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1 Introduction

In this paper we consider a portfolio optimization problem over a finite time
horizon [0, T ] in a continuous-time financial market, where an agent can trade
between finitely many risky assets with proportional transaction costs. The
underlying financial market model is very general; the terms of each trade
are described by a bid-ask process (Πt)t∈[0,T ] as in [CS06], so that transac-
tion costs can be time-dependent, random and have jumps. In this setting,
the portfolio process (Vt)t∈[0,T ] is a vector-valued process describing at every
instant the number of physical units of each asset held by the agent. The ex-
ample that the reader should always have in mind is an exchange market with
D currencies, in which Vt = (V 1

t , . . . , V
D
t ) represents how many dollars, euros,

pounds and so on, the agent holds at time t. The agent is permitted to dynam-
ically rebalance their portfolio within the set of all admissible self-financing
portfolio processes as in [CS06]. To avoid arbitrage, we assume the existence
of a strictly consistent pricing system (SCPS) throughout the paper. Precise
details and further assumptions about the modelling of the economy are given
in Section 2.

We consider an agent who may consume a prescribed selection of the D
assets at time T . Without loss of generality, we assume that the agent wishes
to consume the first d assets, where 1 ≤ d ≤ D. We have two main cases
in mind namely d = D, whereby the investor can consume all assets, and
d = 1, whereby the investor must liquidate to a reference asset immediately
prior to consumption. In the latter case, those assets which are not consumed
play the role of pure investment assets. We model the agent’s preferences
towards terminal consumption by means of a multivariate utility function,
U : Rd → [−∞,∞), supported on the non-negative orthant Rd+ (see Definition
2.9). The utility function is assumed to satisfy the following conditions.

Assumption 1.1 1. U is upper semi-continuous;
2. U is strictly concave on the interior of Rd+;
3. U is essentially smooth, i.e. differentiable in the interior of Rd+, and its

gradient diverges at the boundary of Rd+ (see Definition 2.11);
4. U is asymptotically satiable, i.e. there exist positions in the traded assets

for which the marginal utility of U can be made arbitrarily small (see
Definition 2.13).

In the univariate case (d = 1) the assumption of both essential smoothness and
asymptotic satiability is equivalent to the familiar assumption of continuous
differentiability together with the Inada conditions U ′(0) =∞ and U ′(∞) = 0.
Precise details about the above conditions can be found within Section 2.

In order to express the investor’s preferences towards consumption of the
first d assets within the setting of the larger economy we adopt the approach
of [Kam01], extending the utility function U to all D assets. We define Ũ :
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RD → [−∞,∞) by

Ũ(x) :=

{
U(x1, . . . , xd), x ∈ RD+
−∞, otherwise.

(1.1)

Although the extended utility function Ũ theoretically models the possibility of
consumption of all D assets, the investor has no incentive to consume anything
other than the first d assets because the utility is invariant with respect to
increased consumption of the remaining D − d assets.

The investor’s primal optimization problem is formulated in terms of the
value function u : RD → [−∞,∞] defined1 by

u(x) := sup {E [Ũ(X)] : X ∈ AxT } , (1.2)

where x represents an initial portfolio, and AxT denotes the set of all terminal
values of admissible portfolio processes with initial portfolio x. Let dom(u) :={
x ∈ RD : u(x) > −∞

}
denote the effective domain of u, and let cl(dom(u))

and int(dom(u)) denote respectively the closure and interior of the effective
domain of u. The following assumption holds throughout the paper.

Assumption 1.2 u(x) <∞ for some x ∈ int(dom(u)).

Our main results are as follows. In Proposition 3.1 we show that (under
Assumption 1.2) the value function is a also utility function. We give an explicit
characterisation of cl(dom(u)) in terms of the cone of deterministic terminal
portfolios attainable at zero cost. The set cl(dom(u)) is itself a closed convex
cone which strictly contains RD+ , reflecting the rather obvious fact that even
with an initial short position in some of the assets, the investor may use other
positive initial holdings to trade to a terminal position in which they hold non-
negative amounts of each asset. In Proposition 3.5 we establish a relationship
between the primal problem of utility maximization and an appropriate dual
minimization problem (3.3). The domain of the dual problem is contained in a
space of Euclidean vector measures, in contrast to the frictionless case where
real-valued measures suffice. We show that the dual problem has a solution
whenever x ∈ int(dom(u)). Finally, in Theorem 3.12, we prove that the utility
maximization problem (1.2) admits a unique solution for all x ∈ int(dom(u)),
under the following assumption.

Assumption 1.3 u is asymptotically satiable (see Definition 2.13).

In Corollary 3.7 we provide sufficient conditions on the utility function U
for Assumption 1.3 to hold. Also, to place our optimization problem into the
context of other papers which require liquidation of terminal portfolios into a
reference asset, we show in in Proposition 4.3 that the utility maximization

1 Since U is assumed to be upper semi-continuous, it is Borel measurable. In fact, the
assumption that U is upper semi-continuous can be relaxed to Borel measurability through-
out the paper, with the exception of Section 4. We use the standard convention that
E [Ũ(X)] = −∞ whenever E [Ũ(X)−] =∞.
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problem (1.2) can be reformulated in terms of maximization of a liquidation
utility functional. In Proposition 4.4 we show that both formulations of the
optimization problem essentially share a common optimizer.

Utility maximization problems in markets with transaction costs have been
investigated by many authors, typically using either the dynamic programming
approach or the martingale duality approach. While the dynamic programming
approach is particularly well suited to treating optimization problems with a
Markovian state process (see e.g. [DN90,SS94]), the duality approach has the
advantage that it is applicable to very general models. The first paper to
use the duality approach in the setting of proportional transaction costs was
[CK96]. Cvitanić and Karatzas model two assets (a bond and a stock) as Itô
processes, and assume constant proportional transaction costs. At the close of
trading they assume that the investor liquidates their portfolio to the bond
in order to consume their wealth. In this setting they prove the existence of a
solution to the problem of utility maximization, under the assumption that a
dual minimization problem admits a solution. The existence of a solution to
the dual problem was subsequently proved in [CW01].

In [Kab99], a much more general formulation of a transaction costs model
for a currency market was introduced, based on the key concept of solvency
cone. In the same paper, Kabanov also considers the problem of expected
utility maximization, with liquidation of the terminal portfolio to a chosen
reference currency, which is used throughout as the numéraire. Similarly to
[CK96], Kabanov proves the existence of an optimal strategy under the as-
sumption that a dual minimization problem admits a solution.

Developments in the generality of Kabanov’s transaction costs model in
continuous time have since been given in [KL02], where a square-integrability
condition was replaced by an admissibility condition, followed by [KS02] which
treated the case of time-dependent, random transaction costs, provided the sol-
vency cones can be generated by a countable family of continuous processes.
More recently, in [CS06], Kabanov’s model of currency exchange was further
developed to allow discontinuous bid-ask processes, and our optimization prob-
lem is set within this very general framework.

A important issue for utility maximization under transaction costs is the
consideration of how an investor measures their wealth, and thus their utility.
In the frictionless case it is normally assumed that there is a single consump-
tion asset, which is used as a numéraire (there are exceptions, e.g. [Lak89]).
However, in the transaction cost setting it is quite natural to assume that the
investor has access to several non-substitutable consumption assets. This is
particularly relevant when one considers a model of currency exchange, where
there may be, for example, one consumption asset denominated in each cur-
rency. Modeling preferences with respect to several consumption assets clearly
requires the use of a multivariate utility function.

In [DPT01], Deelstra et al. investigate a utility maximization problem
within the transaction costs framework of [KL02]. The agent’s preferences
are described by a multivariate utility function U which is supported on a
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constant solvency cone. The utility function is not assumed to be smooth so
that liquidation can be included as a particular case. In fact, by assuming that
the utility function is supported on the solvency cone, [DPT01] are implicitly
modeling the occurrence of at least one more trade (e.g. liquidation, or an ex-
tended trading period) which takes place either on or after the terminal date,
but prior to consumption of wealth.

In [Kam01,Kam04], Kamizono investigates a utility maximization problem
which is also set within the transaction costs framework of [KL02]. Kamizono
argues convincingly that a distinction should be drawn between direct utility
(i.e. utility derived explicitly from consumption) and indirect utility, which
depends on further trading, e.g. liquidation. He argues that [DPT01] are using
a kind of indirect utility function, which is why they need to consider the case of
a non-smooth utility function. We choose to adopt the approach of Kamizono
in the current paper by using a direct utility function U , which is supported on
Rd+, in the formulation of the primal problem. The value function u, defined
in (1.2), is then a type of indirect utility, whose support (the closure of its
effective domain) is intimately connected to the transaction costs structure,
as we shall see in Proposition 3.1. In Example 3.2 we demonstrate that the
value function u may fail to be either strictly concave or differentiable on
int(dom(u)).

In order to prove the existence of an optimizer in the multivariate setting,
most existing papers make fairly strong technical assumptions on the utility
function, which do not admit easy economical interpretations. For example,
in [DPT01,Kam01,Kam04] the utility function is assumed to be bounded be-
low, and unbounded above. In addition, in [DPT01] the dual of the utility
function is assumed to explode on the boundary of its effective domain, or
to be extendable to a neighbourhood of its original domain. In the current
paper, Assumption 1.1 is the only assumption we shall make directly on the
utility function U . It is worth noting that, with the exception of Section 4,
the assumption of upper semi-continuity is only used to ensure that U is Borel
measurable, and hence that the primal problem (1.2) is well defined.

A relatively recent development in the theory of utility maximization is the
replacement of the assumption of reasonable asymptotic elasticity on the util-
ity function by a weaker condition. In the frictionless setting, [KS03] showed
that finiteness of the dual of the value function is sufficient for the existence
of an optimal portfolio. Since then [BP05] have investigated this further under
the discrete time model of transaction costs given in [S04] and [KSR03]. They
prove the existence of an optimal consumption investment strategy under the
assumption of finiteness of the convex dual of the value function correspond-
ing to an auxiliary univariate primal problem. The reason why [BP05] have
to employ an auxiliary, univariate primal problem is that the generalization of
the methods of Kramkov and Schachermayer to the multivariate setting seems
not to be possible. Indeed, Bouchard and Pham comment that “it turns out
that the one-dimensional argument of Kramkov and Schachermayer does not
work directly in our multivariate setting”. One of the important contributions
of the current paper is a novel approach to the variational analysis of the dual
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problem which allows us to prove, even in a multivariate framework, the exis-
tence of a solution to the utility maximization problem under the condition of
asymptotic satiability of the value function. The relationship between asymp-
totic satiability of the value function, and finiteness of the convex dual of the
value function is made clear in Proposition 2.15.

As mentioned above, most optimal investment theorems make the stronger
assumption of reasonable asymptotic elasticity on the utility function U , or
a growth condition on the dual function U∗ (the notable exceptions being
[KS03] and [BP05]). We show that these types of assumption are included by
our results as follows: In Proposition 2.22 we show that if U is bounded from
below on the interior of Rd+, multivariate risk averse (see Definition 2.17) and
has reasonable asymptotic elasticity (see Definition 2.19) then U∗ satisfies a
growth condition (see Definition 2.20). In Corollary 3.7, we show that if U is
bounded above, or if U∗ satisfies the growth condition then the value function
u is asymptotically satiable (which is the hypothesis of this paper). We should
point out that multivariate risk aversion is not the same as concavity, and
we feel that its importance has been overlooked by the existing literature on
multivariate utility maximization. In particular, it appears to be an essential
ingredient in the proof of Proposition 2.22.

There are three standard ways to formulate a dual optimization problem
in the utility maximization literature: In terms of martingale measures, their
density processes or their Radon-Nikodým derivatives. In all three cases, these
control sets are not large enough to contain the dual optimizer, and they need
to be enlarged in some way. For example, in [KS99] the set of (martingale)
density processes is enlarged by including supermartingales as the control pro-
cesses, and they employ an abstract dual problem which is formulated using
random variables which have lost some mass. In [DPT01], the set of Radon-
Nikodým derivatives is enlarged, by including random variables which have
lost some mass. In this paper, we develop further the approach of [CSW01,
KZ03,OZ09] by considering the enlarged space of (finitely additive) Euclidean
vector measures. The domain of the dual problem is then complete in the rele-
vant topology, and thus contains the dual optimizer. In Example 3.13 we show
that this enlargement is necessary by providing an example where the dual
minimizer has a non-zero singular component. Our approach makes explicit
the “loss of mass” experienced by the dual minimizer; in previous work on
transaction costs, the dual minimizer corresponds to the countably additive
part of our dual minimizer. Our approach is just as powerful as the approach
of using a dual control process. Indeed, each finitely additive measure in the
domain of our dual problem gives rise to a supermartingale control process
(see e.g. [KZ03, Proposition 2.2] for this construction in the univariate case).

