process such that

mtf = π0f +
∫ t

0
ms(A0f)ds+

∫ t

0
[ms(κsf)−msκsmsf ] dIms , (4.36)

for all f ∈ C∞c (R), where Imt = Rt −
∫ t

0 msκs ds. Then, mt = πt for all t < T , a.s..

Proof. Proof follows along the same lines as the proof of Theorem 4.1 in [14], even though,
differently from [14], we allow the drift of R to depend on t and Rt, too. This is due to the fact that
[14] used the assumption that the drift depends only on the signal process, U , in order to ensure
that the joint martingale problem (R,U) is well-posed, i.e. conditions of Proposition 2.2 in [14] are
satisfied. Note that the relevant martingale problem is well posed in our case since the system of
SDEs in (4.32) has a unique strong solution and the drift and dispersion coefficients are bounded
on compact domains over the interval [0, T ] (see Proposition 5.3.20 and Remark 5.4.17 in [13] in
this regard). �

Now, we can state and prove the following corollary.

Corollary 4.2 Suppose the conditions in Assumptions 2.1, 2.2 and 2.3 hold. Then,

πtf =
∫

R
f(z)p(t, Rt, z) dz,

for any bounded measurable f . Therefore,

E[f(Zt)|FXt ] =
∫

R
f(z)ρ(t,Xt, z) dz.

Proof. We have seen in Lemma 2.2 that p(t, Rt, ·) satisfies (2.21), i.e., mt(dz) := p(t, Rt, z)dz
solves (4.36). Then, it follows from Theorem 4.1 that p(t, Rt, ·) is the conditional density of Ut,
which gives the first assertion. The second assertion follows from the explicit relationship between
p and ρ as described in Lemma 2.2 . �
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4.3 Proof of the main result and application to Ornstein-Uhlenbeck bridges

Now we have all the results necessary to prove Theorem 2.1.

Proof of Theorem 2.1. The strong solution, Markov property and P 0,z(limt↑1Xt = Z1) = 1
follow from Corollary 4.1. Moreover, it follows from Corollary 4.2 that ρ(t,Xt, z) is the conditional
density of Zt given FXt . Thus, X is a local martingale in its own filtration by Lemma 2.1 �

Note that using the methods employed in this section one can prove the following theorem as
well.

Theorem 4.2 Let Z be the unique strong solution on (Ω,G, (Gt),Q) to

Zt = Z0 +
∫ t

0
σ(s)dβs +

∫ t

0
σ2(s)b(s, Zs)ds,

where b ∈ C1,2
b with bounded derivatives and σ is as before. Suppose P (Z0 ∈ dz) = Γ(0, 0; c, z)dz

for some c ∈ (0, 1). Let ρ(t, x, z) := Γ(t, x;V (t), z) where V is as defined earlier and Γ(t, x;u, z) is
the fundamental solution of (2.10). Define X by

dXt = dBt +
{
b(s,Xs) +

ρx(t,Xt, Zt)
ρ(t,Xt, Zt)

}
dt,

for t ∈ (0, 1) with X0 = 0. Then

1. In the filtration generated by X

Xt −
∫ t

0
b(s,Xs)ds

defines a standard Brownian motion;

2. X1 = Z1, P 0,z-a.s. where P 0,z is the law of (X,Z) with Z0 = z and X0 = 0.

The following example show that boundedness of b in the above theorem is not a necessary
condition for the result to hold as long as b depends linearly on x.

Example 4.1 Suppose Z is an Ornstein-Uhlenbeck type process, i.e.

dZt = σ(t)dβt − kσ2(t)Ztdt,

where k > 0 is a constant. Note that in this case the fundamental solution of (2.10) is given by

Γ(s, x; t, z) = q((1− e−2k(t−s))/2k, xe−k(t−s), z).

Let X be defined by X0 = 0 and

dXt = dBt +

{
2k

Zt −Xte
−k(V (t)−t)

ek(V (t)−t) − e−k(V (t)−t) − kXt

}
dt,

for t ∈ (0, 1). Then, we claim that if Z0 has a probability density given by Γ(0, 0; c, ·) then X is
an Ornstein-Uhlenbeck process in its own filtration and X1 = Z1, P

0,z-a.s. under an appropriate
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modification of Assumption 2.1.2, which we will state later. Using the method employed in the proof
of Proposition 3.3 we have that Γ(t, x;V (t), z) is the conditional density of Zt given FXt for t < 1.
Thus, it remains to show that X1 = Z1, P 0,z-a.s..

Note that the above convergence will be obtained if one can find a continuous function b(t) with
b(1) = 1 such that Xt − b(t)Zt converges to 0 as t ↑ 1. We will choose this new function so that
that Yt := Xt − b(t)Zt defines a Markov process. It can be checked directly that if b satisfies the
following ordinary differential equation

b′(t) + γ(t)b(t) = θ(t), (4.37)

where

γ(t) =
e−c(V (t)−t) + ec(V (t)−t)

ec(V (t)−t) − e−c(V (t)−t) + cσ2(t), and

θ(t) =
2c

ec(V (t)−t) − e−c(V (t)−t) ,

then Y satisfies the following SDE

dYt = dBt − b(t)σ(t)dβt − c
e−c(V (t)−t) + ec(V (t)−t)

ec(V (t)−t) − e−c(V (t)−t)Ytdt. (4.38)

The solution to (4.37) with the boundary condition b(1) = 1 is given by

b(t) =

∫ t
0 e

R s
0 γ(r)drθ(s)ds

e
R t
0 γ(r)dr

.

