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Abstract 15 

Precision agriculture is increasingly considered as a powerful solution to mitigate the 16 

environmental impact of farming systems. This because of its ability to use multi-source 17 

information in decision support systems to increase the efficiency of farm management. 18 

Among the agronomic practices for which precision agriculture concepts were applied in 19 

research and operational contexts, variable rate (VR) nitrogen fertilization plays a key role. 20 

A promising approach to make quantitative, spatially distributed diagnoses to support VR N 21 

fertilization is based on the combined use of remote sensing information and few smart 22 

scouting-driven ground estimates to derive maps of nitrogen nutrition index (NNI). In this study, 23 

a new smart app for field NNI estimates (PocketNNI) was developed, which can be 24 

integrated with remote sensing data. The environmental impact of using PocketNNI and 25 

Sentinel 2 products to drive fertilization was evaluated using the Life Cycle Assessment 26 

approach and a case study on rice in northern Italy. In particular, the environmental 27 

performances of rice fertilized according to VR information derived from the integration of 28 
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PocketNNI and satellite data was compared with a treatment based on uniform N 29 

application. Primary data regarding the cultivation practices and the achieved yields were 30 

collected during field tests. 31 

Results showed that VR fertilization allowed reducing the environmental impact by 11.0% to 32 

13.6% as compared to uniform N application. For Climate Change, the impact is reduced 33 

from 937.3 to 832.7 kg CO2 eq/t of paddy rice. The highest environmental benefits – mainly 34 

due to an improved ratio between grain yield and N fertilizers – were achieved in terms of 35 

energy consumption for fertilizer production and of emission of N compounds. Although 36 

further validation is needed, these preliminary results are promising and provide a first 37 

quantitative indication of the environmental benefits that can be achieved when digital 38 

technologies are used to support N fertilization. 39 
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1. Introduction 44 

Precision agriculture (PA) – i.e., the use of multi-source information in decision support systems 45 

to increase the efficiency of farm management (Blackmore, 1994; Bouma et al., 1999) – is 46 

increasingly catalysing the attention of scientists and farmers because of its potential to 47 

reduce environmental pollution while increasing farm profits and product quality (Srinivasan, 48 

2006). The adoption of PA techniques proved to enhance the economic return of farming 49 

activities by improving the efficiency in the use of technical inputs (Balafoutis et al., 2017a; 50 

van Evert et al., 2017), although to a different extent according to the crop, the technical 51 

input considered, and the cost of the technology used to implement PA principles 52 

(Lowenberg-DeBoer and Erickson, 2019, Griffin and Lowenberg-DeBoer, 2005). In practical 53 

terms, PA aims at managing variability in space and time (McBratney et al., 2005), that is, 54 

doing the right thing in the right place at the right time, and in the right way (Pierce et al., 55 

1994). A variety of studies confirmed the positive expectations behind the application of PA 56 

techniques, for both herbaceous (e.g., Basso et al., 2016) and tree species (e.g., Balafoutis et 57 

al., 2017b; van Evert et al., 2017). However, PA often requires the adoption of advanced 58 

machineries and technological systems, whose construction, maintenance and use could, to 59 

a certain extent, reduce the potential environmental and economic benefits deriving from its 60 

implementation (Sadler et al., 2005). As an example, the application of PA principles to water 61 

management normally requires the use of drip irrigation (e.g., Smith and Baillie, 2009; Mafuta 62 

et al., 2013; Prathyusha et al., 2013; Kisekka et al., 2017), which may have a higher 63 

environmental impact (evaluated through LCA) compared to less sophisticated irrigation 64 

systems characterized by lower water use efficiencies (Guiso et al., 2015) because of the 65 

production, laying and disposal of part of the plastic pipes. 66 

These considerations are far from being aimed at casting a shadow over PA and, in general, 67 

over technology. They rather underline the need of evaluating in a quantitative way the 68 

actual economic and environmental impacts of technologies in specific production contexts. 69 

Among agricultural practices, variable rate (VR) nitrogen (N) fertilization is likely one of those 70 

for which the largest number of studies was performed (e.g., Basso et al., 2016). VR fertilization 71 

can be based (i) on static information derived from soil data (e.g., Grisso et al., 2009), remote 72 
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sensing (Casa et al., 2017) or yield maps from previous years (e.g., Stafford et al., 1999), or (ii) 73 

on dynamic crop monitoring using real-time or near-real-time information (Nutini et al., 2018). 74 

The latter refers to topdressing N fertilization and can be based on sensors mounted on the 75 

operating tractor (e.g., GreenSeeker, Trimble, CA, USA; Raun et al., 2005), on remote sensing 76 

information (Schwalbert et al., 2019), or on diagnostic portable instruments (Rogovska et al., 77 

2019). 78 

The most quantitative approaches for dynamic VR fertilization are based on the combined 79 

use of remote sensing information and smart scouting-based ground data collection for 80 

estimating N nutrition index (NNI) (e.g., Chen, 2015; Huang et al., 2015; Ata-Ul-Karim et al., 81 

2014; Nutini et al., 2018), the latter being defined as actual (PNC) to critical (Ncrit) plant N 82 

concentration ratio (Lemaire et al., 2008). The integration of few ground measurements and 83 

remote sensing information allows obtaining spatially distributed maps of NNI (i) with a limited 84 

effort compared to using only ground data and (ii) with a quantification of crop needs more 85 

reliable compared to the sole use of remote sensing data (Nutini et al., 2018). 86 

