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Oscillatory instabilities in three-dimensional frictional granular matter
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The dynamics of amorphous granular matter with frictional interactions cannot be derived in general from
a Hamiltonian and therefore displays oscillatory instabilities stemming from the onset of complex eigenvalues
in the stability matrix. These instabilities were discovered in the context of one- and two-dimensional systems,
while the three-dimensional case was never studied in detail. Here we fill this gap by deriving and demonstrating
the presence of oscillatory instabilities in a three-dimensional granular packing. We study binary assemblies
of spheres of two sizes interacting via classical Hertz and Mindlin force laws for the longitudinal and tangent
interactions, respectively. We formulate analytically the stability matrix in three dimensions and observe that
a couple of complex eigenvalues emerge at the onset of the instability as in the case of frictional disks in two
dimensions. The dynamics then shows oscillatory exponential growth in the mean-square displacement, followed
by a catastrophic event in which macroscopic portions of mechanical stress and energy are lost. The generality
of these results for any choice of forces that break the symplectic Hamiltonian symmetry is discussed.
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I. INTRODUCTION

The mechanics of dense granular matter has attracted wide
interest for decades as a paradigmatic example of disordered
glassy systems [1–4] and for its importance for technolog-
ical applications in several fields, from pharmaceutics to
agriculture [5]. In contrast with other disordered materials,
such as silica glasses or metallic glasses where a standard
atomistic description is in principle possible, granular media
are ruled by mesoscale frictional interactions between grains.
As a consequence of this, frictional granular materials cannot
be described by a Hamiltonian from which the intergranule
forces can be derived. The fundamental reason for this is that
frictional forces depend on time and velocities, and can thus
not be incorporated into a Hamiltonian. It was discovered
and demonstrated recently that the lack of a Hamiltonian has
generic consequences for the dynamics of granular media in
the form of oscillatory instabilities that can drive the system
to catastrophic mechanical failure [6–8].

Since the dynamics of granular media is not derivable from
a Hamiltonian, the usual approach to the stability of amor-
phous systems, which is based on the analysis of the Hessian
matrix (second derivative of the Hamiltonian with respect to
coordinates), is not tenable. Nevertheless, forces exist, and the
dynamics follows Newton’s equations for the accelerations in
terms of these forces. The stability of a stationary solution
of these equations is determined by the so-called “J-matrix,”
which is the first derivative of the forces with respect to the
coordinates; cf. Sec. II below. The formalism that exposes
the instability and its consequences were explored so far only

in two dimensions [6,7]. In the present paper, we extend the
formulation to three dimensions, compute analytically the J-
matrix for assemblies of compressed frictional spheres subject
to external shear forces, and demonstrate the instability and its
consequences.

The structure of this paper is as follows: in Sec. II we
describe the generalization of the model studied in Refs. [6,7]
to three dimensions. The force between spheres and the
equations of motion are described. In Sec. III we discuss the
numerical protocols used to expose the oscillatory instability.
Section IV describes the results of the numerical simulations
and the catastrophic failure that results from the instability.
The last section, Sec. V, offers a summary and some conclud-
ing remarks.

II. MODEL AND EQUATIONS OF MOTION

A. Forces

To study the oscillatory instability we employ here a
generalization to three dimensions of the same model used
before in two dimensions. There is nothing special about this
model except that it is time-honored, being used many times
by many authors. We have checked explicitly that changing
the analytic forms of the interaction forces, for example,
changing the longitudinal force to be simply linear in the
tangential displacement, does not affect that appearance of
the instability. The point is that the crucial ingredient is that
the forces are not derivable from a Hamiltonian, and the rest
follows quite generically.
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The model discussed here consists of a binary mixture of
N = 100 frictional spheres of mass m in a box of size L3, half
of which with radius σ1=0.5 and the other half with σ2 = 0.7.
The position of the center of mass of the ith sphere is denoted
ri. The interaction between two spheres has a normal and
a tangential component. When the assembly of spheres is
compressed the spheres overlap. The normal force between
the ith and the jth spheres is determined by the amount of
overlap δi j ≡ σi + σ j − ri j , where ri j ≡ ri − r j . We choose
for the normal force the Hertzian model, but stress that the
qualitative nature of our results is independent of the precise
choice of the forces:

F (n)
i j = knδ

3/2
i j r̂i j, r̂i j ≡ ri j/ri j . (1)

The tangential force is caused by the tangential displace-
ment t i j between adjacent spheres. The tangential force is
always orthogonal to r̂i j . Upon first contact between the parti-
cles, ti j = 0. In three dimensions the tangential displacement
is determined by a three-dimensional (3D) angular coordinate
θi ≡ {θ x

i , θ
y
i , θ z

i }. The change in tangential displacement is
given by

dt i j = dri j − (dri j · ri j )r̂i j + r̂i j × (σidθi + σ jdθ j ). (2)

Following this equation one computes t i j by integrating over
time the relative velocity of the particles at the point of
contact. In the Mindlin model, the tangential force depends
on t i j and on the contact area which is proportional to

√
δi j

[9]:

F (t )
i j = −ktδ

1/2
i j ti j t̂i j . (3)

Like in all frictional models the tangential force is required to
satisfy the Coulomb condition

F (t )
i j � μF (n)

i j , (4)

where μ is the friction coefficient. For the sake of writing
an analytic form of the stability J-matrix we smooth out the
Coulomb law such that the tangential force will have smooth
derivatives; we choose

F (t )
i j = −ktδ

1/2
i j

⎡⎣1 + ti j

t∗
i j

−
(

ti j

t∗
i j

)2
⎤⎦ti j t̂i j,

t∗
i j ≡ μ

kn

kt
δi j . (5)

The derivative of the force with respect to ti j vanishes
smoothly at ti j = t∗

i j , and the Coulomb law (4) is fulfilled. We
stress that the instabilities reported below do not depend on
this smoothing of the tangential force; instabilities are often
seen before any Coulomb limit is reached.

B. Equations of motion

Once we defined the forces we can write the equations of
motion, which are simply Newton’s equations for an extended
set of coordinates qi = {ri, θi}:

m
d2ri

dt2
= F i(q1, q2, . . . , qN ),

Ii
d2θi

dt2
= T i(q1, q2, . . . , qN ), (6)

where Ii are moments of inertia for the spheres, F i are forces,
and T i are torques.

In the simulations reported below we employ a unit mass
mi = 1 and moment of inertia Ii = 0.4miσ

2
i . The normal

interaction between the granular particles is given by Eq. (1),
while the tangential one is given by Eq. (5), with kn = 200 000
and kt = 2kn/7. We use m, 2σ1, and

√
m(2σ1)−1/2k−1

n as units
of mass, length, and time, respectively. We fix the friction
coefficient to a high value, μ = 10, to emphasize that the
existence of a Coulomb threshold is not responsible for the
reported phenomenology.

C. The stability matrix

Using the smoothed-out force (5) allows us to compute
analytically the stability matrix, which is an operator obtained
from the derivatives of the force F i and the torque T i on each
particle with respect to the coordinates. In other words,

Jαξ
i j ≡ ∂F̃α

i

∂qξ
j

, F̃ i ≡
∑

j

F̃ i j, (7)

where q j stands for either a spatial position or a tangential
coordinate, and F̃ i stands for either a force or a torque. We
stress the obvious fact that J is not a symmetric operator.
Being real it can possess pairs of complex eigenvalues. When
these appear, the system will exhibit oscillatory instabilities,
since one of each complex pair will cause an oscillatory
exponential divergence of any perturbation, and the other an
oscillatory exponential decay. The actual calculation of the
operator J for the 3D case is detailed in Appendix A.