In order to show Yt converges to 0 as t ↑ 1 consider the function ϕ defined by

ϕ(t, y) :=
1√

2(Λ(t) + `)
e

y2

2λ2(t)(Λ(t)+`) ,

where

λ(t) := exp

(
−c
∫ t

0

e−c(V (s)−s) + ec(V (s)−s)

ec(V (s)−s) − e−c(V (s)−s)ds

)
, and

Λ(t) :=
∫ t

0

1 + b2(s)σ2(s)
λ2(s)

ds.

A direct application of Itô’s formula gives that ϕ(t, Yt) is a positive local martingale, hence a super-
martingale. If Assumption 2.1 holds with λ and Λ defined above, then we can imitate the proof of
Proposition 3.2 using ϕ(t, y) defined above to conclude that Yt converges to 0 as t ↑ 1.

5 Application to finance: A generalization of Back-Pedersen equi-
librium model

We will use the previous bridge construction to solve an equilibrium model with information asym-
metry that can be viewed as a non-Gaussian generalization of Back and Pedersen’s [3]. We keep
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the notation of the previous sections, in particular all the stochastic processes will be defined on
(Ω,G, (Gt),Q).

Consider a stock issued by a company with fundamental value given by the diffusion process
Z = (Ω,G, (Gt), (Zt), (P z)z∈R) with values in R, and satisfying

Zt = Z0 +
∫ t

0
σ(s)a(V (s), Zs)dβs (5.39)

where β is a standard Brownian motion adapted to (Gt), a and σ are deterministic functions,
V (t) = c+

∫ t
0 σ

2(s)ds, for some constant c and the probability density of Z0 is G(0, 0; c, ·) with G
given by (2.13). We will require a and σ satisfy some further assumptions which are made precise
in Assumption 5.2 below.

Then, if the firm value is observable, the fair stock price should be a function of Zt and t.
However, the assumption of the company value being discernible by the whole market in continuous
time is counter-factual, and it will be more realistic to assume that this information is revealed to
the market only at given time intervals (such as dividend payments times or when balance sheets
are publicized).

In this model we therefore assume, without loss of generality, that the time of the next infor-
mation release is t = 1, and the market terminates after that. Hence, in this setting the stock
can be viewed as a European option on the firm value with maturity T = 1 and payoff f(Z1). In
addition to this risky asset, there is a riskless asset that yields an interest rate normalized to zero
for simplicity of exposition.

The microstructure of the market, and the interaction of market participants, is modeled as a
generalization of [3]. There are three types of agents: noisy/liquidity traders, an informed trader
(insider), and a market maker, all of whom are risk neutral. The agents differ in their information
sets, and objectives, as follows.

• Noisy/liquidity traders trade for liquidity reasons, and their total demand at time t is given
by a standard (Gt)-Brownian motion B independent of β and Z0.

• Market maker observes only the total market order process Yt = θt+Bt, where θt is the total
order of the insider at time t which is an absolutely continuous process, and therefore Y is
a continuous semimartingale on (Ω,G, (Gt),Q). This in particular implies that the market
maker’s filtration is FYt . Similar to [8], we assume that the market maker sets the price
as a function of weighted total order process at time t, i.e. we consider pricing functionals
S
(
Y[0,t], t

)
of the following form

S
(
Y[0,t], t

)
= H (t,Xt) , ∀t ∈ [0, 1) (5.40)

where X is the unique strong solution of

dXt = w(t,Xt)dYt, ∀t ∈ [0, 1), X0 = 0 (5.41)

on (Ω,G, (Gt),Q) for some deterministic function w(s, x) chosen by the market maker. More-
over, a pricing rule (H,w) has to be admissible in the sense of Definition 5.1. In particular,
H ∈ C1,2 and, therefore, S is a semimartingale on (Ω,G, (Gt),Q) on [0, 1).
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• The informed investor observes the price process St = H (t,Xt) where X is given by (5.41),
and the true firm value Zt, i.e. her filtration is given by (FZ,St ). Since she is risk-neutral, her
objective is to maximize the expected final wealth, i.e.

sup
θ∈A(H,w)

E0,z
[
W θ

1

]
= sup

θ∈A(H,w)
E0,z

[
(f(Z1)− S1−)θ1 +

∫ 1−

0
θsdSs

]
(5.42)

where E0,z is the expectation with respect to the probability measure P 0,z which is the law
of (X,Z) with X0 = 0 and Z0 = z, and A(H,w) is the set of admissible trading strategies
for the given pricing rule (H,w), which will be defined in Definition 5.2. That is, the insider
maximizes the expected value of her final wealth W θ

1 , where the first term on the right hand
side of equation (5.42) is the contribution to the final wealth due to a potential differential
between price and fundamental at the time of information release, and the second term is the
contribution to final wealth coming from the trading activity.

Remark 5.1 Note that by setting σ ≡ 0 and c = 1, we obtain the “static information market”
considered by [2]. Moreover, setting a ≡ 1 results in the model studied by [3].

In both cases, V (t) − t was a measure of the uncertainty of the market about the value of Zt
which is equivalent to the informational advantage of the insider in comparison with the market
maker (see discussion at the beginning of p. 393 of [3]). As we will see later in Remark 5.8, this
observation remains valid in our generalized case.

Remark 5.2 We stress the fact that the total demand Y = Y θ depends on insider’s strategy θ,
so that the market maker’s filtration FY = FY θ depends also on θ (through Y ). To avoid heavy
notation, we will drop the superscript θ from total demand. So will simply write Y and FY instead
of Y θ and FY θ , respectively.

