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Abstract

In this paper we study the pricing and hedging of structured products in energy markets,
such as swing and virtual gas storage, using the exponential utility indifference pricing ap-
proach in a general incomplete multivariate market model driven by finitely many stochastic
factors. The buyer of such contracts is allowed to trade in the forward market in order to
hedge the risk of his position. We fully characterize the buyer’s utility indifference price
of a given product in terms of continuous viscosity solutions of suitable nonlinear PDEs.
This gives a way to identify reasonable candidates for the optimal exercise strategy for the
structured product as well as for the corresponding hedging strategy. Moreover, in a model
with two correlated assets, one traded and one nontraded, we obtain a representation of
the price as the value function of an auxiliary simpler optimization problem under a risk
neutral probability, that can be viewed as a perturbation of the minimal entropy martingale
measure. Finally, numerical results are provided.

Keywords: Swing contract, virtual storage contract, utility indifference pricing, HJB equa-
tions, viscosity solutions, minimal entropy martingale measure.

1 Introduction

In the last fifteen years, since the start of the energy market deregulation and privatization
in Europe and in the U.S., the study of energy markets became a challenging topic from
both a practical and a theoretical perspective. Especially important is the problem of pricing
and hedging of energy contracts. This is far from being trivial because of the peculiarity of
the models and since these contracts typically have a very complex structure, incorporating
optionality features which can be exercised by the buyer at multiple times. The two main
examples of products used in energy markets for primary supply are swing contracts and forward
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contracts. While the structure of the forward contracts is rather simple, swing contracts are
much more involved as they give the buyer some degrees of freedom about the quantity of
energy to buy for each sub-period, usually with daily or monthly scale, subject to a cumulated
constraint over the contract period. This flexibility is much welcomed by the contract buyers,
as energy markets are affected by many unexpected events such as peaks in consumption related
to sudden weather changes, breakdowns of power plants, financial turmoils and so on. Many
other kinds of contract are traded in the energy market, they are often negotiated over-the-
counter, and some of them, e.g. virtual storage contracts, also include optionality components
similar to the ones of swing contracts.

The pricing of these products has a consolidated tradition in discrete time models (see,
e.g. [21] or [28] and references therein), which is manly based on dynamic programming. The
article [31] use a multilevel lattice method to study the pricing of a swing option on natural gas.
The two papers [40] and [41] propose a different method based on optimal quantization theory.
In continuous time models, the first approaches were based on optimal switching techniques
(e.g., [14]) or multiple stopping (e.g., [15]). In all these articles the optionality features of the
structured product can be exercised over a discrete set of stopping times, that can be chosen
by the buyer. A very detailed comparison of the literature on storage and swing evaluation can
be found in [1, Table 4.1].

A different approach consists in approximating the contract payoff with its continuous time
counterpart. This idea has been proposed in [12] (and further exploited in [4]) for swing
contracts and in [17, 23, 49] for virtual storage contracts. Other examples of structured contracts
can be treated with the same methodology, see e.g. Benth and Eriksson [9] for flexible load
contracts and tolling agreements. The main advantage of this approach is that it makes the
pricing problem more tractable, since it allows using the stochastic control theory in continuous
time, based on PDE methods. In those papers, the price of a structured contract is defined
- in analogy with American options - as the supremum, over all the strategies available to
the buyer, of the expected payoff, where the expectation is taken under a given risk-neutral
measure. When the model for the underlying of the structured contract is Markovian, as it
happens in most of the models used in practice, the pricing problem reduces to solving the
corresponding Hamilton-Jacobi-Bellman (HJB) equation. Notice that the choice of the risk-
neutral measure is not at all obvious since energy market models are typically incomplete,
because of the presence of assets bearing non tradable risks. Moreover, with the exception of
[51] which focuses on gas storage contracts and uses a delta-hedging approach, the problem of
hedging the risk coming from a long position in those structured products is not considered
in those papers. Hedging such contracts can be quite a delicate task in energy markets, since
the underlying of the contracts is often not tradable, hence the buyer has to trade in some
other asset with a good correlation with the underlying. For an extensive review of the existing
literature with descriptions of the most traded contracts and a detailed comparison between
the main articles we refer once more to the recent book [1, Chapter 4].

Our contribution to the literature consists in building on the idea of continuously approxi-
mating the payoff as in [4, 12], in order to provide a general framework, where both problems
of pricing and hedging of structured contracts can be solved in a consistent fashion. The main
novelty of this paper is that the buyer of the given structured contract is allowed to (at least
partially) hedge his position by trading in forward contracts, written on the underlying of the
structured contract itself or on some asset correlated with the underlying. We model the for-
ward market as a general incomplete multivariate market model with finitely many forward
contracts (with different maturities), evolving over time as diffusions whose coefficients depend
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on a certain number of exogenous stochastic factors with Markovian dynamics. The underlying
of the structured contract is defined as a function of such factors. This setting includes many
models that have been previously proposed and studied in the literature, e.g. [2, 13, 16, 48] to
cite a few.

The market being incomplete, we adopt the utility indifference price (henceforth UIP) ap-
proach, which is one of the most appealing ways of pricing in incomplete markets, since it
naturally incorporates the buyer preferences in the price of the contract. We assume that the
preferences of the buyer can be encoded in an exponential utility function with a risk aversion
parameter γ > 0. The UIP approach has been extensively used for pricing European and Amer-
ican options in a wide range of financial market models. We refer to [30] for an excellent survey
on this approach. This approach was already used in [44, 35] for the evaluation of industrial
assets (see Remark 2.10) and in Fiorenzani [24] for energy derivatives.

We apply this method for evaluating a rather general structured derivative. Its buying
UIP will be characterized as the difference between the two log-value functions of the agent
(with and without the contract), that can be obtained as the unique viscosity solutions of a
suitable HJB equation. Our results are consistent with the ones in [4, 12, 17, 23, 49], in the
case of complete market models. Moreover, the shape of such HJB equation gives reasonable
candidates for the optimal withdrawal strategy of the structured product, as well as for the
related hedging strategy.

Finally, we push our general results further in two specific examples. One of them is a
class of models with two risky assets, one traded and one nontraded, and constant correlation.
This includes models with a nontraded asset and basis risk, which have been studied by many
authors (see, e.g., the papers [19, 29, 38] to cite only a few). For these models, we obtain a
representation of the price as the value function of an auxiliary simpler optimization problem
under a risk-neutral probability, that can be viewed as a perturbation of the minimal entropy
martingale measure. Such a perturbation is due to the dependence of drift and volatility of
the traded asset on the nontraded one and depends on the value function without the contract.
It seems that such a measure change is new to the incomplete market literature. The second
example is based on a slight generalization of the two-factor model developed in [16] for energy
markets, where the factors can be correlated.

The paper is organized as follows. In Section 2 we formulate the problem of pricing, by
introducing the general payoff of the structured contracts, the market model and the (expo-
nential) utility indifference price. In Section 3, we characterize the UIP in terms of viscosity
solutions of suitable HJB equations. In Section 4 we consider the two examples described above
while Section 5 presents some numerical applications of our results. Finally, Section 6 concludes.

Notation. In what follows, unless explicitly stated, vectors will be column vectors, the symbol
“*” will denote transposition and the trace of a square matrix A will be denoted by tr(A).
Furthermore, 〈a, b〉 := a∗b will stand for the Euclidean scalar product. We choose as matricial
norm |A| =

√
tr(AA∗). On the set Sn of all symmetric squared matrices of order n, we define

the order A ≤ B if and only if B − A ∈ S+
n , the subspace of nonnegative definite matrices in

Sn. We will denote by In the identity matrix of dimension n.

2 Formulation of the problem

Let T > 0 be a finite time horizon. All the processes introduced below will be defined on the
canonical probability space (Ω,F ,P), where Ω := C([0, T ];Rd) is the space of all continuous
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functions from [0, T ] into Rd. For ω ∈ Ω, we set Wt(ω) = ω(t) and define (Ft)t∈[0,T ] as the
smallest right-continuous filtration such that W is optional. Moreover, F := FT . We let P be
the Wiener measure on (Ω,FT ). We can assume without loss of generality that such a filtration
is complete.

2.1 Structured products

In this section we give a short description of the main structured products that are traded in
energy markets. The typical payoff is given by a family of random variables

CuT :=

∫ T

0
L(Ps, Z

u
s , us)ds+ Φ(PT , Z

u
T ), (2.1)

indexed by a control u, which typically represents the marginal quantity of commodity pur-
chased and it belongs to a suitable set of admissible controls U that we will specify later.
In particular, the admissible controls take values in some bounded interval [0, ū] for a given
threshold ū > 0. The variable P in the equation (2.1) above denotes the spot price of the
commodity (e.g., gas) and Zut := z0 +

∫ t
0 usds for all t ∈ [0, T ], for some initial value z0 ≥ 0. For

technical reasons, that will become clear in the proofs of our results, we will need the following
assumption on the structured products.

Assumption 2.1. The functions L : R× [0, ūT ]× [0, ū]→ R and Φ : R× [0, ūT ]→ R in (2.1)
are continuous and bounded.

The most common structured products in energy markets are swing and virtual storage
contracts. More details are given just below. See also the subsequent Remark 2.4 explaining
how one can safely modify these contracts in order to satisfy Assumption 2.1.

Example 2.2 (Swing contract). For a swing contract one has (see, e.g., [4, 12])

L(p, z, u) = u(p−K),

where K is the purchase price or strike price, and u is any admissible control. These prod-
ucts usually include some additional features, such as inter-temporal constraints on u or on
the cumulated control Zu or some penalty function appearing in the payoff. More precisely,
constraints on u and Zu are typically of the form ZuT ∈ [m,M ], with 0 ≤ m < M , with possibly
further intermediate constraints on Zuti , ti < T , i = 1, . . . , k. In the absence of such additional
constraints, a penalty is usually present which can be expressed as a function Φ of the terminal
spot price PT and cumulated consumption ZuT . A typical form of Φ is

Φ(p, z) = −C
(
(m− z)+ + (z −M)+

)
(2.2)

for constants C > 0 and 0 ≤ m < M(see [4, 12] and references therein). We will focus on
the latter case, i.e., a non-zero penalty function Φ(PT , Z

u
T ) without any other contraints on the

admissible controls.

Example 2.3 (Virtual storage contract). These products replicate a physical gas storage po-
sition, while being handled as pure trading contracts. In this case one has

L(p, z, u) = −p(u− a(z, u)), Φ(p, z) = −C(M − z),
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with C,M > 0 suitable constants, a(z, u) := ā1u<0 and where the control u represents the gas
injected into the reservoir and is such that

ut ∈ [uin(Zut ), uout(Z
u
t )], t ∈ [0, T ],

where uin, uout are suitable deterministic functions given by the physics of fluids: their typical
shapes are

uin(z) := −K1

√
z, uout(z) := K2

√
1

z + Zb
−K3

with Zb,Ki > 0, i = 1, 2, 3, given constants [17, 23, 49].