III. SIMULATION PROTOCOLS AND THE
BIRTH OF THE INSTABILITY

The equations of motion are solved using two types of
algorithms: “Newtonian” and “overdamped.” The first is sim-
ply a solution of the Newton equations of motion with the
given forces (6). The second algorithm is solving the same
equations of motion but with a damping force that is pro-
portional to the velocities of the centers of mass ṙi of the
spheres with a coefficient of proportionality ηv = mη0. If not
otherwise mentioned we use η0 = 2.2 × 10−2 expressed in
reduced units. This value of η0 ensures that the dynamics is
overdamped as the damping timescale η−1

v is of the order of
the time that sounds needs to travel one particle diameter.
The reader should note that the overdamped equations are
employed to reach a stationary solutions with zero forces F i

and torques T i on all the disks for the purpose of computing
the J-matrix. We use LAMMPS [10] to perform the numerical
integration for these two algorithms, with integration time step
10−5

√
(2σ1)1/2knm−1.

An initial configuration is prepared by arranging assem-
blies of binary spheres randomly in a 3D box and then perform
two consecutive runs of overdamped dynamics to bring the
configuration at mechanical equilibrium. The initial config-
uration is prepared focusing on a frictionless system (i.e.,
μ = 0), and hence has no complex eigenvalues. Afterwards,
we switch on friction and perform athermal quasistatic (AQS)
simulations: starting from the initial stable configuration we
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FIG. 1. Evolution of minimum (blue line) and maximum (green
line) complex eigenvalue pair with increasing strain, using AQS
protocol.

shear the simulation box along the (x) direction by the amount
δγ , and then we run the overdamped dynamics until the
system reaches mechanical equilibrium. The system is con-
sidered to be in mechanical equilibrium when the net force
on each sphere is less than 5 × 10−14. After each such steps
we diagonalize the J-matrix and calculate the eigenvalues. As
in the two-dimensional (2D) system [6], at some value of the
strain we identify the birth of a couple of conjugate complex
eigenvalues.

A. The oscillatory instability

When a pair of complex eigenvalues λ1,2 = λr ± iλi gets
born, a novel instability mechanism develops. A pair of com-
plex conjugate eigenvalues correspond to four solutions eiωt

to the linearized equation of motion with

iω1,2 = ωi ± iωr, iω3,4 = −ωi ± iωr, (8)

with ωr ± iωi = √
λr ± iλi. The first pair in Eq. (8) will

induce an oscillatory motion with an exponential growth of
any deviation q(0) from a state of mechanical equilibrium,

q(t ) = q(0)eωit sin(ωrt ). (9)

The second pair represents an exponentially decaying oscilla-
tory solution. The actual spatial dynamics that sets in due to
this instability will be discussed below in Sec. IV. Figure 1
shows the imaginary component of the dominant eigenpair.
Note that with increasing strain the imaginary component can
reduce and disappear, then reappear as γ is increased further.
At higher values of γ one can easily obtain the simultaneous
existence of many complex eigenpairs.

IV. DYNAMICAL CONSEQUENCES OF THE INSTABILITY

Once the J-matrix exhibits at least one conjugate complex
pair of eigenvalues, the system loses mechanical stability. To
see the evolution under the influence of this instability one
needs to run the Newtonian equations (6). Starting from a
configuration with only a pair of complex eigenvalues, with

FIG. 2. Time dependence of the imaginary component of all 600
eigenvalues of the system during a Newtonian simulation.

large λi = 5.87 × 10−5, we run the Newtonian dynamics and
evaluate the eigenvalues of the J-matrix at fixed intervals of
time. As in the 2D case, we observe that the eigenvalues re-
main constant for a period of time until an instability develops;
cf. Fig. 2. The complex eigenvalue induce a spiral motion in
three dimensions as shown below.

To underline the exponential growth of small perturbations
we consider the mean-square displacement M(t ) as a function
of time:

M(t ) ≡ 1

N

∑
i

{
�rx

i (t )2 + �ry
i (t )2 + �rz

i (t )2

+ σ 2
i

[
�θ x

i (t )2 + �θ
y
i (t )2 + �θ z

i (t )2
]}

, (10)

which is reported in Fig. 3(a). We observe an increase in
time of about 10 orders of magnitude following an oscillatory
exponential growth. The blue curve represents the computed
MSD as a function of time, and the red dotted curve is
the predicted exponential: a0 exp[2ωit] where a0 represent
an offset constant. Figure 3(b) reports a blow up of the
MSD growth with the fitted function (red dotted curve) being
a0 exp[2ωit][sin(ωrt + ψ )]2 with ψ fitted. The values of fitted
ωr and ωi correspond perfectly to those expected frequencies
computed from the complex eigenvalue.