Besides the need of species- or cultivar-specific calibration curves to derive PNC values from 87 

indirect proximal or remote estimates (Varinderpal et al., 2011), obstacles to the adoption of 88 

systems to support VR fertilization deal – like for many decision support systems (Rose et al., 89 

2016) – with their time- and cost-effectiveness and usability (Korsaeth and Riley, 2006). A 90 

system to support VR topdressing fertilization based on smart apps – PocketN (Confalonieri et 91 

al., 2015) for PNC estimates and PocketLAI (Confalonieri et al., 2013) to derive Ncrit according 92 

to Confalonieri et al. (2011) – and satellite data was recently proposed and evaluated for rice 93 

(Nutini et al., 2018). The system is scientifically sound (based on the NNI concept) and 94 

inexpensive, being based on free-of-charge Sentinel 2 products and smartphones for ground 95 

data collection.  96 

This study aimed at (i) evaluating a new smart app for determining NNI (PocketNNI) under 97 

operational farming conditions, and (ii) evaluating with a dedicated case study the 98 

environmental performances of fertilization strategies based on the integration of PocketNNI 99 

and satellite data for VR fertilization in rice as compared to adopting standard N 100 

management. Given PocketNNI allows to explicitly account for crop N nutritional status while 101 



5 

 

applying VR top-dressing fertilizations, it has the potential to increase N use efficiency and, in 102 

turn, the environmental sustainability of rice-based cropping systems. PocketNNI (Figure 1) 103 

integrates PocketLAI, PocketN and the calibration curves to derive PNC from PocketN 104 

readings developed for European rice cultivars by Paleari et al. (2019). Being estimates geo-105 

referenced, PocketNNI can be easily coupled to satellite data or used as a standalone tool in 106 

case of production contexts characterized by small fields. PocketNNI is the first standalone 107 

tool able to directly estimate NNI without the need of integrating readings from different 108 

instruments and without the need of transforming variables in external environments. 109 

Moreover, this is the first time LCA was performed to evaluate VR fertilization in rice, the only 110 

two studies available – to our knowledge – being for pear orchards (Vatsanidou et al., 2017) 111 

and maize (Li et al., 2016). 112 

 113 

2. Material and Methods 114 

2.1 The smart app PocketNNI 115 

PocketNNI (Figure 1) estimates the actual (PNC) to critical (Ncrit) plant N concentration ratio 116 

(NNI) by integrating the algorithms of the smart apps PocketLAI (Confalonieri et al., 2013) and 117 

PocketN (Confalonieri et al., 2015), the calibration curves needed to estimate PNC values 118 

from PocketN readings (Paleari et al., 2019), and the model to derive Ncrit as a function of 119 

leaf area index (LAI) (Confalonieri et al., 2011). 120 

 121 

Figure 1 – Around here 122 

 123 

PocketN derives an index that quantifies leaf greenness (dark green colour index, DGCI, 124 

unitless; Karcher and Richardson, 2003) by using the hue (H), saturation (S) and brightness (B) 125 

values (HSB colour space) of a 25-pixel portion of leaf images acquired on a dedicated 126 

expanded polyvinyl chloride background panel that flats reflectance across the visible 127 

spectrum. This allows characterizing leaf greenness on images acquired under consistent 128 

exposure regardless of the illumination conditions. 129 
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 130 

𝐷𝐺𝐶𝐼 = 𝐻−6060 +2−𝑆−𝐵3         (Eq. 1) 131 

 132 

In PocketNNI, DGCI is automatically converted into PNC values by using the calibration 133 

curves developed for European rice varieties by Paleari et al. (2019). 134 

Ncrit is estimated according to the model proposed by Confalonieri et al. (2011), which uses 135 

the inverse of the fraction of radiation intercepted by the canopy to reproduce the dilution 136 

of N in plant tissues due to the remobilization of N from senescent leaves (Eq. 2): 137 

 138 

𝑁𝑐𝑟𝑖𝑡 = 𝑁𝑚𝑎𝑡 1−𝑒−𝑘∙𝐿𝐴𝐼            (2) 139 

 140 

The parameter Nmat (%) represents the value of Ncrit at maturity, and k (-) is the extinction 141 

coefficient for solar radiation. As in Confalonieri et al. (2011), Nmat and k were set to 1% and 142 

0.5, respectively. Within PocketNNI, LAI is derived by implementing the algorithms of 143 

PocketLAI (Confalonieri et al., 2013). According to this method, the gap fraction (P0) is 144 

estimated through the automatic segmentation of images acquired at 57.5° zenith angle 145 

from below the canopy while the user is rotating the smartphone along its main axis. The 57.5° 146 

angle is identified in real time, by applying plain vector algebra to the components of the g 147 

vector provided by the 3-axis accelerometer of the device. LAI values are then derived by 148 

inverting the light transmittance model proposed by Baret et al. (2010) (Eq. 3): 149 