There have also been several approaches used in the literature to show the
absence of a gap between the optimal primal and dual values. These approaches
include using minimax, the Fenchel duality theorem, and the Lagrange duality
theorem. In a recent paper [KR07], Klein and Rogers propose a flexible ap-
proach which identifies the dual problem for financial markets with frictions.
They guarantee the absence of a duality gap by using minimax, under the



Multivariate Utility Maximization with Proportional Transaction Costs 7

assumption of a duality condition which they call (XY). We have chosen to
follow instead the approach of [OZ09], using the perfectly suited, and equally
powerful Lagrange duality theorem as our weapon of choice (see Proposition
3.5 and Theorem 5.1). Of course, the minimax, Fenchel duality, and Lagrange
duality theorems on non-separable vector spaces are all based upon the the
Hahn-Banach theorem in its geometric form, the separating hyperplane theo-
rem.

The rest of the paper is structured as follows. In Section 2 we introduce
some preliminaries, including the transaction costs framework, and some the-
ory of convex analysis, multivariate utility functions and Euclidean vector
measures. In Section 3 we prove our main theorems, as described above. In
Section 4, we explain how to relate the formulation of our optimization prob-
lem to the liquidation case. In the appendix we present the Lagrange duality
theorem, which is used to show that there is no duality gap. The appendix
also contains the proofs of some of the auxiliary results from Section 2, which
are postponed in order to improve the presentation.

2 Preliminaries

In this section we present all the preliminary concepts and notation which are
required for the analysis of the optimization problem. The reader may wish to
skip these preliminaries at first, and refer back when necessary. The structure
of this section is as follows. In Subsection 2.1 we recall the transaction costs
framework of [CS06]. In Section 2.2 we introduce some terminology from con-
vex analysis, including dual functionals and their properties. In Subsection 2.3
we introduce multivariate utility functions and discuss various properties such
as asymptotic satiability, reasonable asymptotic elasticity, and multivariate
risk aversion. Finally, in Subsection 2.4 we collect some facts about Euclidean
vector measures, which we use for our formulation of the dual problem.

2.1 Bid-ask matrix formalism of transaction costs

Let us recall the basic features of the transaction costs model as formalized
in [CS06] (see also [S04]). In such a model, all agents can trade in D assets
according to a random and time varying bid-ask matrix. A D × D matrix
Π = (πij)1≤i,j≤D is called a bid-ask matrix if (i) πij > 0 for every 1 ≤ i, j ≤ D,
(ii) πii = 1 for every 1 ≤ i ≤ D, and (iii) πij ≤ πikπkj for every 1 ≤ i, j, k ≤ D.
The entry πij denotes the number of units of asset i required to purchase one
unit of asset j. In other words, 1/πji and πij denote, respectively, the bid and
ask prices of asset j denominated in asset i.

Given a bid-ask matrix Π, the solvency cone K(Π) is defined as the convex
polyhedral cone in RD generated by the canonical basis vectors ei, 1 ≤ i ≤ D
of RD, and the vectors πijei − ej , 1 ≤ i, j ≤ D. The cone −K(Π) should be



8 Luciano Campi, Mark P. Owen

intepreted as those portfolios available at price zero. The (positive) polar cone
of K(Π) is defined by

K∗(Π) =
{
w ∈ RD : 〈v, w〉 ≥ 0,∀v ∈ K(Π)

}
.

Next, we introduce randomness and time in our model. Let (Ω, (Ft)t∈[0,T ],P)
be a filtered probability space satisfying the usual conditions and supporting
all processes appearing in this paper. An adapted, càdlàg process (Πt)t∈[0,T ]

taking values in the set of bid-ask matrices will be called a bid-ask process. A
bid-ask process (Πt)t∈[0,T ] will now be fixed, and we drop it from the notation
by writing Kτ instead of K(Πτ ) for a stopping time τ .

In accordance with the framework developed in [CS06] we make the follow-
ing technical assumption throughout the paper. The assumption is equivalent
to disallowing a final trade at time T , but it can be relaxed via a slight mod-
ification of the model (see [CS06, Remark 4.2]). For this reason, we shall not
explicitly mention the assumption anywhere.

Assumption 2.1 FT− = FT and ΠT− = ΠT a.s.

Definition 2.2 An adapted, RD+\{0}-valued, càdlàg martingale Z = (Zt)t∈[0,T ]

is called a consistent price process for the bid-ask process (Πt)t∈[0,T ] if Zt ∈ K∗t
a.s. for every t ∈ [0, T ]. Moreover, Z will be called a strictly consistent price
process if it satisfies the following additional condition: For every [0, T ]∪{∞}-
valued stopping time τ , Zτ ∈ int(K∗τ ) a.s. on {τ <∞}, and for every pre-
dictable [0, T ]∪{∞}-valued stopping time σ, Zσ− ∈ int(K∗σ−) a.s. on {σ <∞}.
The set of all (strictly) consistent price processes will be denoted by Z (Zs).

The following assumption, which is used extensively in [CS06], will also
hold throughout the paper.

Assumption 2.3 (SCPS) Existence of a strictly consistent price system:
Zs 6= ∅.

This assumption is intimately related to the absence of arbitrage (see also
[JK95,GRS07,GR07]).

Definition 2.4 Suppose that (Πt)t∈[0,T ] is a bid-ask process such that As-
sumption 2.3 holds true. An RD-valued process V = (Vt)t∈[0,T ] is called a
self-financing portfolio process for the bid-ask process (Πt)t∈[0,T ] if it satisfies
the following properties:

(i) It is predictable and a.e. path has finite variation (not necessarily right-
continuous).

(ii) For every pair of stopping times 0 ≤ σ ≤ τ ≤ T , we have

Vτ − Vσ ∈ −conv

 ⋃
σ≤t<τ

Kt, 0

 a.s.

A self-financing portfolio process V is called admissible if it satisfies the addi-
tional property
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(iii) There is a constant a > 0 such that VT +a1 ∈ KT a.s. and 〈Vτ + a1, Zsτ 〉 ≥
0 a.s. for all [0, T ]-valued stopping times τ and for every strictly consistent
price process Zs ∈ Zs. Here, 1 ∈ RD denotes the vector whose entries are
all equal to 1.

Let Ax denote the set of all admissible, self-financing portfolio processes with
initial endowment x ∈ RD, and let

AxT := {VT : V ∈ Ax}

be the set of all contingent claims attainable at time T with initial endowment
x. Note that AxT = x+A0

T for all x ∈ RD.

Remark 2.5 A few observations about the previous definition of admissible
self-financing strategy are in order. We recall that for any portfolio process
V = (V 1, . . . , V D), the quantity V it (for 1 ≤ i ≤ D) represents the number of
units of asset i held by the agent at time t. The condition of a.s. finite variation
in (i) is justified by the fact that, since for each change in the portfolio the
agent must pay a proportional transaction cost, the transaction costs would
add up to infinity for trajectories with infinite variation. It has been shown in
[GRS07,GR07] that in a one-dimensional setting this property is a consequence
of the assumption of No-Free-Lunch. Therefore it is economically meaningful
to restrict to portfolio processes with a.e. trajectory of finite variation.

Condition (ii) can be translated in these terms: Fixing stopping times σ ≤
τ , the portfolio’s change Vτ − Vσ should be a.s. in the closure of the sum of
the cones (−Kt)t∈[σ,τ) of contingent claims available (at time t) at price zero.
This is the analogue of the self-financing condition usually considered in the
frictionless case.

For a more detailed discussion of the content of Definition 2.4, especially
the very delicate admissibility condition (iii) and the reasons why portfolio
processes are allowed to have jumps from the right, we refer to [CS06].

For the convenience of the reader we present a reformulation of [CS06,
Theorem 4.1], which will be an essential ingredient in the proof of Theorem
3.12.

Theorem 2.6 (Super-replication) Let x ∈ RD and let X be an FT -meas-
urable, RD+ -valued random variable. Under Assumption 2.3 we have

X ∈ AxT if and only if E [〈X,ZsT 〉] ≤ 〈x, Zs0〉 for all Zs ∈ Zs.

2.2 Convex analysis

Let (X , τ) be a locally convex topological vector space, and let X ∗ denote its
dual space. On the first reading of this section, X should simply be thought of
as Euclidean space Rd, and τ the associated Euclidean topology. However, from
Section 3 onwards we will need the full generality of topological vector spaces.
Given a set S ⊆ X we let cl(S), int(S), ri(S) and aff(S) denote respectively
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the closure, interior, relative interior and affine hull of S. We shall say that
a set C ⊆ X is a convex cone if λC + µC ⊆ C for all λ, µ ≥ 0. Given set
S ⊆X , we denote its polar cone by

S∗ := {x∗ ∈X ∗ : 〈x, x∗〉 ≥ 0 ∀x ∈ S} .

Note that S∗ is weak∗ closed. A convex cone C ⊆ X induces a preorder �C
on X : We say that x, x′ ∈X satisfy x′ �C x if and only if x′ − x ∈ C.

Let U : X → [−∞,∞] be a concave functional on X , that is, the hypo-
graph

hypo(U) := {(x, µ) : x ∈X , µ ∈ R, µ ≤ U(x)}

is convex as a subset of X × R. The effective domain, dom(U), of U is the
projection of hypo(U) onto X , i.e. dom(U) := {x ∈X : U(x) > −∞}. The
functional U is said to be proper concave if its effective domain is nonempty,
and it never assumes the value +∞.

The closure, cl(U), of the functional U is the unique functional whose hy-
pograph is the closure of hypo(U) in X × R. The functional U is said to be
closed if cl(U) = U.

The functional U is said to be upper semi-continuous if for each c ∈ R the
set {x ∈X : U(x) ≥ c} is closed. Equivalently, U is upper semi-continuous
if lim supα U(xα) ≤ U(x), whenever (xα)α∈A ⊆ X is a net tending to some
x ∈ X . It is an elementary result that a concave functional is closed if and
only if it is upper semi-continuous (see e.g. [Z02, Theorem 2.2.1] or [AB06,
Corollary 2.60]).

Let ∂U(x) denote the superdifferential of U at x. That is, ∂U(x) is the
collection of all x∗ ∈X ∗ such that

U(z) ≤ U(x) + 〈z − x, x∗〉 ∀z ∈X .

A functional V : X → [−∞,∞] is said to be convex if −V is concave. The
corresponding definitions of the effective domain, proper convexity, the lower
semi-continuity, closure and subdifferential for a convex functional are made
in the obvious way.

Definition 2.7 (Dual functionals)

1. If U : X → [−∞,∞) is proper concave then we define its dual functional
U∗ : X ∗ → (−∞,∞] by

U∗(x∗) := sup
x∈X

{U(x)− 〈x, x∗〉} . (2.1)

The dual functional U∗ is a weak∗ lower semi-continuous, proper convex
functional on X ∗. Note that U∗ = (cl(U))∗ (see e.g. [Z02, Theorem 2.3.1]).

2. If V : X ∗ → (−∞,∞] is proper convex then we define the pre-dual func-
tional ∗V : X → [−∞,∞) by

∗V(x) := inf
x∗∈X ∗

{V(x∗) + 〈x, x∗〉} .
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Similarly, ∗V is a weakly2 upper semi-continuous, proper concave func-
tional. By applying [Z02, Theorem 2.3.3] we see that (∗V)∗ = cl V.

The reader should be aware that the dual functional is not the same ob-
ject as the conjugate functional commonly used in texts on convex analysis.
Nevertheless the only discrepancies are in the sign convention; any property
of conjugate functions can, with a little care, be re-expressed as a property of
the dual function.

The next lemma will be used several times throughout the paper. Its proof
is simple, and is therefore omitted. We say that U is increasing with respect
to a preorder � on X , if U(x′) ≥ U(x) for all x, x′ ∈X such that x′ � x.

Lemma 2.8 Let U : X → [−∞,∞) be proper concave. Then U∗ is decreasing
with respect to the preorder induced by (dom(U))∗. Suppose furthermore that
U is increasing with respect to the preorder induced by some cone C. Then
dom(U∗) ⊆ C∗.

2.3 Multivariate utility functions

Definition 2.9 We shall say that a proper concave function U : Rd → [−∞,∞)
is a (multivariate) utility function if

1. CU := cl(dom(U)) is a convex cone such that Rd+ ⊆ CU 6= Rd; and
2. U is increasing with respect to the preorder induced CU .

We call CU the support (or support cone) of U , and say that U is supported
on CU . The dual function U∗ of a utility function U : Rd → R is defined by
(2.1), with X = Rd.

We shall focus on three particular utility functions in this paper: The
agent’s utility function U is assumed to be supported on Rd+, the extended
utility function Ũ defined by (1.1) is therefore supported on RD+ , and we shall
show in Proposition 3.1 that under Assumption 1.2 the value function u de-
fined by (1.2) is a utility function which is supported on a cone which is strictly
larger than RD+ .

Example 2.10 1. The canonical univariate utility functions on R+ are con-
stant relative risk aversion (CRRA) utility functions. These are defined,
for x ∈ R+, by

Uγ(x) =

{
xγ/γ, γ < 1, γ 6= 0,
lnx+ 1/2, γ = 0,

with Uγ(x) = −∞ otherwise. The dual functions are U∗γ = −Uγ∗ where γ∗

is the conjugate of the elasticity γ (that is, 1/γ + 1/γ∗ = 1, unless γ = 0,
in which case γ∗ = 0).