The particle trajectories during the development of the
instability display a 3D funnel motion; see Fig. 4.

We focus finally on the virial component of the shear
stress σxy = − 1

L2

∑
i �= j rx

i jF
y

i j and find that the trend reported
in Fig. 5 is also similar to the 2D case. During the linear
stage of the development of the instability the stress oscillates
around zero, with elastic energy given to particle motion and
back [Fig. 5(b)]. Once the nonlinear regime is reached the
system goes through a catastrophic failure, which is induced
by granules losing contacts. Then macroscopic portions of
stress and energy are lost.

V. CONCLUSIONS

We presented the development of mechanical instabilities
in a disordered packing of frictional spheres, extending to

052902-3



SILVIA BONFANTI et al. PHYSICAL REVIEW E 101, 052902 (2020)

(a)

(b)

FIG. 3. MSD (blue line) and fit (red dotted line) during the
Newtonian dynamics. (a) The fit is the predicted exponential growth
from the linear instability, a0 exp[2ωit], with a0 being fitted. (b) The
MSD is fitted by the exponential oscillatory instability prediction,
a0 exp[2ωit][sin(ωrt + ψ )]2, with ψ fitted, as explained in the paper.

three dimensions the description of the J-matrix previously
derived for 2D disks [6,7]. We have shown that there exist
instabilities arising in typical granular compounds under ex-
ternal shear which are formally related to the emergence of
imaginary eigenvalues; these dictate the characteristic time
of the exponential growth and of the oscillatory period of
particles motion. Importantly, these results should hold for
any kind of normal and tangential force expressions which
are not derivable from a Hamiltonian, thus providing a general
framework to predict the shear force limit and the response of
the system upon its crossing.

We would like to point out that our granular packing is
prepared in a way that leads to an isotropic contact dis-
tribution. The proposed mechanism therefore describes the
development of the first frictional instability at low shear,
affecting the initial shear stress by a significant amount. In
future work, it will be important to confirm if this instability
remains macroscopically relevant also for larger strains when
the contact distribution becomes more anisotropic. Previous
work compared discrete element models with experimental

(a)

(b)

FIG. 4. Views of the trajectory of (a) few and (b) many spheres
during the Newtonian dynamics. Here actual particle displacements
are amplified by a factor 109. Viewing the funnel-like trajectory from
a specific perspective might resemble the view of the spirals in two
dimensions.

data for granular packings in a steady-state flow regime, and a
similar instability was not discussed [11]. Further work is thus
needed to clarify if the mechanism we propose remains valid
in the limit of large strains.

The mechanism we discuss here should describe the am-
plification of mechanical perturbations in countless granu-
lar matter systems extending over a large range of scales.
Earthquake faults are often separated by a granular grit that
is sheared by the slow motion of tectonic plates [12]. The
development and growth of mechanical instabilities described
here has thus a straightforward application to slip nucleation
in the geophysical context [13,14]. Other relevant applications
of our theoretical framework comprise the design of pharma-
ceutical tablets, the modeling of the formation of icebergs,
or the stability of grains in silos. As long as the dynamics
is describable by forces which are not derivable from a
Hamiltonian, this instability should be generic.
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(a)

(b)

FIG. 5. (a) The long-time evolution of the shear stress (virial
contribution) σxy versus time, during Newtonian dynamics. When the
nonlinear regime is reached, the stress experiences a macroscopic
drop, in the present case of 22%. (b) Enlarged view of the stress
change during the linear evolution of the instability.
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APPENDIX A: CALCULATION OF THE OPERATOR J
IN THREE DIMENSIONS

The Jacobian operator J, which represents the dynamical
response of the system, is given by the derivative of the forces
and of the torques acting on the particles with respect to all the
degrees of freedom. The interaction forces used in this work
are recalled in Sec. A 1, and the tangential displacement and
its derivative are described in Sec. A 2. The expressions for all
the components of J and how these components are arranged
as a matrix are reported in Appendix B.

