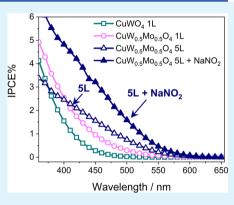


www.acsaem.org Article

Effective Visible Light Exploitation by Copper Molybdo-tungstate Photoanodes

Annalisa Polo, Chiara Nomellini, Ivan Grigioni, Maria Vittoria Dozzi, and Elena Selli*

Cite This: ACS Appl. Energy Mater. 2020, 3, 6956-6964


ACCESS

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: The need for stable oxide-based semiconductors with a narrow band gap, able to maximize the exploitation of the visible light portion of the solar spectrum, is a challenging issue for photoelectrocatalytic (PEC) applications. In the present work, $\text{CuW}_{1-x}\text{Mo}_x\text{O}_4$ ($E_g=2.0$ eV for x=0.5), which exhibits a significantly reduced optical band gap E_g compared with isostructural CuWO_4 ($E_g=2.3$ eV), was investigated as a photoactive material for the preparation of photoanodes. $\text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4$ electrodes with different thicknesses (80–530 nm), prepared by a simple solution-based process in the form of multilayer films, effectively exhibit visible light photoactivity up to 650 nm (i.e., extended compared with CuWO_4 photoanodes prepared by the same way). Furthermore, the systematic investigation on the effects on photoactivity of the $\text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4$ layer thickness evidenced that long-wavelength photons can better be exploited by thicker electrodes. PEC measurements in the presence of NaNO₂, acting as a suitable hole scavenger ensuring enhanced photocurrent generation compared

with that of water oxidation while minimizing dark currents, allowed us to elucidate the role that molybdenum incorporation plays on the charge separation efficiency in the bulk and on the charge injection efficiency at the photoanode surface. The adopted Mo for W substitution increases the visible light photoactivity of copper tungstate toward improved exploitation and storage of visible light into chemical energy via photoelectrocatalysis.

KEYWORDS: Mo-modified CuWO₄, band gap reduction, extended visible light photoactivity, photoelectrocatalysis, photoanode, charge separation

1. INTRODUCTION

Our need of storable forms of energy is continuously growing, 1,2 as well as the attention toward renewable energy sources, in order to prevent crucial fossil-fuel-related issues such as climate change and air pollution. The sun is the primary source of energy for our planet, and the evolution toward a solar energy society, already envisaged long time ago, has now become an inescapable choice.³ Mimicking the action of bacteria and plants which are able to convert solar energy into nutrients via photosynthesis, effective strategies were foreseen to convert solar light into energy-containing chemicals. 1,4-6 Among them, the photoelectrocatalytic (PEC) conversion of solar light into highly energetic chemical fuels was proposed, in thermodynamically uphill reactions such as hydrogen production from water splitting,^{7,8} and intense efforts were made in identifying photoactive materials for the fabrication of efficient photoelectrodes, in particular photoanodes for water oxidation, as this reaction represents the kinetic bottleneck of the overall PEC water splitting process.

Ternary oxides, such as BiVO₄, MFe₂O₄ (M = Cu, Mg, Zn), InTaO₄, and CuWO₄, have emerged as promising candidate materials for this application $^{10-17}$ because of their high stability toward the harsh oxidative conditions required for oxygen evolution, 18 their valence band edge position being lower in

energy with respect to the water oxidation potential of 1.23 V versus RHE.¹⁹ Commonly employed BiVO₄ and MFe₂O₄ oxides with a relatively narrow band gap may allow up to 8 and 10% harvesting of the solar radiation, respectively, which is still not suitable for industrial applications. 13,19 However, their efficient use as well as that of other ternary oxides such as InTaO₄ and CuWO₄ (having 2.6 eV¹⁰ and 2.3 eV²⁰ band gap, respectively) requires their modification to narrow their band gap, for an effective solar energy conversion. Attempts to dope these materials with elements such as Ni, 21 N, 22 Cr, 22-24 and Mo^{25,26} proved to increase their visible light absorption capability. In particular, partial substitution of W6+ with Mo⁶⁺ in the CuWO₄ structure results in a band gap reduction of ca. 0.3 eV (from 2.3 to 2.0 eV),²⁵ corresponding to a significant red shift of the absorption onset of the ternary oxide material. 25-27

Received: May 4, 2020 Accepted: June 8, 2020 Published: June 8, 2020

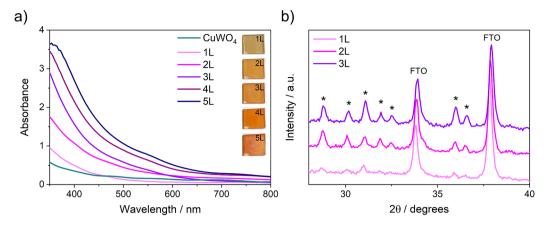


Figure 1. (a) Absorption spectra of multilayer (1L–5L) $CuW_{0.5}Mo_{0.5}O_4$ photoelectrodes. Inset: picture of the photoelectrodes. (b) X-ray powder diffraction (XRPD) patterns of 1L, 2L, and 3L $CuW_{0.5}Mo_{0.5}O_4$ electrodes, in the 28–40 degrees 2θ range. The asterisks mark the reflections typical of wolframite.

Aiming at ascertaining the role that molybdenum for tungsten substitution has in increasing the PEC performance of intrinsically poorly performing CuWO₄, in relation to the transport properties of the charge carriers photogenerated in differently thick photoactive layers and to the charge transfer efficiency at the oxide-solution interface, in the present work we investigate the $CuW_{0.5}Mo_{0.5}O_4$ semiconductor oxide obtained by 50% Mo^{6+} for W^{6+} substitution, which is quite easy to achieve, the two ions having very similar radii.²⁸ This material was prepared by a facile solution-based synthetic route and is composed of a single phase. Its thorough PEC characterization allowed us to demonstrate that the attained reduction in band gap energy directly results in a more efficient exploitation of longer-wavelength photons compared with pure CuWO₄ photoanodes. The role that molybdenum incorporation has on the efficiencies of photoproduced charge separation in the bulk and charge injection at the electrode/ electrolyte interface has been clarified by investigating how the thickness of the photoactive layer in photoanodes affects their wavelength-dependent PEC performance, also in the presence of a suitable hole scavenger.