2 A concave functional is weakly upper semi-continuous if and only if it is originally upper
semi-continuous.
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2. The simplest class of utility functions which are supported on Rd+, is the
class of additive utility functions,

U(x1, . . . , xd) :=
d∑
i=1

Ui(xi),

where U1, . . . , Ud : R → [−∞,∞) are univariate utility functions on R+.
In this case the dual function also takes the additive form U∗(x∗) =∑d
i=1 U

∗
i (x∗i ).

3. The Cobb-Douglas utility functions form another class of utility functions
supported on Rd+. Define

U(x1, . . . , xd) :=

{∏d
i=1 x

αi
i , x ∈ Rd+,

−∞, otherwise,

where αi ≥ 0 are such that
∑d
i=1 αi < 1.

Note that the dual of the extended function Ũ : RD → R is given by

Ũ∗(x∗) =

{
U∗(x∗1, . . . , x

∗
d), x∗ ∈ RD+

+∞, otherwise.
(2.2)

In the following subsections we investigate a number of conditions which
can be imposed on multivariate utility functions.

2.3.1 Multivariate Inada conditions: Essential smoothness and asymptotic
satiability

In this subsection we investigate analogues of the well known “Inada condi-
tions” for the case of a smooth multivariate utility function. The first condition,
which we recall from [Roc72], is well known within the field of convex analysis.

Definition 2.11 A proper concave function U : Rd → [−∞,∞) is said to be
essentially smooth if

1. int(dom(U)) is nonempty;
2. U is differentiable throughout int(dom(U));
3. limi→∞ |∇U(xi)| = +∞ whenever x1, x2, . . . is a sequence in int(dom(U))

converging to a boundary point of int(dom(U)).

A proper convex function V is said to be essentially smooth if −V is essentially
smooth.

The next result is well known, and can be deduced by a standard applica-
tion of [Roc72, Theorems 7.4, 12.2, 26.1, 26.3 and Corollary 23.5.1].

Lemma 2.12 Let U be a proper concave function which is essentially smooth
and strictly concave on int(dom(U)). Then U∗ is strictly convex on int(dom(U∗)),
and essentially smooth. Moreover, the maps ∇U : int(dom(U))→ int(dom(U∗))
and ∇U∗ : int(dom(U∗))→ − int(dom(U)) are bijective and (∇U)−1 = −∇U∗.
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The next condition appears to be less well known.

Definition 2.13 We say that a utility function U is asymptotically satiable if
for all ε > 0 there exists an x ∈ Rd such that ∂(cl(U))(x) ∩ [0, ε)d 6= ∅.

The proof of the next lemma can be found in the appendix.

Lemma 2.14 A sufficient condition for asymptotic satiability of U is that for
all ε > 0 there exists an x ∈ int(dom(U)) such that ∂U(x)∩ [0, ε)d 6= ∅. If U is
either upper semi-continuous or essentially smooth then the condition is both
necessary and sufficient for asymptotic satiability.

Asymptotic satiability means that one can find positions for which the util-
ity function is almost horizontal. The economic intepretation of this condition
is even clearer if U is multivariate risk averse (see Subsection 2.3.3). In this
case, the marginals of U decrease with increasing wealth, which means that an
asymptotically satiable utility function approaches horizontality in the limit
as the quantities of assets consumed increase to infinity.

Let us now consider the effect of asymptotic satiability on the dual function.
Recall that for a utility function U we define the closed, convex cone CU :=
cl(dom(U)). Since the dual function U∗ of a utility function is convex, it follows
that cl(dom(U∗)) is convex. Furthermore, as an immediate consequence of
Lemma 2.8, we have that cl(dom(U∗)) ⊆ (CU )∗ ⊆ Rd+, and U∗ is decreasing
with respect to �(CU )∗ . However it can happen that cl(dom(U∗)) fails to be
a convex cone, in which case it is strictly contained in (CU )∗. In Proposition
2.15 we give a simple condition under which cl(dom(U∗)) = (CU )∗. Its proof
can be found in the appendix.

Proposition 2.15 Let U be a utility function. The following conditions are
equivalent:

1. U is asymptotically satiable;
2. 0 ∈ cl(dom(U∗));
3. cl(dom(U∗)) = (CU )∗; and
4. cl(dom(U∗)) is a convex cone.

If U is asymptotically satiable then we define the closed convex cone CU∗ :=
cl(dom(U∗)), so that condition 3 can be written more succinctly as CU∗ =
(CU )∗.

One should think of essential smoothness and asymptotic satiability as
the multivariate analogues of the univariate Inada conditions U ′(0) =∞ and
U ′(∞) = 0 respectively. Indeed, an additive utility function (see part 2 of
Example 2.10) with continuously differentiable components, Ui (i = 1, . . . , d),
is essentially smooth if and only if each component satisfies U ′i(0) = ∞, and
asymptotically satiable if and only if each component satisfies U ′i(∞) = 0.
Clearly these conditions reduce to the usual Inada conditions in the univariate
case.

The proof of the following corollary of Lemma 2.12 and Proposition 2.15
is straightforward, and is therefore omitted.
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Corollary 2.16 Let U : Rd → [−∞,∞) be a utility function which is sup-
ported on Rd+, and which satisfies Assumption 1.1. Recall that by definition of
the dual function we have

U∗(x∗) ≥ U(x)− 〈x, x∗〉 (2.3)

for all x, x∗ ∈ Rd. If x∗ ∈ int(Rd+) then we have equality in (2.3) if and only
if x = I(x∗) := −∇U∗(x∗).

Given D ≥ d, define Ũ : RD → [−∞,∞) by (1.1). Again, by definition of
the dual function we have

Ũ∗(x∗) ≥ Ũ(x)− 〈x, x∗〉 , (2.4)

for all x, x∗ ∈ RD. Define P : RD → Rd by

P (x1, . . . , xd, xd+1, . . . , xD) := (x1, . . . , xd), (2.5)

and Ĩ : int(Rd+)× RD−d+ → int(Rd+)× RD−d+ by

Ĩ(x∗) := (−∇U∗(P (x∗)), 0), (2.6)

where 0 denotes the zero vector in RD−d. Then, (i) if x∗ ∈ int(Rd+) × RD−d+

then we have equality in (2.4) whenever x = Ĩ(x∗) and (ii) if x∗ ∈ int(RD+)
then there is equality in (2.4) if and only if x = Ĩ(x∗).

2.3.2 Multivariate risk aversion

In this subsection we present the multivariate analogue of risk aversion. Gen-
eralisation of the concept of risk aversion to the multivariate case was first
considered in [Ric75]. The idea is that a risk-averse investor should prefer a
lottery in which they have an even chance of winning x + z or x + z′ (with
z, z′ positive), to a lottery in which they have an even chance of winning x or
x + z + z′. Put differently, the investor prefers lotteries where the outcomes
are less extreme. Some further, mathematically equivalent conditions for mul-
tivariate risk aversion can be found in [MS02, Theorem 3.12.2].

In one dimension, multivariate risk aversion is equivalent to concavity of
the utility function, however in higher dimensions this is no longer the case.

Definition 2.17 1. Let U be a utility function which is supported on Rd+.
We shall say that U is multivariate risk averse if for any x ∈ Rd and any
z, z′ ∈ Rd+ we have

U(x) + U(x+ z + z′) ≤ U(x+ z) + U(x+ z′); (2.7)

2. Let U be a utility function which is supported on Rd+. We shall say that
U has decreasing marginals if for any x ∈ dom(U), any x′ ∈ Rd satisfying
x′ �Rd+ x, and any z ∈ Rd+ we have

U(x+ z)− U(x) ≥ U(x′ + z)− U(x′).
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The proof of the following result is simple, and is therefore omitted.

Lemma 2.18 Let U be a utility function which is supported on Rd+. Then
U is multivariate risk aversion if and only if it has decreasing marginals. If
U is differentiable on int(Rd+) and multivariate risk averse then given x, x′ ∈
int(Rd+) such that x′ �Rd+ x we have ∇U(x) �Rd+ ∇U(x′).

If U is an additive utility function (see part 2 of Example 2.10) then the
concavity of each component Ui is enough to imply that U is multivariate
risk averse. However not all utility functions are multivariate risk averse; the
Cobb-Douglas utility functions (see part 3 of Example 2.10) provide examples
of such utility functions. To get a better feel for why, in the general case,
multivariate risk aversion is not the same as concavity, it helps to consider
the Hessian of a (twice differentiable) utility function. The utility function
exhibits multivariate risk aversion if at every point the Hessian contains only
non-positive entries; in other words, all second order partial derivatives are
non-positive. In contrast, the Hessian of a concave function at every point is
negative semi-definite.

2.3.3 Reasonable asymptotic elasticity and the growth condition

We begin by presenting a multivariate analogue of the well known condition
of reasonable asymptotic elasticity.

Definition 2.19 Let U be an essentially smooth utility function which is
supported on Rd+, and bounded from below on int(Rd+). We say that U has
reasonable asymptotic elasticity if

sup
c∈R

lim inf
x∈int(Rd+)

|x|→∞

U(x) + c

〈x,∇U(x)〉
> 1, (2.8)

where |x| := max {|x1|, . . . , |xd|}.

As an example, the additive utility function U(x) =
∑d
i=1 Ui(xi), with

Ui(xi) := xγii /γi, xi > 0, where 0 < γi < 1 for each i = 1, . . . , d (see part 2 of
Example 2.10) has reasonable asymptotic elasticity.

The definition of asymptotic elasticity in the univariate setting is due to
[KS99]. In the multivariate setting, one can define the asymptotic elasticity of
an essentially smooth utility function supported on Rd+ by

AE(U) := lim sup
{
〈x,∇U(x)〉 /U(x) : x ∈ int(Rd+), |x| → ∞

}
, (2.9)

provided the utility function U is strictly positive on int(Rd+). In this case,
it is trivial that if AE(U) < 1 then (2.8) holds. We prefer to formulate the
condition of reasonable asymptotic elasticity in terms of the reciprocal of the
ratio used in (2.9), since the term 〈x,∇U(x)〉 in the denominator of (2.8) is
guaranteed to be strictly positive for all x ∈ int(Rd+). Note that the assumption
in equation (2.9), that U is strictly positive on int(Rd+), is relaxed in Definition
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2.19 to allow U which are bounded below on int(Rd+), effectively by adding
the constant c. Note also that the supremum in (2.8) can be replaced by the
limit as c→∞.

Unfortunately it is senseless to extend Definition 2.19 to the case where U
is unbounded below on int(Rd+), unless d = 1. Indeed, by inspection of (2.8),
it is clear that a necessary condition for a utility function to have reasonable
asymptotic elasticity is the existence of a sublevel set {x ∈ int(Rd+) : U(x) ≤
−c} which is either bounded or empty, a condition which fails whenever d ≥ 2
for additive utility functions which are unbounded from below on int(Rd+).

Variations of Definition 2.19 have already appeared in the literature for the
case where U(0) = 0 and U(∞) = ∞ (see e.g. [DPT01,Kam01,Kam04]). At
a first glance, the differences between the definitions of reasonable asymptotic
elasticity in these three papers appear to be slight, however more thought
reveals that this is in fact a rather delicate issue.

In each of the three papers mentioned, the assumption of reasonable asymp-
totic elasticity is used in order to prove a growth condition on the dual function
U∗ (see Definition 2.20). In turn, the growth condition can be used as an in-
gredient in the proof of the existence of the optimizer in the primal problem.
However, it appears that the definitions of reasonable asymptotic elasticity
in [DPT01] and [Kam01] are not quite strong enough to imply the growth
condition. To compensate for this, Kamizono uses, for instance, an additional
assumption (4.22b) which unfortunately excludes all additive utility functions.

Our definition of reasonable asymptotic elasticity is essentially equivalent
to the one used in [Kam04]. However, in order to prove the growth condi-
tion, we believe the additional assumption of multivariate risk aversion is an
essential ingredient (see Proposition 2.22).

Definition 2.20 Let U : Rd → [−∞,∞) be a utility function which is
supported on Rd+, and which is asymptotically satiable. We shall say that
the dual function U∗ satisfies the growth condition if there exists a function
ζ : (0, 1]→ [0,∞) such that for all ε ∈ (0, 1] and all x∗ ∈ int(Rd+)

U∗(εx∗) ≤ ζ(ε)(U∗(x∗)+ + 1). (2.10)

Remark 2.21 If U is bounded from above then U∗ trivially satisfies the growth
condition with ζ(ε) := supx∗∈Rd+ U

∗(x∗) = U∗(0) = supx∈Rd U(x) <∞. As an

example, if U(x) =
∑d
i=1 Ui(xi) is an additive utility function with Ui(xi) =

αix
γi
i /γi, where αi > 0 and γi < 0 for each i = 1, . . . , d (see part 2 of Example

2.10) then U∗ trivially satisfies the growth condition.

The following two results shed further light on the relationship between the
condition of reasonable asymptotic elasticity and the growth condition. Their
proofs are provided in the appendix.

Proposition 2.22 Let U be a utility function which is supported on Rd+, and
which satisfies Assumption 1.1. If U is bounded from below on int(Rd+), multi-
variate risk averse, and reasonably asymptotically elastic then U∗ satisfies the
growth condition.
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Lemma 2.23 Let U(x) =
∑d
i=1 Ui(xi) be an additive utility function (sup-

ported on Rd+), which is bounded from below on int(Rd+). If each of the compo-
nents, Ui, has reasonable asymptotic elasticity then U∗ will satisfy the growth
condition.