 150 

𝐿𝐴𝐼 = − [𝑐𝑜𝑠(57.5°)0.5 ] 𝑙𝑜𝑔[𝑃0(57.5°)]        (3) 151 

 152 

This model uses the gap fraction estimated at 57.5° because it has been proved that the 153 

information acquired from this particular view angle are independent from the leaf angle 154 

distribution (Baret et al., 2010). 155 
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Further details on PocketLAI, PocketN and on the PocketN calibration curves are provided as 156 

supplementary material (Figure S1, S2 and Table S1) and by Confalonieri et al. (2013, 2015) 157 

and Paleari et al. (2019). 158 

 159 

2.2 Description of the field experiment 160 

Rice (Oryza sativa L., cv. Volano) was scatter seeded on 7 May 2018 in a 2 ha field in 161 

Gaggiano (Milan province; 45°23’N, 9°02’E, 126 m a.s.l.) and grown under continuous 162 

flooding conditions. Rice was grown in the field since the last decade, reflecting the high 163 

level of specialization of rice farms in Northern Italy. The site is representative of the conditions 164 

experienced by rice in the eastern part of the main European rice district. Soil was silt loam 165 

(USDA), subacid, with medium organic matter content and cation exchange capacity, and 166 

unlimiting values for available P and exchangeable K. Crop management allowed a 167 

complete control of weeds, pests and diseases. 168 

In general, temperatures during the 2018 rice season were in line with the 10-year average in 169 

the site (Figure S3) and, despite mean daily temperatures during summer months were 170 

sometimes higher than the average, they never exceeded the optimal range for rice 171 

(Sanchez et al., 2014). The 2018 season was consistent with mean climatic conditions in the 172 

study area also in terms of precipitations (Figure S4), with spring and autumn rainfall peaks, 173 

and drier conditions during summer. 174 

Two different fertilization strategies were considered (Table 1), each applied to half of the 175 

field, with the latter divided along the same direction of a fertility gradient generated by the 176 

union of two fields and by the levelling of the resulting one. In the first fertilization strategy 177 

(Baseline Scenario - BS), topdressing N fertilization was applied based on the standard 178 

farming practices in the study area and on the farmer’s perception of crop needs. For this 179 

scenario, N was distributed without differentiating the dose in the different parts of the field. 180 

In the second strategy (Alternative Scenario - AS), PocketNNI and satellite data were used to 181 

derive spatially distributed estimates of NNI, whose values were grouped in five classes: (i) 182 

severe N stress (NNI < 0.7), (ii) light N stress (0.7 ≤ NNI < 0.9), (iii) neutral (0.9 ≤ NNI ≤ 1.1), (iv) light 183 

luxury consumption (1.1 < NNI ≤ 1.3), and (v) severe luxury consumption (NNI > 1.3). The 184 
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membership of field portions to the NNI classes was used by the farmer to define the N dose 185 

corresponding to each portion (i.e., prescription map), in light of the fertilization strategy 186 

adopted (how many fertilization events), of the cultivar features and of his knowledge of the 187 

specific field (e.g., soil drainage, organic matter content). As demonstrated and discussed by 188 

Paleari et al. (2019), indeed, differences in cultivar features, and the variability in soils 189 

properties and management strategies mostly prevent using constant relationships to derive 190 

N doses from NNI values. 191 

The clustering of Sentinel 2 NDRE (Normalized Difference Red-Edge) images acquired before 192 

the topdressing fertilizations allowed driving ground data collection with the aim of finding 193 

the best compromise between the need of properly capturing field variability and the need 194 

of keeping to the minimum the number of ground measurements (Nutini et al., 2018). In 195 

practice, one site in the field was identified for each of six NDRE clusters, and PocketNNI 196 

readings were taken at each site. 197 

In case of directly spatializing NNI values via relationships with vegetation indices (Fitzgerald 198 

et al., 2010; Cao et al., 2013), NNI values provided by PocketNNI can be directly used. In this 199 

study, we chose to indirectly estimate NNI values at pixel level (Huang et al., 2015) based on 200 

NDRE-PNC and NDVI-LAI relationships derived using ground PNC and LAI values provided by 201 

PocketNNI at the six scouting sites (Nutini et al., 2018). These relationships were then used to 202 

estimate PNC and LAI values for each pixel, with PNC values derived with the calibration 203 

curve implemented in PocketNNI for cv. Volano: 𝑃𝑁𝐶 = 6.77 ∙ 𝑃𝑜𝑐𝑘𝑒𝑡𝑁 𝑖𝑛𝑑𝑒𝑥 − 2.25 (Paleari et 204 

al., 2019). LAI was converted into Ncrit by using the approach described above (Confalonieri 205 

et al., 2011), and the NNI map was derived from pixel-level PNC to Ncrit ratios. 206 

Details on management practices – including those not related with N fertilization – are 207 

provided in Table 1. 208 

At harvest, yield of the Baseline and Alternative scenario was determined with a combined 209 

harvester, sampling eleven subplots along each half of the field.  210 

 211 
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2.3 Life cycle assessment 212 

The Life Cycle Assessment (LCA) approach is a holistic method defined by two ISO standards 213 