Note also that the above market structure implies that the insider’s optimal trading strategy
takes into account the feedback effect i.e. that prices react to her trading strategy according to
(5.40) and (5.41). Our goal is to find the rational expectations equilibrium of this market, i.e. a
pair consisting of an admissible pricing rule and an admissible trading strategy such that: a) given
the pricing rule the trading strategy is optimal, b) given the trading strategy, there exists a unique
strong solution, Xt, of (5.41) over the time interval [0, 1), and the pricing rule is rational in the
following sense:

H(t,Xt) = St = EQ [f(Z1)|FYt
]

(5.43)

with S1 = f(Z1). To formalize this definition of equilibrium, we first need to define the sets of
admissible pricing rules and trading strategies.

The definition of admissible pricing rules is a generalization of the one in [2] and [3]. This
generalization allows the market maker to re-weight his past information with a weighting function
w as stated in (5.41).

Definition 5.1 For a given semimartingale Y on (Ω,G, (Gt),Q), an admissible pricing rule is any
pair (H,w) fulfilling the following conditions:

1. w : [0, 1]× R 7→ R+ is a function in C1,2([0, 1]× R) bounded away from 0.
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2. There exists a unique strong solution of

dXt = w(t,Xt)dYt, X0 = 0 (5.44)

over the time interval [0, 1) on (Ω,G, (FYt ),Q);

3. H ∈ C1,2([0, 1]× R);

4. x 7→ H(t, x) is strictly increasing for every t ∈ [0, 1];

Moreover, given θ ∈ A(H,w), a pricing rule (H,w) is said to be rational if it satisfies (5.43).

Remark 5.3 The strict monotonicity of H in the space variable implies H is invertible, thus, the
filtration of the insider is generated by X and Z. Moreover, since w is bounded away from 0 the
filtrations generated by X and Y are the same. This in turn implies that (FS,Zt ) = (FB,Zt ), i.e. the
insider has full information about the market.

It is standard (see, e.g., [3], [8] or [23]) in the insider trading literature to limit the set of
admissible strategies to absolutely continuous ones motivated by the result in Back [2], and we do
so. The formal definition of the set of admissible trading strategies is summarized in the following
definition.

Definition 5.2 An FB,Z-adapted θ is said to be an admissible trading strategy for a given pair
(H,w) if

1. it is absolutely continuous with respect to the Lebesgue measure, i.e. θt =
∫ t

0 αsds;

2. There exists a unique strong solution, X, to the SDE4 (5.44) on (Ω,G, (FB,Zt ),Q) over the
interval [0, 1).

3. (X,Z) is a Markov process adapted to (Gt) with law P 0,z;

4. and no doubling strategies are allowed i.e.

E0,z

[∫ 1

0
H2 (t,Xt) dt

]
<∞. (5.45)

The set of admissible trading strategies for the given pair (H,w) is denoted with A(H,w).

Given these definitions of admissible pricing rules and trading strategies, it is now possible to
formally define the market equilibrium as follows.

Definition 5.3 A triplet (H∗, w∗, θ∗) is said to form an equilibrium if (H∗, w∗) is an admissible
pricing rule for the semimartingale Y ∗ = B+ θ∗, θ∗ ∈ A(H∗, w∗), and the following conditions are
satisfied:

1. Market efficiency condition: given θ∗, (H∗, w∗) is a rational pricing rule.
4Note that this SDE is well defined on (Ω,G, (Gt),Q) since, due to absolute continuity of θ, Y = B + θ is a

semimartingale on it.
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2. Insider optimality condition: given (H∗, w∗), θ∗ solves the insider optimization problem:

E0,z[W θ∗
1 ] = sup

θ∈A(H∗,w∗)
E0,z[W θ

1 ].

Additionally, to define a well behaved problem we impose the following technical conditions on the
model parameters.

Assumption 5.1 f : R 7→ R is a strictly increasing function belonging to C1 such that

|f(z)| ≤ k1 exp (k2A(1, z)) , ∀z ∈ R

for some constants k1 and k2 where A is given by (2.7).

Remark 5.4 The assumption that f is strictly increasing implies that the larger the signal Z the
larger the value of the risky asset for the insider. This assumption will also play a role in order to
prove that the proposed equilibrium pricing rule satisfies condition 4 in Definition 5.1.

Assumption 5.2 We assume that the parameters of the model satisfy the following assumptions:

1. Both a(t, z) and σ(t) satisfy Assumption 2.1.

2. a(t, z) also satisfies a nonlinear PDE:

at(t, z) +
a2(t, z)

2
azz(t, z) = 0 (5.46)

Remark 5.5 Due to definition of b given in (2.9) we have

b(t, x) = At(t, A−1(t, x))− 1
2
az(t, A−1(t, x))

= −
∫ A−1(t,x)

0

at(t, y)
a2(t, y)

dy − 1
2
az(t, A−1(t, x))

=
1
2

∫ A−1(t,x)

0
azz(t, y) dy − 1

2
az(t, A−1(t, x))

= −1
2
az(t, 0),

where the second equality is due to the definition of A (see 2.7) and the third equality follows from
Assumption 5.2.2. Therefore, b is continuous and depends only on t. Moreover, Assumptions 2.2
and 2.3 are automatically satisfied since a ∈ C1,2 and t ∈ [0, 1]. In this case Ut = A(V (t), Zt),
where A is defined in (2.7), is a Gaussian process. Moreover, in the next subsection we will give
some heuristics indicating that a(t, z) being a solution to (5.46) is a necessary condition for the
existence of an equilibrium. This suggests the conclusion that the only possible form for the signal
Z, for which an equilibrium in the sense of Definition 5.3 exists, is Zt = Φ(t, Ut) where U is a
Gaussian process and Φ is a deterministic function.
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5.1 Equilibrium

First, we shall provide some heuristics in order to motivate the PDE (5.46) we imposed on a(t, z).
Let (H,w) be any rational pricing rule. First, notice that a standard application of integration-

by-parts formula applied to W θ
1 for any θ ∈ A(H,w) gives

W θ
1 =

∫ 1

0
(f(Z1)− Ss)αs ds. (5.47)