Remark 2.4. The boundedness of L as in Assumption 2.1 is not verified in the two Examples
2.2 and 2.3, where L is linear in p, which can in principle take any real value. In practice, one
can artificially bound L, for example by introducing

L̃(p, z, u) := max(−κ,min(L(p, z, u), κ)),

so that |L̃(p, z, u)| ≤ κ for all (p, z, u), for a suitably chosen and large enough threshold κ > 0
such that the instantaneous profit should not be larger than κ in absolute value with high
probability. The same truncation argument can be applied to the penalty function Φ(p, z).
Alternatively, one could truncate the unbounded variable p appearing in both payoffs L and Φ.

2.2 The market model

The spot price of the commodity, P , underlying the structured products, is modelled as Pt :=
p(t,Xt), where p : [0, T ] × Rm → R is a measurable function and X represents the factors
driving the market. We assume that the process X has Markovian dynamics

dXt = b(t,Xt) dt+ Σ∗(t,Xt) dWt, X0 = x ∈ Rm, (2.3)

with drift b : [0, T ]× Rm → Rm and volatility matrix Σ : [0, T ]× Rm → Rd×m.

We also assume that n ≤ d forward contracts on the commodity P are traded in the market,
with maturities T1 < . . . < Tn, with T1 ≥ T . Letting F i to denote the price of the forward
contract with maturity Ti, i = 1, . . . , n, we assume that the dynamics of F := (F 1, . . . , Fn) is
given by

dFt = diag(Ft) (µF (t,Xt)dt+ σ∗F (t,Xt)dWt) , F0 = f0 ∈ Rn, (2.4)

for some functions µF : [0, T ]× Rm → Rn and σF : [0, T ]× Rm → Rd×n.
Assumptions on the coefficients of X and F are given below. We will always assume

throughout the paper that the interest rate is zero.

Notice that the forward contracts are not necessarily written on the commodity with spot
price P , as they could also be written on some correlated commodity. For instance, P could be
the spot price of gasoline, while the F ’s are written on oil, as in [13, 24]. This can be also due
to illiquidity or to the fact that forward contracts relative to the commodity do not exist: for
a detailed discussion of this phenomenon, see [13, Section 2.3].

We will always work under the following standing assumptions on the coefficients of the
model:

Assumption 2.5. (i) The function p : [0, T ]× Rm → R is continuous.

5



(ii) The coefficients b : [0, T ] × Rm → Rm and Σ : [0, T ] × Rm → Rd×m of the factor process
X are continuous functions, Lipschitz in x uniformly in t and with linear growth in x
uniformly in t.

(iii) The drift µF : [0, T ]×Rm → Rn and the volatility σF : [0, T ]×Rm → Rd×n are continuous
functions, Lipschitz in x uniformly in t and with linear growth in x uniformly in t.

Under such assumptions, the SDEs (2.3) and (2.4) are well-known to admit a unique strong
solution (X,F ) such that X0 = x and F0 = f0 (see, e.g., Theorem 13.1 in [47, Chapter V]).

2.3 Admissible strategies and utility indifference price

We consider an agent whose preferences are modelled by an exponential utility function U(x) =
− 1
γ e
−γx , x ∈ R, with risk aversion parameter γ > 0. We assume that (s)he has a long position

in q ≥ 0 units of a given structured product with payoff CT = (CuT )u∈U with CuT as in (2.1).
Moreover, in order to hedge away the risk attached to such a contract, (s)he trades in the
financial market of forward contracts described in the previous section. At any time s ∈ [0, T ],
the agent invests the amount of wealth πis in the forward contracts F i with i = 1, . . . , n. Hence
the evolution of the agent’s portfolio is〈

πs,
dFs
Fs

〉
=

n∑
i=1

πis
dF is
F is

= 〈πs, µF (s,Xs)ds+ σ∗F (s,Xs)dWs〉,

where we recall that 〈·, ·〉 denotes the Euclidean scalar product in Rn and we use the notation

dFs
Fs

:=

(
dF is
F is

)
i=1,...,n

= µF (s,Xs)ds+ σ∗F (s,Xs)dWs, s ∈ [0, T ].

At this point, we need to specify the set A of admissible strategies.

Definition 2.6. Let ū > 0 be a given threshold. The set of admissible controls A is the set of
all couples (u, π), where u is any adapted process such that ut ∈ [0, ū] for all t ∈ [0, T ], and π
is any progressively measurable Rn-valued process such that

sup
t∈[0,T ]

E
[
exp

(
ε|πt|2

)]
<∞, (2.5)

for some ε > 0. We will denote by U the set of all admissible controls u. Moreover, At (resp.
Ut) will be the set of admissible controls (u, π) (resp. admissible controls u) starting from t.

Now, we are ready to introduce the utility indifference (buying) price of q units of the
structured product CT . We will use the notation Cut,T for the payoff of the structured contract
CuT starting at time t, i.e.,

Cut,T =

∫ T

t
L(Ps, Z

u
s , us)ds+ Φ(PT , Z

u
T ), t ∈ [0, T ].

Moreover, we set CuT = Cu0,T .

Definition 2.7. The utility indifference (buying) price at time t for a position q ≥ 0 in the
structured product, when starting from the initial portfolio value yt, is defined as the unique
Ft-measurable random variable vt solution (whenever it exists) to

V (yt − vt, q) = V (yt, 0), (2.6)
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where

V (yt, q) := sup
(u,π)∈At

Et
[
−1

γ
exp

(
−γ
(
yt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ qCut,T

))]
, (2.7)

and Et stands for the conditional expectation given Ft.

Clearly, V (y0, q) gives the maximal expected utility from terminal wealth, computed at time
0, that an agent with an exponential utility can obtain starting from an initial wealth y0 and
having a position q ≥ 0 in the structured product. Therefore, the (buying) UIP defined above
represents the highest price the buyer is willing to pay for q units of the structured contract.

The maximization problem (2.7) can be easily translated into a standard Markovian control
problem by suitably redefining the set of state variables as follows. Let t ∈ [0, T ]. First, using
Equation (2.1), we can rewrite the terminal wealth as follows

yt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ qCut,T = yt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ q

∫ T

t
L(Ps, Z

u
s , us)ds+ qΦ(PT , Z

u
T ).

Using the fact that Pt = p(t,Xt) is a function of the factor process X, we obtain that the value
function in (2.7) equals

V (t, x, y, z; q) := sup
(u,π)∈At

Et,x,y,z
[
G
(
XT , Y

u,π
T , ZuT ; q

)]
, (2.8)

where the reward function G is given by

G(x, y, z; q) := −1

γ
e−γ(y+qΦ(p(T,x),z)), (2.9)

and the state variables (X,Y u,π, Zu) evolve as
dXs = b(s,Xs)ds+ Σ∗(s,Xs)dWs,
dY u,π

s = (〈πs, µF (s,Xs)〉+ qL(p(s,Xs), Z
u
s , us)) ds+ 〈πs, σ∗F (s,Xs)dWs〉,

dZus = usds,
(2.10)

with initial conditions (Xt, Y
u,π
t , Zut ) = (x, y, z). Notice that the linear growth properties set

in Assumption 2.5 combined with the boundedness of L in Assumption 2.1 give the following
estimate for the controlled state process (X,Y u,π, Zu):

Et,x,y,z

[
sup
t≤τ≤T

|(Xτ , Y
u,π
τ , Zuτ )|p

]
≤ Cu,π(1 + |(x, y, z)|p), t ∈ [0, T ), p ≥ 1, (2.11)

for some constant Cu,π > 0, which depends possibly on the control (π, u) and is uniform in t.

Remark 2.8. Observe that the linear growth condition on b and Σ (cf. Assumption 2.5(ii))
imply, through an application of Gronwall’s lemma, that

sup
t∈[0,T ]

E
[
eη|Xt|2

]
<∞, (2.12)

for some η > 0.
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Within this formulation, the UIP of q ≥ 0 units of the structured product is the unique
solution vt = v(t, x, y, z; q) (whenever it exists) to

V (t, x, y − vt, z; q) = V (t, x, y, z; 0).

Remark 2.9. In principle, the controls associated to the virtual storage contract described in
Example 2.3 do not satisfy Definition 2.6, where the control ut belongs to [0, ū] with ū constant.
However, this example can be reduced to our setting by simply reparameterizing the control.
In fact, one could define a new control c with values in [0, 2] such that the old control u satisfies
ut = f(ct, Zt) for a suitable function f(c, z) given by

f(c, z) :=

{
(c− 1)K1

√
z, 0 ≤ c ≤ 1,

(c− 1)K2

√
1

z+Zb
−K3, 1 ≤ c ≤ 2,

Z solves
dZt = f(ct, Zt) dt, Z0 = z0.

and L(p, z, c) = −p(f(c, z)− a(z, f(c, z))).

Remark 2.10. Here, we briefly discuss two papers, [35] and [44], that do not fit (strictly speak-
ing) the literature on structured products but that are somewhat related. Indeed, they both
deal with the pricing of a physical/industrial asset using a UIP approach with an investment
component. However, even though the optimization problems in [35, 44] are mathematically
similar to the one considered here, the controls affecting the asset are switching controls with
finitely many states. Hence their methods, that are based on optimal switching and BSDEs,
are different from ours. Finally, our model is more specific than theirs as it is tailor-made for
the pricing and hedging of structured contracts on energy.

3 Characterization of the UIP with viscosity solutions

In this section we characterize, under some further technical assumptions given below, the UIP
in terms of viscosity solutions of suitable Cauchy problems. More precisely, we prove that the
log-value functions for problem (2.8) with zero initial wealth, defined as

J(t, x, z; q) := −1

γ
log (−V (t, x, 0, z; q)) , q ≥ 0, (3.1)

can be characterized as the unique continuous viscosity solutions with quadratic growth to a
suitable Cauchy problem. The UIP is obtained from there as the difference between the two
log-value functions, corresponding to the problems with and without the structured products.
This is done using some techniques developed in Pham [42] together with recent results on
uniqueness for a class of second order Bellman-Isaacs equations, established in Da Lio and Ley
[18].

3.1 Heuristics on the value function PDE

In this section we derive, in a heuristic way, the PDE that the value functions appearing in
the definition of UIP are expected to satisfy. It is a classical property in the presence of an
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exponential utility function (see, e.g., the papers [5, 6, 7, 30, 50]) that one can factor out the
initial wealth y so that

V (t, x, y, z; q) = e−γyV (t, x, 0, z; q), y ∈ R.