1. Interaction force

In our model, a pair of granules interacts when they over-
lap. The overlap distance δi j is given by

δi j = σi + σ j − ri j, (A1)

where ri j is the center-to-center distance of a pair-i and j, and
σi is the radius of particle i. The pair vector ri j is defined as

ri j = ri − r j . (A2)

The pair-interaction force F i j has two contributions. F (n)
i j is

the force acting along the normal direction of the pair r̂i j , and
F (t )

i j is the force acting along the tangential direction of the
pair t̂i j . The normal force is Hertzian:

F (n)
i j = knδ

3/2
i j r̂i j, (A3)

where kn is the force constant with dimension: force per
length3/2. The tangential force F (t )

i j is a function of both the
overlap distance δi j and the tangential displacement t i j . As
done in previous work for a 2D frictional system, we have
modified the standard expression for F (t )

i j and included a few
higher-order terms of ti j (i.e., |t i j |) such that the derivative of
the force function F (t )

i j with respect to tangential distance ti j

becomes continuous and it goes to zero smoothly. We use the
following form:

F (t )
i j = −ktδ

1/2
i j

⎡⎣1 + ti j

t∗
i j

−
(

ti j

t∗
i j

)2
⎤⎦ti j t̂i j

= −ktδ
1/2
i j t∗

i j t̂i j, if ktδ
1/2
i j ti j > μ

∣∣F (n)
i j

∣∣, (A4)

where kt is the tangential force constant. Its dimension is force
per length3/2. t∗

i j is the threshold tangential distance:

t∗
i j = μ

kn

kt
δi j, (A5)

where μ is the friction coefficient, a scalar quantity, which
essentially determines the maximum strength of the tangential
force with respect to the normal force at a fixed overlap δi j .
The derivative of F (t )

i j with respect to ti j vanishes at t∗
i j , as it

turns out:

∂F (t )
i j

∂ti j
= ktδ

1/2
i j

⎡⎣1 + 2
ti j

t∗
i j

− 3

(
ti j

t∗
i j

)2
⎤⎦

= 0, if ktδ
1/2
i j ti j > μ

∣∣F (n)
i j

∣∣.
(A6)

We stress here that the above forces imply a non-
Hamiltonian dynamics. That is, there is not a function U (δ, t )
such that F (n) = − ∂U

∂δ
and F (t ) = − ∂U

∂t .

2. Tangential displacement

The tangential force is a function of both t i j and ri j . The
derivative of this force thus includes the derivative of the two
latter quantities. Here we evaluate these derivatives using the
chain rule.

The derivative of tangential displacement t i j with respect
to time t is

dt i j

dt
= vi j − vn

i j + r̂i j × (σiωi + σ jω j ), (A7)

where vi j = vi − v j is the relative velocity of pair i and j. vn
i j

is the projection of vi j along the normal direction r̂i j . vi j − vn
i j

is the tangential component of the relative velocity. ωi and ω j
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are the angular velocity of i and j, respectively. In differential
form, the above equation reads

dt i j = dri j − (dri j · r̂i j )r̂i j + r̂i j × (σidθi + σ jdθ j ), (A8)

where dθi is the angular displacement of i, which follows the
relation dωi = dθi

dt .
Hereafter we assume the 3D system. Therefore, ωi, and so

θi, have components along x̂, ŷ, ẑ, and the cross-product is

r̂i j × dθi =
(

yi j

ri j
dθ z

i − zi j

ri j
dθ

y
i

)
x̂ +

(
zi j

ri j
dθ x

i − xi j

ri j
dθ z

i

)
ŷ

+
(

xi j

ri j
dθ

y
i − yi j

ri j
dθ x

i

)
ẑ. (A9)