Furthermore,

E0,z

[∫ 1

0
(f(Z1)− Ss)αsds

]
= E0,z

[∫ 1

0
(E0,z[f(Z1)|FB,Zs ]− Ss)αsds

]
. (5.48)

Define the value, P , of the stock for the insider by

Pt := E0,z[f(Z1)|FB,Zt ] = E0,z[f(Z1)|FZt ] = F (t, Zt), (5.49)

for some measurable function F : [0, 1] × R 7→ R (due to independence between Z and B and the
Markov property of Z). Note that this expectation is well defined since, due to Assumption 5.1,
|f(Z1)| ≤ k1 exp(k2U1) where U1 is a Gaussian random variable. Moreover, P1 = f(Z1), P 0,z-a.s.
for every z ∈ R, and the function F is given by

F (t, z) =
∫

R
f(y)G(V (t), z; 1, y) dy, (5.50)

where G is the function defined in Proposition 2.1. Due to Assumption 5.1 on f , it follows from
Theorem 12 in Chap. I of [12] that F ∈ C1,2([0, 1]× R) and satisfies

Ft(t, z) +
1
2
σ2(t)a2(V (t), z)Fzz(t, z) = 0. (5.51)

In view of (5.47) and (5.48), insider’s optimization problem becomes

sup
θ∈A(H,w)

E0,z[W θ
1 ] = sup

θ∈A(H,w)
E0,z

[∫ 1

0
(F (s, Zs)−H(s,Xs))αsds

]
. (5.52)

Recall that the signal Zt follows

dZt = σ(t)a(V (t), Zt)dβt.

Suppose that θt =
∫ t

0 α(s,Xs, Zs)ds is a solution of the problem (5.52). Then the market price is
given by H(t,Xt) with

dXt = w(t,Xt)α(t,Xt, Zt)dt+ w(t,Xt)dBt

Let

J(t, x, z) := ess supθ∈A(H,w)E
0,z

[∫ 1

t
(F (s, Zs)−H(s,Xs))dθs|Xt = x, Zt = z

]
, t ∈ [0, 1]
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be the associated value function of the insider’s problem. Applying formally the dynamic program-
ming principle, we get the following HJB equation:

0 = sup
α

([w(t, x)Jx + F (t, z)−H(t, x)]α) + Jt +
1
2
w2(t, x)Jxx +

1
2
σ2(t)a2(V (t), z)Jzz (5.53)

Thus, for the existence of an optimal α we need

w(t, x)Jx + F (t, z)−H(t, x) = 0 (5.54)

Jt +
1
2
w2(t, x)Jxx +

1
2
σ2(t)a2(V (t), z)Jzz = 0 (5.55)

Differentiating (5.54) with respect to x and since from (5.54) it follows that Jx = H(t,x)−F (t,z)
w(t,x) , we

get
w2(t, x)Jxx = Hx(t, x)w(t, x) + (F (t, z)−H(t, x))wx(t, x) (5.56)

Plugging (5.56) into (5.55) yields:

Jt +
1
2

(Hx(t, x)w(t, x) + (F (t, z)−H(t, x))wx(t, x)) +
1
2
σ2(t)a2(V (t), z)Jzz = 0 (5.57)

Differentiating (5.54) with respect to z gives Jxz = −Fz(t,z)
w(t,x) and therefore Jzzx = −Fzz(t,z)

w(t,x) . Thus,
after differentiating (5.57) with respect to x we obtain:

Jtx +
1
2

(Hxx(t, x)w(t, x) + (F (t, z)−H(t, x))wxx(t, x))− σ2(t)
a2(V (t), z)

2w(t, x)
Fzz(t, z) = 0 (5.58)

Since differentiation (5.54) with respect to t gives

Jxt =
wt(t, x)
w2(t, x)

(F (t, z)−H(t, x))− 1
w(t, x)

(Ft(t, z)−Ht(t, x)),

(5.58), in view of (5.51), implies

(H(t, x)− F (t, z))
{
wt(t, x) +

w2(t, x)
2

wxx(t, x)
}

= w(t, x)
(
Ht(t, x) +

1
2
w2(t, x)Hxx(t, x)

)
.

(5.59)
Since the right hand side of (5.59) is not a function of z, we must have

wt(t, x) +
w2(t, x)

2
wxx(t, x) = 0, (5.60)

Ht(t, x) +
1
2
w2(t, x)Hxx(t, x) = 0. (5.61)

Remark 5.6 In Proposition 5.1 we show that if the system of PDEs given by (5.60) and (5.61)
are satisfied, then there exists an optimal strategy for the insider. Under further assumptions one
can show that the requirement on (H,w) posed by the PDEs (5.60) and (5.61) is in fact a necessary
condition for the existence of an optimal solution for the insider. Indeed, if f is bounded, and
therefore, F and H are bounded, and there exists an optimal strategy for the insider such that the
value function is in C1,2,2, then Theorem 4.3.1 in [17] gives that J has to satisfy simultaneously
(5.54) and (5.55). Thus, w satisfying the nonlinear PDE above is a necessary condition in order
to have a smooth value function J .
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An examination of (5.61) suggests that X associated with the optimal strategy is a martingale
in its own filtration. In view of these observations, recalling the bridge construction in the previous
section with certain properties, it is easily seen that a(t, x) is a natural candidate for the equilibrium
weight function w∗(t, x). That is the reason why we need to assume that a satisfies PDE (5.46).