2. EXPERIMENTAL SECTION

2.1. Chemicals and Materials. The following chemicals, all purchased from Sigma-Aldrich, were employed as supplied: copper-(II) nitrate trihydrate (99%, $Cu(NO_3)_2$: $3H_2O$), ammonium metatungstate hydrate (99%, $(NH_4)_6H_2W_{12}O_{40}$: xH_2O), citric acid (99%), boric acid (99%) and ethanol (99%). Molybdenum(VI) oxide bis(2,4-pentanedionate) (99%, $C_{10}H_{14}MoO_6$) was an Alfa Aesar product. Fluorine-doped 2 mm thick tin oxide (FTO) glass was purchased from Pilkington Glass (TEC-7).

2.2. Preparation of Photoelectrodes. A 0.5 M solution of $CuW_{0.5}Mo_{0.5}O_4$ was prepared as follows. First, 0.270 g of citric acid, 0.122 g of copper nitrate, 0.062 g of ammonium metatungstate, and 0.082 g of molybdenum oxide bis-pentanedionate were added to 1.0 mL of an ethanol—water 2:1 solution. Complete dissolution of the metal precursors, corresponding to a 1:1 W:Mo molar ratio, was ensured in the chosen solvent composition, and any phase segregation was excluded in the resulting film. The precursors were dissolved by keeping the solution under constant stirring for 45 min at 80 °C. The as-obtained green paste is stable for several weeks. The photoelectrodes were prepared by spin coating it onto a $2.5 \times 2.5 \text{ cm}^2$ FTO glass at 4000 rpm for 30 s. Prior to deposition, the FTO glass was cleaned by 30 min-long sonication in a soap solution, followed by careful washing, sonication in ethanol for 30 min, and drying in air. The clean glass slices then underwent a 15 min-long UV-cleaner

ozone treatment to remove any organic species deposited onto the FTO surface. They were finally soaked in isopropanol for a few seconds right before the spin coating deposition, to increase the FTO affinity for the metal oxide precursor solution and reduce the light scattering of the resulting films in the long-wavelength spectral region.

After deposition, the $\text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4$ films were dried at 250 °C for 10 min, followed by annealing at 550 °C for 1 h. Pure CuWO_4 films were prepared by a similar procedure without adding the molybdenum precursor to the initial solution. Multilayer films (up to 5 layers), labeled as nL (n=1-5) $\text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4$, were prepared by coating the as-deposited films with the same precursor solution, followed by annealing at 550 °C for 1 h after each deposition step.

2.3. Optical, Structural, Morphological, and Photoelectrochemical Tests. UV—visible absorption spectra were recorded in the transmission mode using a Jasco V-670 spectrophotometer. The crystalline phase of the materials was investigated through X-ray powder diffraction (XRPD) analysis using a Philips PW1820 diffractometer, equipped with a Cu-sealed tube that provided $K\alpha$ radiation at 40 mA and 40 kV. A model LEO 1430 scanning electron microscope operating at a 10 kV accelerating voltage and at 8 mm working distance was used to acquire the top view and cross-sectional images of the films, up to three deposited layers. A Dektak XT Bruker profilometer was employed to measure the thickness of the thicker 4L and 5L $CuV_{0.5}Mo_{0.5}O_4$ films.

Linear sweep voltammetry (LSV) measurements were carried out using a three-electrode cell equipped with two quartz windows. The FTO/CuW_{0.5}Mo_{0.5}O₄ film was used as working electrode, an Ag/ AgCl (3.0 M NaCl) as reference electrode, and a platinum gauze as counter electrode. The electrical bias was swept at 10 mV s⁻¹ using an Autolab PGSTAT 12, controlled by the NOVA software. The light source was an Oriel, Model 81172 solar simulator equipped with an AM 1.5 G filter. The light intensity, measured by means of a Thorlabs PM200 power meter equipped with a S130VC power head with Si detector, was 100 mW cm⁻². During a typical LSV test, 5 consecutive J-V scans were performed with each electrode, preceded by the Fermi level equilibrium under irradiation up to the open circuit potential (OCP). Identical OCP values were recorded prior to the beginning of each scan with each mono- or multilayer electrode and all of them provided stable and reproducible photocurrent from the first to the last scan.

The investigated films were tested as photoanodes under both back (through the FTO side) and front (through the deposited film side) irradiation configuration, in contact with a 0.1 M $\rm K_3BO_3$ aqueous solution at pH 9. The buffer borate solution was prepared by adding KOH to aqueous boric acid up to the desired pH. Furthermore, a series of different sacrificial agents, acting as electron donor species, was employed in LSV measurements. Aqueous solutions (0.1 M) of either $\rm H_2O_2$, $\rm NH_3$, or $\rm NaNO_2$ were buffered at pH 9 in a $\rm K_3BO_3$ solution, while the 0.1 M $\rm Na_2SO_3$ aqueous solution did not contain

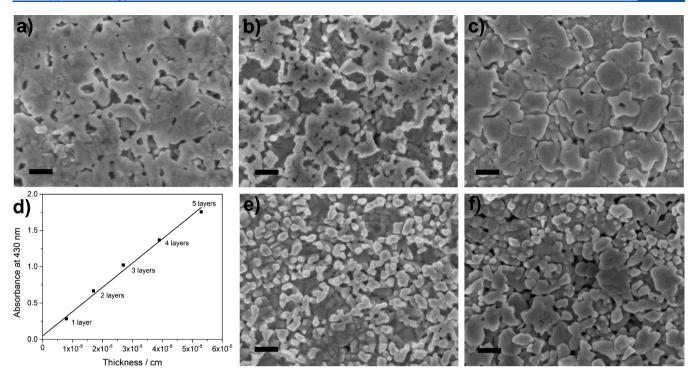


Figure 2. Top-view SEM images of (a) 1L, (b) 2L, and (c) 3L $CuW_{0.5}Mo_{0.5}O_4$ electrodes. (d) Absorption at 430 nm of multilayer photoanodes vs their thickness. SEM images recorded after PEC tests of (e) 2L and (f) 3L $CuW_{0.5}Mo_{0.5}O_4$ electrodes. The scalebar is 200 nm.