(ISO, 2006a; ISO, 2006b) to evaluate the potential environmental impacts related to a 214 

product or a service throughout its entire life cycle. 215 

 216 

2.3.1 Goal and scope 217 

In this study, LCA was applied to rice production in Northern Italy in order to compare two 218 

different fertilization strategies: one based on conventional practices in the area (uniform N 219 

distribution according to farmer’s perception of crop needs), the other based on the 220 

combined use of a new smart app and of satellite data to get a spatially-distributed, real-221 

time diagnosis of N nutritional status. In developed countries, the outcomes of this study can 222 

support rice growers in increasing nitrogen use efficiency and policymakers in defining public 223 

subsidy frameworks targeting the reduction of the environmental impacts of rice-based 224 

cropping systems. 225 

Specifically, this LCA study was aimed at: 226 

- evaluating the potential environmental impact of rice production in a case study 227 

carried out in Northern Italy during 2018, 228 

- quantifying the potential environmental benefits achievable by applying VR fertilization 229 

through the combined use of satellite data and of a new smart app developed to quantify 230 

NNI. 231 

 232 

2.3.2 Functional unit 233 

According to ISO standards, the functional unit (FU) is defined as the main function of the 234 

system expressed in quantitative terms (ISO, 2006a). In this study, it was considered as 1 t of 235 

rice grain at the commercial moisture (86% of dry matter). The choice of the FU is in 236 

agreement with previous studies on rice in Italy (Fusi et al., 2014; Bacenetti et al., 2016a; 237 

Bacenetti et al., 2016b), Iran (Khoshnevisan et al., 2014), USA (Brodt et al., 2014, Fertitta-238 

Roberts et al., 2019), Korea (Jeong et al., 2018), Japan (Hokazono and Hayashi, 2012), 239 
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Thailand (Thanawong et al., 2014), and Brazil (Coltro et al., 2017), thus allowing a direct 240 

acomparison of results. 241 

  242 

2.3.3 System boundary 243 

A “from cradle to farm gate” approach was applied in this study. The system boundary 244 

includes all the activities carried out from the extraction of the raw materials to the drying of 245 

rice grains. In particular, the following stages of the production process were considered: i) 246 

extraction of raw materials (e.g., fossil fuels, metals and minerals); ii) manufacture, 247 

maintenance and disposal of the capital goods (e.g., tractors, agricultural machines, shed 248 

and grain dryer); iii) production of the different inputs (fertilizers, pesticides, electricity, diesel, 249 

etc.); iv) emissions related to the use of input factors (e.g., emissions due to fertilizers 250 

application, diesel fuel emissions related to diesel combustion in the tractor engine). 251 

Distribution, processing, packaging, use and end-of-life were excluded from the system 252 

boundary because they are the same in the two scenarios. Allocation was not applied since 253 

straws are left into the field in both scenarios. 254 

Figure 2 shows the system boundary for the rice production process. 255 

 256 

Figure 2 – Around here. 257 

 258 

2.3.4 Inventory data collection 259 

Two different types of inventory data were used: primary data directly collected at the farm 260 

during field tests and surveys and secondary data retrieved from databases, literature or 261 

estimated using specific models. The collected primary data refer to the consumption of the 262 

different inputs (e.g., diesel for the different field operations and for drying, seeds, fertilizers, 263 

plant protection products, machinery and tractors, infrastructures such as the dryer and the 264 

sheds for equipment). Table 1 reports the main data concerning the cultivation practice. 265 

 266 

Table 1 – Around here 267 
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 268 

Secondary data were instead considered for the emissions of methane and nitrogen and 269 

phosphorous compounds. For the emissions of methane in atmosphere, the IPCC model 270 

(IPCC, 2006) was used and different scaling factors (for pre- and in-season water 271 

management, application of organic fertilizer and soil type) were applied to the baseline 272 

emission value for continuously flooded field without organic amendments (1.3 kg CH4 ha-1 273 

day-1). Table 2 reports the main information used for the estimation of methane emissions. 274 

Although the cultivation practice is the same, the AS showed a slightly higher methane 275 

emissions per unit area (113.0 and 122.7 kg CH4 ha-1 day-1, in BS and AS, respectively) 276 

because of a higher amount of straw1 produced and incorporated into the soil. 277 

 278 

Table 2 – Around here. 279 

 280 

Nitrogen emissions (nitrate leaching; ammonia volatilization, and nitrous oxide emissions in 281 

atmosphere) were computed following the IPCC Guidelines (2006), whereas the phosphate 282 

emissions in water (leaching to groundwater and surface runoff) were calculated following 283 

Prahsun (2006). 284 

Pesticide emissions were estimated according to the Product Category Rules for Arable 285 

Crops (Environdec, 2013) and, consequently, the active ingredient of pesticides was 286 

considered totally released into the soil. 287 

Background data regarding the production of the different inputs (fertilizers, pesticides, 288 

diesel, electricity, tractors and agricultural machines, dryer) were retrieved from the 289 

Ecoinvent database® v.3.5 (Weidema et al., 2013; Moreno Ruiz et al., 2018). Table 3 reports 290 

the list of different Ecoinvnet® processes used and highlights the changes made. 291 

 292 

Table 3 – around here 293 

 294 

                                                           

1 The mass of the straw has been assessed considering a Harvest Index of 0.55 
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2.3.5 Impact assessment 295 

Using the characterisation factors reported by the midpoint ILCD method (ILCD, 2011), the 296 

following impact categories were considered: Climate change (CC), Ozone depletion (OD), 297 