Hence, by definition of UIP, we deduce

e−γ(y−v)V (t, x, 0, z; q) = V (t, x, y − v, z; q) = V (t, x, y, z; 0) = e−γyV (t, x, 0, z; 0)

so that the UIP v is given by

v = −1

γ
log

V (t, x, 0, z; q)

V (t, x, 0, z; 0)
= J(t, x, z; q)− J(t, x, z; 0), (3.2)

where J denotes the log-value function defined in (3.1). From the general theory of stochastic
optimal control with Markovian state variables it is clear that the value function V is expected
to satisfy the following HJB equation

Vt(t, x, y, z; q) + sup
(u,π)∈[0,ū]×Rn

Lu,πV (t, x, y, z; q) = 0, (3.3)

with terminal condition V (T, x, y, z; q) = G(x, y, z; q) and where

Lu,πV = (〈π, µF 〉+ qL)Vy + 〈b, Vx〉+ uVz +
1

2
|π∗σ∗F |2Vyy +

1

2
tr (Σ∗ΣVxx) + π∗σ∗FΣVxy

is the generator of the state variable (X,Y, Z). Recalling that V (t, x, y, z; q) = −e−γy−γJ(t,x,z;q),
we can easily deduce from (3.3) the following PDE for the log-value function J := J(t, x, y, z; q):

Jt + sup
(u,π)∈[0,ū]×Rn

[
〈π, µF 〉+ qL+ 〈b, Jx〉+ uJz −

1

2
γ|π∗σ∗F |2

−1
2γ|ΣJx|

2 + 1
2tr (Σ∗ΣJxx)− γπ∗σ∗FΣJx

]
= 0.

(3.4)

The Hamiltonian therein is maximised by the control π̂, given by

π̂q = (σ∗FσF )−1

(
µF
γ
− σ∗FΣJx

)
. (3.5)

Substituting π̂q into the equation (3.4) leads to

Jt +
1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, Jx〉+ sup

u∈[0,ū]

[
uJz + qL

]
−1

2γJ
∗
xBJx + 1

2tr (Σ∗ΣJxx) = 0,

(3.6)

where
b̄ := b− Σ∗σF (σ∗FσF )−1µF (3.7)

and B is a m×m symmetric matrix given by

B := Σ∗Σ− (σ∗FΣ)∗(σ∗FσF )−1(σ∗FΣ) = Σ∗(Id − σF (σ∗FσF )−1σ∗F )Σ. (3.8)

The terminal condition for V translates into

J(T, x, z; q) =
log γ

γ
+ qΦ(p(T, x), z), (x, z) ∈ Rm × [0, ūT ]. (3.9)
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Remark 3.1. In order to compute the UIP as in Equation (2.6), we first calculate J(t, x, z; 0),
which satisfies Equation (3.6) with the terminal condition J(T, x, z; 0) = log γ

γ . It is a clas-
sical and intuitive result that, in this situation, J(t, x, z; 0) does not depend on z. Denoting
J(t, x, z; 0) by J0(t, x) for simplicity, we have that it fulfills

J0
t +

1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, J0

x〉 −
1

2
γJ0,∗

x BJ0
x +

1

2
tr
(
Σ∗ΣJ0

xx

)
= 0. (3.10)

Thus, subtracting Equation (3.10) from Equation (3.6) and using the fact that

−1

2
γJ∗xBJx +

1

2
γJ0,∗

x BJ0
x = −1

2
γv∗xBvx − γJ0,∗

x Bvx

we obtain the following PDE for the UIP v:

vt + 〈b̄, vx〉+ sup
u∈[0,ū]

[
uvz + qL

]
+

1

2
tr (Σ∗Σvxx)− 1

2
γv∗xBvx − γJ0,∗

x Bvx = 0, (3.11)

with the terminal condition
v(T, x, z; q) = q Φ(p(T, x), z). (3.12)

Notice that solving the HJB equation for the UIP v(t, x, z; q) above requires the knowledge of
J0, which is the log-value function of the optimal investment problem with no claim. This
phenomenon is due to the presence of the non-tradable factors X in the dynamics of the
forward contracts F and it has been observed in a somewhat different model in [6], where the
non-tradable factors follow a pure jump dynamics.

3.2 Existence and uniqueness results

In this section we show that the log-value function J is the unique continuous viscosity solution
with quadratic growth of equation (3.6) with the terminal condition (3.9). From there, the UIP
v is easily found via the equality (3.2). We will work under the following standing assumption.
Recall that the matrix B has been defined in (3.8).

Assumption 3.2. The following properties hold:

(i) b is C1, B and Σ∗σF (σ∗FσF )−1µF are C1 and Lipschitz in x uniformly in t.

(ii) µF is bounded and 〈(σ∗FσF )−1µF , µF 〉 is C1 and Lipschitz in x uniformly in t.

(iii) σ∗FσF is bounded and uniformly elliptic, i.e., for some ε > 0,

(σ∗FσF )(t, x) ≥ εIn, for all (t, x) ∈ [0, T ]× Rm. (3.13)

(iv) The matrix B is positive semidefinite and there exists a constant δ > 0 (uniform in t, x)
such that

1

δ
|ξ|2 ≤ 〈ξ,Bξ〉 ≤ δ|ξ|2 (3.14)

for all vectors ξ ∈ Im(B), the image of B.
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Some comments on these hypotheses are in order. All the assumptions above, with the
exception of C1-regularities and boundedness of µF (linear growth is actually sufficient) have
to be imposed in order to apply the method and the results established in [18]. In particular,
condition (iv) on B is related to the coercivity hypothesis in Assumption A1 in [18], which has
a crucial role in the proof of their comparison theorem. Such a property has to be verified on a
case-by-case basis. Some examples where this assumption is verified are provided in Section 4.

The additional C1-regularity assumptions as well as the boundedness of µF allow us to
adapt results from [42] to get the quadratic growth condition of the log-value function J0 of
the investment problem with no claim. Furthermore, thanks to Assumption 2.1 on the struc-
tured contract, the latter property will be inherited by the log-value function, J , with the claim.

We are now ready to state the main result of the paper.

Theorem 3.3. Let Assumptions 2.1 and 2.5 hold. Under Assumption 3.2, the log-value func-
tion J , defined in (3.1), is the unique continuous viscosity solution with quadratic growth of the
Cauchy problem (3.6) with terminal condition (3.9).

Before proving the theorem, we give a preliminary result showing that the value function V
is a (possibly discontinuous) viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation
in the interior of its domain. Its proof is postponed to the Appendix.

Proposition 3.4. Let Assumptions 2.1 and 2.5 hold. Under Assumption 3.2, the value function
V in (2.8) is a (possibly discontinuous) viscosity solution of the HJB equation

Vt(t, x, y, z; q)+ sup
(u,π)∈[0,ū]×Rn

Lu,πV (t, x, y, z; q) = 0, (t, x, y, z) ∈ [0, T )×Rm×R×R (3.15)

with terminal condition V (T, x, y, z; q) = G(x, y, z; q), where

Lu,πV = (〈π, µF 〉+ qL)Vy + 〈b, Vx〉+ uVz +
1

2
|π∗σ∗F |2Vyy +

1

2
tr (Σ∗ΣVxx) + π∗σ∗FΣVxy.

At this point we are in position to prove Theorem 3.3.

Proof of Theorem 3.3. We consider the existence first. This is an easy consequence of Proposi-
tion 3.4 above, which gives that the value function V is a viscosity solution of equation (3.15).
It then suffices to use the definition of viscosity solution to check that the log-value function J
defined in (3.1) is a (possibly discontinuous) viscosity solution of the PDE (3.6).

To complete the proof, it remains to show that J is unique in the class of all continuous
viscosity solutions with quadratic growth for the Cauchy problem (3.6) and (3.9). The main
idea for uniqueness is to use the comparison theorem in [18, Th. 2.1]. For reader’s convenience,
we split the rest of the proof into two steps.

(i) Reduction to Da Lio and Ley [18] setting. First, we use a Fenchel-Legendre transform
to express the quadratic term in our pricing PDE (3.6) into an infimum over the image of B
of a suitable function. More precisely, we apply a classical result in convex analysis (e.g. [46,
Ch.III, Sect. 12]) to get

F (w) := −1

2
〈w,Bw〉 = inf

α∈Im(B)
{−F̃ (α)− 〈α,w〉} = inf

α∈Rm
{−F̃ (α)− 〈α,w〉}, (3.16)

11



for all vectors w ∈ Rm, where F̃ is the conjugate of F , which is also given by

F̃ (α) = −1

2
〈α,B−1α〉,

when α ∈ Im(B) and −∞ otherwise. Notice that the first infimum in (3.16) is computed over
the image of B since the matrix B is not necessarily invertible in our framework. Using (3.16),
we can rewrite equation (3.6) as

Jt +
1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, Jx〉

+ supu∈[0,ū]

[
uJz + qL

]
+ γF (Jx) + 1

2tr (Σ∗ΣJxx) = 0,
(3.17)

with b̄ as in (3.7) and with terminal condition J(T, x, z; q) = log γ
γ + qΦ(p(T, x), z). Notice

that, since the function F above can be written as an infimum as in (3.16), we get a PDE
with the same form as in [18, Eq. (1.1)] provided we apply the time reversal transformation
Ĵ(t, x, z; q) := J(T − t, x, z; q). Hence the PDE (3.17) turns into the following

−Ĵt +
1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, Ĵx〉+ sup

u∈[0,ū]

[
uĴz + qL

]
+ γF (Ĵx) +

1

2
tr
(

Σ∗ΣĴxx

)
= 0,

(3.18)
with the initial condition

Ĵ(0, x, z; q) =
log γ

γ
+ qΦ(p(T, x), z). (3.19)

Notice that this Cauchy problem is a particular case of the one studied in [18] since our Assump-
tions 2.1, 2.5 and 3.2 imply Assumptions (A1), (A2), (A3) in [18]. In particular, Assumption
3.2(iv) implies the same property for B−1, giving (A1)(iii) in [18]. Indeed on the image of B,
B1/2 as well its inverse B−1/2 are well-defined. Since B−1/2 : Im(B) → Im(B), we have that,
e.g., the LHS in (3.14) implies δ−1|B−1/2y|2 ≤ 〈B−1/2y,BB−1/2y〉 for all y ∈ Im(B), leading
to 〈y,B−1y〉 ≤ δ|y|2 for all y ∈ Im(B). The other inequality is obtained in a similar way.