Remark 5.7 PDE (5.46) admits many explicit solutions satisfying the properties listed in As-
sumption 2.1. Here are few examples taken from [18], sections from 1.1.9.10 to 1.1.9.13 and from
1.1.9.18 to 1.1.9.20.

(i) a(t, z) = a0 for some constant a0 > 0, which is the case already studied by Back and Pedersen
[3];

(ii) a(t, z) =
√
k1(z + k2)2 + k3e−k1t, where k1, k2, k3 are positive constants. Indeed, since t varies

on [0, 1], infz a(t, z) ≥
√
k3e
−2k1, so that a(t, z) is uniformly bounded away from zero.

(iii) a(t, z) = g(z)√
k1t+k2

where g is solution to k1
g = g′′ and is bounded away from zero.

(iv) (Self-similar solution) a(t, z) = y(z/
√
t), where y(x) satisfies y2yxx− yxx = 0 and is bounded

away from 0.

(v) (Generalized self-similar solution) a(t, z) = e−2k1t y(ze2k1t), where y(x) satisfies

−1
2
y2yxx = 2k1xyx − 2k1y

and is bounded away from 0.

The next proposition describes the optimal insider’s strategy in terms of the behavior of the
resulting optimal demand at maturity.

Proposition 5.1 Assume that (H,w) satisfy

Ht(t, x) +
w(t, x)2

2
Hxx(t, x) = 0 (5.62)

and

wt(t, x) +
w(t, x)2

2
wxx(t, x) = 0. (5.63)

If θ∗ ∈ A(H,w) satisfies S1 := H(1, X∗1 ) = F (1, Z1), P 0,z-a.s. for every z ∈ R, where X∗ is the
solution to Xt =

∫ t
0 w(s,Xs)dY ∗s with Y ∗ = B + θ∗, and (H,w) is admissible for Y ∗, then θ∗ is an

optimal strategy, i.e.,
E0,z[W θ∗

1 ] ≥ E0,z[W θ
1 ]

a.s. for all θ ∈ A(H,w).

Proof. We will adapt Wu’s proof of his Lemma 4.2 in [23]. Consider the function

Ψa(t, x) :=
∫ x

ξ(t,a)

H(t, u)− a
w(t, u)

du+
1
2

∫ 1

t
Hx(s, ξ(s, a))w(s, ξ(s, a))ds (5.64)
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where ξ(t, a) is the unique solution of H(t, ξ(t, a)) = a. Direct differentiation with respect to x
gives that

Ψa
x(t, x)w(t, x) = H(t, x)− a. (5.65)

Differentiating above with respect to x gives

Ψa
xx(t, x)w2(t, x) = w(t, x)Hx(t, x)− (H(t, x)− a)wx(t, x). (5.66)

Direct differentiation of Ψa(t, x) with respect to t gives

Ψa
t (t, x) =

∫ x

ξ(t,a)

Ht(t, u)
w(t, u)

du−
∫ x

ξ(t,a)

(H(t, u)− a)wt(t, u)
w2(t, u)

du− 1
2
Hx(t, ξ(t, a))w(t, ξ(t, a))

=
∫ x

ξ(t,a)

Ht(t, u)
w(t, u)

du+
1
2

∫ x

ξ(t,a)
(H(t, u)− a)dwx(t, u)− 1

2
Hx(t, ξ(t, a))w(t, ξ(t, a))

=
1
2

((H(t, x)− a)wx(t, x)−Hx(t, x)w(t, x)) (5.67)

where in order to obtain the last equality we used (5.62) and integration by parts twice on the
second integral. Combining (5.66) and (5.67) gives

Ψa
t +

1
2
w(t, x)2Ψa

xx = 0. (5.68)

Therefore from (5.65) and Itô’s formula it follows that,

Ψa(1, X1)−Ψa(0, X0) =
∫ 1

0

H(t,Xt)− a
w(t,Xt)

dXt, (5.69)

and in particular, when a = F (1, Z1),

ΨF (1,Z1)(1, X1)−ΨF (1,Z1)(0, X0) =
∫ 1

0

H(t,Xt)− F (1, Z1)
w(t,Xt)

dXt. (5.70)

Using (5.47), (5.70) and admissibility properties of θ, in particular dθt = αtdt, the insider optimiza-
tion problem becomes

sup
θ∈A(H,w)

E0,z[W θ
1 ] = sup

θ∈A(H,w)
E0,z

[∫ 1

0
(F (1, Z1)−H(t,Xt)) dθt

]
(5.71)

= E0,z
[
ΨF (1,Z1)(0, X0)

]
− inf
θ∈A(H,w)

E0,z
[
ΨF (1,Z1)(1, X1)

]
(5.72)

where the last equality is due to (5.45) in Definition 5.2, and

E0,z

[(∫ 1

0
F (1, Z1)dBt

)2
]

= E0,z
[
F (1, Z1)2

]
E0[B2

1 ] <∞,

since Z and B are independent.
The conclusion follows from the fact that ΨF (1,Z1)(1, X1) =

∫ X1

ξ(1,F (1,Z1))
H(1,u)−F (1,Z1)

w(t,u) du which,
due to the fact thatH(t, x) is increasing and w(t, u) is positive, is positive unlessX1 = ξ(1, F (1, Z1)),
that is, H(1, X1) = F (1, Z1). Therefore, an insider trading strategy which gives H(1, X1) =
F (1, Z1) is optimal. �

We have the following sufficient condition for a triplet (H∗, w∗, θ∗) to be an equilibrium.

28



Lemma 5.1 A triplet (H∗, w∗, θ∗) where (H∗, w∗) is an admissible pricing rule for the semimartin-
gale Y ∗ = B + θ∗, and θ∗ ∈ A(H∗, w∗), is an equilibrium if it fulfills the following four conditions

1. H∗(t, x) satisfies the PDE H∗t (t, x) + 1
2w
∗(t, x)2H∗xx(t, x) = 0 for any (t, x) ∈ [0, 1)× R.

2. Weighting function satisfies w∗t (t, x) + w∗(t,x)2

2 w∗xx(t, x) = 0.