Human toxicity, cancer effects (HTc), Human toxicity, non-cancer effects (HTnoc), Particulate 298 

matter formation (PM), Photochemical oxidant formation (POF), Terrestrial acidification (TA), 299 

Freshwater eutrophication (FE), Terrestrial eutrophication (TE), Marine eutrophication (ME), 300 

Freshwater ecotoxicity (FEx), Mineral fossil and renewable resource depletion (MFRD). 301 

The ILCD (2011) Midpoint method was released by the European Commission Joint Research 302 

Centre and supports the correct use of the characterisation factors for impact assessment as 303 

recommended in the ILCD guidance document "Recommendations for Life Cycle Impact 304 

Assessment in the European context - based on existing environmental impact assessment 305 

models and factors” (Hauschild et al., 2011). 306 

 307 

 308 

3. Results and Discussions 309 

3.1 PocketNNI/satellite-driven N management 310 

The combined use of PocketNNI and satellite data allowed to effectively explore the in-field 311 

variability of PNC, Ncrit, and NNI (Figure 3). 312 

In general, the observed within-field heterogeneity in N nutritional status was representative of 313 

intensive rice-based cropping systems, with most NNI values close to 1 even before top-314 

dressing fertilizations (Paleari et al., 2019). The real-time diagnosis of N nutritional status via the 315 

combined use of PocketNNI and satellite data allowed capturing the spatial variability in NNI 316 

and, thus, to fine tune N distribution in the different areas of the field. This turned into a 12.8 % 317 

higher grain yield for AS as compared to BS, with only 2% more N applied (Table 1), thus 318 

demonstrating the system effectiveness in preventing both N stress (decreasing yield 319 

potential) and luxury consumption. 320 

 321 

Figure 3 – around here 322 

 323 



13 

 

The increase in productivity is similar to what reported for cereals by other authors (Koch et 324 

al., 2004; Biermacher et al., 2006; Sharf et al., 2011), although it is likely larger than what could 325 

be achieved on average for rice in the area because of the pronounced heterogeneity that 326 

characterized the experimental field, in turn due to the fertility gradient generated by the 327 

union of two smaller fields. This – as mentioned in the description of the field experiment –may 328 

have increased the positive effect of VR N fertilization. The total amount of N applied for AS 329 

was slightly higher (+3 kg ha-1 over the entire season). This is probably due to the tendency of 330 

many Italian formers to limit N fertilization to reduce the risk of increasing the susceptibility to 331 

fungal pathogens, given tricyclazole – a fungicide widely used to tackle rice blast disease 332 

since many years – has been recently banned (Titone et al., 2015). 333 

Besides the potential for increasing productivity and N use efficiency, other advantages of 334 

PocketNNI derive from its technological features. Indeed, although other methods are 335 

available to support topdressing N fertilization based on the NNI concept (e.g., Huang et al., 336 

2015, Chen, 2015), PocketNNI is the first tool able to provide directly NNI as output, without 337 

the need for dedicated instruments and for data export and analysis in external 338 

environments. This allows farmers being independent in assessing N nutritional status, with 339 

clear advantages in terms of cost-effectiveness and timeliness of the analysis. Moreover, 340 

when coupled with satellite data and smart-scouting techniques (Nutini et al., 2018), 341 

PocketNNI allows deriving high resolution NNI maps with just few ground measurements. The 342 

system is scientifically sound, being based on the NNI concept, and the information provided 343 

(NNI) is easy to interpret. All these aspects make the proposed system highly promising for 344 

overcoming most of the barriers that limit the adoption of PA techniques in operational 345 

contexts (Lowenberg-DeBoer and Erickson, 2019). 346 

 347 

3.2 Life Cycle Assessment 348 

Figures 4 and 5 show the relative contributions to the overall environmental impact of the 349 

production factors and of the emissions sources for BS and AS, respectively. 350 

 351 

Figure 4 and Figure 5 – Around here 352 
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 353 

Different main contributors (namely “environmental hotspots”) were identified for the different 354 

impact categories: 355 

- the main responsible of CC were the emissions of methane and dinitrogen monoxide 356 

from the soil (44-45% of the total impact). Methane emissions contributed also to POF 357 

(7.9% and 8.4% in BS and AS, respectively); 358 

- the emissions related to the fertilization were the main hotspot for PM, TA and ME. In 359 

particular, ammonia emission was responsible for PM, TA and ME, nitrate leaching for 360 

ME and phosphorous run-off for FE; 361 

- the mechanisation of field operations was the responsible for HT-noc, mainly due to the 362 

emissions of pollutants (e.g., hydrocarbon, nitrogen oxides) in the exhaust gas of the 363 

tractor engine and POF, mainly because of the consumption of diesel and the 364 

emission of non-methane volatile organic compound (NMVOC); 365 

- fertilizers production was the main responsible of MFRD, given the high energetic cost 366 

for the production of N fertilizers; 367 

- the impact of seed and pesticides production was lower than 10% for all the evaluated 368 

impact categories but OD (mainly due to herbicides production), HT-c, FE and FEx 369 