If a utility function is unbounded below on int(Rd+) then the previous two
results do not apply. It seems therefore that if the utility function is unbounded
above and below (on int(Rd+)) then the growth condition has to be verified on
a case-by-case basis. For example, if U(x1, x2) := lnx1 + lnx2 + 1 then U∗

satisfies the growth condition, while if U(x1, x2) = 2x1/2
1 − x−1

2 then U∗ fails
to satisfy the growth condition.

2.4 Euclidean vector measures

A function m from a field F of subsets of a set Ω to a Banach space X
is called a finitely additive vector measure, or simply a vector measure if
m(A1 ∪ A2) = m(A1) + m(A2), whenever A1 and A2 are disjoint members
of F . The theory of vector measures was heavily developed in the late 60s and
early 70s, and a survey of this theory can be found in [DU77]. In this paper,
we will be concerned with the special case where X = RD; we refer to the
associated vector measure as a “Euclidean vector measure”, or simply a “Eu-
clidean measure”. In this setting, many of the subtleties of the general Banach
space theory do not appear. For instance, there is no distinction between the
properties of boundedness, boundedness in (total) variation, boundedness in
semivariation and strong boundedness. In fact, we can obtain all the results
that we need about Euclidean measures by decomposing them into their one-
dimensional components. For this reason, we appeal exclusively to results of
[RR83], which covers the one-dimensional case very thoroughly.

Let us recall a few definitions from the classical, one-dimensional setting.
The total variation of a (finitely additive) measure m : F → R is the function
|m| : F → [0,∞] defined by

|m|(A) := sup
n∑
j=1

|m(Aj)|,

where the supremum is taken over all finite sequences (Aj)nj=1 of disjoint sets
in F with Aj ⊆ A. A measure m is said to have bounded total variation if
|m|(Ω) < ∞. A measure m is said to be bounded if sup {|m(A)| : A ∈ F} <
∞. It is straightforward to show that

sup {|m(A)| : A ∈ F} ≤ |m|(Ω) ≤ 2 sup {|m(A)| : A ∈ F} ,

hence a measure is bounded if and only if it has bounded total variation.
A measure m is said to be purely finitely additive if 0 ≤ µ ≤ |m| and µ
is countably additive imply that µ = 0. A measure m is said to be weakly
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absolutely continuous with respect to P if m(A) = 0 whenever A ∈ F and
P(A) = 0.

We turn now to the D-dimensional case. A Euclidean measure m can be
decomposed into its one-dimensional coordinate measures mi : F → R by
defining mi(A) :=

〈
ei,m(A)

〉
, where ei is the i-th canonical basis vector of

RD. In this way, m(A) = (m1(A), . . . ,mD(A)) for every A ∈ F . We shall
say that a Euclidean measure m is bounded, purely finitely additive or weakly
absolutely continuous with respect to P if each of its coordinate measures is
bounded, purely finitely additive or weakly absolutely continuous with respect
to P.

Let ba(RD) = ba(Ω,FT ,P; RD) denote the vector space of bounded Eu-
clidean measures m : FT → RD, which are weakly absolutely continuous
with respect to P. Let ca(RD) the subspace of countably additive members of
ba(RD). Equipped with the norm

‖m‖ba(RD) :=
D∑
i=1

|mi|(Ω),

the spaces ba(RD) and ca(RD) are Banach spaces.
Let ba(RD+) denote the convex cone of RD+ -valued measures within ba(RD).

The next proposition can be easily deduced from its one-dimensional version
(see, e.g., [RR83, Theorem 10.2.1]) via a coordinatewise reasoning. Its proof,
which also involves a simple application of [RR83, Theorems 2.2.1(5), 2.2.2,
10.2.2 and Corollary 10.1.4], is therefore omitted.

Proposition 2.24 Given any m ∈ ba(RD) there exists a unique Yosida-
Hewitt decomposition m = mc + mp where mc ∈ ca(RD) and mp is purely
finitely additive. If m ∈ ba(RD+) then mc,mp ∈ ba(RD+).

We shall see now that elements of ba(RD) play a natural role as linear func-
tionals on spaces of (essentially) bounded RD-valued random variables. First,
some more notation: Let L0(RD) = L0(Ω,FT ,P; RD) denote the space of RD-
valued random variables (identified under the equivalence relation of a.s. equal-
ity). Given X ∈ L0(RD) we define the coordinate random variables Xi ∈ L0(R)
for i = 1, . . . , D by Xi :=

〈
X, ei

〉
, so that X = (X1, . . . , XD). Let L1(RD) de-

note the subspace of L0(RD) consisting of those random variables X for which
‖X‖1 := E [

∑
i |Xi|] < ∞. Let L∞(RD) denote the subspace of L0(RD) con-

sisting of those random variables X for which ‖X‖∞ := ess sup
{

maxi |Xi|
}
<

∞. Finally, let L∞(RD)∗ denote the dual space of (L∞(RD), ‖.‖∞).
We now define the map Ψ : ba(RD)→ L∞(RD)∗ by

(
Ψ(m)

)
(X) :=

∫
Ω

〈X,dm〉 :=
D∑
i=1

∫
Ω

Xidmi, (2.11)

where (m1, . . . ,mD) is the coordinate-wise representation of m. For details
concerning the construction of the one-dimensional integrals in (2.11), see
[RR83, Chapter 4], where the integral is referred to as the D-integral. We also
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define the map Φ : ca(RD) → L1(RD) by Φ(m) :=
(

dm1
dP , . . . , dmD

dP
)
, where

dmi
dP is the Radon-Nikodým derivative of the i-th coordinate measure. Finally,

we define the isometric embedding ι : L1(RD) → L∞(RD)∗ by
(
ι(Y )

)
(X) :=

E [〈X,Y 〉]. The next proposition can be easily deduced from its one-dimensional
version (see, e.g., [RR83, Theorem 4.7.10]) via a coordinatewise reasoning. Its
proof is therefore omitted.

Proposition 2.25 The maps Ψ and Φ are isometric isomorphisms. Further-
more, ι ◦ Φ = Ψ |ca(RD).

Corollary 2.26 (ba(RD), ‖.‖ba(RD)) has a σ(ba(RD), L∞(RD))-compact unit
ball.

For the remainder of the paper, we shall overload our notation as follows:
Given m ∈ ba(RD) and X ∈ L∞(RD), we write m(X) as an abbreviation of(
Ψ(m)

)
(X), and we define dm

dP :=
(

dm1
dP , . . . , dmD

dP
)

= Φ(m).
Given x ∈ RD and A ∈ FT it follows from equation (2.11) that m(xχA) =

〈x,m(A)〉, where χA denotes the indicator random variable of A. In the special
case where A = Ω, we have m(x) = 〈x,m(Ω)〉.

Let L0(RD+) and L∞(RD+) denote respectively the convex cones of random
variables in L0(RD) and L∞(RD) which are RD+ -valued a.s. Note that if m ∈
ba(RD+) and X ∈ L∞(RD+) then m(X) ≥ 0 (see [RR83, Theorem 4.4.13]). This
observation allows us to extend the definition of m(X) to cover the case where
m ∈ ba(RD+) and X ∈ L0(RD+) by setting

m(X) := sup
n∈N

m
(
X ∧RD+ (n1)

)
, (2.12)

where 1 ∈ RD denotes the vector whose entries are all equal to 1, and
(x1, . . . , xD)∧RD+ (y1, . . . , yD) := (x1∧y1, . . . , xD ∧yD). It is trivial that (2.12)
is consistent with the definition of m(X) for X ∈ L∞(RD). Furthermore, the
supremum in (2.12) can be replaced by a limit, because the sequence of num-
bers is increasing. It follows that given m1,m2 ∈ ba(RD+), λ1, λ2, µ1, µ2 ≥ 0
and X1, X2 ∈ L0(RD+), we have

(λ1m1 + λ2m2)(µ1X1 + µ2X2)
= λ1µ1m1(X1) + λ1µ2m1(X2) + λ2µ1m2(X1) + λ2µ2m2(X2).

Note that the final statement of Proposition 2.25 means that givenm ∈ ca(RD)
and X ∈ L∞(RD) we have m(X) = E

[〈
X, dm

dP
〉]

. It is easy to show that this
property is also true under the extended definition (2.12).

3 Main results

Throughout this section U denotes a utility function which is supported on
Rd+. The extension, Ũ , of U to a utility function supported on RD+ is defined
by (1.1). The value function u is defined by (1.2). We shall indicate explicitly
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where assumptions on the investor’s preferences (i.e. Assumptions 1.1, 1.2 and
1.3) are used.

Regarding our model of the economy, Assumptions 2.1 and 2.3 will be taken
as standing assumptions throughout this section. As noted in Subsection 2.1,
Assumption 2.1 is a technical assumption which can be relaxed, so we shall
not mention this assumption anywhere. To avoid mentioning Assumption 2.3
in the statement of every result, we shall only indicate in the proofs where the
assumption is used. As an exception however, we do mention Assumption 2.3
explicitly in the statement of our main result, Theorem 3.12.

The following result shows that if u is finite anywhere in the interior of its
effective domain, then it is a utility function, and we give a characterization
of the closure of the effective domain of u.

Proposition 3.1 Under Assumption 1.2 the value function u is a utility func-
tion with support cone Cu := cl(dom(u)) = −{x ∈ RD : x ∈ A0

T }.

Proof Note first that u is both concave and increasing with respect to RD+ ,
because A0

T is convex and Ũ is both concave and increasing with respect
to RD+ . We break the proof into the following four steps. We show that (i)
u(x) < ∞ for all x ∈ RD, (ii) Cu = −{x ∈ RD : x ∈ A0

T }, (iii) Cu 6= RD and
(iv) u is increasing with respect to �Cu .

(i) Suppose, for a contradiction, that there exists some x̃ ∈ RD such that
u(x̃) = ∞. By Assumption 1.2 there exists an x ∈ int(dom(u)) such that
u(x) < ∞. Let a > 0 be large enough so that x1 := x+ a1 �RD+ x̃. Since u is
increasing with respect to RD+ , this implies that u(x1) ≥ u(x̃) =∞.

Since x ∈ int(dom(u)), there exists an ε > 0 such that x0 := x − ε1 ∈
int(dom(u)). We claim that u(x0) ∈ R. Indeed, since x0 ∈ dom(u) we have
that u(x0) > −∞, and since u is increasing with respect to RD+ , we have
u(x0) ≤ u(x) <∞.

Since u(x0) ∈ R, we may find an X0 ∈ Ax0
T such that E [Ũ(X0)] ∈ R.

Since u(x1) = ∞, given any R ∈ R we may find an X1 ∈ Ax1
T such that

E [Ũ(X1)] ≥ R. Define now λ := ε/(a+ε) ∈ (0, 1) and X := (1−λ)X0 +λX1 ∈
A(1−λ)x0+λx1
T = AxT . Since Ũ is concave,

u(x) ≥ E
[
Ũ(X)

]
= E

[
Ũ((1− λ)X0 + λX1)

]
≥ (1− λ)E

[
Ũ(X0)

]
+ λE

[
Ũ(X1)

]
≥ (1− λ)E

[
Ũ(X0)

]
+ λR.

Since R can be chosen arbitrarily large, this implies that u(x) = ∞, which is
the required contradiction.

(ii) The set C := {x ∈ RD : x ∈ A0
T } is a convex cone in RD. It follows

immediately from [CS06, Theorem 3.5] (which requires Assumption 2.3) that
C is closed in RD. Take x ∈ int(C). There exists ε > 0 such that x+ε1 ∈ C and
hence ε1 ∈ A−xT . Now u(−x) ≥ E [Ũ(ε1)] = Ũ(ε1) > −∞, so −x ∈ dom(u).

Suppose now that x ∈ dom(u). Then AxT ∩ L0(RD+) 6= ∅, otherwise this
would contradict u(x) > −∞. Pick any X ∈ AxT ∩ L0(RD+). Since we may
write 0 = X −X ∈ AxT − L0(RD+) it follows that 0 ∈ AxT , and hence x ∈ −C.
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Since C is closed and− int(C) ⊆ dom(u) ⊆ −C, we have Cu = cl(dom(u)) =
−C.

(iii) By part (ii), it suffices to show that
{
x ∈ RD+ : x ∈ A0

T

}
= {0}. To

show this, suppose that x ∈ RD+ satisfies x ∈ A0
T . Then there exists an admis-

sible portfolio V such that V0 = 0 and VT = x. Let Zs be a strictly consistent
price process (such a process exists by Assumption 2.3). By [CS06, Lemma
2.8],

〈
Vt, Z

s
t

〉
is a super-martingale. Hence 0 ≤ E [〈x, ZsT 〉] = E [〈VT , ZsT 〉] ≤

E [〈V0, Z
s
0〉] = 0, and so x = 0.

