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Abstract. We show first results for the elastic scattering of neutrons off oxygen and calcium
isotopes obtained from ab initio optical potentials. The potential is derived using self–consistent
Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations
are compared to available scattering data and show that it is possible to reproduce low energy
scattering observables in medium mass nuclei from first principles.

1. Introduction
Recent years have seen considerable advances in the theory of optical potentials. Non locality
effects have been shown to be crucial for describing three-body processes [1, 2], the importance
of both scattering and bound states in the coupling to breakup channels has been explored [3],
and global dispersive optical potentials have been developed [4].

The greatest challenge remains, however, the one of describing the nuclear structure and
scattering consistently, from the same theory. Many-body Green’s function methods are
particularly suited to attempt this for medium and large nuclei since their central quantity, the
self-energy, is naturally linked to the Feshbach theory of optical potentials [5, 6]. In particular,
the particle part of the self-energy is equivalent to the original formulation of Feshbach, while
its hole part describes the structure of the target [7]. Nuclear field theory is one of the first
(semi phenomenological) attempts to build such a theory for atomic nuclei [8, 9] and it has
been extended to nuclear transfer reactions [10, 11]. Another incarnation of Green’s function
related theories is the dispersive optical model (DOM) [12], which is a data driven formulation of
global (local and non local) potentials constructed as the best possible parameterization of the
microscopic self-energy [13, 4]. Finally, in the last years the nuclear structure method (NSM)
followed by the authors of Ref. [14] obtained good reproduction of 40Ca scattering based on the
Gogny D1S interaction.

For transfer reactions, such as (d, p), it would be particularly important to have an optical
potential that is deduced consistently from the same Hamiltonian used in the proton-neutron
channel [2]. To do so, one needs realistic nuclear interactions and ab initio calculations of
elastic nucleon-nucleus scattering. The no-core shell model with continuum (NCSMC) has been
successful to calculate scattering and transfer reactions for light targets [15, 16, 17]. On the other
hand, the self consistent Green’s function (SCGF) formalism [18, 19] can calculate the ab initio
optical potential directly even for havier nuclei. This approach has been used to calculate phase
shifts [20] and to investigate analytical properties of DOMs [21]. However, these calculations
were limited to two-body forces and a direct comparison to the experiment has been hindered by
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the lack of realistic interactions capable to reproduce accurately nuclear radii. Coupled cluster
theory has also been recently employed [22], in combination with a Green function approach, to
calculate phase shifts for 16O.

Three-body interactions have been recently implemented for SCGF in [23, 24, 25]. Moreover,
the introduction of the NNLOsat interaction [26] has allowed a good reproduction of nuclear
saturation and, hence, of radii and binding energies across the oxygen [27] and calcium
chains [28]. Although this interaction has limitations regarding the symmetry energy in neutron
rich nuclei, we are now in the position to make a meaningful comparison of first principle
approaches to scattering data. Here, we perform state of the art SCGF calculations to test
the quality of current ab initio methods and of the NNLOsat Hamiltonian in predicting elastic
scattering.

2. The microscopic optical potential
The irreducible self-energy, Σ�(ω), has the following general spectral representation,

Σ�
αβ(E) = Σ

(∞)
αβ +

∑
i,j

M†
α,i

[
1

E − (K> +C) + iη

]
i,j

Mj,β

+
∑
r,s

Nα,r

[
1

E − (K< +D)− iη

]
r,s

N†
s,β , (1)

where α and β label the single particle quantum numbers and Σ(∞) is the correlated and
energy independent mean field. We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the matrices M (N) couple single particle
states to intermediate 2p1h (2h1p) configurations, C (D) are interaction matrices among these
configurations and K are their unperturbed energies [29, 30].

We use a spherical harmonic oscillator basis consisting of Nmax+1 oscillator shells, so the
optical potential for a given partial wave (l, j) is expressed in terms of the oscillator radial
functions Rn,l(r) as

Σ� l,j(r, r′;E) =
∑
n,n′

Rn,l(r) Σ
� l,j
n,n′(E)Rn′,l(r

′) , (2)

which is non local and energy–dependent. We solve the corresponding scattering problem in
the full one-body space (so that, even if the many–body structure is described in a Nmax

oscillator space, the kinetic energy is treated exactly, without truncations) and account for
the non locality and l, j dependence of Eq. (2). For each partial wave and parity, the phase
shifts δ(E) are obtained as function of the projectile energy, from where the differential cross
section is calculated. We will show results for incident energies in the laboratory frame, except
for Fig. 6 below.

3. Results
In the following, we consider the volume integrals of the real (JV ) and imaginary (JW ) parts of
the self-energy (i.e., the optical potential):

JV (E) = 4π
∫
drr2

∫
dr′r′2

∑
l,j �e{Σ� l,j(r, r′;E)} , (3)

JW (E) = 4π
∫
drr2

∫
dr′r′2

∑
l,j �m{Σ� l,j(r, r′;E)} , (4)

since these are strongly constrained by experimental data [6].
Fig. 1 shows the volume integrals of the neutron-16O potential for different model space

truncations. Both the part of the self-energy below the Fermi surface (which describes the
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Figure 1. Volume integrals of the real (left) and imaginary (right) parts of the neutron-16O
optical potential calculated for different numbers oscillator shells in the model space: Nmax = 7
(dotted), 11 (dashed) and 13 (solid lines). Note that �m{Σ�(E=EF )}=0, so JW (E=EF )=0,
where EF is the Fermi energy. Thus, the potential for particle (holes) states is above (below)
the gap in the JW plot.

structure of the target) and the resonant structures for scattering at low energy are substantially
converged already for Nmax=11. The oscillations seen at higher energies (E >10 MeV) are an
artefact of using a discretized model space and keep changing with Nmax. They can fade away
for an infinite space, or by exploiting an appropriate basis with continuum degrees of freedom.