3. Y ∗t = Bt + θ∗t is a standard BM in its own filtration.

4. H∗(1, X∗1 ) = f(Z1), P 0,z-a.s. for every z ∈ R where X∗ is the solution to Xt =
∫ t

0 w(s,Xs)dY ∗s
with Y ∗ = B + θ∗.

5. (H∗(t,X∗t ))t∈[0,1] is an (FY ∗t )-martingale with respect to Q.

Proof. Let (H∗, w∗, θ∗) be a triplet satisfying conditions 1 to 4 above. By Proposition 5.1,
conditions 1,2 and 4 imply that θ∗ is optimal. On the other hand, 1, 3, 4 and 5 imply that the
pricing rule (H∗, w∗) is rational. �

Combining Proposition 5.1 and the bridge construction given in the previous section, we can
finally state and prove the main result of this section. We recall from Proposition 2.1 that the
function G = G(t, x;u, y) is the transition density of

dξt = a(t, ξt) dβt, (5.73)

and from Theorem 2.1 that there exists a unique strong solution under FB,Z of the following SDE:

dXt = a(t,Xt)dBt + a2(t,Xt)
ρx(t,Xt, Zt)
ρ(t,Xt, Zt)

dt, X0 = 0.

Theorem 5.1 Under Assumptions 5.1 and 5.2 there exists an equilibrium (H∗, w∗, θ∗), where

(i) H∗(t, x) = F (V −1(t), x) where F is given by (5.50) and w∗(t, x) = a(t, x) for all (t, x) ∈
[0, 1]× R;

(ii) θ∗t =
∫ t

0 α
∗
sds where α∗s = a(s,Xs)

ρx(s,Xs,Zs)
ρ(s,Xs,Zs)

with ρ(t, x, z) = G(t, x;V (t), z) and the process
X∗ is the unique strong solution under FB,Z of the following SDE:

dXt = a(t,Xt)dBt + a2(t,Xt)
ρx(t,Xt, Zt)
ρ(t,Xt, Zt)

dt, X0 = 0.

Proof. We will first show that (H∗, w∗) is admissible in the sense of Definition 5.1. Note
that since F ∈ C1,2, so is H∗ ∈ C1,2([0, 1] × R) and w∗ is bounded away from 0 since a(t, z) is
assumed to be bounded away from 0 in Assumption 5.2. We also have that X∗ is the unique strong
solution to

Xt =
∫ t

0
w∗(s,Xs)dY ∗s ,

on (Ω,G, (FY ∗t ),Q) by condition ii) of the theorem and that dXt = a(t,Xt)dY ∗t = w∗(t,Xt)dY ∗t . In
order to complete the proof of admissibility we next show that x 7→ H∗(t, x) is strictly increasing
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for every t ∈ [0, 1]. Observe that this is equivalent to the analogous property for F . First, using
(5.50) and (2.13) we obtain

F (t, z) =
∫

R
f(y)Γ(V (t), A(V (t), z); 1, A(1, y)) dA(1, y).

=
∫ A(1,∞)

A(1,−∞)
f(A−1(1, y))Γ(V (t), A(V (t), z); 1, y) dy

=
∫ A(1,∞)

A(1,−∞)
f(A−1(1, y))q (1− V (t), A(V (t), z) + c(t), y) dy,

where the last line follows from Lemma A.3 and q is the transition density of standard Brownian
motion given by

q(t, x, y) =
1√
2πt

exp
(
−(x− y)2

2t

)
,

and c(t) =
∫ 1
V (t) b(s)ds. Due to bounds on f we can differentiate inside the integral to get that

Fz(t, z) =
∫ A(1,∞)

A(1,−∞)
f(A−1(1, y))qx (1− V (t), A(V (t), z) + c(t), y)

1
a(V (t), z)

dy

= −
∫ A(1,∞)

A(1,−∞)
f(A−1(1, y))qy (1− V (t), A(V (t), z) + c(t), y)

1
a(V (t), z)

dy

=
∫ A(1,∞)

A(1,−∞)
f ′(A−1(1, y))

a(1, A−1(1, y))
a(V (t), z)

q (1− V (t), A(V (t), z) + c(t), y) dy > 0,

where the third equality follows from integration by parts, which is valid due to Assumption 5.1.
The final strict inequality is due to the fact that f is strictly increasing and a is strictly positive.
Therefore, (H∗, w∗) is admissible for the semimartingale Y ∗ = B + θ∗.

Next, we turn to verify that θ∗ ∈ A(H∗, w∗). By construction θ∗ is absolutely continuous.
Moreover, the conditions 2 and 3 of Definition 5.2 follow from Theorem 2.1. Finally, condition 4
follows from Lemma A.3.

To finish the proof, let us verify that the triplet (H∗, w∗, θ∗) given in the statement satisfy the
five conditions of Lemma 5.1. First, H∗ as defined satisfies condition 1 in Lemma 5.1 due to (5.51).
The second condition is trivially satisfied due to Assumption 5.2. For the third condition observe
that X∗ is a local martingale in its own filtration due to Theorem 2.1. However, since a(t, z) is
uniformly bounded away from 0, it follows that the natural filtrations of X∗ and Y ∗ coincide. The
conclusion that Y ∗ is a Brownian motion in its own filtration follows as soon as one observes that
dY ∗t = 1

a(t,X∗t )dX
∗
t , i.e. Y ∗ is a local martingale with [Y ∗, Y ∗]t = t.