(ii) Uniqueness. We proceed by contradiction. Assume that there exists another continuous
viscosity solution with quadratic growth J̃ of the Cauchy problem (3.18) with terminal condition
(3.19). Then, by calling J∗ and J̃∗ their u.s.c. envelopes and J∗ and J̃∗ their l.s.c. envelopes,
we have, by definition of viscosity solution, that J∗, J̃∗ are u.s.c. viscosity subsolutions and J∗,
J̃∗ are l.s.c. viscosity supersolutions of equation (3.18), obviously with J̃∗ ≤ J̃∗. We also have
J∗(T, x, z; q) ≤ log γ

γ +qΦ(p(T, x), z) ≤ J∗(T, x, z; q), by definition of upper and lower envelopes.
We now want to prove that

J∗(T, x, z; q) ≤ log γ

γ
+ qΦ(p(T, x), z) ≤ J∗(T, x, z; q), (3.20)

for all q ≥ 0, x ∈ Rm, z ∈ [0, ūT ]. To prove the inequalities (3.20) it suffices to apply Theorem
4.3.2 and subsequent Remark 4.3.5 in [43].1

Moreover it can be proved that J(t, x, z; q) has quadratic growth in (x, z), uniformly in t, for
all q ≥ 0 (ref. Lemma B.1 in the Appendix). Then, by the comparison theorem [18, Theorem
2.1], we have that

J∗ ≤ J∗ ≤ J̃∗ ≤ J̃∗ ≤ J∗
1Notice that in our case the function G appearing in the statement of Theorem 4.3.2 in [43] can be chosen to

be any positive number.
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on [0, T ] × Rm × R. This implies that J∗ = J∗ = J = J̃ , and that J is continuous. The proof
is therefore complete.

As a consequence of the result in Theorem 3.3, we have a good candidate for the optimal
hedging strategy, which is given by

ĥq := π̂q − π̂0 = −(σ∗FσF )−1σ∗FΣvx, (3.21)

where vx is the gradient with respect to the factor variables, when it exists, of the UIP (compare
[5, 6]). Concerning the optimal exercise policy û of the structured contract, a candidate in
feedback form is given by solving the maximization problem

max
u∈[0,ū]

[uvz(t, x, z; q) + qL(p, z, u)] .

For an explicit formula, consider the case L(p, z, u) = u`(p, z) with ` bounded. In this case, it
is easy to see that

û(t, x, z; q) = ū1[vz(t,x,z;q)>−q`(p,z)]. (3.22)

Even though working with viscosity solutions does not allow to justify rigorously the optimality
of such controls, we observe that they are consistent with the optimal policies that have been
obtained in the past literature for more specific models (see e.g. [4, 12]).

Remark 3.5. Note that we have worked on the log-value function’s PDE (3.6) instead of on
the PDE for the price v (cf. equation (3.11)). The reason for doing so is that the latter is more
delicate to handle due to the fact that it contains the first derivative J0

x of the log-value function
with no claim. Applying Da Lio and Ley results directly to equation (3.11) would require a
Lipschitz continuity for J0

x uniformly in t, which is difficult to have in general. Nonetheless,
when this condition is satisfied as in Cartea-Villaplana (see Subsection 4.2) and in the linear
dynamics model in Example 4.6, the same arguments go through with fewer assumptions than
in Theorem 3.3. Indeed, the boundedness of the payoffs L and Φ implies that the UIP v is
bounded and so it has quadratic growth. Therefore, Lemma B.1 is not needed anymore and
neither are all the C1-regularities and the boundedness of µF as in Assumption 3.2. Under
the remaining assumptions and when µF has linear growth in x uniformly in t (replacing its
boundedness) we can prove that v is the unique continuous viscosity solution with quadratic
growth to equation (3.11) with terminal condition (3.12). The proof is analogous to that of
Theorem 3.3, it is therefore omitted.

Remark 3.6 (Complete market case). When the market is complete, i.e. d = n and σF has full
rank, we have B = 0 so that Assumption 3.2(iv) is trivially satisfied and J0

x does not appear in
the PDE for v anymore. In this case, we can work directly with the PDE for v along the same
lines as in the previous Remark 3.5. Therefore, under Assumptions 2.1, 2.5 and 3.2(i)-(ii)-(iii),
one can show that v is the unique continuous viscosity solution with quadratic growth of the
HJB equation

vt + 〈b− Σ∗(σ∗F )−1µF , vx〉+
1

2
tr (Σ∗Σvxx) + sup

u∈[0,ū]

[
uvz + qL

]
= 0, (3.23)

with terminal condition
v(T, x, z; q) = qΦ(p(T, x), z). (3.24)

Moreover, one can weaken the boundedness of µF and require only linear growth in x uniformly
in t. This result extends to our setting previous ones in [4, 12, 17, 23, 49], which were obtained
for particular types of structured contracts, e.g., swings and virtual storages, and without
trading in forward contracts.
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4 Examples

4.1 A class of models with two assets and constant correlation

In this section we focus on the following incomplete market model:
dFt
Ft

= µF (t,Xt)dt+ σ̄F (t,Xt)dW
1
t ,

dXt = b(t,Xt)dt+ σ(t,Xt)
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
,

(4.1)

where W = (W 1,W 2) is a bidimensional Brownian motion and ρ ∈ (−1, 1). This is clearly
a particular case of the general model in the previous section with σ∗F (t, x) = (σ̄F (t, x), 0),

Σ∗(t, x) = σ(t, x)(ρ,
√

1− ρ2) and Pt = p(t,Xt) for some continuous function p(t, x). This
model is a generalization of the usual Black-Scholes model with basis risk (see [19, 29, 38]
among many others), with the additional feature that the non traded asset or factor X can
appear in the coefficients of the traded asset F .

We suppose that Assumptions 2.1 and 2.5 are in force. Concerning Assumption 3.2, we
are going to specialize it to the present setting as follows. Observe first that the quantity
Σ∗σF (σ∗FσF )−1µF appearing in Assumption 3.2(i) reads as

Σ∗σF (σ∗FσF )−1µF (t, x) = ρµF (t, x)
σ(t, x)

σ̄F (t, x)

while the scalar product 〈(σ∗FσF )−1µF , µF 〉 in Assumption 3.2(ii) is

〈(σ∗FσF )−1µF , µF 〉(t, x) =
µ2
F (t, x)

σ̄2
F (t, x)

.

and (σ∗FσF )(t, x) in Assumption 3.2(iii) corresponds to (σ∗FσF )(t, x) = σ̄2
F (t, x). Finally, we

have B(t, x) = (1 − ρ2)σ2(t, x). Hence, Assumption 3.2 is guaranteed by the conditions listed
just below and the general results in Theorem 3.3 can be safely applied.

Assumption 4.1. Let the following properties hold:

(i) b ∈ C1, σ ∈ C1;

(ii) µF is bounded;

(iii) σ and σ̄F are bounded and bounded away from zero;

(iv) µF
σ̄F
∈ C1 and it is Lipschitz in x uniformly in t.

In this more specific setting, we can obtain more information on the structure of the value
function of the buyer of q units of the structured product provided we have the following

Assumption 4.2. Let the log-value function J0
x be Lipschitz in x uniformly in t.

Under this assumption, we do not need to suppose that µF is bounded as in 4.1(ii) above.
Indeed the considerations in Remark 3.5 apply, so that in particular µF can be a linear function
of x as in Example 4.6 below.

Let CuT be the payoff of a given structured contract as in (2.1). Inspired by the results in
Oberman and Zariphopoulou [45], which in turn extend El Karoui and Rouge [20] to American
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options, we obtain a representation of the UIP of the structured product CuT as the value
function of an auxiliary optimization problem with respect to the control u only, under a
suitable equivalent martingale measure involving the derivative J0

x of the log-value function of
the problem with no claim, and where γ is replaced by a modified risk aversion γ̃ = γ(1− ρ2).

Let us consider the measure Q0 defined as

dQ0

dP

∣∣∣
Ft

:= D0
t := exp

(
−
∫ t

0
θ∗udWu −

1

2

∫ t

0
|θu|2du

)
, t ∈ [0, T ], (4.2)

where W = (W 1,W 2)∗ and θ is given by

θt = (θ1
t , θ

2
t )
∗ =

(
µF
σ̄F

, γ
√

1− ρ2σJ0
x

)∗
(t,Xt). (4.3)

Notice that the stochastic exponential is well defined, since X has continuous paths and µF /σ̄F
is continuous, so that the stochastic integral

∫ t
0 θ

1
udW

1
u is well-defined for every t. Moreover,

the second integral
∫ t

0 θ
2
udW

2
u is also well-defined thanks to the continuity of σ(t,Xt) and the

linear growth of J0
x (cf. Lemma B.1).

Finally, in order for the equation (4.2) to define a probability measure, we need to impose
that E[D0

T ] = 1. This equality holds true when, for instance, J0
x is bounded, so that in particular

Novikov’s criterion applies. More generally, one could use the deterministic criteria proposed
in [36] (e.g. Theorem 2.1 therein).

Remark 4.3. In the case when the coefficients of F do not depend on the state variable X,
when, e.g. both follows geometric Brownian motions with constant correlation, we have that
J0
x ≡ 0, and Q0 coincides with the minimal entropy martingale measure. Therefore the measure

Q0 can be viewed as a perturbation of the minimal entropy martingale measure (see [27]) where
the correction involves the log-value function J0 of the optimal pure investment problem.

In what follows we will need the following preliminary lemma, stating the dynamics of the
spot price under the martingale measure Q0. Its proof is based on a standard application of
Girsanov’s theorem, and it is therefore omitted.

Lemma 4.4. Assume E[D0
T ] = 1. Then the dynamics of X under Q0 is given by

dXt = b̃(t,Xt)dt+ σ(t,Xt)dW
0
t , (4.4)

where

b̃(t,Xt) :=

(
b− ρσµF

σ̄F
− γ̃σ2J0

x

)
(t,Xt)

and

dW 0
t := ρdW 1

t +
√

1− ρ2dW 2
t +

(
ρ
µF
σ̄F

+ γ̃σJ0
x

)
(t,Xt)dt

defines a Q0-Brownian motion and γ̃ = γ(1− ρ2).

The following proposition extends to our setting the characterisation in Oberman and Za-
riphopoulou [45, Prop. 10].
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Proposition 4.5. Let the standing Assumptions 2.1, 2.5, 4.1(i)-(iii)-(iv) and 4.2 hold. Then
the UIP v = v(t, x, z; q) satisfies

v(t, x, z; q) = sup
u∈Ut

(
−1

γ̃
lnE0

t,x,z

[
e−γ̃qC

u
t,T

])
, (4.5)

where E0
t,x,z denotes the conditional expectation under Q0.

Proof. We prove the result by showing that the candidate function

ṽ = ṽ(t, x, z; q) := sup
u∈Ut

(
−1

γ̃
lnE0

t,x,z

[
e−γ̃qC

u
t,T

])
satisfies equation (3.11) with terminal condition (3.12) and we conclude using the comparison
theorem in Da Lio and Ley [18, Th. 2.1]. To this end, write ṽ as

ṽ(t, x, z; q) = −1

γ̃
ln(−w(t, x, z; q)), (4.6)

with
w(t, x, z; q) := sup

u∈Ut
E0
t,x,z

[
−e−γ̃qC

u
t,T

]
.