(iv) Take x ∈ RD and w ∈ Cu. Since, by step (i), u(x) < ∞, given any
ε > 0 there exists an X ∈ AxT such that E

[
Ũ(X)

]
≥ u(x) − ε. By step (ii),

0 ∈ AwT , so X ∈ Ax+wT . Thus

u(x+ w) ≥ E
[
Ũ(X)

]
≥ u(x)− ε.

Since ε > 0 is arbitrary, this implies that u(x+ w) ≥ u(x). ut

The following simple example shows that the value function u can fail to
be strictly concave on int(dom(u)), and may even fail to be differentiable on
int(dom(u)).

Example 3.2 Consider the case with D = 2, where the bid-ask process is given
by the deterministic, constant matrix

Πt :=
(

1 2
2 1

)
.

In this case, the solvency cones Kt ≡ K are constant, and generated by the
vectors 2e1 − e2 and 2e2 − e1.

1. With d = 2, we define U(x1, x2) := lnx1 + lnx2. It is easy to verify that
the value function in this case is

u(x) := max
c∈K

U(x−c) =


2 ln(2x1 + x2)− 3 ln 2, x2 > 2|x1|,
lnx1 + lnx2, x1 > 0, x1 ≤ 2x2 ≤ 4x1,

2 ln(x1 + 2x2)− 3 ln 2, x1 > 0,−x1 < 2x2 < x1,

−∞, otherwise,

which fails to be strictly concave on int(K), but which is differentiable
throughout int(K).

2. With d = 1, we define U(x) := lnx, and define Ũ : R2 → [−∞,∞) by
(1.1). It is easy to verify that the value function in this case is

u(x) := max
c∈K

Ũ(x− c) =


ln(x1 + 1

2x2), x2 > max {0,−2x1} ,
ln(x1 + 2x2), x1 > 0,−x1 < 2x2 ≤ 0,
−∞ otherwise,

which is fails to be strictly concave on int(K), and fails to be differentiable
anywhere along the half line x1 > 0, x2 = 0.
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Given any initial portfolio x ∈ RD, we define the proper concave functional
Ux : L∞(RD)→ [−∞,∞) by

Ux(X) = E
[
Ũ(x+X)

]
. (3.1)

Since Ũ is a utility function which is supported on RD+ , Ux is increasing with
respect to the preorder induced by the convex cone L∞(RD+) and dom(U0) ⊆
L∞(RD+). Let U∗x : ba(RD) → (−∞,∞] denote the dual functional defined
by (2.1). The dual functional is used directly in our formulation of a dual
optimization problem (see equation (3.3) and Proposition 3.5). The following
lemma provides a representation of U∗x in terms of the dual function Ũ∗.

Lemma 3.3 For any x ∈ RD we have

U∗x(m) =

E
[
Ũ∗
(

dmc

dP

)]
+m(x) m ∈ ba(RD+)

∞ otherwise.

Proof It suffices to consider the case x = 0 because, setting X̃ := X + x,

U∗x(m) = sup
X∈L∞(RD)

{Ux(X)−m(X)} = sup
X̃∈L∞(RD)

{U0(X̃)−m(X̃) +m(x)}

= U∗0(m) +m(x).

Since U0 is increasing with respect to the preorder induced by L∞(RD+),
an application of Lemma 2.8 gives that dom(U∗0) ⊆ L∞(RD+)∗ = ba(RD+). Take
m ∈ ca(RD). Then by Proposition 2.25,

U∗0(m) = sup
X∈L∞(RD)

{U0(X)−m(X)} = sup
X∈L∞(RD)

{
E
[
Ũ(X)−

〈
X,

dm
dP

〉]}
≤ E

[
Ũ∗
(

dm
dP

)]
.

We show that the last inequality also holds in reverse. For each n ≥ 1 define
Ũ∗n : RD → R and In : RD � [0, n]D by

Ũ∗n(x∗) := max
{
Ũ(x)− 〈x, x∗〉 : x �RD+ n1

}
,

In(x∗) := argmax
{
Ũ(x)− 〈x, x∗〉 : x �RD+ n1

}
.

For fixed x∗ ∈ RD, the sequence (Ũ∗n(x∗))n≥1 is monotone increasing to
Ũ∗(x∗), and the random variable Ũ∗1 (dm

dP ) is integrable. Using the definition of
U∗0 and the monotone convergence theorem we have

U∗0(m) ≥ sup
n

E
[
Ũ

(
In

(
dm
dP

))
−
〈
In

(
dm
dP

)
,

dm
dP

〉]
= sup

n
E
[
Ũ∗n

(
dm
dP

)]
= E

[
Ũ∗
(

dm
dP

)]
.
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To finish the proof, it suffices to show that for m ∈ ba(RD+) we have U∗0(m) =
U∗0(mc). An application of Lemma 2.8 shows that U∗0 is decreasing with respect
to the preorder induced by ba(RD+). By Proposition 2.24, mp ∈ ba(RD+), thus
m �ba(RD+ ) m

c, and hence U∗0(m) ≤ U∗0(mc).
To prove this inequality in the other direction, take any u ∈ R such that

u < U∗0(mc), and any ε > 0. There exists an X ∈ L∞(RD+) such that U0(X)−
mc(X) ≥ u. An application of [RR83, Theorem 10.3.2] and the monotone
convergence theorem gives the existence of an A ∈ FT such that mp(Ω\A) = 0
and E

[
(Ũ(X)− Ũ(ε1))χA

]
< ε. An application of [RR83, Theorem 4.4.13(ix)]

shows that mp(XχΩ\A) = 0. Define X̃ = XχΩ\A + ε1χA. Then

U0(X)−mc(X)− U0(X̃) +m(X̃)

= E
[
(Ũ(X)− Ũ(ε1))χA

]
+mp(XχΩ\A)−mc(XχA) + εm(1χA)

≤ ε+ 0 + 0 + εm(1)

Thus

U∗0(m) ≥ U0(X̃)−m(X̃) ≥ U0(X)−mc(X)− ε− εm(1) ≥ u− ε(1 +m(1)).

Since u < U∗0(mc) and ε > 0 are arbitrary we have U∗0(m) ≥ U∗0(mc). ut

Remark 3.4 Measures in dom(U∗0) are commonly said to have finite generalized
entropy. Due to the above characterisation of U∗x, it’s clear that dom(U∗x) =
dom(U∗0) for any x ∈ RD.

Define C := A0
T ∩ L∞(RD). The dual cone to C is defined by

D := (−C)∗ = {m ∈ ba(RD) : m(X) ≤ 0 for all X ∈ C}.

Note that since −L∞(RD+) ⊆ C, we have D ⊆ ba(RD+).
Given any x ∈ RD it follows from the definitions of D and U∗x that

sup
X∈C

Ux(X) ≤ sup
X∈L∞(RD)

inf
m∈D

Lx(X,m)

≤ inf
m∈D

sup
X∈L∞(RD)

Lx(X,m) = inf
m∈D

U∗x(m), (3.2)

where Lx(X,m) := Ux(X)−m(X) is a Lagrangian. Inequality (3.2) is known
as Fenchel’s inequality, and it identifies

inf {U∗x(m) : m ∈ D} (3.3)

as a potential dual optimization problem.
In our next result, we show that there is no duality gap in (3.2) provided

the initial portfolio x does not lie on the boundary of dom(u). We also show
that the dual problem has a solution whenever x lies in the interior of dom(u).

Proposition 3.5 (Duality) Suppose that Assumption 1.2 holds.
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1. For any x ∈ RD we have

sup
X∈C

Ux(X) ≤ u(x) ≤ inf
m∈D

U∗x(m). (3.4)

2. If x ∈ int(dom(u)) = int(Cu) then

sup
X∈C

Ux(X) = u(x) = min
m∈D

U∗x(m) ∈ R.

3. If x 6∈ cl(dom(u)) = Cu then

sup
X∈C

Ux(X) = u(x) = inf
m∈D

U∗x(m) = −∞.

Proof 1. The left-hand inequality in (3.4) follows trivially from the definitions
of Ux, C and u. To prove the right-hand inequality we need to show that
E
[
Ũ(X)

]
≤ U∗x(m) for all X ∈ AxT and m ∈ D. We may assume without

loss of generality that X ∈ L0(RD+), otherwise there is nothing to prove. In
this case, for each n ∈ N we have X ∧RD+ (n1)− x ∈ C, and hence

m(X) = sup
n∈N

m
(
X ∧RD+ (n1)

)
= m(x)+sup

n∈N
m
(
X ∧RD+ (n1)− x

)
≤ m(x).

(3.5)
Furthermore, since m ∈ ba(RD+), it follows from Propositions 2.24 and 2.25
that

m(X) = mc(X) +mp(X) ≥ E
[〈
X,

dmc

dP

〉]
+ 0. (3.6)

Using the definition of Ũ∗, combined with equations (3.6), (3.5) and Lemma
3.3 gives

E
[
Ũ(X)

]
≤ E

[
Ũ∗
(

dmc

dP

)
+
〈
X,

dmc

dP

〉]
≤ E

[
Ũ∗
(

dmc

dP

)]
+m(x) = U∗x(m). (3.7)

2. Suppose that x ∈ int(Cu). In order to apply the Lagrange Duality Theorem
we set X = L∞(RD) and define the concave functional U : X → [−∞,∞)
by U = Ux. We must first verify that the hypotheses of part 1 of Theorem
5.1 hold. Since x ∈ int(Cu), there exists an ε > 0 such that x − 2ε1 ∈
Cu. The deterministic random variable p := −ε1 lies in the interior of
−L∞(RD+) and hence in the interior of C. By Proposition 3.1, we see that
z := 2ε1−x ∈ A0

T ∩L∞(RD) = C. Hence U(p+z) = Ux(ε1−x) = Ũ(ε1) >
−∞. Since x ∈ int(Cu) ⊆ dom(u), part 1 of this proposition gives

sup
X∈C

U(X) = sup
X∈C

Ux(X) ≤ u(x) <∞.

This verifies the hypotheses of part 1 of Theorem 5.1, hence we may assert
that

sup
X∈C

Ux(X) = min
m∈D

U∗x(m) ∈ R.
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3. Suppose that x 6∈ Cu. We set X = L∞(RD) and define the concave
functional U : X → [−∞,∞) by U = Ux. We must verify that the hy-
potheses of part 2. of Theorem 5.1 hold. Since Cu is closed and x 6∈ Cu,
there exists an ε > 0 such that x + ε1 6∈ Cu. The deterministic random
variable p := −ε1 lies in the interior of C. By definition of Cu we have
x − p 6∈ dom(u). Using part 1 of this proposition, we see that for any
X ∈ C, U(X − p) = Ux(X − p) = Ux−p(X) ≤ u(x− p) = −∞.
By taking any x′ in the nonempty set int(Cu) and applying part 2. of this
proposition, we find the existence of a m̂ ∈ D such that u(x′) = U∗x′(m̂).
Thus by Lemma 3.3, U∗(m̂) = U∗x(m̂) = U∗x′(m̂) + m̂(x − x′) = u(x′) +
m̂(x−x′) <∞. This verifies the hypotheses of part 2. of Theorem 5.1, and
hence we may assert that

sup
X∈C

Ux(X) = inf
m∈D

U∗x(m) = −∞. ut

The following result will be used in the proofs of Corollary 3.7 and Propo-
sition 3.11.

Proposition 3.6 Suppose that Assumption 1.2 holds. For all x∗ ∈ RD we
have

u∗(x∗) = min {U∗0(m) : m ∈ D and m(Ω) = x∗} ,

in the sense that the minimum is attained whenever u∗(x∗) <∞.

Proof Let v : RD → (−∞,∞] be defined by

v(x∗) := inf {U∗0(m) : m ∈ D ∩ S(x∗)} ,

where S(x∗) :=
{
m ∈ ba(RD+) : m(Ω) = x∗

}
and we use the convention that

v(x∗) =∞ whenever D ∩ S(x∗) = ∅.
We begin by showing that the infimum in the definition of v(x∗) is attained

whenever v(x∗) <∞. We may assume without loss of generality that x∗ ∈ RD+ ,
otherwise S(x∗) = ∅. It is straightforward to verify that S(x∗) is a weak∗ closed
subset of the ball in ba(RD) of radius |x∗|1 :=

∑D
i=1 |x∗i |, and therefore, by

Corollary 2.26, S(x∗) is weak∗ compact. Since the polar cone D is weak∗ closed
this implies that D ∩ S(x∗) is weak∗ compact. Since the dual functional U∗0
is weak∗ lower semi-continuous, the infimum of U∗0 over D ∩ S(x∗) is attained
whenever v(x∗) <∞.

We claim that v is proper convex. Convexity follows easily from convexity
of U∗0 and D. That v is proper convex follows from Assumption 1.2, part 2 of
Proposition 3.5, Lemma 3.3, the fact that U∗0 is proper convex, and that the
minimum in the definition of v(x∗) is attained whenever v(x∗) <∞.