Now, if particle i changes its position the angular displace-
ment remains unaffected, dθi

drα
i

= 0. Thus, the change in tan-
gential displacement along β due to the change in position of
particle i along α contributes only in translations, and it can
be written as

dtβ
i j

drα
i

= �αβ − rα
i j r

β
i j

r2
i j

, (A10)

where �αβ is the Kronecker δ, which is one when α = β, or
else zero. Similarly, a change in rotational coordinates does

not modify the particles’ relative distance,
drβ

i j

dθi
= 0. Thus, the

change in tangential displacement along β due to the change
in θi is⎡⎢⎢⎣

dtx
i j

dθ x
i

= 0
dtx

i j

dθ
y
i

= −σi
zi j

ri j

dt x
i j

dθ z
i

= +σi
yi j

ri j

dt y
i j

dθ x
i

= +σi
zi j

ri j

dt y
i j

dθ
y
i

= 0
dty

i j

dθ z
i

= −σi
xi j

ri j
dt z

i j

dθ x
i

= −σi
yi j

ri j

dt z
i j

dθ
y
i

= +σi
xi j

ri j

dt z
i j

dθ z
i

= 0

⎤⎥⎥⎦. (A11)

The magnitude of tangential distance ti j can be obtained
from the relation t2

i j = ∑
α tα

i j
2, and its differential follows

dti j = ∑
α

tα
i j

ti j
dtα

i j . The derivatives of tangential distance ti j

with respect to rα
i and θα

i can be expressed as

dti j

drα
i

=
(

t x
i j

ti j

)
dtx

i j

drα
i

+
(

t y
i j

ti j

)
dty

i j

drα
i

+
(

t z
i j

ti j

)
dtz

i j

drα
i

, (A12)

dti j

dθα
i

=
(

t x
i j

ti j

)
dtx

i j

dθα
i

+
(

t y
i j

ti j

)
dty

i j

dθα
i

+
(

t z
i j

ti j

)
dtz

i j

dθα
i

. (A13)

With the help of Eqs. (A10) and (A11) we can solve the above
two differential equations. As the tangential threshold is a
linear function of overlap distance δi j [see Eq. (A5)], it also
gets modified due to a change in rα

i as

dt∗
i j

drα
i

= −μ

(
kn

kt

)
rα

i j

ri j
, (A14)

and it is unaffected by the change in rotation,
dt∗

i j

dθα
i

= 0.

APPENDIX B: EVALUATION OF J

1. Derivative of tangential force

The derivative of tangential force [Eq. (A4)] with respect
to rα

i is

∂F (t )
i j

β

∂rα
i

= −kt
∂

∂rα
i

[
δ

1/2
i j

(
tβ
i j + t̃ tβ

i j − t̃2tβ
i j

)]
= −1

2
δ−1

i j

rα
i j

ri j
F (t )

i j
β − ktδ

1/2
i j

[
(1 + t̃ − t̃2)

∂tβ
i j

∂rα
i

+ (t̃β − 2t̃ t̃β )
∂ti j

∂rα
i

+ (−t̃ t̃β + 2t̃2t̃β )
∂t∗

i j

∂rα
i

]
. (B1)

Here we use the notation t̃ to represent the ratio ti j/t∗
i j , and the

notation t̃β for ti j
β/t∗

i j . The expressions for all the three partial
differentiation in (B1) are already shown in (A11), (A12), and
(A14).

Similarly, the derivative of tangential force with respect to
θα

i (using the same notation as above) can be found as

∂F (t )
i j

β

∂θα
i

= −ktδ
1/2
i j

[
(1 + t̃ − t̃2)

∂tβ
i j

∂θα
i

+ (t̃β − 2t̃ t̃β )
∂ti j

∂θα
i

]
.

(B2)

From the above two equations it is then understood that if ri j

and t i j are known, the differential equations can be solved
easily. When t̃β is negligible for all β, then t̃ ≈ 0. This

translates to −ktδ
1/2
i j

∂tβ
i j

∂θα
i

implying that even in the case of zero
tangential displacement and, therefore, zero tangential force,
the above derivative can be finite.