The value function w above solves the following Cauchy problem in a viscosity sense{
wt(t, x, z; q) + sup

u∈[0,ū]
[Luw(t, x, z; q)− γ̃qL(p(t, x), z, u)w(t, x, z; q)] = 0

w(T, x, z; q) = − exp(−γ̃qΦ(p(T, x), z))

with

Luw = b̃wx + uwz +
1

2
σ2wxx.

The corresponding Cauchy problem for ṽ is immediately obtained: ṽt(t, x, z; q) + sup
u∈[0,ū]

[
L̃uṽ(t, x, z; q) + qL(p(t, x), z, u)

]
= 0

ṽ(T, x, z; q) = qΦ(p(T, x), z),
(4.7)

with

L̃uṽ = b̃ṽx + uṽz +
1

2
σ2
[
ṽxx − γ̃ṽ2

x

]
,

which is a particular case of equation (3.11) in this setting.
To identify ṽ with the UIP v and conclude, we need a uniqueness result for the Cauchy

problem (4.7). Since J0
x is assumed to be Lipschitz in x uniformly in t, we can use Remark

3.5 to get the existence of a unique continuous viscosity solution with quadratic growth to the
Cauchy problem (4.7). Finally, the boundedness of the payoff Cut,T (cf. Assumption 2.1) clearly
implies that the value function ṽ(t, x, z) has quadratic growth. Thus the proof is complete.

The previous proposition suggests the following approach to compute the UIP and the
corresponding (partial) hedging strategy of a given structured product in this setting:

• first, solve the pure optimal investment problem V (t, x, y; 0) with no claim;
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• second, compute the x-derivative of the log-value function J0 giving the new probability
measure Q0 as well as the corresponding dynamics of X;

• finally, solve the maximisation problem in (4.5), which is now computed with respect to
the control u only; its value function gives the UIP while its derivative with respect to x
gives the hedging strategy via (3.5).

Example 4.6 (Linear dynamics model). This example is a slight generalization of the model
studied in [13, Section 2.2] and [24]:

dFt = Ft
(
(a− kXt)dt+ σ̄FdW

1
t

)
, (4.8)

dXt = δ(θ −Xt)dt+ σ
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, (4.9)

where a, k, σ̄F , δ, θ, σ are real constants, the correlation ρ belongs to (−1, 1), and (W 1,W 2) is
a bidimensional Brownian motion as before. Here F represents the price of a liquid forward
contract with maturity T written on a commodity, while instead X is the log-price of another,
less liquid, commodity on which the structured product is written (i.e. p(t, x) = ex in this case).
In practical applications, one searches for a liquidly traded forward F written on a commodity
correlated with Pt = eXt , with a correlation coefficient ρ as close to 1 as possible (for practical
examples, see [13, Section 2.3] and [24]). When k = 1 we obtain exactly the model in [13,
Section 2.2], while for k = 0 we obtain the model in [24].

Notice that if σ̄F > 0, σ > 0 and k = 0, then Assumption 4.1 holds true, while in the
general case when k 6= 0 Assumptions 4.1 (ii) is not satisfied. Nevertheless, as we are going to
see, in this example J0

x is Lipschitz, so that Remark 3.5 applies. Hence we can take µF linear
in x as above.

To see that J0
x is Lipschitz, consider Equation (3.10) which in this setting becomes

J0
t +

1

2γ

(a− kx)2

σ̄2
F

− ρσ

σ̄F
(a− kx)J0

x + δ(θ − x)J0
x −

1

2
γσ2(1− ρ2)

(
J0
x

)2
+

1

2
σ2J0

xx = 0.

Then, in analogy with [10], one guesses that the solution J0 has the general form

J0(t, x) = α(t) + β(t)x+ Γ(t)x2,

such that J0(T, x) ≡ log γ
γ . This ansatz gives the system of first order ODEs

α′ +
a2

2γσ̄2
F

+

(
δθ − ρ σ

σ̄F
a

)
β − 1

2
γσ2(1− ρ2)β2 + σ2Γ = 0,

β′ +

(
ρk

σ

σ̄F
− δ − 2γσ2(1− ρ2)Γ

)
β − ak

γσ̄2
F

+ 2

(
δθ − ρa σ

σ̄F

)
Γ = 0,

Γ′ +
k2

2γσ̄2
F

+ 2

(
ρk

σ

σ̄F
− δ
)

Γ− 2γσ2(1− ρ2)Γ2 = 0,

(4.10)

with final condition

α(T ) =
log γ

γ
, β(T ) = 0, Γ(T ) = 0.

The system above is solvable in closed form, as the third equation is a Riccati equation in Γ,
the second one is a linear equation in β, which can be solved once that Γ is known, and, finally,
the first one can be solved in α just by integration.
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Notice that, if the parameter k appearing in the forward drift is zero then the dynamics of
the forward contract does not depend on X, so that J0 does not depend on x, thus leading to
β ≡ Γ ≡ 0.

Finally, Equation (3.11) is given in this case by

vt +

(
δ(θ − x)− ρ σ

σ̄F
(a− kx)− γσ2(1− ρ2)(β + 2Γx)

)
vx +

1

2
σ2vxx

−1

2
γσ2(1− ρ2)v2

x + sup
u∈[0,ū]

[
uvz + qL

]
= 0,

(4.11)

with terminal condition
v(T, x, z; q) = q Φ(ex, z). (4.12)

4.2 The Cartea-Villaplana model with correlation

Here we consider a slight generalization of the two factor model for the electricity spot price
introduced by Cartea and Villaplana in [16]. While the two factors are assumed independent
in the original paper [16], here we allow for a possibly non zero (constant) correlation between
them. We recall briefly the main features of the model. The electricity spot log-price Pt at
time t is decomposed into the sum of two stochastic factors XC and XD, i.e.,

Pt = exp
(
η(t) + αCX

C
t + αDX

D
t

)
,

with αC < 0 and αD > 0, where η represents a seasonal continuous deterministic component.
The factors Xi

t , i = C,D, are Ornstein-Uhlenbeck processes driving, respectively, the capacity
of power plants and the demand of electricity. Their dynamics is given by

dXi
t = −kiXi

t dt+ σi(t) dW
i
t ,

where ki are constant coefficients, σi(t) are deterministic measurable functions of time and
each W i, for i = C,D, is a unidimensional Brownian motion such that d〈WC ,WD〉t = ρdt
with a constant correlation ρ ∈ (−1, 1). Notice that the Cartea-Villaplana model reduces to
the Schwarz-Smith model [48] when αC = αD = 1 and kC = 0 (or kD = 0).

In this example we work under the following standing assumptions:

Assumption 4.7. Let σC(t) and σD(t) be continuous, bounded and bounded away from zero
over [0, T ].

Since the interest rate is zero, the price at time t of a forward contract with maturity T
can be computed via the usual formula Ft = EQ[PT |Ft], t ∈ [0, T ], for a suitable choice of
risk-neutral measure Q preserving the Gaussian structure of the model as in [16, Section 5].
Following the approach in [16] we can obtain the dynamics of the forward price under the
risk-neutral measure Q as

dFt
Ft

= αCe
−kC(T−t)σC(t) dWQ,C

t + αDe
−kD(T−t)σD(t) dWQ,D

t ,

where WQ,C and WQ,D are two Q-Brownian motions with correlation ρ. Choosing suitably the
market prices of risk as in [16] and using Assumption 4.7, we can obtain the following forward
dynamics under the objective probability P:

dFt
Ft

= µF (t)dt+ αCe
−kC(T−t)σC(t) dWC

t + αDe
−kD(T−t)σD(t) dWD

t ,
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where the drift µF (t) is a bounded function of time.
We deal separately with two different situations: the incomplete market case with one

forward contract (recall that we have two stochastic factors) and the complete one with two
forward contracts.

4.2.1 The case of one forward contract

In this case the agent is allowed to hedge the structured product by trading only in one forward
contract. The Cartea-Villaplana model fits the general setting of Subsection 2.2 with X =
(XC , XD)∗, whose coefficients are

b(t, xC , xD) =

(
−kCxC
−kDxD

)
, Σ∗(t, xC , xD) =

(
σC(t) 0

0 σD(t)

)
·
(

1 0

ρ
√

1− ρ2

)
.

Notice that Σ has full rank unless ρ = ±1, as

Σ∗Σ =

(
σ2
C ρσCσD

ρσCσD σ2
D

)
.

Let us consider a forward contract F with maturity T . Here σF (t,Xt) depends only on t, so
that for simplicity we set σF (t) := σF (t,Xt), and we have

σ∗F (t) =
(
αCe

−kC(T−t)σC(t) αDe
−kD(T−t)σD(t)

)
·
(

1 0

ρ
√

1− ρ2

)
=

(
αCe

−kC(T−t)σC(t) + ραDe
−kD(T−t)σD(t),

√
1− ρ2αDe

−kD(T−t)σD(t)
)
.

We note that, since the correlation between the spot and forward log-prices is not constant,
this model does not fit the setting in Section 4.1.

In this model the matrix B has rank equal to one. In fact, by definition (cf. equation (3.8))
we have

B = Σ∗(I2 − σF (σ∗FσF )−1σ∗F )Σ,

with

(σ∗FσF )(t) = α2
Dσ

2
D(t)e−2kD(T−t) + α2

Cσ
2
C(t)e−2kC(T−t) + 2ραCαDσC(t)σD(t)e−(kC+kD)(T−t).

(4.13)
Consider x = Σ−1σF . Then x 6= 0 and we have

〈x,Bx〉 = σ∗F (I2 − σF (σ∗FσF )−1σ∗F )σF = σ∗FσF − σ∗FσF (σ∗FσF )−1σ∗FσF = 0.

Therefore, working on the image of B in equation (3.16) is fully justified here, as rank(B) = 1.
Now, we show that Assumption 3.2(iv) is satisfied in this case. Indeed, a direct computation
shows that

B = κ(t) ·

(
α2
De
−2kD(T−t) −αCαDe−(kC+kD)(T−t)

−αCαDe−(kC+kD)(T−t) α2
Ce
−2kC(T−t)

)

where

κ(t) :=
(1− ρ2)σ2

C(t)σ2
D(t)

α2
Dσ

2
D(t)e−2kD(T−t) + α2

Cσ
2
C(t)e−2kC(T−t) + 2ραCαDσC(t)σD(t)e−(kC+kD)(T−t) .
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Hence, the two eigenvalues of B are λ1(t) ≡ 0 and

λ2(t) = κ(t)
(
α2
De
−kD(T−t) + α2

Ce
−kC(T−t)

)
> 0.

By Assumption 4.7 we have that σC(t) and σD(t) are bounded and bounded away from zero
over [0, T ], yielding 1

δ ≤ λ2(t) ≤ δ for some δ > 0 independent of t ∈ [0, T ]. This implies
Assumption 3.2(iv).