We claim that v is lower semi-continuous. Indeed, suppose that (x∗n)n∈N ⊆
RD is such that x∗n → x∗. We may assume without loss of generality that
lim infn→∞ v(x∗n) < ∞ otherwise there is nothing to show. There exists a
subsequence (xnk)k∈N such that v(x∗nk) < ∞ for all k, and limk→∞ v(x∗nk) =
lim infn→∞ v(x∗n). Let (m̂k)k∈N ⊆ D be such that m̂k ∈ S(x∗nk) and U∗0(m̂k) =
v(x∗nk) for each k. The sequence (m̂k)k∈N is bounded in ba(RD) because
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for each k ∈ N, ‖m̂k‖ba(RD) = |m̂k(Ω)|1 = |x∗nk |1 ≤ supn∈N |x∗n|1 < ∞.
By Corollary 2.26 the sequence (m̂k)k∈N has a cluster point. There exists,
therefore, a directed set A, an m̂ ∈ D and a subnet (m̂α)α∈A of (m̂k)k∈N
which weak∗ converges to m̂. Define x∗α := m̂α(Ω). The net (x∗α)α∈A con-
verges to x∗. Note that m̂ ∈ S(x∗) because for each i = 1, . . . , d we have〈
ei, m̂(Ω)

〉
= m̂(ei) = limα m̂α(ei) = limα

〈
ei, m̂α(Ω)

〉
= limα

〈
ei, x∗α

〉
=〈

ei, x∗
〉
. Since m̂ ∈ D ∩ S(x∗) and U∗0 is weak∗ lower semi-continuous, we

have v(x∗) ≤ U∗0(m̂) ≤ lim infα U∗0(m̂α) = lim infα v(x∗α) = limα v(x∗α) =
limk→∞ v(x∗nk) = lim infn→∞ v(x∗n).

By part 2 of Proposition 3.5, and Lemma 3.3 we have, for any x ∈ int(Cu),

u(x) = min
m∈D

U∗x(m) = min
m∈D
{U∗0(m) +m(x)}

= min
x∗∈RD

min
m∈D

m(Ω)=x∗

{U∗0(m) + 〈x, x∗〉}

= min
x∗∈RD

{v(x∗) + 〈x, x∗〉} = (∗v)(x).

Similarly, by part 3 of Proposition 3.5 we have, for any x 6∈ Cu,

−∞ = u(x) = inf {U∗x(m) : m ∈ D} = (∗v)(x).

Since u and ∗v agree everywhere, except possibly on the boundary of Cu,
it follows that clu = cl(∗v) = ∗v. Since u is proper concave and v is lower
semi-continuous and proper convex, it follows that u∗ = (cl(u))∗ = (∗v)∗ =
cl(v) = v (c.f. Definition 2.7). ut

Corollary 3.7 Suppose that Assumption 1.2 holds. If either U is bounded
from above, or U∗ satisfies the growth condition (2.10) then both U and the
value function u are asymptotically satiable.

Proof If U is bounded from above then U∗(0) = supx∈Rd+ U(x) <∞, thus 0 ∈
dom(U∗) and hence U is asymptotically satiable by Proposition 2.15. Similarly,
u must also bounded from above in this case, and hence also asymptotically
satiable.

Suppose that U∗ satisfies the growth condition. By Lemma 2.8 and the
proper convexity of U∗, there exists an x∗ ∈ int(Rd+) such that U∗(x∗) < ∞.
It follows immediately from the growth condition that εx∗ ∈ dom(U∗). Taking
the limit as ε→ 0 shows that 0 ∈ cl(dom(U∗)), and hence U is asymptotically
satiable by Proposition 2.15. We argue similarly to show that u is asymptoti-
cally satiable. From part 2 of Proposition 3.5, and Lemma 3.3 we may choose
any m in the nonempty set D ∩ dom(U∗0) 6= ∅ (any minimizer in a dual prob-
lem with x ∈ int(Cu) will do). Let x∗ := m(Ω), and let ε ∈ (0, 1). Recall that
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P : RD → Rd is defined by (2.5). By Proposition 3.6, Lemma 3.3 and (2.10),

u∗(εx∗) ≤ U∗0(εm) = E
[
Ũ∗
(
ε
dmc

dP

)]
= E

[
U∗
(
εP

(
dmc

dP

))]
≤ ζ(ε)

(
E

[
U∗
(
P

(
dmc

dP

))+
]

+ 1

)

= ζ(ε)

(
E

[
Ũ∗
(

dmc

dP

)+
]

+ 1

)
<∞.

We have shown that εx∗ ∈ dom(u∗). Taking the limit as ε → 0 shows that
0 ∈ cl(dom(u∗)), and hence u is asymptotically satiable by Proposition 2.15.

Note that if U is bounded from above then U∗ satisfies the growth condition
(see Remark 2.21), and we could have used this to prove that U and u are
asymptotically satiable. However, arguing this way would have been over-
complicated. ut

Recall that if x ∈ int(dom(u)) = int(Cu) then the existence of a minimizer
m̂x ∈ D ∩ dom(U∗x) in the dual problem (3.3) is guaranteed by part 2 of
Proposition 3.5. We now collect some of the properties of the minimizer.

Corollary 3.8 Suppose that Assumptions 1.1 and 1.2 hold. Given any x ∈
int(dom(u)) and a minimizer m̂x for the dual problem we have m̂x(Ω) ∈ ∂u(x).

Proof Define x∗ = m̂x(Ω). Then by Proposition 3.5, Lemma 3.3 and Proposi-
tion 3.6

u(x) = U∗x(m̂x) = U∗0(m̂x) + 〈x, x∗〉
≥ min {U∗0(m) : m ∈ D,m(Ω) = x∗}+ 〈x, x∗〉
= u∗(x∗) + 〈x, x∗〉 .

It now follows from [Roc72, Theorem 23.5] that x∗ ∈ ∂u(x). ut

In the next result we shall see that (although the minimizer itself may not
be unique) the first d coordinate measures of the countably additive part of
the minimizer are unique, and equivalent to P. The equivalence to P is an
essential ingredient in the paper, as it ensures that the random variable X̂x in
Proposition 3.11 is well defined.

Proposition 3.9 Suppose that Assumptions 1.1 and 1.2 hold. Given any x ∈
int(dom(u)), any minimizer m̂x for the dual problem lies in the set P :={
m ∈ ba(RD+) : P (dmc

dP ) is int(Rd+)-valued a.s.
}

, where P : RD → Rd is de-
fined by (2.5). Suppose that m̃x is another minimizer in the dual problem then
P (d bmcx

dP ) = P (dm̃cx
dP ) a.s. and m̂x(x) = m̃x(x).

Remark 3.10 In the proofs of Proposition 3.9 and Theorem 3.12 it will be
useful to embed Zs in D as follows. Given any Zs ∈ Zs, we can construct a
corresponding ms ∈ ba(RD+) ∩ ca(RD) by setting ms(A) := E [ZsTχA] for each
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A ∈ FT . It follows from [CS06, Lemma 2.8] (which requires Assumption 2.3)
that ms ∈ D. Note that dms

dP = ZsT is int(RD+)-valued a.s. because Zs is a
strictly consistent price process.

Proof (of Proposition 3.9) Let ∂Rd+ denote the boundary of Rd+. Take a ∈ ∂Rd+
and b ∈ int(Rd+). Recall from Lemma 2.12 and Proposition 2.15 that U∗ is
strictly convex on int(Rd+), essentially smooth, and ∇U∗ maps int(Rd+) into
− int(Rd+). Since U∗ is essentially smooth, |∇U∗(a+λb)| → ∞ as λ→ 0. Thus,
by convexity of U∗,

lim
λ↘0

U∗(a+ λb)− U∗(a)
λ

≤ lim
λ↘0
〈∇U∗(a+ λb), b〉 = −∞. (3.8)

From Lemma 3.3, m̂x ∈ ba(RD+) and d bmcx
dP is RD+ -valued a.s. Suppose, for

a contradiction, that m̂x 6∈ P. Then the event A :=
{
P (d bmcx

dP ) ∈ ∂Rd+
}

is
non-null under P. Choose any Zs ∈ Zs (which is nonempty by Assumption
2.3), and let ms ∈ D ∩P be the corresponding Euclidean vector measure (see
Remark 3.10). For λ > 0, define mλ := m̂x + λms ∈ D and νλ := Ũ∗

(dmcλ
dP
)
.

Since, by Lemma 2.8, U∗0 is decreasing with respect to the preorder induced
by ba(RD+), we see that mλ ∈ dom(U∗0). Since Ũ∗ is convex, the integrable
random variables (νλ− ν0)/λ are monotone increasing in λ. By the monotone
convergence theorem and (3.8)

lim
λ↘0

E
[
χA

(
νλ − ν0
λ

)]
= E

[
χA lim

λ↘0

(
νλ − ν0
λ

)]
= E

[
χA lim

λ↘0

(
Ũ∗(d bmcx

dP + λdms

dP )− Ũ∗(d bmcx
dP )

λ

)]

= E

[
χA lim

λ↘0

(
U∗
(
P (d bmcx

dP ) + λP (dms

dP )
)
− U∗

(
P (d bmcx

dP )
)

λ

)]
= −∞.

Hence limλ↘0
1
λE [νλ − ν0] = −∞. However, Lemma 3.3 and optimality of m̂x

imply that

E [νλ − ν0] = E
[
Ũ∗
(

dmc
λ

dP

)]
− E

[
Ũ∗
(

dm̂c
x

dP

)]
= U∗x(mλ)−mλ(x)− U∗x(m̂x) + m̂x(x) ≥ −λms(x).

Therefore, for all λ > 0, 1
λE [νλ − ν0] ≥ −ms(x). This is the required contra-

diction.
Suppose for a contradiction that there exist solutions m̂x, m̃x to the dual

problem such that
P
(
P (d bmcx

dP ) 6= P (dm̃cx
dP )

)
> 0. Defining m̄ := (m̂x + m̃x)/2 ∈ D ∩ P, strict
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convexity of U∗ on int(Rd+) implies that

E
[
Ũ∗
(

dm̄c

dP

)]
+ m̄(x) = E

[
U∗
(
P

(
dm̄c

dP

))]
+ m̄(x)

<
1
2

{
E
[
U∗
(
P

(
dm̂c

x

dP

))]
+ m̂x(x)

}
+

1
2

{
E
[
U∗
(
P

(
dm̃c

x

dP

))]
+ m̃x(x)

}
=

1
2

{
E
[
Ũ∗
(

dm̂c
x

dP

)]
+ m̂x(x)

}
+

1
2

{
E
[
Ũ∗
(

dm̃c
x

dP

)]
+ m̃x(x)

}
= min

m∈D
U∗x(m),

which is the required contradiction. It follows immediately from Lemma 3.3
that m̂x(x) = m̃x(x). ut

Proposition 3.11 (Variational Analysis) Suppose that Assumptions 1.1,
1.2 and 1.3 hold. Given any x ∈ int(dom(u)), let m̂x ∈ D∩dom(U∗0)∩P denote
an optimal dual measure, and define X̂x := Ĩ(d bmcx

dP ), where Ĩ is defined by (2.6).
Then E

[〈
X̂x,

dmc

dP
〉]
≤ m(x) for all m ∈ D, with equality for m = m̂x.

Proof Take any m̃ ∈ D ∩ dom(U∗0). Since D and U∗0 are convex, the measure
mλ := λm̃+(1−λ)m̂x is again an element of D∩dom(U∗0) for any λ ∈ [0, 1]. The
map f : [0, 1]→ R defined by f(λ) := U∗x(mλ) is convex, and has a minimum
at 0. Therefore, by Lemma 3.3 and the Monotone Convergence Theorem,

0 ≤ f ′+(0) = lim
λ↘0

{
f(λ)− f(0)

λ

}

= lim
λ↘0

E

 Ũ∗
(

dmcλ
dP

)
− Ũ∗

(
d bmcx
dP

)
λ

+
mλ(x)− m̂x(x)

λ


= E

 lim
λ↘0

 Ũ
∗
(

dmcλ
dP

)
− Ũ∗

(
d bmcx
dP

)
λ


+ m̃(x)− m̂x(x)

= E
[〈
−Ĩ
(

dm̂c
x

dP

)
,

dm̃c

dP
− dm̂c

x

dP

〉]
+ m̃(x)− m̂x(x).

Therefore

E
[〈
X̂x,

dm̃c

dP

〉]
− m̃(x) ≤ E

[〈
X̂x,

dm̂c
x

dP

〉]
− m̂x(x). (3.9)

Assume now that m ∈ D. It follows from Lemma 2.8 that U∗0 is decreasing
with respect to the preorder induced by ba(RD+), and hence m̃ := m̂x + m ∈
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D ∩ dom(U∗0). It follows from (3.9) that

E
[〈
X̂x,

dmc

dP

〉]
≤ m(x). (3.10)

By Proposition 2.15, given any ε > 0 there exists an x∗ ∈ dom(u∗) satisfying
〈x, x∗〉 ≤ ε. Since u∗(x∗) < ∞, Proposition 3.6 implies the existence of a
m̃ ∈ D ∩ dom(U∗0) with m̃(Ω) = x∗. By Lemma 3.3, dm̃c

dP is RD+ -valued a.s.
Since X̂x is also RD+ -valued a.s. we have (using also (3.9) and (3.10))

−ε ≤ −〈x, x∗〉 = −m̃(x) ≤ E
[〈
X̂x,

dm̃c

dP

〉]
− m̃(x)

≤ E
[〈
X̂x,

dm̂c
x

dP

〉]
− m̂x(x) ≤ 0.