(seed production); 370 

- for FEx, it was related to the emissions of pesticides into the soil (about 35%) to the 371 

production of fertilizers (about 30%). 372 

Despite the main contributors to the overall environmental impact were similar in the two 373 

scenarios, some differences can be highlighted: 374 

- for OD, the grain drying was responsible for 27.8% of the impact in BS, whereas its 375 

contribution was larger in AS (32.4%) because of the higher transpiration (768 kg in BS 376 

and 956 kg in AS) due to the higher crop growth, which – beside the final yield - 377 

affected the amount of transpiring tissues; 378 

- the impact related to transport was higher (both in relative and absolute terms) in AS 379 

because of the higher biomass produced. 380 
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Table 4 reports the absolute environmental impact for the two scenarios, Figure 6 shows the 381 

comparison between the two scenarios. Regardless of the evaluated impact categories, AS 382 

showed the best results, with impact reduction ranging from 11.0% for OD to 13.6% for MFRD. 383 

The impact reduction, mainly due to the yield increase (7.97 and 8.99 t ha-1 at commercial 384 

moisture in BS and AS, respectively), was considerable and it was only related to the 385 

combined use of PocketNNI and satellite data. This reduction was larger for the impact 386 

categories more affected by the energy consumption for fertilizer production (MFRD) and by 387 

the emissions of N compounds due to fertilization (TA, TE, FE and ME). The impact reduction 388 

was lower for: 389 

- OD, the impact category mainly affected by grain drying, because of the higher 390 

amount of water to be removed given the higher yield; 391 

- CC, since the higher yield involves a higher production of straw that, being 392 

incorporated into the soil, leads to higher methane emissions. 393 

 394 

 395 

Figure 6 – Around here 396 

 397 

Table 4 – Around here 398 

 399 

3.2.1 Uncertainty analysis 400 

To test the robustness of the results achieved while comparing the two scenarios, a 401 

quantitative uncertainty analysis was carried out by using Monte Carlo techniques as 402 

sampling method (1,000 iterations and a confidence interval of 95%). The results are reported 403 

in Figure 7. The bars represent the probability that the environmental impact of BS is higher 404 

than (or equal to) the one of AS. The uncertainty due to selection of the data from 405 

databases, partial model adequacy and variability of data does not significantly affect the 406 

quantification of the environmental impact for all the categories, the only exception being 407 

the toxicity related ones. 408 
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 409 

Figure 7 – Around here 410 

 411 

4. Conclusions 412 

Among the different agricultural activities, fertilisation is responsible of serious environmental 413 

concerns because of the impacts deriving from the processes of fertilizer production 414 

(especially for N-based ones) and from the emissions of nitrogen and phosphorous 415 

compounds in ground- and surface water and in the atmosphere. This context is generating a 416 

growing demand for smart solutions able to drive the timing of fertilisation events and the 417 

amounts of products distributed. 418 

In this study, a VR fertilization strategy based on PocketNNI (a new smart app for NNI 419 

estimates) and satellite data was compared – in terms of environmental performances – with 420 

a strategy based on the uniform distribution of N according to standard practices in the area. 421 

The combined use of PocketNNI and remote sensing products allowed achieving a 422 

considerable increase in yield at the cost of a negligible increase in the amount of nitrogen 423 

fertilisers consumed, thus reducing the amount of N used per unit of product. This, from an 424 

environmental point of view, leads to a double benefit: the reduction of the impact for all the 425 

categories considered due to the increase in productivity and – especially for acidification 426 

and eutrophication – the reduction of the emissions of N compounds. 427 

In terms of economic sustainability, the proposed system has both direct (higher yield to 428 

fertilizer ratio) and indirect (lower risk of losses due to diseases and lodging) benefits. Future 429 

development will refer to the automatic integration and processing of satellite data. 430 

Despite the analysis was performed using data from only one growing season, the achieved 431 

results are promising and highlight how the environmental impact of agricultural activities can 432 

be effectively reduced by using smart technologies (cost-effective and familiar for potential 433 

users) to improve fertilisation efficiency. 434 

 435 
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Table 1 – Cultivation practice: Field operations and production factors consumed 631 

Subsystem 
Field 

Operation 

Operative 

machine 

Tractor 
Fuel  

Cons. 
Input 

Working 

Time 

kW kg 
kg· 

ha-1 
Product 

Amount  

(∙ ha-1) 
h ∙ ha-1 

Soil tillage 

and sowing 

Harrowing 
Rotary 
harrow 

91 5000 19.5   1.70 

Mineral 
fertilization 

Fertilizer 
spreader 

91 5000 3.5 
Potassium 
chloride 

152.9 kg 0.25 

Flooding        

Sowing 
Fertilizer 

spreader 
91 5000 8.4  229.3 kg 0.30 

Crop 

Management 

Mineral 
fertilization 

Fertilizer 
spreader 

91 5000 3.5 
Biammonic 
phosphate 

138 kg 0.25 

Weed control 
pre seeding 

Sprayer 91 5000 3.0 

Rifit 
(pretilachlor) 

Cadou 
(flufenacet) 

Ronstar 
(Oxadiazon) 

1.52 kg 
0.61 kg 
0.61 kg 

0.20 

Weed control 
pre seeding 

Sprayer 91 5000 3.0 
Glyphosate 

Ronstar 
(Oxadiazon) 

3.06 kg 
0.30 kg 

0.20 

Weed control 
post 

germination 
Sprayer 91 5000 3.0 

Tripion 
(MCPA) 