Since in this example the two factors XC and XD do not enter in the coefficients of the
forward contract dynamics, we expect that the derivative J0

x of the log-value function is zero.
Indeed, this can be obtained from the PDE (3.10) satisfied by J0. Since µF and σF do not
depend on X, such a PDE simplifies to

J0
t +

1

2γ

|µF |2

|σF |2
= 0,

which gives

J0(t) =
log γ

γ
+

∫ T

t

1

2γ

|µF (s)|2

|σF (s)|2
ds.

Therefore J0
x ≡ 0, and equation (3.11) for the UIP becomes

vt + 〈b− Σ∗σF (σ∗FσF )−1µF , vx〉+
1

2
tr (Σ∗Σvxx)− 1

2
γv∗xBvx + sup

u∈[0,ū]

[
uvz + qL

]
= 0.

Hence, under Assumption 4.7, the considerations in Remark 3.5 apply and give that the UIP v
is the unique viscosity solution with quadratic growth of the PDE above.

Finally, in this case the candidate optimal hedging strategy is given by ĥq = π̂q − π̂0 =
−(σ∗FσF )−1σ∗FΣvx as in (3.21), where σ∗FσF is as in (4.13) and

(σ∗FΣ)∗(t) =

(
αCe

−(T−t)kCσ2
C(t) + ραDe

−(T−t)kDσC(t)σD(t)

αDe
−(T−t)kDσ2

D(t) + ραCe
−(T−t)kCσC(t)σD(t)

)
.

4.2.2 The case of two forward contracts

We look now at the much simpler situation where the agent can hedge the structured product
by trading in two forward contracts F 1 and F 2 with respective maturities T1 and T2, with
T ≤ T1 < T2. Then we have

σ∗F (t) =

(
αCe

−kC(T1−t)σC(t) αDe
−kD(T1−t)σD(t)

αCe
−kC(T2−t)σC(t) αDe

−kD(T2−t)σD(t)

)
·
(

1 0

ρ
√

1− ρ2

)
.

Of course, in this case B = 0, since σF is invertible. Hence, the market model is complete and
we are in the situation described in Remark 3.6. Analogously to the previous case, it is possible
to find an explicit expression for J0, which is now given by

J0(t) =
log γ

γ
+

∫ T

t

1

2γ
〈µF , (σ∗FσF )−1µF 〉(s)ds.

Here again J0
x ≡ 0, so that Remark 3.5 applies and equation (3.11) for the UIP becomes

vt + 〈b̄, vx〉+
1

2
tr (Σ∗Σvxx) + sup

u∈[0,ū]

[
uvz + qL

]
= 0.
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Finally the candidate optimal hedging strategy is given by ĥq = −(σ∗FσF )−1σ∗FΣvx as before,
where this time

(σ∗FσF )−1(σ∗FΣ)(t) =


e−(T1−t)kC

αC
(
1− e(T1−T2)(kC−kD)

) e−(T1−t)kD

αD
(
1− e(T1−T2)(kD−kC)

)
e−(T2−t)kC

αC
(
1− e(T1−T2)(kD−kC)

) e−(T2−t)kD

αD
(
1− e(T1−T2)(kC−kD)

)

 .

5 Numerical results

In this section we present some numerical applications of our results to swing options (see
Example 2.2)2. We focus on this type of contract for essentially two reasons: first, swing
options are the main type of volumetric contracts in commodity markets and, second, we want
to compare our results to those in [12].

More specifically, in Subsection 5.1 we consider the benchmark case with strike price K = 0
and minimal cumulated quantity m = 0 in order to compare the prices obtained following the
UIP approach to those in [12]; in Subsection 5.2 we consider more general swing options with
K > 0 and m > 0. In both parts, we compute the solution of the relevant PDEs using finite
difference schemes, as suggested in [12].

5.1 Comparison with the results in Benth et al. [12]

Here, we compare the UIP, obtained by solving the non-linear PDE (4.11), with the classical
linear pricing rule which is used in the energy market literature (e.g. [4, 12, 17, 23, 49]). The
latter is given in terms of a PDE which is essentially linear, except for the first derivative in z
and which has the same form as Equation (3.23), namely Equation (4.11) without the quadratic
term in vx. In both cases, the optimal strategy û(t, x, z; q) is given by Equation (3.22) with
`(p, z) = p−K.

We consider, as in [12], one swing option (i.e., we take q = 1) with parameter values

K = 0, ū = 1, T = 1, m = 0, M = 0.5,

i.e., the control u belongs to [0, 1] and the holder faces the problem of picking the most favorable
price of the commodity, up to a certain total volume M . We set the risk-free interest rate to
zero. Moreover, in order be as close as possible to the setting considered in Benth et al. [12],
where Zu is constrained to fulfil ZuT ≤M = 0.5, we use the penalty function

Φ(p, z) = min(0,−C(z − 0.5)) (5.1)

with C = 1000. Indeed, the authors in [4] prove that when C →∞ the price of a contract with
penalty Φ as in (5.1) converges to the price of a contract with the constraint on Zu as above.
Moreover, with a view towards the comparison with [12], we choose a special case of the linear
dynamics model of Example 4.6 with k = 0.01 and where

δ = 0.4, σ = 0.55, θ = 3.5, σF = 0.3, a = 0.03, ρ = 0.5. (5.2)

Finally, the risk-aversion parameter is set to be γ = 0.02.

2All the numerical tests were performed in MATLAB R2015b.

21



Remark 5.1. Notice that the coefficients δ, θ and σ above correspond, respectively, to κ, µ and
σ in [12], and they have the same numerical values as in [12]. The remaining coefficients σF
and a refer to the dynamics of the forward contract F , which is not part of the model in [12],
and ρ is the correlation between (the logarithms of) the spot price P and F .

We compute both kinds of price (the risk-neutral price and the UIP) for such a contract,
solving numerically the corresponding PDE via finite difference methodology with a backward
time stepping scheme. In all the numerical experiments we use an approximating domain for
the logarithm of the spot price which is wider than the one in [12] (where xmin = ln(21.6) and
xmax = ln(73.9)) and the domain for Z is obviously [0, ūT ] = [0, 1], thus leading to a global
domain

D := [0, T ]× [xmin, xmax]× [0, 1]

with xmin = ln(0.001) and xmax = ln(500). Notice that [xmin, xmax] here is wider with respect
to the interval used in [12], so that the probability that X belongs to this interval is higher,
thus leading to more stable numerical results. The boundary conditions are the same as in [12]
as well as the numerical approximations of vt and vz: denoting by vni,j the approximation of
v(tn, xi, zj ; 1) with n ∈ {0, . . . , N}, i ∈ {0, . . . , I} and j ∈ {0, . . . , J} we have

vt(tn, xi, zj)
∼
=
vn+1
i,j − vni,j

∆t
, vz(tn, xi, zj)

∼
=
vn+1
i,j+1 − v

n+1
i,j

∆z
,

with ∆t := T
N ,∆z := 1

J , while we use a fully explicit scheme also for the derivatives in x

vx(tn, xi, zj)
∼
=
vn+1
i+1,j − v

n+1
i−1,j

2∆x
, vxx(tn, xi, zj)

∼
=
vn+1
i+1,j − 2vn+1

i,j + vn+1
i−1,j

(∆x)2

with ∆x := xmax−xmin
I . We set

N = 3500, I = 100, J = 225

in order to have convergence of our numerical solution to the UIP. The proof of the convergence
can be found in Section C in the Appendix.

5.1.1 Numerical results

We plot in Figure 1 the prices of the swing contract at time t = 0.5, obtained with the two
approaches (a similar picture can be provided at any other date). In order to stress the difference
between the two prices, we do not plot the surfaces for z ∈ [0.25, 0.5] (remember that M = 0.5).
As we can see, the two price surfaces have similar shapes, even though the “classical” procedure
slightly overprices the option with respect to the UIP when the log spot price is high. The
difference between the two prices is clearly due to the risk aversion γ and, secondarily, to the
correlation ρ between the underlying and the forward market where the buyer can invest.

We conclude this part by illustrating in Tables 1 and 2 below the effect that those two
parameters separately have on the UIP. Concerning the dependence of the UIP on γ, which
are summarized in Table 1, we choose x, z and t so that the difference between the UIP for γ
that varies and the UIP for γ = 0.01 is as large as possible (on the domain of Figure 1 with
xmin = ln(21.6) and xmax = ln(73.9)). Similarly, Table 2 shows how the UIP varies with ρ.
As we can see, the UIP is decreasing in γ, while it is neither increasing, nor decreasing in ρ.
The first effect is very natural, since a higher risk aversion for the buyer is expected to induce
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a lower price. Concerning ρ, one would expect a higher price as the correlation ρ with the
forward market increases (in absolute value), since this widens the hedging opportunities for
the buyer. Nevertheless, in this model also J0 (i.e., the log-value function without investing
in the structured product) depends on ρ and this seems to produce a more complicated, non
necessarily monotonic, dependence on ρ. The combined effect of γ and ρ is not clear in general.

(log) spot price
cumulated quantity

0

10

20

30

0.2

40

50

0.15 4.240.1 3.83.60.05 3.43.20

"Classical" Price
Price with UIP

Figure 1: “Classical” price (above) of a swing contract and UIP (below). Prices are computed
at t = 0.5 with γ = 0.02.

γ 0.005 0.01 0.015 0.02

UIP 38.0289 37.8576 37.6902 37.5266

Table 1: Different values of UIP for a varying γ and x = log 73.9 ' 4.30, z = 0, t = 0.5, for ρ
fixed to 0.5.

ρ 0.01 0.25 0.50 0.75 0.99

UIP 37.8699 37.8371 37.8576 37.9346 38.0639

Table 2: Different values of UIP for a varying ρ and x = log 73.9 ' 4.30, z = 0, t = 0.5, for γ
fixed to 0.01.

5.2 A more realistic example

We now focus on computing the UIP of a more realistic swing option contract, with q = 1,

K = exp(2.5), ū = 1, T = 1, m = 0.1, M = 0.5.

Indeed, swing contracts usually have strictly positive strike price and a nonzero minimal cu-
mulated quantity to be purchased. The penalty function we use is the one in Equation (2.2)
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with C = 1000. We keep working under the linear dynamics model in Example 4.6, with
k = 0.01 and with parameters as in (5.2). We solve the PDE for v using a backward time
stepping finite difference method on the domain D = [0, T ] × [xmin, xmax] × [0, 1], where
xmin = ln(0.001), xmax = ln(500).