Since ε > 0 is arbitrary, we have E
[〈
X̂x,

d bmcx
dP
〉]

= m̂x(x). ut

We now present our main theorem.

Theorem 3.12 Let U : Rd → [−∞,∞) be a utility function supported on
Rd+, which satisfies Assumption 1.1. Suppose in addition that Assumptions
1.2 and 1.3 hold, and that the economy satisfies Assumption 2.3. Given any
x ∈ int(dom(u)), the optimal investment problem (1.2) has a unique solution
X̂x := Ĩ(d bmcx

dP ), where Ĩ is defined by (2.6), and where m̂x is any dual optimizer
from part 2 of Proposition 3.5.

Proof Choose any Zs ∈ Zs (which is nonempty by Assumption 2.3), and let
ms ∈ D be the corresponding Euclidean vector measure (see Remark 3.10). It
follows from Proposition 3.11 that E

[〈
X̂x, Z

s
T

〉]
= E

[〈
X̂x,

dms

dP
〉]
≤ ms(x) =

〈x, Zs0〉. Theorem 2.6 implies that X̂x ∈ AxT . Furthermore, by Corollary 2.16,
Proposition 3.11 and Lemma 3.3, we have

E
[
Ũ(X̂x)

]
= E

[
Ũ∗
(

dm̂c
x

dP

)
+
〈
X̂x,

dm̂c
x

dP

〉]
= E

[
Ũ∗
(

dm̂c
x

dP

)]
+ m̂x(x)

= U∗x(m̂x). (3.11)

It follows from part 1 of Proposition 3.5 that X̂x is an optimizer in the primal
problem.

To show uniqueness, suppose for a contradiction that X̃x ∈ AxT is an op-
timizer in the primal problem such that P(X̃x 6= X̂x) > 0. Since Ũ has sup-
port cone RD+ , X̃x must be RD+ -valued a.s. By definition, X̂x is int(Rd+) ×
RD−d+ -valued a.s. We may assume without loss of generality that X̃x is also
int(Rd+) × RD−d+ -valued a.s., otherwise we can simply replace X̃x with the
random variable (X̃x + X̂x)/2 ∈ AxT , which is int(Rd+) × RD−d+ -valued a.s.,
and which is also an optimizer in the primal problem, due to concavity of
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Ũ . Recall that P : RD → Rd is defined by (2.5). There are two cases: Ei-
ther (i) P

(
P (X̃x) 6= P (X̂x)

)
> 0 or (ii) P

( 〈
X̃x, e

j
〉
> 0

)
> 0 for some

j ∈ {d+ 1, . . . , D}.
(i) Define X̄ := (X̃x+ X̂x)/2 ∈ AxT . Since U is strictly concave on int(Rd+),

E [Ũ(X̄x)] = E
[
U(P (X̄x))

]
>

1
2
{E [U(P (X̃x))] + E [U(P (X̂x))]}

=
1
2
{E [Ũ(X̃x)] + E [Ũ(X̂x)]} = u(x),

which is the required contradiction.
(ii) Let j ∈ {d+ 1, . . . , D} be such that P(

〈
X̃x, e

j
〉
> 0) > 0. Define

X̄x := X̃x−Y where Y := 〈X̃x,e
j〉

πj,1T
(πj,1T ej−e1) is KT -valued. Since

〈
X̄x, e

1
〉
≥ 0

a.s. and
〈
X̄x, e

j
〉

= 0 a.s., X̄x is RD+ -valued a.s. Hence X̄x ∈ AxT . Since U is
increasing with respect to �Rd+ and strictly concave on int(Rd+), it must be
strictly increasing on int(Rd+) with respect to �Rd+ . Hence

E
[
Ũ(X̄x)

]
= E

[
U
(
P (X̃x)− P (Y )

)]
= E

[
U

(
P (X̃x) +

〈
X̃x, e

j
〉

πj,1T
e1

)]
> E

[
U
(
P (X̃x)

)]
= E

[
Ũ(X̃x)

]
= u(x),

which is the required contradiction. ut

We finish this section by giving an example where the singular part, m̂p
x,

of the dual minimizer is non-zero.

Example 3.13 Let S := (S0, S1) be as defined in [KS99, Example 5.1’]. That
is, S0 ≡ 1 and S1 takes the values (sn)∞n=0 with probabilities (pn)∞n=0, where
s0 = 2, sn = 1/n for n ≥ 1, p0 = 1−α and pn = α2−n, with α sufficiently small.
This example can be modified to include frictions as follows: With D = 2, we
define the bid-ask process

Π0 :=
(

1 S0

2/S0 1

)
=
(

1 1
2 1

)
and Π1 :=

(
1 2S1

1/S1 1

)
,

and let A0
T denote the corresponding cone of admissible terminal portfolios

with zero initial portfolio.
Note that under this model the R2-valued price process (1, St), t = 0, 1, is

now a shadow price for the bond and stock. In relation to this shadow price
process, at time t = 0, trading from the bond to the stock is frictionless, while
trading in the opposite direction incurs costs. At time t = 1, however, trading
from the stock to the bond is now frictionless, while trading from bond to
stock incurs costs.

With d = 1, we set U(x) := lnx. We define the extended utility function
Ũ : R2 → [−∞,∞) by (1.1), and the value function u : R2 → [−∞,∞) by
(1.2). Since 1 = d < D = 2, the extended utility function effectively forces the
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investor to close out their position in the stock at maturity, in order to derive
the maximum possible utility from their terminal portfolio.

Suppose we are given an initial portfolio x = (x0, x1). In the frictionless
case, since S0 ≡ 1 we may immediately trade at time 0 to the portfolio (x0 +
x1, 0), and hence the maximum expected utility is given by ũ(x) := uKS(x1 +
x2), where uKS(x) := lnx + E [lnS1] is the value function obtained in [KS99,
Example 5.1’]. However, if we introduce frictions as described above, this only
serves to decrease the terminal wealth, and hence the associated utility. Thus
u(x) ≤ ũ(x).

We shall now see that u and ũ are equal whenever x1 > 0 and x2 ≥ −x1.
We claim that Xx := ((x1 + x2)S1, 0) ∈ AxT . Indeed, to reach this terminal
portfolio from the initial portfolio x = (x1, x2), one can trade to (0, x1 + x2)
at time 0 and then at time 1, Xx can be reached by liquidating to the bond.
Thus

E [Ũ(Xx)] = E [U((x1 + x2)S1)] = ln(x1 + x2) + E [lnS1] = uKS(x1 + x2)
= ũ(x) ≥ u(x).

Hence Xx = X̂x is optimal and u(x) = ln(x1 + x2) + E [lnS1].
Now fix x = (1, 0). Let m̂ = m̂x denote the minimizer in the dual problem.

By Corollary 3.8, m̂(Ω) ∈ ∂u(1, 0) = {(1, 1)}. In particular the first coordinate
measure m̂1 :=

〈
e1, m̂

〉
satsifies m̂1(Ω) = 1. By Theorem 3.12,

(S1, 0) = X(1,0) = X̂(1,0) =
(
−(U∗)′

(
dm̂c

1

dP

)
, 0
)
.

Hence
dm̂c

1

dP
= U ′(S1) =

1
S1
.

Referring back to [KS99, Example 5.1’], we see that

m̂c
1(Ω) = E

[
dm̂c

1

dP

]
= E

[
1
S1

]
< 1.

Since m̂1(Ω) = 1 and m̂c
1(Ω) < 1, it must be the case that m̂p

1(Ω) 6= 0. ut

4 The liquidation case

In many papers dealing with optimal investment under transaction costs, it
is assumed that the agent liquidates their assets at the close of trading to
a given reference asset, which is chosen as a numéraire at time t = 0. The
reader is referred especially to [Kab99], [DPT01], [Bou02] and the references
therein. In this subsection, we show that our optimal investment problem
is equivalent to maximizing expected utility from liquidation of the terminal
portfolio, thus avoiding the delicate issue of using a non-smooth utility function
as in [DPT01].
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Definition 4.1 Let U be a utility function supported on Rd+ (see Definition
2.9) which satisfies Assumption 1.1. The terminal liquidation utility functional
corresponding to U is defined3 by

Ū(W ) := max
{
U(ξ) : ξ ∈ Rd+, (ξ, 0)−W ∈ −KT

}
, W ∈ L0(KT ,FT−),

(4.1)
where 0 denotes the zero vector in RD−d.

Given W ∈ L0(KT ,FT−), the random quantity Ū(W ) models the best
an agent can do if, at time T , they decide to liquidate their portfolio at time
T− to the d consumption goods according to the terminal solvency cone KT .
Observe that it is natural to consider only those random variables W that
belong to KT a.s., since W represents agent’s portfolio at time T− resulting
from an admissible portfolio V ∈ Ax for some initial endowment x. Indeed,
VT− = (VT−−VT )+VT where VT−−VT ∈ KT and, without loss of generality,
VT ∈ RD+ , so that VT− belongs a.s. to KT + RD+ = KT .

Remark 4.2 Before stating the main results of this section, we notice that for
any W ∈ L0(KT ,FT−) the liquidation functional Ū(W ) defined by (4.1) ad-
mits a measurable maximum ξ̂ (i.e. the set of maximizers admits a measurable
selector). To prove this, note that we can reformulate the terminal liquidation
functional Ū(W ) as

m(ω) := max {f(ω, ξ) : ξ ∈ φ(ω)} ,

where f : Ω × Rd+ → R is defined by f(ω, ξ) := U(ξ), and φ : Ω � Rd+ is
defined by φ(ω) := {ξ ∈ dom(U) : (ξ, 0)−W (ω) ∈ −KT (ω)}. Since W ∈ KT

a.s., φ has nonempty and compact values a.s. It follows from [AB06, Lemmas
18.3 and 18.7] that φ is weakly measurable. Since U is upper semi-continuous,
f is Carathéodory. Thus φ and f satisfy the conditions of the measurable
maximum theorem [AB06, Theorem 18.19] except from the fact that f can
take the value −∞. Nonetheless [AB06, Theorem 18.9] can be applied4 so
that, in particular, the argmax correspondence of maximizers µ : Ω � Rd+
defined by µ(ω) := {ξ ∈ φ(ω) : f(ω, ξ) = m(ω)} admits a measurable selector
ξ̂ : Ω → Rd+.

The following propositions are the two main results of this section: In
Proposition 4.3 we show that the value function of the original problem co-
incides with the supremum of the expected liquidation utility functional. In
Proposition 4.4 we go on to show that both problems essentially have a com-
mon optimizer.

3 Clearly, the set over which we are optimizing in (4.1) is a.s. nonempty (the zero vector
belongs to it) and compact in Rd

+. Since U is upper semi-continuous, this justifies the use
of the maximum for almost every ω.

4 For the sake of clarity, we notice that even though [AB06, Theorem 18.19] is stated only
for finite-valued functions f , it can be applied to functions taking possibly the value −∞
as follows: Let ψ be an order-preserving homeomorphism mapping [−∞,∞) into [0, 1). One
can apply [AB06, Theorem 18.19] to the function ψ◦f to get a measurable maximizer. Since
ψ is order-preserving, such a maximizer coincides with that of our original maximization
problem.
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Proposition 4.3 Let x ∈ RD be a given initial endowment. Then

u(x) = sup
W∈AxT−

E
[
Ū(W )

]
, (4.2)

where AxT− := {VT− : V ∈ Ax}.

Proof First, we prove inequality ‘≤’. Let V be a given admissible portfolio
process such that V0 = x. We assume without loss of generality that VT ∈ RD+
a.s. It follows from [CS06, Lemma 2.8] and Assumption 2.1 that (P (VT ), 0)−
VT− ∈ −KT a.s., where P : RD → Rd is defined by (2.5). Hence, by definition
of Ũ and Ū , we have

Ũ(VT ) = U(P (VT )) ≤ sup
{
U(ξ) : ξ ∈ Rd, (ξ, 0)− VT− ∈ −KT

}
= Ū(VT−).

Hence the desired inequality follows.
For the opposite inequality ‘≥’, let V ∈ Ax. By Remark 4.2 there exists

a FT -measurable solution ξ̂ to the optimization problem (4.1) when W =
VT−. Indeed, as we have already noticed, VT− belongs to KT and thus the
maximizer ξ̂ is well-defined. Moreover, the strict concavity of U implies that
such a maximizer is a.s. unique.

We claim that (ξ̂, 0) belongs to AxT . Indeed, (ξ̂, 0) is the terminal value of
the portfolio process V ′ defined as V ′t = Vt+((ξ̂, 0)−VT )χ{t=T}, which clearly
belongs to Ax because over [0, T ) it coincides with V which is admissible and
at T the last trade equals ∆V ′T = V ′T − V ′T− = (ξ̂, 0) − VT− ∈ −KT a.s. As a
consequence, one has

u(x) ≥ E
[
U(ξ̂)

]
= E

[
Ū(VT−)

]
which gives the result. ut

Proposition 4.4 The supremum in (4.2) is attained. Moreover, given any
maximizer Ŵ in (4.2), let ξ̂ = ξ̂(Ŵ ) be any maximizer in the optimization
problem Ū(Ŵ ) and let X̂x be the unique maximizer in the primal problem
(1.2). Then (ξ̂(Ŵ ), 0) = X̂x a.s.