 $\rm K_3BO_3$ as it is naturally at pH 9. The potential values versus Ag/AgCl were converted into the RHE scale using the following equation: $E_{\rm RHE} = E_{\rm AgCl} + 0.059~{\rm pH} + E^{\circ}_{\rm AgCl}$ with $E^{\circ}_{\rm AgCl}$ (3.0 M NaCl) = 0.210 V at 25 °C.

Incident photon to current efficiency (IPCE) measurements were carried out at 1.23, 1.5, and 1.7 V versus RHE under irradiation with a 300 W Lot-Oriel Xe lamp equipped with a Lot-Oriel Omni- λ 150 monochromator and a Thorlabs SC10 automatic shutter, in the above-described single-compartment three-electrode cell containing the K₃BO₃ buffered solution, to which the NaNO₂ hole scavenger was eventually added. The IPCE values were calculated using the following equation:

$$IPCE = \frac{1240 \times J}{P_{\lambda} \times \lambda} \times 100 \tag{1}$$

where J is the photocurrent density (mA cm⁻²) and P_{λ} (mW cm⁻²) is the power measured at each specific wavelength λ (nm).

Chopped chronoamperometric scans at different wavelengths were recorded in back side configuration at 1.23 V versus RHE within the 300–650 nm wavelength range, with a 10 nm step. A 420 nm filter was employed at λ > 500 nm, to avoid any contribution from the high-order harmonics originated from the monochromator.

3. RESULTS AND DISCUSSION

3.1. Characterization of Photoelectrodes. As shown in Figure 1a, the multilayer $CuW_{0.5}Mo_{0.5}O_4$ electrodes exhibit an absorption increasing with the increasing number of deposited layers, with an absorption tail due to light scattering observed with the thickest films. The gradual color increase can be appreciated also from their pictures shown in the inset of Figure 1a. The absorption onset of the material is at ca. 650 nm, corresponding to a band gap of ca. 1.9 eV, in agreement with the ca. 2.0 eV estimated band gap reported for a 50% degree of Mo for W substitution. Thus, the absorption onset of pure copper tungstate, having a band gap energy of 2.3 eV, is effectively extended toward the visible light region upon 50% Mo for W substitution.

The XRPD patterns relative to the 1L, 2L, and 3L $CuW_{0.5}Mo_{0.5}O_4$ films, reported in Figure 1b, show the reflections characteristic of pure wolframite, ^{25,26} which become more intense with increasing material thickness. Thus, 50% Mo for W substitution has no effects on the crystalline phase formation, within the detection limits of the XRPD technique. The presence of Mo is confirmed by the change of lattice constants and the consequent peak shifts observed in the XRPD patterns of $CuW_{0.5}Mo_{0.5}O_4$ in comparison with $CuWO_4$ (see a detailed view of Figure 1b reported in Figure S1 of the Supporting Information), which are almost identical to those recently reported 26 for a $CuW_{1-x}Mo_xO_4$ sample with the same nominal Mo:W molar ratio.

The top view scanning electron microscopy (SEM) images of 1L, 2L, and 3L $CuW_{0.5}Mo_{0.5}O_4$ electrodes (Figure 2a–c) reveal a structure composed of densely aggregated crystallites, which may facilitate the electrolyte diffusion across the film by increasing the contact area between the electrolyte solution and the photoactive material. In the case of the thickest film, a decrease in the size of the agglomerates can be observed in the top view SEM images acquired with the same electrode after PEC tests (see Figure 2e,f), resulting from an extended contact between the $CuW_{0.5}Mo_{0.5}O_4$ film and the electrolyte.

The thickness values of the multilayer $CuW_{0.5}Mo_{0.5}O_4$ electrodes, evaluated either by means of SEM cross-sectional images (Figure S2) or by profilometry, are reported in Table 1 and indicate that the average increase in film thickness is ca. 110 nm upon each deposited layer. From these values, together with the absorption spectrum of the films, the absorption coefficients of $CuW_{0.5}Mo_{0.5}O_4$ at different wavelengths were calculated according to the Lambert–Beer law, as the slopes of the lines obtained by plotting the absorbance of the film at a selected wavelength against the film thickness of multilayer $CuW_{0.5}Mo_{0.5}O_4$ electrodes (see Figures 2d and S3). The best fitting was obtained for $\lambda = 430$ nm, the corresponding

Table 1. Thickness of Multilayer CuW_{0.5}Mo_{0.5}O₄ Electrodes Estimated from SEM Cross-Sectional Images and by Profilometry

sample	thickness/nm
1L	80 ± 20
2L	170 ± 10
3L	270 ± 10
4L	410 ± 20
5L	530 ± 30

absorption coefficient being $\alpha_{430~\mathrm{nm}} = (3.41 \pm 0.10) \times 10^4~\mathrm{cm}^{-1}$.

3.2. PEC Performances. During a typical LSV test under simulated solar light irradiation, five consecutive photocurrent density versus applied potential (J-V) scans were performed with each electrode. The J-V curves reported in Figure 3a,b correspond to the fifth scan performed with each electrode. Each mono- or multilayer electrode provided stable and reproducible photocurrent from the first to the last scan, with no difference in photocurrent, as shown in Figure S4. Thus, high repeatability was obtained with all films, in line with the high photostability of CuWO₄-based materials.

Figure 3a shows the J-V plots recorded with the multilayer $CuW_{0.5}Mo_{0.5}O_4$ electrodes and a monolayer $CuWO_4$ electrode under back side solar simulated light (i.e., the electrodes were irradiated through the FTO glass), in contact with a 0.1 M

 $\rm K_3BO_3$ solution at pH 9. First of all, the introduction of Mo into $\rm CuWO_4$ produces a more than 3-fold improvement in photocurrent density at 1.7 V versus RHE. Moreover, no significant difference in the LSV curves of $\rm CuW_{0.5}Mo_{0.5}O_4$ films could be noted up to an applied potential of ca. 1.3 V versus RHE, while progressively higher photocurrent density values were recorded at higher applied potentials with increasing number of deposited layers up to the 3L $\rm CuW_{0.5}Mo_{0.5}O_4$ electrode, which was found to be the most active one.