In order to verify the fourth condition, observe that H∗(1, x) = F (1, x) = f(x). Since by
Theorem 2.1 we have X∗1 = Z1, P

0,z-a.s., the condition holds.
Finally, to demonstrate the martingale property of H∗(t,X∗t ) observe that the transition density

of X∗ is given by G(t, x;u, z) since in its own filtration

dX∗t = a(t,X∗t )dY ∗t ,
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and Y ∗ is a Brownian motion so that X∗ satisfies the same SDE (5.73) as the process ξ. Therefore,

EQ[f(Z1)|FX∗t ] = EQ[f(X∗1 )|FX∗t ]

=
∫

R
f(y)G(t,X∗t ; 1, y) dy

= F (V −1(t), X∗t )
= H(t,X∗t ),

where one to the last equality is due to (5.50). �

Remark 5.8 Note that it follows from Corollary 4.2 that the conditional density of Zt given FX∗t
is G(t,X∗t ;V (t), z). Note that G(t, x;u, z) converges to the delta function as t converges to u.
Therefore, the closer V (t) is to t, the smaller is the uncertainty of the market maker about the
value of Zt. Hence, in our case, as in [3], V (t) − t is a good measurement of the informational
advantage of the insider.

A Appendix

Proposition A.1 Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied. Then, hx
h : [0, 1] × R ×

[0, 1]× R 7→ R as defined in (4.33) is (uniformly) bounded.

In order to prove the proposition above we need a few preliminary results. The first one is the
following classical result due to [1].

Lemma A.1 There exist positive constants, α1, α2,M1, and M2 such that

M1 q(α1(u− t), x, z) ≤ Γ(t, x;u, z) ≤M2 q(α2(u− t), x, z),

for all (x, z) ∈ R2 and u > t.

Next we need to obtain estimates on the function hx/h. This will be done by following the
approach employed in [4]. For this purpose define the martingale L by

dLu = −Lub(u, ζu)dβu, u ≥ t

with Lt = 1 and let

I(u, z) :=
∫ z

0
b(u, y)dy Nu :=

∫ u

t

{
It(s, ζs) +

1
2
bx(s, ζs) +

1
2
b2(s, ζs)

}
ds.

Recall that ζs = A(s, ξs) and dζs = dβs + b(s, ζs)ds, where the function b has been defined in (2.9).

Remark A.1 Notice that Assumptions 2.2 and 2.3 ensure that the above formulation make sense.

Then,
L−1
u = exp {I(u, ζu)− I(t, ζt)−Nu}

and a straightforward application of Girsanov’s theorem yields

Γ(t, x;u, z) = exp (I(u, z)− I(t, x))Ex,qt [exp(−Nu)|ζu = z] q(u− t, x, z),
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where Ex,qt is the expectation operator with respect to the law of the standard Brownian motion
starting at x at time t. Therefore, (4.33) becomes

h(t, x;u, z) = exp (I(u, z)− I(t, x))Ex,qt [exp(−Nu)|ζu = z].

Observe that ∂I(t,x)
∂x = b(t, x), which is bounded. Therefore, in order to establish the uniform

boundedness of hx/h, we need estimates on

∂
∂xE

x,q
t [exp(−Nu)|ζu = z]

Ex,qt [exp(−Nu)|ζu = z]
.

The next lemma is going to give us an alternative representation of the numerator in the above
expression which allows us to obtain a uniform bound on hx/h.

Lemma A.2 Suppose Assumptions 2.2 and 2.3 are satisfied and ζt = x. Then we have

∂Nu

∂x
=
∫ u

t

{
bt(s, ζs) +

1
2
byy(s, ζs) + b(s, ζs) by(s, ζs)

}
ds.

Moreover,
∂

∂x
Ex,qt [exp(−Nu)|ζu = z] = −Ex,qt

[
exp(−Nu)

∂Nu

∂x

∣∣∣∣ζu = z

]
.

Proof. In order to prove the first statement note that ζu = x+Wu for some Brownian motion
with Wt = 0. Since the integrands are differentiable functions with bounded derivatives, this allows
us to differentiate under the integral sign. Although derivative exists only almost everywhere, it is
no problem since the law of Brownian motion is absolutely continuous with respect to the Lebesgue
measure. For the second assertion take an infinitely differentiable f : R 7→ R with a compact
support. Therefore, if differentiation inside the expectation is justified,

∂

∂x
Ex,qt [exp(−Nu)f(ζu)] = Ex,qt

[
∂

∂x
{exp(−Nu)f(ζu)}

]
= −Ex,qt

[
∂Nu

∂x
exp(−Nu)f(ζu)

]
+ Ex,qt

[
exp(−Nu)f ′(ζu)

]
.

As ∂Nu
∂x , f and f ′ are bounded, we only need to show exp(−Nu) is bounded by an integrable

function in order to justify the differentiation. Indeed, using Assumptions 2.2 and 2.3 on the
boundedness of function b and its first derivatives, together with the definition of Nu, one can
easily prove that Nu ≥ K(mu + x − k) ≥ K(m1 + x − k) for some positive constants k,K, where
mu = mint≤s≤uWs. Thus, exp(−Nu) is bounded above by the random variable Ce−m1 for a
positive constant C, which may depend on x in a continuous fashion. It follows from the reflection
principle for Brownian motion that −m1 has the same law as |W1|. Moreover the random variable
exp(|W1|) being integrable, we have that exp(−Nu) is bounded, uniformly in u, by an integrable
function which does not depend on x when x is restricted to a compact domain. This justifies the
differentiation inside the expectation.