Viper 
(Penoxsulam) 

Gulliver 
(azimsulphuron) 

Contest 
(alpha-

cypermethrin) 

1.53 kg 
1.53 kg 

0.024 kg 
0.12 kg 

0.20 

Mineral 
fertilization 

Fertilizer 
spreader 

91 5000 3.5 Urea 
153 kg in BS 
156 kg in AS 

0.25 

Mineral 
fertilization 

Fertilizer 
spreader 

91 5000 3.5 23-0-30 138 kg 0.25 

Disease 
control 

Sprayer 91 5000 3.0 

Azbany 
(alpha-

cypermethrin)  
Opinion 

(propiconazole) 

1 L 
0.5 L 

0.20 

Disease 
control 

Sprayer 91 5000 3.0 
Azbany Siapton 

(alpha-
cypermethrin) 

1 L 
1.5 L 

0.20 

Harvesting 

& 

Storage 

Harvest 
Combine 
harvester 

335 12000 39.1  
6.85 t in BS 
7.73 t in AS 

0.80 

Transport Trailer 91 5000 11.5   0.80 

Transport Trailer 100 5050 13.5   0.80 

Drying Dryer    Diesel 
Moisture from 

21% to 14% 
- 
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 632 

 633 

Table 2 – Main information regarding water and straw management. 634 

Parameter Date 

Date of sowing 7 May 

Beginning of flooding 2 April 

End of flooding 21 August 

Straw incorporation into the soil 28 February 

Number of aerations 2 

Days of flooding 141 

 635 

 636 

Table 3 – List of processes retrieved from the Ecoinvent database v. 3.5 637 

Ecoinvent® 3.5 Process Used for Modifications 

Diesel {RER}| market group 
for | APOS, U 

Diesel fuel consumed 
during field operations 

Emissions related to diesel 
combustion were included [1] 

Tractor, 4-wheel, agricultural 
{GLO}| market for | APOS, 
U 

Tractors used during 
field operations 

A life span of 12 years was 
considered[2] 

Agricultural machinery, 
tillage {GLO}| market for | 
APOS, U 

For ploughing and 
harrowing 

A life span of 8 years was 
considered for the machinery 
used for soil tillage[2] 

Agricultural machinery, 
unspecified {GLO}| market 
for | APOS, U 

For field operations 
excluding soil tillage 

The following life span were 
considered: 6 years for sprayer, 8 
years for fertiliser, 12 years for farm 
trailers and 10 years for combine 
harvester[2] 

Transport, tractor and trailer, 
agricultural {GLO}| 
processing | APOS, U 

Transport of paddy rice 
from the field to the 
farm 

n/a 

Rice seed, for sowing 
{GLO}| market for | APOS, 
U 

Crop sowing 

No uptake of heavy metals and 
CO2 were considered. 7.7 t/ha 
(14% of moisture) was considered 
as yield 

Urea, as N {GLO}| market 
for | APOS, U 

Mineral fertilization 
application 

n/a 

Nitrogen fertiliser, as N 
{RER}| diammonium 
phosphate production | 
APOS, U 

Potassium chloride, as K2O 
{GLO}| market for | APOS, 
U 

Pesticide, unspecified 
{RER}| production | APOS, 
U 

For the application of 
pesticides 

For the emissions into the soil the 
specific active ingredient 
(pretilachlor, flufenacet, 
oxadiazon, azoxystrobin and 
tricyclazole) was considered. 

Glyphosate {RER}| 
production | APOS, U 

Weed control 
Cypermethrin, at plant/RER 
Mass 



26 

 

Shed {CH}| construction | 
APOS, U 

For all the different field 
operations 

n/a 

Drying of bread grain, seed 
and legumes {CH}| 
processing | APOS, U 

For drying of the 
harvested paddy rice 

The fuel consumption was 
modified considering primary 
data. Italian electricity mix was 
considered for the electric energy 
consumption 

Electricity, medium voltage 
{IT}| market for | APOS, U 

Electricity consumed 
during drying 

n/a 

[1] Bacenetti et al., 2018. [2] Lovarelli and Bacenetti (2017). 638 

 639 

 640 

Table 4 – Absolute environmental impact for the two scenarios (FU = 1 t of rice grain at 641 

commercial moisture; Δ = impact variation of AS respect to BS). 642 

Impact 

Category 
BS AS Δ 

CC 937.3 kg CO2 eq 832.7 kg CO2 eq -11.2% 

OD 49.27 mg CFC-11 eq 43.83 mg CFC-11 eq -11.0% 

HT-noc 1.66 ∙ 10-4 CTUh 1.46 ∙ 10-4 CTUh -12.2% 

HT-c 2.11 ∙ 10-5 CTUh 1.87 ∙ 10-5 CTUh -11.3% 

PM 0.439 kg PM2.5 eq 0.383 kg PM2.5 eq -12.8% 

POF 2.13 kg NMVOC eq 1.86 kg NMVOC eq -12.8% 

TA 8.89 molc H+ eq 10.20 molc H+ eq -12.9% 

TE 41.00 molc N eq 35.63 molc N eq -13.1% 

FE 0.154 kg P eq 0.134 kg P eq -12.5% 

ME 6.68 kg N eq 5.81 kg N eq -13.0% 

FEx 5091 CTUe 4423 CTUe -13.1% 

MFRD 27.52 g Sb eq 23.79 g Sb eq -13.6% 

 643 

  644 
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FIGURE CAPTIONS 645 

 646 

Figure 1 – Flowchart of the app PocketNNI. Actual plant N content (PNC) is estimated based 647 

on Confalonieri et al. (2015), whereas critical N content (Ncrit) is derived from leaf area index 648 

estimates (Confalonieri et al., 2013), in turn used to derive Ncrit based on Confalonieri et al. 649 