Fig. 2 shows |JW | for neutron scattering on closed sub-shell Ca isotopes. The gap at the
Fermi surface, where �mΣ�(E)=0, shifts to higher energies and eventually crosses the continuum
threshold with increasing neutron number. Compared to previous calculations using the Argonne
v18 and N3LO(500) interactions [21], the NNLOsat predicts an increased level density in the
proximity of the Fermi energy, as expected for a correct nuclear saturation.

In Fig. 3, the neutron s1/2 and d3/2 phase shifts for 16O are shown for Nmax=11 and 13. In
the s1/2 case, the resonance at E ≈5 MeV changes by ≈ 0.5MeV between the two spaces. Note
that this state is dominated by 2p1h components and thus it can still be affected by many–
body truncations. The wiggles computed for energies E >8 MeV are due to similar but very
narrow resonances. Again, these are likely to be sensitive to the discretisation of the model
space and drift when increasing the number of oscillator shells. On the contrary, in the d3/2
case, the principal sharp resonance is dominated by pure single particle components, therefore
it is well converged respect to the model space truncation Nmax. We calculate its energy to be
≈ 1.15 MeV in the c.o.m. frame, while the experimental value is 0.94 MeV.

Fig. 4 shows the phase shifts for other representative partial waves. The calculated p1/2 and
p3/2 have both a sub-threshold bound state, although the p3/2 is experimentally only observed in
the continuum. We calculate a narrow f7/2 resonance at 3.5 MeV close to the experimental one at
3.77 MeV (laboratory energy) [31]. Note however that there are other f7/2 narrower resonances
that are also seen experimentally lying at 1.65 and 3.01 MeV. In general, we find that NNLOsat

predicts the location of dominant quasiparticle and holes states with a (conservative) accuracy
of <2 MeV for this nucleus.

Wavefunctions can also be calculated by diagonalizing the self–energy in the continuum. Fig.
5, shows overlap wavefunctions for the addition and removal of a p3/2 neutron to and from 16O,
as predicted by NNLOsat and SCGF.

Finally, Fig. 6 compares the differential cross section for the elastic scattering of neutrons
off 40Ca with the experiment at 13.56 MeV c.o.m. energy, with Nmax=11. Minima in the cross
section are reproduced reasonably well, confirming the correct prediction of matter radii, but
there appears to be a general lack of absorption. This may be due to either missing doorway
configurations (3p2h and beyond) or to the (still crude) model space. Note that proton scattering
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Figure 2. Volume integral of the imaginary part of the neutron optical potentials, JW (E), for
targets at the subshell closure of calcium isotopes: 40Ca, 48Ca, 52Ca, 54Ca, 60Ca, calculated at
Nmax=11.

on 40Ca was also computed in Ref. [32].

4. Conclusions
Even with the limitations of a (non optimal) oscillator basis, we found that most important
features of optical potentials are well reproduced. In the long term, it will be necessary to
properly account for the continuum in calculating the self-energy and to improve the realistic
nuclear interactions. Nevertheless, it is clear from the present results that reliable ab initio
calculations of optical potentials are now a goal within reach.
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Figure 3. Nuclear phase shifts, δ(E), for neutrons scattering off 16O as a function of the incident
neutron energy. Left panel: s1/2 partial wave phase shifts for Nmax=11 (dashed) and 13 (solid).
All oscillations seen at energies above 8 MeV are calculated narrow resonances (originating form
poles of the self-energy) and go through a full shift of π. Right panel: d3/2 partial wave phase
shifts for for Nmax=11 (dashed) and 13 (solid).

Figure 4. Nuclear phase shifts, δ(E), for scattering off 16O as a function of the incident neutron
energy for p1/2, p3/2, and f7/2 partial waves. Experimental phase shifts from [31] (not shown
on the figure) are qualitatively reproduced (e.g. the broad resonance of p1/2) and the energy of
narrow resonances is generally reproduced within 1 MeV. See also discussion the text.
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Figure 5. Radial nuclear overlap wave function for the neutron s1/2 and p3/2 states, obtained
by diagonalizing the self energy in the exact continuum, without considering center of mass
correction. The 0p3/2 hole state at −20.704 MeV (solid red line), is compared to the 1s1/2
particle state at −3.095 MeV. The spectroscopic factors are 0.80 and 0.86 respectively.
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Figure 6. Plot of differential cross section for neutron elastic scattering on 40Ca at 13.56 MeV
of center of mass energy compared with experimental data from [33].
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[25] Cipollone A, Barbieri C and Navrátil P 2015 Phys. Rev. C 92(1) 014306 URL

http://link.aps.org/doi/10.1103/PhysRevC.92.014306

[26] Ekström A, Jansen G, Wendt K, Hagen G, Papenbrock T, Carlsson B, Forssén C, Hjorth-Jensen M, Navrátil
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