On the other hand,

Ex,qt

[
∂

∂x
Ex,qt [exp(−Nu)|ζu] f(ζu)

]
= Ex,qt

[
∂

∂x
{Ex,qt [exp(−Nu)|ζu]f(ζu)}

]
−Ex,qt

[
Ex,qt [exp(−Nu)|ζu]f ′(ζu)

]
,
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thus, we will be done as soon as we have that

∂

∂x
Ex,qt [exp(−Nu)f(ζu)] = Ex,qt

[
∂

∂x
{Ex,qt [exp(−Nu)|ζu]f(ζu)}

]
.

Since Ex,qt [exp(−Nu)|ζu] is bounded and away from zero whenever (x, ζu) belongs to a bounded
domain5 and f has a compact support, this will follow if ∂

∂xE
x,q
t [exp(−Nu)|ζu] is bounded for fixed

u > t whenever (x, ζu) belongs to a bounded domain in R2. To see this note that

(u− t) ∂
∂x

logΓ(t, x, u, z) = (u− t) ∂
∂x

logh(t, x, u, z) + z − x

= −(u− t)b(t, x) + (u− t)
∂
∂xE

x,q
t [exp(−Nu)|ζu = z]

Ex,qt [exp(−Nu)|ζu = z]
+ z − x.

The claim follows from the boundedness of b, (2.16) and Lemma A.1. Thus,

∂

∂x
Ex,qt [exp(−Nu)|ζu = z] = −Ex,qt

[
exp(−Nu)

∂Nu

∂x

∣∣∣∣ζu = z

]
.

�
Proof of Proposition A.1. First note that in view of Lemma A.2

hx(t, x;u, z)
h(t, x;u, z)

= −

(
b(t, x)−

Ex,qt [exp(−Nu) ∂
∂xNu|ζu = z]

Ex,qt [exp(−Nu)|ζu = z]

)
.

As ∂
∂xNu is uniformly bounded, in u and x, we have∣∣∣∣hx(t, x;u, z)

h(t, x;u, z)

∣∣∣∣ ≤ |b(t, x)|+ sup
x

{
ess sup

∣∣∣∣ ∂∂xNu

∣∣∣∣}
by Jensen’s inequality. However, supx

{
ess sup

∣∣ ∂
∂xNu

∣∣} is finite under our assumptions. Finally,
since b is also bounded under our assumptions, the result follows. �

Lemma A.3 Suppose that a(t, z) and σ(t) satisfy Assumption 5.2. Let Z satisfy (2.1) and X be
the process defined in Theorem 5.1. Then,

1. b(t, z) = b(t) where b is defined by (2.9);

2. the fundamental solution of

wu(u, z) =
1
2
wzz(u, z)− (b(u, z)w(u, z))z

is Γ(t, x;u, z) = q(u−t, x+
∫ u
t b(s)ds, z) where q is the transition density of standard Brownian

motion;
5These can be proven by similar arguments that are used in showing exp(−Nu) is bounded by an integrable

function.
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3. For every z ∈ R

E0,z

[∫ 1

0
H2 (t,Xt) dt

]
<∞,

where H(t, x) = F (V −1(t), x) with F given by (5.50).

Proof.

1. This follows from Remark 5.5.

2. Recall that Γ is the transition density of

dζt = dβt + b(t)dt.

Thus, ζu − ζt has a Gaussian distribution with mean
∫ u
t b(s)ds and variance u− t.

3. Under the assumptions of the lemma, the process U and R as defined in Lemma 2.2 satisfy

dUt = σ(t)dβt + σ2(t)b(t)dt

dRt = dBt +
{
px(t, Rt, Ut)
p(t, Rt, Ut)

+ b(t)
}
dt,

where p(t, x, z) = Γ(t, x;V (t), z). Therefore,

dRt = dBt +

{
Ut −Rt −

∫ V (t)
t b(s)ds

V (t)− t
+ b(t)

}
dt.

The solution of the above SDE is given by

Rt = U0 +
∫ t

0
b(s)σ2(s)ds− (U0 −R0) exp

(
−
∫ t

0

1
V (s)− s

ds

)
−
∫ t

0
exp

(
−
∫ t

s

1
V (u)− u

du

)(
b(s)σ2(s)− b(s) +

∫ V (s)
s b(u)du
V (s)− s

)
ds (A.74)

+
∫ t

0
σ(s)

(
1− exp

(
−
∫ t

s

1
V (u)− u

du

))
dβs +

∫ t

0
exp

(
−
∫ t

s

1
V (u)− u

du

)
dBs.

Therefore, Rt is a normal variable with bounded (uniformly in t) mean and variance. Indeed,
due to Remark 2.3, sups,t exp

(
−
∫ t
s

1
V (u)−udu

)
< ∞. Moreover, b and σ are bounded by

assumption. Therefore, the moment generating function of Rt is a bounded function of time
in [0, 1]. Next, observe that

F (t, z) = E[f(Z1)|Zt = z] = E[f(A−1(1, U1))|Ut = A(V (t), z)]
≤ k1E[exp(k2U1)|Ut = A(V (t), z)]

= k1 exp
(
k2

∫ 1

t
b(s)ds+ k2A(V (t), z) +

1
2
k2

2(1− V (t))
)

≤ K exp(k2A(V (t), z))
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due to Assumption 5.1 on f ; the third line is due to the form of the moment generating
function of the Gaussian random variable U1 − Ut. This in particular implies

E0,z[H2(t,Xt)] = E0,z[F 2(V −1(t), Xt)]
≤ K2E0,z [exp (2k2A(t,Xt))]
= K2E0,z [exp (2k2Rt)] .

Note that supt∈[0,1]E
0,z [exp (2k2Rt)] < ∞ since the moment generating function of R is

bounded. Hence, the claim follows.

�
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