(2011). N Nutritional Index (NNI) is calculated as PNC to Ncrit ratio. NNI estimates are stored in 650 

an internal database together with GPS coordinates, and they can be exported in different 651 

formats (e.g., .csv, .shp). 652 

 653 
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 654 

Figure 2 – System boundary for the two evaluated scenarios. 655 

 656 

Figure 3 - Plant Nitrogen Content (PNC), Critical Nitrogen (Ncrit), and Nitrogen Nutrition Index 657 

(NNI) maps derived by integrating Sentinel 2 data (NDRE and NDVI) and PocketNNI readings 658 

few days before the second top-dressing fertilization. The two fertilization strategies “baseline 659 

scenario” (BS, with uniform N distribution) and “alternative scenario” (AS, with PocketNNI-660 

driven variable rate N application) were applied, respectively, in the areas bordered with 661 

dotted and continuous lines. 662 

 663 

 664 
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 665 

Figure 4 – Relative contributions to the overall environmental impact for the baseline scenario 666 

 667 

Figure 5 – Relative contributions to the overall environmental impact for the alternative 668 

scenario  669 
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 671 

Figure 6 – Comparison between the two scenarios. BS: baseline scenario; AS: alternative 672 

scenario (Note: for graphical reasons, for some impact categories, the absolute value has been multiplied or 673 

divided by 10 or multiple. For all the evaluated impact categories the unit of measure is reported in the X-axis). 674 

 675 

Figure 7 – Uncertainty analysis results regarding the comparison between Baseline Scenario 676 

and Alternative Scenario. 677 
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 678 

 679 

 680 

Figure S1. Flowchart of the app PocketN (Confalonieri et al., 2015) showing the functioning of 681 

the app. Tutorials on the use of the app PocketN can also be found at 682 

www.cassandralab.com. When used within PocketNNI, at the end of the PocketN acquisition 683 

the PocketLAI app is automatically opened. 684 

 685 

  686 
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 687 

 688 

Figure S2. Flowchart of the app PocketLAI (redrawn from Confalonieri et al., 2013). Tutorials on 689 

the use of the app PocketLAI can also be found at www.cassandralab.com. When used 690 

within PocketNNI, the PocketLAI app is automatically opened at the end of the PocketN 691 

measure. In this case there is no need to specify again the code for the measure, being the 692 

same entered for the PocketN acquisition. 693 

  694 
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Table S1. Calibration curves for the main rice varieties grown in Italy, to convert PocketN 695 

readings (–) into plant nitrogen content (PNC, %) values (from Paleari et al., 2019). Rice 696 

varieties belonging to each cluster and corresponding cluster-specific calibration curves 697 

are reported. 698 

Cluster Cultivarsa Calibration Curve 

Parameters b 

R2 p-

value 

a b 

1 Centauro, Ellebi, Leonardo, Opale 5.42  −1.24 0.76 <0.001 

2 Brio, Carnise, Dardo, Meco 10.90  −4.02 0.85 <0.001 

3 Galileo, Gladio 17.22  −7.03 0.83 0.002 

4 Cammeo, Generale 9.97 −3.43 0.50 0.051 

5 Carnaroli, Gloria, LunaCL®, Puma, 
SoleCL® 

7.99 −2.87 0.95 <0.001 

6 Augusto, Caravaggio, Crono, MareCL®, 
Mirko, Thaibonnet,  

9.04 −2.79 0.79 <0.001 

7 Balilla, Fedra, Onice, Ronaldo, Volano 6.77  −2.25 0.91 <0.001 

8 Arborio, Baldo, Carnise Precoce, 
Karnak, Loto, SirioCL®, Ulisse, Vasco 

11.25 −4.19 0.79 <0.001 

a Aiace, BaroneCL®, Cerere, Cleopatra, CRLB1, Keope, and Selenio cultivars are not included 699 

in any cluster, see Paleari et al., 2019 for cultivar-specific calibration curves. b Calibration 700 

curves defined as PNC = a PocketN index + b. 701 

 702 

 703 

 704 
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Figure S3. Mean daily temperature (°C) characterizing the study area (Gaggiano, Italy). The 705 

red line indicates temperatures measured during the 2018, whereas the blue area refers to 706 

the mean ± 1 standard deviation for the 10-year average. The blue arrow indicates the rice 707 

campaign. 708 

 709 

 710 

 711 

 712 

Figure S4. Precipitation distribution at the study area (Gaggiano, Italy). The dark blue line 713 

indicates the daily rainfall (mm) recorded during the 2018, whereas the light blue area refers 714 

to the mean + 1 standard deviation for the 10-year average. The blue arrow indicates the 715 

rice campaign. 716 

 717 
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