Consequently, the highest photocurrent density of ca. 1 mA cm⁻² was recorded at 1.7 V versus RHE for the 3L film, while lower performances were obtained with thicker 4L and 5L electrodes, despite that they practically absorb 100% of the incident light, also at long wavelengths. This provides a first indication of electron mobility issues occurring in films composed of more than three layers (i.e., thicker than ca. 270 nm). Furthermore, the slightly higher activity resulting for the 5L film compared with the 4L film could be related to the contribution to photocurrent of the longest-wavelength photons, the exploitation of which increases with increasing film thickness, that is, with increasing absorption of long-wavelength radiation (see Figure S5, showing a magnification of the IPCE profile of Figure 3c).

The J-V curves of Figure 3a were compared with the results of LSV analyses performed under front-side illumination (Figure S6; i.e., by irradiating the material through the

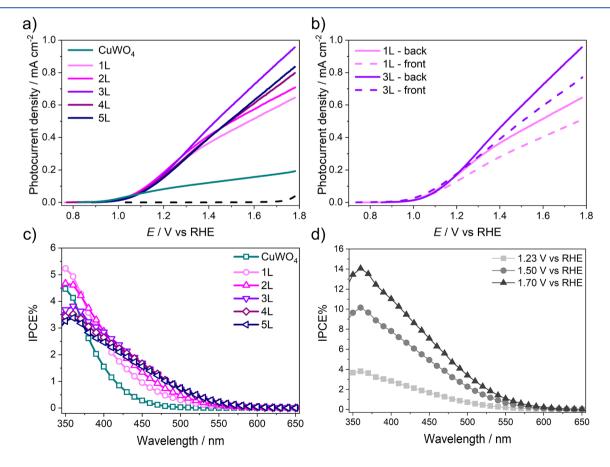


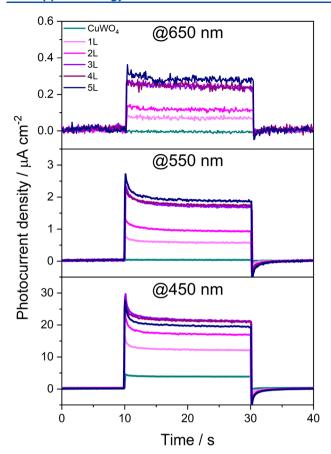
Figure 3. Linear sweep voltammetry (LSV) of (a) 1L-5L $CuW_{0.5}Mo_{0.5}O_4$ electrodes and $CuWO_4$ electrode in back configuration and (b) 1L and 3L $CuW_{0.5}Mo_{0.5}O_4$ electrodes in back and front configuration; AM 1.5 G solar simulated irradiation, scan rate of 10 mV s⁻¹. The current in the absence of irradiation is also shown in panel (a) (black dashed line). Incident photon to current efficiency (IPCE) of (c) $CuWO_4$ monolayer and 1L-5L $CuW_{0.5}Mo_{0.5}O_4$ electrodes at 1.23 V vs RHE and (d) the 3L electrode at different applied potentials.

electrode/electrolyte interface). This allows us to get more insight into the charge-carrier mobility within the material and to assess if the internal charge transport is limited by either the minority or the majority charge carriers, 31 that is, by the holes or the electrons, respectively, in an n-type semiconductor material.³² The LSV plots recorded with the 1L and 3L CuW_{0.5}Mo_{0.5}O₄ electrodes (ca. 80 and 270 nm thick, respectively) under back and front side irradiation are compared in Figure 3b. Since for both selected films the photocurrent recorded under front side irradiation is lower than that recorded under back side irradiation, poor electron transport appears to be the limiting factor for this material. The 3L electrode exhibits the best PEC performance among the tested films either under front or back irradiation (compare Figure 3a and Figure S6). Thus, a ca. 270 nm film thickness seems to correspond to the best balance between photon absorption in the photoactive layer and electron transport efficiency within it.

The IPCE plots recorded under back side irradiation at 1.23 V versus RHE are reported in Figure 3c for the complete series of multilayer CuW_{0.5}Mo_{0.5}O₄ electrodes and for a single-layer CuWO₄ photoanode. By comparing the curves obtained with the two monolayer CuWO₄ and CuW_{0.5}Mo_{0.5}O₄ photoanodes, evidence is obtained of the higher efficiency of the composite molybdenum-containing material with respect to pure CuWO₄, over the entire range of investigated wavelengths. This demonstrates that the increased visible light absorption capability (see Figure 1a) consequent to Mo for W substitution results in a higher number of photogenerated charge couples, which are effectively responsible for the higher visible light activity of CuW_{0.5}Mo_{0.5}O₄ with respect to CuWO₄.

Furthermore, by comparing the IPCE curves obtained with multilayer CuW_{0.5}Mo_{0.5}O₄ electrodes (Figure 3c), the thinnest 1L and 2L CuW_{0.5}Mo_{0.5}O₄ films are most efficient in the UV region up to 390 nm, whereas thicker films exhibit the best photoactivity in the visible light region. The high absorption coefficient value of CuW_{0.5}Mo_{0.5}O₄ in the UV region (the extinction coefficient at 400 nm is 3 times greater than at 500 nm, see Figure S7) implies that UV radiation is absorbed almost quantitatively even by the thinner films, which results in high photocurrent values. Furthermore, in thicker electrodes (thicker than 2L) and under back side irradiation, most of the UV photogenerated holes need to travel across the whole film to reach their extraction sites at the film/electrolyte interface. The probability that they recombine with photopromoted electrons increases with increasing film thickness leading to lower IPCE values in the UV region with respect to thinner films. Concerning the relatively higher IPCE values of the thicker films in the visible region, owing to the lower absorption capability of the material at longer wavelengths (Figure S7), quantitative light harvesting can be attained only in thicker films, which are consequently able to better exploit visible light. The best compromise between efficient hole transport across the film and maximum visible light exploitation under back side irradiation is attained with the ca. 270 nm thick film (3L CuW_{0.5}Mo_{0.5}O₄ electrode).