2. Derivative of normal force

The derivative of normal force [Eq. (A3)] with respect to
rα

i is

∂F (n)
i j

β

∂rα
i

= kn
∂

∂rα
i

[
δ

3/2
i j

rβ
i j

ri j

]

= knδ
1/2
i j

[
�αβ

δi j

ri j
− 3

2

rα
i j r

β
i j

r2
i j

−
(

δi j

ri j

)
rα

i j r
β
i j

r2
i j

]
, (B3)

where �αβ is the Kronecker δ. The derivative of total force,
which reads

∂Fi j
β

∂rα
i

= ∂F (n)
i j

β

∂rα
i

+ ∂F (t )
i j

β

∂rα
i

, (B4)

∂Fi j
β

∂θα
i

= ∂F (t )
i j

β

∂θα
i

, (B5)

can be solved using (B3), (B1), and (B2).

3. Derivative of torque

The torque of particle j due to tangential force F (t )
i j

is T j = −σ j (r̂i j × F (t )
i j ) ≡ σ jT̃ i j . In three dimensions, the
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components of T̃ i j are

T̃ x
i j = −

[(
yi j

ri j

)
F (t )

i j
z −

(
zi j

ri j

)
F (t )

i j
y
]
.

T̃ y
i j = −

[(
zi j

ri j

)
F (t )

i j
x −

(
xi j

ri j

)
F (t )

i j
z
]
,

T̃ z
i j = −

[(
xi j

ri j

)
F (t )

i j
y −

(
yi j

ri j

)
F (t )

i j
x
]
. (B6)

The derivatives of T̃ x
i j , T̃ y

i j, T̃ z
i j then are

∂T̃ x
i j

∂rα
i

= −
(

δαy

ri j
− yi jrα

i j

r3
i j

)
F (t )

i j
z −

(
yi j

ri j

)
∂F (t )

i j
z

∂rα
i

+
(

δαz

ri j
− zi jrα

i j

r3
i j

)
F (t )

i j
y +

(
zi j

ri j

)
∂F (t )

i j
y

∂rα
i

,

∂T̃ y
i j

∂rα
i

= −
(

δαz

ri j
− zi jrα

i j

r3
i j

)
F (t )

i j
x −

(
zi j

ri j

)
∂F (t )

i j
x

∂rα
i

+
(

δαx

ri j
− xi jrα

i j

r3
i j

)
F (t )

i j
z +

(
xi j

ri j

)
∂F (t )

i j
z

∂rα
i

,

∂T̃ z
i j

∂rα
i

= −
(

δαx

ri j
− xi jrα

i j

r3
i j

)
F (t )

i j
y −

(
xi j

ri j

)
∂F (t )

i j
y

∂rα
i

+
(

δαy

ri j
− yi jrα

i j

r3
i j

)
F (t )

i j
x +

(
yi j

ri j

)
∂F (t )

i j
x

∂rα
i

,

(B7)

where δαx (similarly, δαy and δαz) is the Kronecker δ, such that
δxx = 1, δyx = 0, and δzx = 0, and

∂T̃ x
i j

∂θα
i

= −
[(

yi j

ri j

)
∂F (t )

i j
z

∂θα
i

−
(

zi j

ri j

)
∂F (t )

i j
y

∂θα
i

]
,

∂T̃ y
i j

∂θα
i

= −
[(

zi j

ri j

)
∂F (t )

i j
x

∂θα
i

−
(

xi j

ri j

)
∂F (t )

i j
z

∂θα
i

]
,

∂T̃ z
i j

∂θα
i

= −
[(

xi j

ri j

)
∂F (t )

i j
y

∂θα
i

−
(

yi j

ri j

)
∂F (t )

i j
x

∂θα
i

]
. (B8)

The above two differential equations can be solved using (B1),
and (B2).