The approximating schemes for vt, vz, vx and vxx are as in Subsection 5.1, as well as the
boundary conditions, except for x = xmin: in fact, if x = xmin the optimal operational behavior
still consists in waiting as long as possible before exercising (this is because xmin is much smaller
than the expectation of X in the long run and the price is thus expected to increase), but now
we have to take into account the constraint m = 0.1 (recall that m = 0 in [12]). Hence we set:

us =

 0, s ∈
(
t, T − (m−z)+

ū

]
ū, s ∈

(
T − (m−z)+

ū , T
)
.

With this choice of u, it is possible to explicitly compute the approximating price (recall that
in the linear dynamics model in Example 4.6 the spot price is Pt = eXt and that ū = 1)

Et,xmin,z

[∫ T

t
us(e

Xs −K)ds+ Φ(eXT , ZuT )

]
= Et,xmin,z

[∫ T

T−(m−z)+
(eXs −K)ds+ Φ(eXT , ZuT )

]

as done in Benth et al. [12, Appendix A].

In Figure 2 we plot the price of the swing option at two different dates. Notice that in
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(a) Price at t = 0.5
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(b) Price at t = 0.75

Figure 2: Price of one swing contract with minimal annual quantity m = 0.1 and maximal
quantity M = 0.5.

both Figures 2(a) and (b) we cut the domain in z in order to focus on positive prices: for
0.5 = M < z < 1 the penalty function plays a crucial role and the price becomes negative. We
see that the UIP is decreasing in z (as in [12]) and increasing in x. Moreover, from Figure 2(b)
it is clear that for z > 0.25 the price is strictly decreasing. This might be explained as follows:
for a fixed value of the log spot x and for t = 0.75, if z > 0.25 the value of the contract is
lower than when z ≤ 0.25 and it even becomes lower and lower as z increases, since the time
to maturity is equal to 0.25 and so if z > 0.25 the buyer has less opportunities to exercise the
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option, hence less possibilities to take advantage of (possibly) higher prices. This is analogous
to what happens with linear prices, see e.g. [4].

Moreover, as an example, in Figure 3 we show the optimal exercise strategy û at time
t = 0.75 as a function of the (log) spot price x and of the cumulated quantity z. In the grey
region û = ū, while in the white region û = 0. From Figure 3 it is clear that, unless the spot

Figure 3: Optimal control û at time t = 0.75. In the grey region û = ū = 1, in the white region
û = 0.

price is very low, if the cumulated quantity z < m = 0.1, then it is always optimal to exercise
the option, to avoid the penalty. Furthermore, when x > 2.5, equivalently the spot price ex is
bigger than the strike price K = exp(2.5) and so the optimal policy consists in exercising the
option (i.e., ū = 1) whenever z ∈ [0, 0.25]. On the other hand, if the spot price is higher than
the strike, x > 2.5, and if the cumulated quantity satisfies z > 0.25 then it is not optimal to
exercise the option: in the current state m < z < M , thus we are not incurring the penalty and
the more we have used of our control, the higher the spot price has to be before we are willing
to exercise.

We conclude this section by showing in Figure 4 the candidate optimal hedging strategy ĥ1

found in Equation (3.21) as a function of the (log) spot price x and of the cumulated quantity
z, at time t = 0.5. We notice that, being the UIP increasing in x, vx is positive on our domain
(recall equation (3.21)), so that ĥ1 is always negative: in order to hedge a buyer position in
a swing option it is always “optimal” to sell the forward contract. Moreover, for a fixed z,
as the (log) spot price increases, the quantity of forward contracts to sell increases. On the
other hand, for a fixed x, π̂ is increasing as a function of z, for z ∈ [0, 0.5] (meaning that as
the cumulated quantity z increases towards M = 0.5, selling forward contracts is less and less
needed), while ĥ1 = 0 for z ≥M = 0.5, as expected.

6 Conclusions

In this paper, we considered the problem of pricing and hedging of structured products in energy
markets from a buyer’s perspective using the (exponential) utility indifference pricing approach.
The main novelty with respect to the existing literature is that buyer has the possibility to trade
in the forward market in order to hedge the risk coming from the structured contract.

We characterized the UIP in terms of continuous viscosity solutions of a suitable nonlinear
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Figure 4: Candidate optimal hedging strategy ĥ1 at time t = 0.5.

PDE. As a consequence, we were able to identify a candidate for the optimal exercise strategy
of the structured product as well as a portfolio strategy partially hedging the financial position.

Moreover, in a more specific setting with two assets and constant correlation, we showed
that the UIP equals the value function of an auxiliary simpler optimization problem under
a risk neutral probability, that can be interpreted as a perturbation of the minimal entropy
martingale measure.

Finally, we provided some numerical applications in the case of swing options. In particular,
we computed the UIP price as well as the optimal exercise and hedging strategies for a buyer of
one swing option in the linear dynamics model, by solving the corresponding nonlinear PDEs
via finite difference schemes. We highlighted the differences with respect to the classical price
as in [12] and discussed some qualitative properties.
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calculus. Cambridge University Press, 2000.

[48] E. Schwartz, J. E. Smith. Short-Term Variations and Long-Term Dynamics in Commodity
Prices. Management Science 46 (7) (2000), 893–911.

[49] M. Thompson, M. Davison, H. Rasmussen. Natural Gas Storage Valuation and Optimiza-
tion: a real option application. Naval Research Logistics (NRL) 56 (3) (2009), 226–238.

[50] A. R. L. Valdez, T. Vargiolu. Optimal portfolio in a regime-switching model. In: Proceedings
of the Ascona ’11 Seminar on Stochastic Analysis, Random Fields and Applications, ed.
R. C. Dalang, M. Dozzi, F. Russo, 435–449, Springer, 2013.

[51] X. Warin. Gas storage hedging. In: Numerical Methods in Finance. Springer Berlin Hei-
delberg (2012), 421–445.

A Proof of Proposition 3.4

The maximisation problem (2.8) fits the setting of Section 5 in the paper [11] on weak dynamic
programming principle. In particular, their Corollary 5.6 applies. More precisely, the essential
ingredients in the proof of Corollary 5.6 are the a-priori estimate (5.2) in [11], the local bound-
edness of the value function and the lower semi-continuity of the objective function in (t, x, y, z)
for all admissible controls. First, the a-priori estimate holds due to (2.11). Concerning the local
boundedness of the value function, it can be easily checked that in our setting the value function
is bounded since it is trivially nonpositive and, being (u, π) = (0, 0) an admissible strategy, we
have

V (t, x, y, z; q) ≥ −1

γ
exp

{
−γ
[
y + q inf

p∈R
((T − t)L(p, 0, 0) + Φ(p, 0))

]}
> −∞

since the functions L and Φ are bounded (cf. Assumption 2.1). Let (u, π) be an admissible
given control. Since the control is now fixed, we drop it from the notation of the state variable
at maturity and denote them as At,aT := (Xt,x

T , Y t,a
T , Zt,aT ) with a = (x, y, z), to stress the

dependence on the initial data. Now consider the objective function

[0, T ]× Rm × R× [0, ūT ] 3 (t, x, y, z) = (t, a) 7→ E[G(At,aT )],
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where G is defined in (2.9). From the continuity of the function G and of the state variables At,aT
with respect to the initial data (t, a), we get that G(At,aT ) is also continuous in (t, a). Moreover,
notice that since L and Φ are bounded (ref. Assumption 2.1) we have

|G(At,aT )| ≤ C exp

(
−γ
(
y +

∫ T

t

〈
πs,

dFs
Fs

〉))
,

for some constant C > 0. Therefore, to prove the lower semi-continuity of the objective function
it suffices to show that the family of random variables{

exp

(
−γ
∫ T

t

〈
πs,

dFs
Fs

〉)
: t ∈ [0, T ]

}
is uniformly integrable. We prove that they are bounded in L2 for all admissible controls, i.e.

sup
t∈[0,T ]

E
[
exp

(
−2γ

∫ T

t

〈
πs,

dFs
Fs

〉)]
<∞,

which will imply the uniform integrability. Let Ft,T be the smallest filtration generated by the
Brownian increment after t and satisfying the usual conditions. Consider the following change
of measure on Ft,T :

dQt

dP
:= exp

(
−2γ

∫ T

t
π∗sσ

∗
F (s,Xt,x

s )dWs − 2γ2

∫ T

t
|π∗sσ∗F (s,Xt,x

s )|2ds
)
, (A.1)

which is well defined. Indeed, the boundedness of σ∗FσF (cf. Assumption 3.2 (iii)) and the
admissibility property (2.5) imply that supt≤s≤T E[exp(ε|π∗sσ∗F (s,Xt,x

s )|2)] <∞ for some ε > 0,
hence the criterion in [34, Example 3, Sect. 6.2.3] is fulfilled. Moreover, the change of measure
(A.1) satisfies supt∈[0,T ] E[(dQt/dP)2] < ∞. This is a consequence of the admissibility of π as
in (2.5). Indeed,

dQt

dP
≤ exp

(
−2γ

∫ T

t
π∗sσ

∗
F (s,Xt,x

s )dWs

)
,

giving that

E

[(
dQt

dP

)2
]
≤ E

[
exp

(
−4γ

∫ T

t
π∗sσ

∗
F (s,Xt,x

s )dWs

)]

≤ E
[
exp

(
−8γ

∫ T

t
π∗sσ

∗
F (s,Xt,x

s )dWs − 2δ

∫ T

t
|π∗sσ∗F (s,Xt,x

s )|2ds
)]1/2

×E
[
e2δ

∫ T
t |π

∗
sσ
∗
F (s,Xt,x

s )|2ds
]1/2

= E
[
e2δ

∫ T
0 |π

∗
sσ
∗
F (s,Xt,x

s )|2ds
]1/2

,

with δ such that 2δ = (8γ)2/2, since the first exponential in the second inequality above is a

true martingale. Moreover, since π is admissible we have E
[
e2δ

∫ T
0 |π

∗
sσ
∗
F (s,Xt,x

s )|2ds
]
< ∞. As a

consequence, we obtain that dQt/dP is square integrable.
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Therefore we have

E
[
exp

(
−2γ

∫ T

t

〈
πs,

dFs
Fs

〉)]
= EQt

[
exp

(
−2γ

∫ T

t
π∗sµF (s,Xt,x

s )ds+ 2γ2

∫ T

t
|π∗sσ∗F (s,Xt,x

s )|2ds
)]

≤ E

[(
dQt

dP

)2
]
E
[
exp

(
−4γ

∫ T

t
π∗sµF (s,Xt,x

s )ds+ 4γ2

∫ T

t
|π∗sσ∗F (s,Xt,x

s )|2ds
)]

.

Using the linear growth condition of µF and the boundedness of σ∗FσF (cf. Assumption 3.2(ii)
and (iii)), we have

exp

(
−4γ

∫ T

t
π∗sµF (s,Xt,x

s )ds+ 4γ2

∫ T

t
|π∗sσ∗F (s,Xt,x

s )|2ds
)
≤ exp

(∫ T

0

(
c1|πs|+ c2|πs|2 + c3|Xs|2

)
ds

)
,

for some positive constants c1, c2, c3. To conclude it suffices to prove that the RHS above is
integrable for P. This follows from the admissibility of π as in (2.5) and the exponential uniform
bound (2.12) for X.