The recorded IPCE values are also in good agreement with the performances under full lamp irradiation recorded in LSV scans. In fact, as shown in Table S1, there is a good matching between the photocurrent density values at 1.23 V versus RHE in J-V curves and the photocurrent density calculated by integrating the product between the IPCE curves and the standard AM 1.5 G solar spectrum³³ over the entire range of


investigated wavelengths $(300-650 \text{ nm} \text{ for the } \text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4 \text{ multilayer films}).$

Besides at 1.23 V versus RHE, the IPCE curve for the best performing 3L CuW_{0.5}Mo_{0.5}O₄ electrode was recorded in back side configuration also at 1.50 and 1.70 V versus RHE (Figure 3d), in order to evaluate the conversion efficiency of the material upon increasing charge separation. As shown in Figure 3d, the conversion efficiency gets higher with increasing applied potential over the whole investigated wavelengths, with the IPCE value recorded at 400 nm showing a 2.5- and 3.5-fold enhancement as the potential increases from 1.23 to 1.5 and to 1.7 V versus RHE, respectively. The observed behavior is in line with the photocurrent density enhancement recorded in LSV scans under simulated solar light irradiation. In particular, the IPCE almost linearly increases with increasing applied potential (see Figure 3d), because the holes generated by highenergy photons, which are mainly confined in the proximity of the FTO back contact, benefit from the enhanced charge carrier separation because of the progressively higher external bias and have larger probability to reach the film/electrolyte interface where O2 evolution occurs.

Finally, the chopped photocurrent measurements under monochromatic irradiation at different wavelengths performed with our photoanodes at 1.23 V versus RHE provide uncontroversial evidence that all CuW_{0.5}Mo_{0.5}O₄-based photoanodes absorb light and exhibit photoactivity up to 650 nm, while CuWO₄ is photoactive only below 550 nm. In fact, as shown in Figure 4, whereas all tested photoanodes, including the CuWO₄-based one, originate a photocurrent signal under irradiation at 450 nm (Figure 4, bottom panel), the photocurrent signal is zero for CuWO₄ under irradiation at 550 nm (Figure 4, middle panel), while all 1L-5L CuW_{0.5}Mo_{0.5}O₄ photoanodes remain photoactive at this wavelength and maintain their photoactivity up to 650 nm (Figure 4, top panel). This demonstrates that Mo for W substitution in CuWO₄ largely extends the photoactivity of this material into the visible region, at least up to 650 nm.

3.3. Sacrificial Agents. Two are the main limiting factors for PEC water oxidation performed by semiconductor-based photoanodes, that is, (i) the transport of photopromoted electrons and photogenerated holes through the bulk material to the FTO back contact and to the film/electrolyte interface, respectively, and (ii) the interfacial hole injection kinetics, determining the oxygen evolution efficiency. Decoupling these two contributions is therefore required in order to shed light on the intrinsic properties of the investigated photoactive material. In particular, the use of a suitable hole scavenger-containing electrolyte, acting as electron donor, allows one to study the intrinsic properties of the bulk material, under the assumption that hole injection at the material/electrolyte interface is not rate limiting under such conditions.³⁴

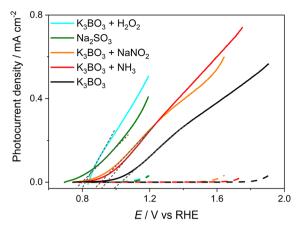
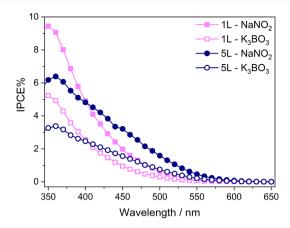

Previous studies pointed out that significant dark current is observed if CuWO_4 electrodes are in contact with Na_2SO_3 -and H_2O_2 -containing solutions. Therefore, the performance of $\text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4$ photoanodes was investigated in the presence of various hole scavengers (i.e., Na_2SO_3 , H_2O_2 , NaNO_2 , and NH_3) to check the existence of dark currents and verify if and how the response of this material is affected by the redox potential of the donor species. The concentration of all sacrificial agents was kept constant at 0.1 M within 0.1 M K_3BO_3 buffer solutions at pH 9, except for the 0.1 M Na_2SO_3 solution, which was at pH 9 in the absence of buffer.

Figure 4. Chopped chronoamperometry at 1.23 V versus RHE of the $1L-5L\ CuW_{0.5}Mo_{0.5}O_4$ electrodes and of the $CuWO_4$ electrode under irradiation at 650 nm (top panel), 550 nm (middle panel), and 450 nm (bottom panel).

The dark current onsets in the presence of different sacrificial agents was measured first using both the 1L $CuW_{0.5}Mo_{0.5}O_4$ film and a glassy carbon as working electrode, in order to attain an apparent redox scale for the employed species (see Figure S8). For the electrode immersed in 0.1 M K_3BO_3 in the absence of any hole scavenger, the dark current potential onset is the highest (i.e., around 1.8 V versus RHE). Furthermore, the most easily oxidizable species is H_2O_2 , immediately followed by Na_2SO_3 , with a dark current onset located at ca. 1.0 V versus RHE. More positive onset potentials (i.e., ca. 1.4 and 1.6 V versus RHE) were found for $NaNO_2$ and NH_3 , respectively. Thus, moving from the most stable to the most oxidizable species, the following scale results: H_2O (i.e., K_3BO_3 aqueous solution) > NH_3 > $NaNO_2$ \gg Na_2SO_3 > H_2O_2 .

The LSV curves obtained with a monolayer $CuW_{0.5}Mo_{0.5}O_4$ electrode in contact with the hole scavenger-containing solutions under back side simulated solar irradiation are shown in Figure 5. The LSV curve obtained with the 0.1 M K_3BO_3 aqueous solution is also reported, as reference. In the absence of any electron donor species, the photocurrent onset potential was ca. 1.0 V versus RHE (i.e., 800 mV lower than under dark conditions). The photocurrent onset potentials in the presence of the hole scavengers, extrapolated from the curves shown in Figure 5, are reported in Table S2. Compared with the pure K_3BO_3 electrolyte solution, the use of Na_2SO_3 and H_2O_2 as hole scavengers led to the largest decrease of photocurrent onset potential, which was around 0.8 V versus

Figure 5. LSV curves recorded with a monolayer $CuW_{0.5}Mo_{0.5}O_4$ electrode in contact with a 0.1 M K_3BO_3 solution, 0.1 M K_3BO_3 solutions containing different hole scavengers at a 0.1 M concentration or 0.1 M Na_2SO_3 , under dark (dashed lines) or back side AM 1.5 G irradiation conditions (continuous lines). Scan rate of 10 mV s⁻¹. All solutions were at pH 9. The photocurrent onset potential was calculated by extrapolation of each LSV line (black dashed lines).