Proof Since X̂x ∈ AxT , there exists an admissible V such that V0 = x and
VT = X̂x. Define Ŵ := VT−, and ξ̂ := P (X̂x). By [CS06, Lemma 2.8], (ξ̂, 0)−
Ŵ = X̂x − VT− = VT − VT− ∈ −KT a.s. Now

E
[
Ū(Ŵ )

]
≥ E

[
U(ξ̂)

]
= E

[
Ũ(X̂x)

]
= u(x).

Therefore by Proposition 4.3, Ŵ is optimal in (4.2). Now suppose that W̃ is
any maximizer in (4.2), and let ξ̃ = ξ̃(W̃ ) be the corresponding maximizer in
Ū(W̃ ). Define X̃x := (ξ̃, 0) ∈ AxT . Then

E
[
Ũ(X̃x)

]
= E

[
U(ξ̃)

]
= E

[
Ū(W̃ )

]
= u(x).

By Theorem 3.12, (ξ̃(W̃ ), 0) = X̃x = X̂x a.s. ut
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Example 4.5 (Liquidation to the first asset) Take d = 1, i.e. at the end the
agent is interested in consuming only the first good. In this case a direct
computation leads to the following expression for Ū :

Ū(W ) = U(l(W )),

where l is the liquidation functional expressed in physical units, defined as
follows

l(W ) = sup {ξ ∈ R+ : (ξ, 0)−W ∈ −KT } , W ∈ L0(KT ,FT−). (4.3)

Observe that while U is smooth, the corresponding indirect utility function Ū
need not be. The previous proposition can be rewritten as

u(x) = sup
W∈AxT−

E [U(l(W ))] .

We note that the function l given in (4.3) is the analogue (in our framework)
of the liquidation function as defined, e.g., in the papers [DPT01] and [Bou02],
where all quantities are expressed in terms of a fixed numéraire.

5 Appendix

5.1 Lagrange duality

The Lagrange duality theorem is the central ingredient in the proof of Propo-
sition 3.5. Part 1 of the theorem below is essentially a reformulation of [Lue69,
Theorem 8.6.1] in terms of concave functionals which may take the value −∞,
as opposed to real-valued convex functionals. We have also added part 2 to
cover the case where the optimization is degenerate.

Theorem 5.1 (Lagrange duality theorem) Let X denote a normed5 vec-
tor space, let C be a nonempty convex cone in X , let D := (−C)∗, and let
U : X → [−∞,∞) be a proper concave functional.

1. Suppose there exists a p ∈ int(C) and an x ∈ C such that U(x+ p) > −∞,
and supx∈C U(x) <∞. Then

sup
x∈C

U(x) = min
x∗∈D

U∗(x∗) ∈ R.

2. Suppose there exists a p ∈ int(C) such that U(x − p) = −∞ for all x ∈ C
and there exists x∗1 ∈ D such that U∗(x∗1) <∞. Then

sup
x∈C

U(x) = inf
x∗∈D

U∗(x∗) = −∞.

5 It is worth noting that the Lagrange duality theorem is also true if X is simply a
topological vector space. We do not need the strengthened version of the result however, so
we restrict ourselves to the case where X is a normed vector space.
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Proof Note first that for any x∗ ∈ D we have

sup
x∈C

U(x) ≤ sup
x∈C
{U(x)− 〈x, x∗〉} ≤ sup

x∈X
{U(x)− 〈x, x∗〉} = U∗(x∗).

1. Following the notation of [Lue69, §8], we set X = Z = X , Ω = dom(U),
and let G : X → Z be the identity operator. Let P = −C be the positive
cone of Z, so that the dual, positive cone of Z∗ is D. By the hypothesis of
part 1, the point x1 := x+p lies both in the effective domain of U and in the
interior of C; in the notation of [Lue69, §8], x1 ∈ Ω satisfies G(x1) < θ. Let
f be the restriction of −U to Ω, thus f is a real-valued convex functional
defined on the convex subset Ω of X. It is easy to verify that the concave
dual of f is φ = −U∗. Applying [Lue69, Theorem 8.6.1] gives

sup
x∈C

U(x) = − inf {f(x) : G(x) ≤ θ, x ∈ Ω}

= −max {φ(x∗) : x∗ ≥ θ} = min
x∗∈D

U∗(x∗) ∈ R.

2. First note that

sup
x∈C

U(x) ≤ sup
x∈−p+C

U(x) = sup
x∈C

U(x− p) = −∞.

Furthermore, by the hypothesis of part 2, C and

S := {x′ ∈X : U(x′ − p) > −∞}

are disjoint, nonempty, convex sets. Since C is a convex cone which contains
an interior point, [DS64, Theorem V.2.8] implies the existence of a non-zero
x∗0 ∈X ∗ such that

〈x, x∗0〉 ≤ 0 ≤ 〈x′, x∗0〉 (5.1)

for all x ∈ C and all x′ ∈ S. This implies that x∗0 ∈ D.
Note that since x∗0 ∈ D and p ∈ C, we have 〈p, x∗0〉 ≤ 0. We claim that
〈p, x∗0〉 < 0. Indeed, suppose for a contradiction that 〈p, x∗0〉 = 0. Since
x∗0 6= 0, there exists an x′ ∈X such that 〈x′, x∗0〉 > 0. Since p is an interior
point of C, by continuity of scalar multiplication there exists an ε > 0
such that x′′ := p + εx′ ∈ C. Therefore 〈x′′, x∗0〉 = ε 〈x′, x∗0〉 > 0, which
contradicts the fact that x∗0 ∈ D.
Given any x ∈ dom U, we have x′ := p+ x ∈ S. Hence by (5.1) we have

−〈x, x∗0〉 = 〈p, x∗0〉 − 〈x′, x∗0〉 ≤ 〈p, x∗0〉 . (5.2)

Given any λ > 0, note that x∗1 + λx∗0 ∈ D. It follows from the definition of
U∗ and (5.2) that

U∗(x∗1 + λx∗0) = sup
x∈dom(U)

{U(x)− 〈x, x∗1〉 − λ 〈x, x∗0〉} ≤ U∗(x∗1) + λ 〈p, x∗0〉 .

Since U∗(x∗1) < ∞ and 〈p, x∗0〉 < 0 we may make the right-hand side arbi-
trarily negative by choosing λ arbitrarily large. Therefore infx∗∈D U∗(x∗) =
−∞. ut
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5.2 Proofs of Auxiliary Results from Section 2

Proof of Lemma 2.14

Take any ε > 0 and suppose that there exists an x ∈ int(dom(U)) such that
∂U(x) ∩ [0, ε)d 6= ∅. By [Roc72, Corollary 23.5.2], ∂(cl(U))(x) = ∂U(x), and
hence U is asymptotically satiable.

Conversely, suppose that U is essentially smooth and asymptotically sa-
tiable. By [Roc72, Theorem 7.4], cl(U) agrees with U except perhaps at bound-
ary points of dom(U). Therefore cl(U) is essentially smooth. Since U is asymp-
totically satiable, given any ε > 0 there exists an x ∈ Rd such that ∂(cl(U))(x)∩
[0, ε)d 6= ∅. By [Roc72, Theorem 26.1] we must have x ∈ int(dom(cl(U))) =
int(dom(U)), and ∇U(x) = ∇(cl(U)) ∈ [0, ε)d. ut

Proof of Proposition 2.15

1 ⇒ 2. For each n ∈ N there exists an xn ∈ Rd such that ∂(cl(U))(xn) ∩
[0, 1/n)d 6= ∅. Choose any x∗n ∈ ∂(cl(U))(xn) ∩ [0, 1/n)d. By [Roc72, Theorem
12.2 and Corollary 23.5.1] we have −xn ∈ ∂(cl(U)∗)(x∗n) = ∂U∗(x∗n) and
hence, by [Roc72, Theorem 23.4], x∗n ∈ dom(U∗). Since the sequence (x∗n)n∈N
converges to 0, we have 0 ∈ cl(dom(U∗)).

2 ⇒ 3. There exists a sequence (x∗n)n∈N ⊆ dom(U∗) such that x∗n → 0 as n→
∞. By Lemma, 2.8 dom(U∗) ⊆ (CU )∗. Take any x∗ ∈ ri((CU )∗). Since x∗n → 0
as n→∞, the sequence (x∗−x∗n)n∈N ⊆ aff((CU )∗) is eventually in ri((CU )∗).
Therefore x∗ �(CU )∗ x

∗
n eventually, and since, by Lemma 2.8, U∗ is decreasing

with respect to �(CU )∗ , this implies that x∗ ∈ dom(U∗). We have therefore
shown that ri((CU )∗) ⊆ dom(U∗). By [Roc72, Corollary 6.3.1], this, together
with the fact that dom(U∗) ⊆ (CU )∗, shows that cl(dom(U∗)) = (CU )∗.

3 ⇒ 4. Obvious.

4 ⇒ 1. By [Roc72, Corollary 6.3.1], cl(dom(U∗)) = cl(ri(dom(U∗))). Since
cl(dom(U∗)) is a convex cone, given any ε > 0 we may find a x∗ ∈ ri(dom(U∗))∩
[0, ε)d. By [Roc72, Theorem 23.4], ∂U∗(x∗) 6= ∅. Choose any x ∈ −∂U∗(x∗).
By [Roc72, Theorem 12.2 and Corollary 23.5.1], x∗ ∈ ∂(cl(U))(x). Since
x∗ ∈ ∂(cl(U))(x) ∩ [0, ε)d, we have shown 1. ut

Proof of Proposition 2.22

Since U satisfies (2.8) there exist β > 0, c ∈ R, and r > 0 such that for all
x ∈ int(Rd+) satisfying |x| ≥ r we have U(x) ≥ (1 + 1/β) 〈x,∇U(x)〉 − c. Let
1 ∈ Rd denote the vector whose entries are all equal to 1. Define xr := r1,
and x∗r := ∇U(xr).

Take any x∗ ∈ int(Rd+) and ε ∈ (0, 1]. We consider two cases, (i) x∗ �Rd+ x∗r
and (ii) x∗ 6�Rd+ x∗r .

(i) In this case εx∗ �Rd+ εx∗r , so by Lemma 2.8, U∗(εx∗) ≤ U∗(εx∗r).
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(ii) Since U is asymptotically satiable, Proposition 2.15 shows that εx∗ ∈
int(dom(U∗)). By Lemma 2.12 we may define xε := −∇U∗(εx∗). We claim
that |xε| ≥ r. Indeed, suppose for a contradiction that |xε| < r. Then
xε �Rd+ xr, so by Lemmas 2.12 and 2.18, x∗ �Rd+ εx∗ = ∇U(xε) �Rd+
∇U(xr) = x∗r , which is the required contradiction. Therefore, by Corollary
2.16,

U∗(εx∗) = U(xε)− 〈xε, εx∗〉
≥ (1 + 1/β) 〈xε,∇U(xε)〉 − c− 〈xε, εx∗〉

= − 1
β
〈∇U∗(εx∗), εx∗〉 − c. (5.3)

Define the function F : (0, 1]→ R by F (ε) := εβ(U∗(εx∗) + c). Using (5.3),
we see that

F ′(ε) = βεβ−1(U∗(εx∗) + c+ 〈∇U∗(εx∗), εx∗〉 /β) ≥ 0.

Hence U∗(εx∗) = ε−βF (ε)− c ≤ ε−βF (1)− c = ε−βU∗(x∗) + (ε−β − 1)c.

The result follows by setting ζ(ε) := max
{
ε−β , (ε−β − 1)c, U∗(εx∗r), 0

}
. ut

Proof of Lemma 2.23

Applying Proposition 2.22 with d = 1, for each i ∈ {1, . . . , d} there exists a
function ζi : (0, 1]→ (0,∞) such that for all ε ∈ (0, 1] and all x∗i > 0

U∗i (εx∗i ) ≤ ζi(ε)(Ui(x∗i )+ + 1).

It follows that for x∗ ∈ int(Rd+),

U∗(εx∗) =
d∑
i=1

U∗i (εx∗i ) ≤
d∑
i=1

ζi(ε)(U∗i (x∗i )
+ + 1)

≤ max
i=1,...,d

ζi(ε)

(
d∑
i=1

U∗i (x∗i )
+ + d

)
.

Since inf
{
U(x) : x ∈ int(Rd+)

}
> −∞, it follows that

ai := inf {Ui(xi) : xi ∈ int(R+)} > −∞

for each i. Moreover, since U∗i (x∗i )
+ = U∗i (x∗i ) + U∗i (x∗i )

− ≤ U∗i (x∗i ) + a−i we
have

d∑
i=1

U∗i (x∗i )
+ ≤ U∗(x∗) +

d∑
i=1

a−i ≤ U
∗(x∗)+ +

d∑
i=1

a−i .

The growth condition follows by setting ζ(ε) = maxi=1,...,d ζi(ε)(
∑d
i=1 a

−
i +d).

ut
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