Finally, even though the space of admissible controls in our setting is smaller than the one
in [11], the value functions are the same since any controls in their space U0 can be clearly
approximated by admissible controls in A through truncation. The result follows.

B Regularity properties of the log-value function

In order to prove the next lemma we follow closely the approach in Pham [42], which has also
been used in [37] in a slightly different model with stochastic volatility with jumps and for an
agent with exponential utility. Since the proof mimicks closely the arguments in [42], we only
sketch them pointing out the main differences.

Lemma B.1. Let q ≥ 0. Let Assumptions 2.1 and 2.5 hold. Under Assumption 3.2 the
log-value function J(t, x, z; q) defined as in (3.1) has quadratic growth in (x, z) uniformly in t.

Proof. Since the claim Cut,T is bounded in (x, z) uniformly in the controls u (cf. Assumption

2.1), it suffices to prove that J0(t, x), the log-value function of the pure investment problem,
has quadratic growth in x uniformly in t.

First of all, repeating exactly the same arguments as in the proof of Theorem 3.1 in [42],
we get that if the PDE (3.10) with terminal condition J0(T, x) = log γ

γ admits a unique solution

belonging to C1,2([0, T ) × Rm) ∩ C0([0, T ] × Rm), whose x-derivative has linear growth, then
such a solution coincides with J0(t, x).

To conclude the proof, we need to show that the PDE (3.10) has a unique smooth solution
as above, whose x-derivative has linear growth. We adapt to our setting the arguments in the
proof of [42, Th. 4.1] under his Assumptions (H3a). Indeed, notice that our Assumption 3.2(i),
together with the Lipschitz continuity of b postulated in Assumption 2.5(ii), corresponds to
(H3a)(i) in [42]. Moreover Assumption 3.2(ii) implies (H3a)(ii), while Assumption 3.2(iii)
guarantees (H2)(b) (see Remark 2.3 in [42]).

Consider the PDE (3.17) in the case q = 0, with F (w) replaced by

Fk(w) := inf
α∈Bk

{
−F̃ (α)− 〈α,w〉

}
, w ∈ Rm, (B.1)
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where Bk is the centered ball in Rm with radius k ≥ 1. Recall that F̃ is the convex conjugate
of F and that is given by

F̃ (α) = −1

2
〈α,B−1α〉, α ∈ Im(B),

while it equals −∞ otherwise. Proceeding as in the proof of [42, Th. 4.1], we can apply Theorem
6.2 in [25], giving the existence of a unique solution J0,k ∈ C1,2([0, T )×Rm)∩C0([0, T ]×Rm)
with polynomial growth in x, for the parabolic PDE

J0,k
t +

1

2γ
〈(σ∗FσF )−1µF , µF 〉+ γFk(J

0,k
x ) +

1

2
tr
(

Σ∗ΣJ0,k
xx

)
= 0, (B.2)

with terminal condition J0,k(T, x) = log γ
γ . Notice that the convex conjugate F̃ of F , appearing

in the definition of Fk(w) in (B.1), can take the value −∞, which is not a problem here since
this value does not contribute to the infimum over α.

The next step consists, as in [42], in using a stochastic control representation of the solution
J0,k to derive a uniform bound on the derivative, independently of the approximation. Indeed,
from standard verification arguments we get that

J0,k(t, x) = inf
α∈Bk

EQ
[∫ T

t
Λ(s,Xs, αs)ds | Xt = x

]
,

where

Λ(s, x, α) =
1

2γ
〈(σ∗FσF )−1µF , µF 〉(s, x)− γF̃ (α),

where Bk is the set of Rm-valued adapted processes α bounded by k, and the controlled dynamics
of X under Q is given by

dXs = (b̄(s,Xs)− γαs)ds+ Σ∗(s,Xs)dW
Q
s ,

where WQ is a d-dimensional Brownian motion under Q and b̄ has been defined in (3.7). Notice
that, since Λ takes the value −∞ outside the image of B, then the optimal Markov control
evaluated along the optimal path α̂(s, X̂s) will lie on Im(B) a.s. for every s ∈ [t, T ]. We can
use Lemma 11.4 in [26] and the same estimates as in [42, Lemma 4.1] to obtain

|J0,k
x (t, x)| ≤ C(1 + |x|), ∀(t, x) ∈ [0, T ]× Rm,

for some positive constant C, which does not depend on k. Now we argue as in the proof of
[42, Th. 4.1], Case (H3a), to deduce that |α̂k(t, x)| ≤ C for all t ∈ [0, T ] and |x| ≤M for some
positive constant C (independent of k) and an arbitrarily large M > 0. Therefore, we get that,

for k ≤ C, Fk(J
0,k
x ) = F (J0,k

x ) for all (t, x) ∈ [0, T ] × BM . Letting M tend to +∞, we finally
get that J0,k is a smooth solution with linear growth on derivative to the PDE (3.17) (with
q = 0). To conclude, we have that J0 = J0,k for k sufficiently large, giving, in particular, that
J0 has quadratic growth in x uniformly in t. Therefore the proof is complete.

C Convergence of the numerical scheme

In this section we show that the value function obtained from the finite difference scheme
converges to v. We will follow an approach originally developed by Kushner [32] and based
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on stochastic control theory, which specifically requires that the finite difference scheme has a
Markov chain interpretation.

First of all we notice that Equation (4.11) can be written in the form of a Bellman-Isaacs
equation, as done in the proof of Theorem 3.3 part (i):

vt + inf
α∈R

sup
u∈[0,ū]

{
bα(t, x)vx +

1

2
σ2vxx + uvz + qL+

γα2

2σ2(1− ρ2)

}
= 0, (C.1)

with
bα(t, x) := δ(θ − x)− ρ σ

σ̄F
(a− kx)− γσ2(1− ρ2) [β(t) + 2Γ(t)x]− γα,

where β(t) and Γ(t) can be computed explicitly as solutions of the system of ODEs (4.10).
We now want to use the results in [3], or equivalently in [26, Ch. IX] (in the spirit of [33]),

which work well when the min-max is taken on compact sets. To do this, we approximate
infα∈R by infα∈BR , where BR := [−R,R], R ≥ 1 (we will eventually let R go to +∞), obtaining
a finite-difference approximation of the form (see the analogous equation (3.26) in [26, Ch. IX])

vni,j = inf
α∈BR

sup
u∈[0,ū]

{
p1,n
α,u;i,jv

n+1
i+1,j + p2,n

α,u;i,jv
n+1
i,j + p3,n

α,u;i,jv
n+1
i−1,j + p4,n

α,u;i,jv
n+1
i,j+1 + ∆t Lα,u;i,j

}
(C.2)

where

p1,n
α,u;i,j :=

σ2∆t

2(∆x)2
+

∆t

2∆x
bα(tn, xi),

p2,n
α,u;i,j := 1− σ2∆t

(∆x)2
− u∆t

∆z
,

p3,n
α,u;i,j :=

σ2∆t

2(∆x)2
− ∆t

2∆x
bα(tn, xi),

p4,n
α,u;i,j := u

∆t

∆z
,

Lα,u;i,j := L(exi , zj , u).

Notice that above quantities can be interpreted as the one-step transition probabilities of,
respectively, going up, nowhere or down in x and up in z, when at time tn the processes (X,Z)
is in the state (xi, zj): more explicitly, e.g.,

p1,n
α,u;i,j = P(Xtn+1 = xi+1, Ztn+1 = zj |Xtn+1 = xi, Ztn+1 = zj),

and the other ones can be written analogously. Hence, we are dealing with a Markov chain
approximation of the state variable. Notice that the sum of the above four probabilities is equal
to one.

For this Markov chain approximation to be rigorous, we must impose that pi,nα,u;i,j ∈ [0, 1]
for every i ∈ {1, 2, 3, 4} and for n ∈ {0, . . . , N − 1} and for all possible states i, j and controls
u, α.

Taking into account that the domain in (x, z) is bounded and α, u are also taken to be
valued in a compact domain, the two conditions p1,n

α,u;i,j ≤ 1 and p3,n
α,u;i,j ≤ 1 are satisfied as soon

as ∆t is small enough, since they read, respectively:

σ2

2(∆x)2
+
bα(tn, xi)

2∆x
≤ 1

∆t
,

σ2

2(∆x)2
− bα(tn, xi)

2∆x
≤ 1

∆t
,
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while imposing p1,n
α,u;i,j ≥ 0 and p3,n

α,u;i,j ≥ 0 yields

|bα(tn, xi)| ≤
σ2

∆x
,

which has to hold true for every control α, every n and every state xi, so that we find

∆x ≤ σ2

supα ‖bα‖∞
. (C.3)

Moreover p2,n
α,u;i,j is always smaller than 1, while asking its non-negativity gives as necessary

and sufficient condition
1

∆t
≥ σ2

(∆x)2
+

u

∆z
, (C.4)

which implies the well-known Courant-Friedrichs-Lewy condition u∆t ≤ ∆z (also present in
[12]) implying in turn p4,n

α,u;i,j ≤ 1. Finally, p4,n
α,u;i,j is always positive. We are now ready to

verify the conditions of monotonicity, stability and consistency required by the framework in
[3], which correspond to assumptions (4.3) - (4.6) in [26, Ch. IX]. We proceed as done in [26, Ch.
IX, Example 4.1]. The monotonicity is automatically given by the Markov chain interpretation
in Equation (C.2). The stability is implied by the same equation (which also has a unique
solution) and by the fact that L and Φ are bounded on the bounded domain: in fact, one can
easily prove by backward induction on n that

|vni,j | ≤ sup
α∈BR

sup
u∈[0,ū]

(T − tn)‖Lα,u‖∞ + ‖Φ‖∞ ≤ sup
u∈[0,ū]

T‖L(·, ·, u)‖∞ + ‖Φ‖∞, (C.5)

where in the last inequality we have used the fact the Lα,u does not depend on α and where
the upper bound is uniform in i, j and in the discretization step ∆t. Finally, the consistency
property holds because the finite differences converge uniformly on compact sets to the cor-
responding derivatives (see, e.g., [26, Theorem 4.2] and remember that we are working under
the linear dynamics model and in the case of swing contracts). So we now have the solution
vR to Equation (C.1) where infα∈R is replaced by infα∈BR . Because of the stochastic game
interpretation of this equation (as in [3]), letting R → +∞ gives that the sequence (vR)R≥1

decreases pointwise and, by Equation (C.5), it is bounded uniformly in α (here Lα,u does not
depend on α). Thus it admits a finite limit, v, which is the solution to Equation (C.1).
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