RHE in both cases, in good agreement with the conduction band edge value of ca. 0.7 V versus RHE. 25 However, owing to the significant dark current generated in the presence of these sacrificial agents at a potential as low as 1.2 V versus RHE, Na_2SO_3 and H_2O_2 were discarded as hole scavengers in our PEC investigation.

Additionally, in the presence of $\mathrm{NH_3}$ and $\mathrm{NaNO_2}$ hole scavengers, a lower negative shift of the photocurrent onset potential (located at ca. 0.9 V versus RHE) was observed and negligible dark current up to 1.75 and 1.6 V versus RHE, respectively. This allows the exploitation of a wider applied potential window in PEC measurements. Because of the high volatility of $\mathrm{NH_3}$, which may result in uncontrollable concentration variation of its aqueous solutions, we finally selected $\mathrm{NaNO_2}$ as the most suitable sacrificial agent for our PEC tests. In its presence, the photocurrent density at 1.23 V versus RHE is double compared with that measured in pure $\mathrm{K_3BO_3}$ (0.30 versus 0.15 mA cm⁻², see Figure 5), with negligible dark current at such applied bias.

Anyway, regardless of the employed electron donor, the photocurrent just moderately increased with respect to water oxidation (in K_3BO_3). This is in contrast with the considerable increase typically observed with semiconductors the PEC performance of which is limited by surface hole accumulation and slow water oxidation kinetics. For instance, BiVO₄ photoanodes generate up to 100 times higher current in contact with a hole-scavenger-containing solution, ³⁶ whereas Fe₂O₃ electrodes in contact with H_2O_2 allow the complete consumption of surface holes. ³⁷ This suggests that the transfer of surface holes to water or electron donor species has minor limiting effects on the PEC efficiency of $CuW_{0.5}Mo_{0.5}O_4$.

The IPCE curves obtained at 1.23 V versus RHE with the 1L and 5L $CuW_{0.5}Mo_{0.5}O_4$ electrodes in the presence of the NaNO₂ hole scavenger (Figure 6) evidence the extended visible light photoactivity of the $CuW_{0.5}Mo_{0.5}O_4$ material, which is maximum for the thickest 5L photoanode.

3.4. Charge Separation and Charge Injection Efficiencies. PEC measurements in the presence of NaNO₂ as hole scavenger allowed us to evaluate the charge separation

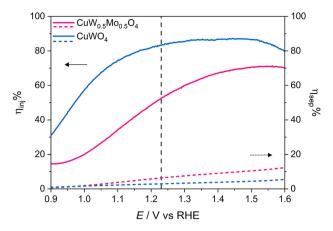
Figure 6. Incident photon to current efficiency (IPCE) of 1L and 5L $CuW_{0.5}Mo_{0.5}O_4$ electrodes at 1.23 V vs RHE in K_3BO_3 both in the absence (void symbols) and in the presence (full symbols) of NaNO₂.

and charge injection efficiencies and thus assess if the performance of $\text{CuW}_{0.5}\text{Mo}_{0.5}\text{O}_4$ photoanodes is limited by either the material bulk properties or the surface hole injection kinetics.

The photocurrent density J can be expressed as the combination of different contributions, according to eq 2: 37,38

$$J = J_{\text{abs}} \eta_{\text{sep}} \eta_{\text{inj}} \tag{2}$$

where $J_{\rm abs}$ is the theoretical maximum photocurrent density obtained if all absorbed photons are converted into electricity, which was estimated by converting into current the integral of the product between the standard AM 1.5 G solar spectrum and the absorption spectrum of the photoelectrode over the 300–650 nm range (4.39 mA cm $^{-2}$ for our 1L CuW $_{0.5}$ Mo $_{0.5}$ O $_{4}$ material), 15 $\eta_{\rm sep}$ is the charge separation efficiency, and $\eta_{\rm inj}$ is the interfacial charge injection efficiency. From this equation the charge separation and charge injection efficiencies can be easily calculated by taking into account the photocurrent densities recorded in the presence ($J_{\rm NaNO_2}$) and absence ($J_{\rm K.BO.}$) of the hole scavenger, as follows:


$$\eta_{\rm inj} = J_{\rm K_3BO_3}/J_{\rm NaNO_2} \tag{3}$$

$$\eta_{\text{sep}} = J_{\text{NaNO}_2} / J_{\text{abs}} \tag{4}$$

The calculated $\eta_{\rm inj}$ and $\eta_{\rm sep}$ values for the 1L CuW_{0.5}Mo_{0.5}O₄ electrode and for the CuWO₄ electrode are shown in Figure 7 as a function of the applied potential. At 1.23 V versus RHE $\eta_{\rm inj}$ and $\eta_{\rm sep}$ are 52% and 6%, respectively, for 1L CuW_{0.5}Mo_{0.5}O₄, which clearly indicate that charge separation in the bulk material is the main limiting factor for the PEC performance of our investigated material, in line with the limited photoactivity improvement attained in the presence of electron donor species.

For our CuWO₄ photoanode (with $J_{\rm abs}$ amounting to 3.60 mA cm⁻² in the 300–550 nm range) $\eta_{\rm inj}$ = 83% and a $\eta_{\rm sep}$ = 3% at 1.23 V versus RHE. This implies that Mo incorporation into CuWO₄ induces a 2-fold increase of the charge separation properties in the bulk, in line with recent reports,²⁷ while it negatively affects the hole injection efficiency at the CuW_{0.5}Mo_{0.5}O₄ film/electrolyte interface, with a $\eta_{\rm inj}$ decrease.

The increased charge separation efficiency can result from the increased majority carrier (i.e., electron) concentration in Mo-doped CuWO₄ with respect to CuWO₄ evidenced through

Figure 7. Charge injection efficiency $\eta_{\rm inj}$ (continuous lines) and charge separation efficiency $\eta_{\rm sep}$ (dashed lines) calculated for the monolayer CuW_{0.5}Mo_{0.5}O₄ (fuchsia) and CuWO₄ (light blue) electrodes vs the applied potential.