4. Jacobian

The dimension of Jacobian operator J is force over length.
To be consistent with the dimension we redefine the torque T
and rotational coordinate θ as

T̃i = Ti

σi
, and θ̃i = σiθi. (B9)

In addition, the dynamic matrix has a contribution from the
moment of inertia Ii = I0miσ

2
i as �ωi = T i/Ii�t . In our

calculation, we assume that mass mi and I0 both are one. The
remaining contribution of Ii, σ 2

i , is taken care of by rescaling
the torque and the angular displacement as T̃i and θ̃i (B9). For
I0 �= 1, the contribution of I0 can be correctly anticipated if we
rewrite (A7) as

dt i j

dt
= vi j − vn

i j + 1

I0
r̂i j × (σiωi + σ jω j ) (B10)

J essentially contains four different derivatives:
First type: Derivative of force with respect to the position

of particles:

Aαβ
i j =

N−1∑
k=0;k �= j

∂Fβ

k j

∂rα
i

= ∂Fβ
i j

∂rα
i

, for i �= j,

Aαβ
ii =

N−1∑
j=0; j �=i

∂Fβ
ji

∂rα
i

= −
N−1∑

j=0; j �=i

Aαβ
i j , (B11)

where N is the total number of particles. Aαβ
i j is symmetric if

we change pairs, Aαβ
i j = Aαβ

ji ; however, the symmetry is not
guaranteed with the interchange of α and β.

Second type: Derivative of force with respect to rotational
coordinate:

Cαβ
i j = −

N−1∑
k=0;k �= j

∂Fβ

k j

∂θ̃α
i

= −∂Fβ
i j

∂θ̃α
i

, for i �= j,

Cαβ
ii = −

N−1∑
j=0; j �=i

∂Fβ
ji

∂θ̃α
i

= −
N−1∑

j=0; j �=i

Cαβ
i j . (B12)

The negative sign ensures that in stable systems all the eigen-
values are positive. Cαβ

i j is asymmetric: Cαβ
i j = −Cαβ

ji .
Third type: Derivative of torque with respect to position:

Bαβ
i j =

N−1∑
k=0;k �= j

∂T̃ β

k j

∂rα
i

= ∂T̃j

∂rα
i

, for i �= j,

Bαβ
ii =

N−1∑
j=0; j �=i

∂T̃ β
ji

∂rα
i

=
N−1∑

j=0; j �=i

Bαβ
i j . (B13)

Bαβ
i j is also asymmetric: Bαβ

i j = −Bαβ
ji .

Fourth type: Derivative of torque with respect to rotational
coordinate:

Dαβ
i j = −

N−1∑
k=0;k �= j

∂T̃ β

k j

∂θ̃α
i

= − ∂T̃j

∂θ̃α
i

, for i �= j,

Dαβ ii = −
N−1∑

j=0; j �=i

∂T̃ β
ji

∂θ̃α
i

=
N−1∑

j=0; j �=i

Dαβ
i j . (B14)

The negative sign ensures that in stable systems all the eigen-
values are positive. Dαβ

i j is symmetric: Dαβ
i j = Dαβ

ji .

052902-7



SILVIA BONFANTI et al. PHYSICAL REVIEW E 101, 052902 (2020)

5. Arrangement of Jacobian matrix

All the J-matrix elements are combined with the following arrangement:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Fx
∂x

∂Fy

∂x
∂Fz

∂x
∂T̃x
∂x

∂T̃y

∂x
∂T̃z

∂x
∂Fx
∂y

∂Fy

∂y
∂Fz

∂y
∂T̃x
∂y

∂T̃y

∂y
∂T̃z

∂y
∂Fx
∂z

∂Fy

∂z
∂Fz

∂z
∂T̃x
∂z

∂T̃y

∂z
∂T̃z

∂z
∂Fx

∂θ̃x

∂Fy

∂θ̃x

∂Fz

∂θ̃x

∂T̃x

∂θ̃x

∂T̃y

∂θ̃x

∂T̃z

∂θ̃x

∂Fx

∂θ̃y

∂Fy

∂θ̃y

∂Fz

∂θ̃y

∂T̃x

∂θ̃y

∂T̃y

∂θ̃y

∂T̃z

∂θ̃y

∂Fx

∂θ̃z

∂Fy

∂θ̃z

∂Fz

∂θ̃z

∂T̃x

∂θ̃z

∂T̃y

∂θ̃z

∂T̃z

∂θ̃z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
A B
C D

]
. (B15)

Every element of the above J-matrix is expanded into N×N subelements corresponding to i- j particle pairs. The total size of the
matrix for D = 3 is therefore (2D)N × (2D)N .
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