Mott-Schottky plots in previous studies on Mo-doped CuWO₄. ²⁵⁻²⁷ This would improve the material conductivity and thus reduce charge recombination in CuW_{0.5}Mo_{0.5}O₄ films. Additionally, the reduction in charge injection efficiency may be ascribed to a Mo-induced increase of the surface trap states of CuWO₄, 12,29,35,39,40 which would decrease the efficiency of water oxidation especially at relatively low applied potentials, by inducing Fermi level pinning at the semiconductor-liquid junction. An indirect evidence of the increase of surface trap states in CuW_{0.5}Mo_{0.5}O₄ films is the modest delay in photocurrent onset of the LSV curves recorded with CuW_{0.5}Mo_{0.5}O₄-based photoanodes with respect to the CuWO₄ photoanode appearing in Figure 3a and better evidenced in the enlargement of this figure at low potentials shown in Figure S9. As recently outlined,²⁷ such delay is compatible with an increase in surface trap states upon Mo incorporation, which hampers the photocurrent onset at low overpotentials, that is, when the driving force to separate photoproduced electron-hole couples is small. Taken together, the 2-fold improvement in charge separation and the decrease in charge injection efficiency result in the overall enhanced PEC activity of CuW_{0.5}Mo_{0.5}O₄ with respect to CuWO₄.

4. CONCLUSIONS

Substitution of Mo for W into the CuWO₄ structure is responsible for the conduction band edge energy lowering and consequent band gap narrowing. Thus, the increased PEC performance of CuW_{0.5}Mo_{0.5}O₄ with respect to CuWO₄ mainly results from the extended visible light absorption ability and photoactivity of the CuW_{0.5}Mo_{0.5}O₄ material up to 650 nm. This effect is maximum for the highest film thickness explored in this study ensuring the exploitation of long-wavelength photons in the visible region, which are efficiently harvested for longer optical paths within the photoactive films. However, Mo for W substitution also increases the efficiency of photoproduced charge separation, which is due to an increased conductivity of the material, while the lower charge injection efficiency of CuW_{0.5}Mo_{0.5}O₄ with respect to pure CuWO₄ may result from an increased amount of surface trap states. With its 2.0 eV band gap, copper molybdo-tungstate shows promise as photoanode material for practical water splitting. Further improvements are needed and might be attained through nanostructuring, the development of efficient oxygen evolution cocatalysts for this class of materials, and the fine modification of the electronic structure by doping with other elements.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.0c01021.

Details of XRPD spectra, cross-section SEM images, absorption coefficient and band gap (Tauc plot) determination, magnification of IPCE data, LSV under front side irradiation, dark current onset with different electrolytes, experimental and calculated (from IPCE integration) photocurrents (PDF)

AUTHOR INFORMATION

Corresponding Author

Elena Selli — Dipartimento di Chimica, Università degli Studi di Milano, I-20133 Milano, Italy; orcid.org/0000-0001-8391-7639; Phone: +39 02 503 14237; Email: elena.selli@unimi.it; Fax: +39 02 503 14300

Authors

Annalisa Polo — Dipartimento di Chimica, Università degli Studi di Milano, I-20133 Milano, Italy; ⊚ orcid.org/0000-0001-5724-2607

Chiara Nomellini — Dipartimento di Chimica, Università degli Studi di Milano, I-20133 Milano, Italy

Ivan Grigioni – Dipartimento di Chimica, Università degli Studi di Milano, I-20133 Milano, Italy

Maria Vittoria Dozzi — Dipartimento di Chimica, Università degli Studi di Milano, I-20133 Milano, Italy; orcid.org/0000-0002-6390-9348

Complete contact information is available at: https://pubs.acs.org/10.1021/acsaem.0c01021

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work received financial support from the MIUR PRIN 20173397R7 MULTI-e project, from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant no. 846107, from the University of Milano PSR2018_DIP_005_DOZZI_MARIA_VITTORIA project "Piano di Sostegno alla Ricerca 2015/2017, linea 2, Azione A" and from a Transition Grant. The use of instrumentation purchased through the Regione Lombardia-Fondazione Cariplo joint SmartMatLab project (Fondazione Cariplo grant 2013-1766) is also gratefully acknowledged.

REFERENCES

- (1) Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. *Proc. Natl. Acad. Sci. U. S. A.* **2006**, *103*, 15729–15735.
- (2) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. *Chem. Rev.* **2010**, *110*, 6474–6502.
- (3) Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty;

- Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018.
- (4) Cardona, T.; Murray, J. W.; Rutherford, A. W. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria. *Mol. Biol. Evol.* **2015**, *32*, 1310–1328.
- (5) Ciamician, G. The Photochemistry of the Future. Science 1912, 36, 385-394.
- (6) Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What Should We Make with CO₂ and How Can We Make It? *Joule* **2018**, *2*, 825–832.
- (7) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. *Nature* **1972**, 238, 37–38.
- (8) Grätzel, M. Photoelectrochemical Cells. *Nature* **2001**, 414, 338–344.
- (9) Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. *Chem. Soc. Rev.* **2014**, 43, 7520–7535.
- (10) Zou, Z.; Ye, J.; Arakawa, H. Structural Properties of InNbO₄ and InTaO₄: Correlation with Photocatalytic and Photophysical Properties. *Chem. Phys. Lett.* **2000**, 332, 271–277.
- (11) Tolod, K.; Hernández, S.; Russo, N. Recent Advances in the BiVO₄ Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. *Catalysts* **2017**, *7*, 13–23.
- (12) Lhermitte, C. R.; Bartlett, B. M. Advancing the Chemistry of CuWO₄ for Photoelectrochemical Water Oxidation. *Acc. Chem. Res.* **2016**, *49*, 1121–1129.
- (13) Lee, D. K.; Lee, D.; Lumley, M. A.; Choi, K.-S. Progress on Ternary Oxide-Based Photoanodes for Use in Photoelectrochemical Cells for Solar Water Splitting. *Chem. Soc. Rev.* **2019**, *48*, 2126–2157.
- (14) Guijarro, N.; Bornoz, P.; Prévot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K. Evaluating Spinel Ferrites MFe₂O₄ (M = Cu, Mg, Zn) as Photoanodes for Solar Water Oxidation: Prospects and Limitations. *Sustain. Energy Fuels* **2018**, *2*, 103–117.
- (15) Zhu, X.; Guijarro, N.; Liu, Y.; Schouwink, P.; Wells, R. A.; Le Formal, F.; Sun, S.; Gao, C.; Sivula, K. Spinel Structural Disorder Influences Solar-Water-Splitting Performance of ZnFe₂O₄ Nanorod Photoanodes. *Adv. Mater.* **2018**, *30*, 1801612.
- (16) Polo, A.; Grigioni, I.; Dozzi, M. V.; Selli, E. Sensitizing Effects of BiVO₄ and Visible Light Induced Production of Highly Reductive Electrons in the TiO₂/BiVO₄ Heterojunction. *Catal. Today* **2020**, 340, 19–25.
- (17) Grigioni, I.; Dozzi, M. V.; Selli, E. Photoinduced Electron Transfer in WO₃/BiVO₄ Heterojunction Photoanodes: Effects of the WO₃ Layer Thickness. *J. Phys.: Condens. Matter* **2020**, 32, 014001.
- (18) Grigioni, I.; Corti, A.; Dozzi, M. V.; Selli, E. Photoactivity and Stability of WO₃/BiVO₄ Photoanodes: Effects of the Contact Electrolyte and of Ni/Fe Oxyhydroxide Protection. *J. Phys. Chem. C* **2018**, *122*, 13969–13978.
- (19) Sivula, K.; Van de Krol, R. Semiconducting Materials for Photoelectrochemical Energy Conversion. *Nat. Rev. Mater.* **2016**, *1*, 15010.
- (20) Thang, H. V.; Albanese, E.; Pacchioni, G. Electronic Structure of CuWO₄: Dielectric-Dependent, Self-Consistent Hybrid Functional Study of a Mott–Hubbard Type Insulator. *J. Phys.: Condens. Matter* **2019**, *31*, 145503–10.
- (21) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst. *Nature* **2001**, *414*, 625–627.
- (22) Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K.-S. Simultaneous Enhancements in Photon Absorption and Charge Transport of Bismuth Vanadate Photoanodes for Solar Water Splitting. *Nat. Commun.* **2015**, *6*, 8769.
- (23) Okuno, K.; Kato, H.; Vequizo, J. J. M.; Yamakata, A.; Kobayashi, H.; Kobayashi, M.; Kakihana, M. Expansion of the

- Photoresponse Window of a BiVO₄ Photocatalyst by Doping with Chromium(VI). RSC Adv. 2018, 8, 38140–38145.
- (24) Lai, K.; Zhu, Y.; Lu, J.; Dai, Y.; Huang, B. Synergistic Effects of Codopants on Photocatalytic O₂ Evolution in BiVO₄. *Solid State Sci.* **2013**, 24, 79–84.
- (25) Hill, J. C.; Ping, Y.; Galli, G. A.; Choi, K.-S. Synthesis, Photoelectrochemical Properties, and First Principles Study of n-Type CuW_{1-x}Mo_xO₄ Electrodes Showing Enhanced Visible Light Absorption. *Energy Environ. Sci.* **2013**, *6*, 2440–2446.
- (26) Liang, Q.; Guo, Y.; Zhang, N.; Qian, Q.; Hu, Y.; Hu, J.; Li, Z.; Zou, Z. Improved Water-Splitting Performances of CuW_{1-x}Mo_xO₄ Photoanodes Synthesized by Spray Pyrolysis. *Sci. China Mater.* **2018**, *61*, 1297–1304.
- (27) Yang, J.; Li, C.; Diao, P. Molybdenum Doped CuWO₄ Nanoflake Array Films as an Efficient Photoanode for Solar Water Splitting. *Electrochim. Acta* **2019**, *308*, 195–205.
- (28) Park, H. S.; Kweon, K. E.; Ye, H.; Paek, E.; Hwang, G. S.; Bard, A. J. Factors in the Metal Doping of BiVO₄ for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation. *J. Phys. Chem. C* 2011, 115, 17870–17879.
- (29) Pyper, K. J.; Yourey, J. E.; Bartlett, B. M. Reactivity of CuWO₄ in Photoelectrochemical Water Oxidation Is Dictated by a Midgap Electronic State. *J. Phys. Chem. C* **2013**, *117*, 24726–24732.
- (30) Hill, J. C.; Choi, K.-S. Synthesis and Characterization of High Surface Area CuWO₄ and Bi₂WO₆ Electrodes for Use as Photoanodes for Solar Water Oxidation. *J. Mater. Chem. A* **2013**, *1*, 5006–5014.
- (31) Abdi, F. F.; van de Krol, R. Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO₄ Photoanodes. *J. Phys. Chem. C* **2012**, *116*, 9398–9404.
- (32) Bott, A. W. Electrochemistry of Semiconductors. *Curr. Separ.* **1998**, *17*, 87–91.
- (33) Brillet, J.; Cornuz, M.; Formal, F. Le; Yum, J. H.; Grätzel, M.; Sivula, K. Examining Architectures of Photoanode-Photovoltaic Tandem Cells for Solar Water Splitting. *J. Mater. Res.* **2010**, 25, 17–24.
- (34) Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. Accelerating Materials Development for Photoelectrochemical Hydrogen Production: Standards for Methods, Definitions, and Reporting Protocols. *J. Mater. Res.* **2010**, *25*, 3–16.
- (35) Gao, Y.; Hamann, T. W. Quantitative Hole Collection for Photoelectrochemical Water Oxidation with CuWO₄. *Chem. Commun.* **2017**, *53*, 1285–1288.
- (36) Park, Y.; Kang, D.; Choi, K.-S. Marked Enhancement in Electron—Hole Separation Achieved in the Low Bias Region Using Electrochemically Prepared Mo-Doped BiVO₄ Photoanodes. *Phys. Chem. Chem. Phys.* **2014**, *16*, 1238–1246.
- (37) Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S. C. Probing the Photoelectrochemical Properties of Hematite (α-Fe₂O₃) Electrodes Using Hydrogen Peroxide as a Hole Scavenger. *Energy Environ. Sci.* **2011**, *4*, 958–964.
- (38) Ye, W.; Chen, F.; Zhao, F.; Han, N.; Li, Y. CuWO₄ Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation. *ACS Appl. Mater. Interfaces* **2016**, *8*, 9211–9217.
- (39) Yourey, J. E.; Pyper, K. J.; Kurtz, J. B.; Bartlett, B. M. Chemical Stability of CuWO₄ for Photoelectrochemical Water Oxidation. *J. Phys. Chem. C* **2013**, *117*, 8708–8718.
- (40) Gao, Y.; Hamann, T. W. Elucidation of CuWO₄ Surface States during Photoelectrochemical Water Oxidation. *J. Phys. Chem. Lett.* **2017**, *8*, 2700–2704.