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Abstract: Altered lipid metabolism has been associated to cystic fibrosis disease, which is 
characterized by chronic lung inflammation and various organs dysfunction. Here, we present the 
validation of an untargeted lipidomics approach based on high-resolution mass spectrometry aimed 
at identifying those lipid species that unequivocally sign CF pathophysiology. Of n.13375 mass 
spectra recorded on cystic fibrosis bronchial epithelial airways epithelial cells IB3, n.7787 presented 
the MS/MS data, and, after software and manual validation, the final number of annotated lipids 
was restricted to n.1159. On these lipids, univariate and multivariate statistical approaches were 
employed in order to select relevant lipids for cellular phenotype discrimination between cystic 
fibrosis and HBE healthy cells. In cystic fibrosis IB3 cells, a pervasive alteration in the lipid 
metabolism revealed changes in the classes of ether-linked phospholipids, cholesterol esters, and 
glycosylated sphingolipids. Through functions association, it was evidenced that lipids variation 
involves the moiety implicated in membrane composition, endoplasmic reticulum, mitochondria 
compartments, and chemical and biophysical lipids properties. This study provides a new 
perspective in understanding the pathogenesis of cystic fibrosis and strengthens the need to use a 
validated mass spectrometry-based lipidomics approach for the discovery of potential biomarkers 
and perturbed metabolism. 

Keywords: lipidomics; OMICS; untargeted analysis; cystic fibrosis; biomarker; sphingolipid; 
membrane composition; cell structure 

 

1. Introduction 

Lipids are a fundamental component of cellular membranes and signaling molecules regulating 
cellular functions that include energy storage, cell proliferation and death, stress response, and 
inflammation. Alterations in lipids metabolism are associated and suggested as causative for the 
pathophysiology of inflammation-related diseases such as neurodegenerative diseases (i.e., 
Alzheimer’s and Parkinson’s), diabetes, obesity, atherosclerosis and cardiovascular diseases, non-
alcoholic fatty liver disease, cancer, obstructive sleep apnea, and respiratory diseases [1,2]. Thus, 
lipids are not only modulated by diseases but also recognized as therapeutic targets. Lipidomics is 
the most powerful tool to approach the study of lipids-related diseases. The increasing popularity of 
the lipidomics approach is strictly connected to the progress in the related analytical techniques, 
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especially mass spectrometry. This large-scale technique can cover the whole human lipidome, 
comprising from 10 to 100-thousand different chemical entities in a complex biological system. Lipids 
can be studied by two approaches: targeted or untargeted lipidomics. Targeted methods are a high-
sensitive analysis dedicated to the identification and quantification of known classes of lipids, 
whereas nontargeted methods, usually employing high-resolution mass spectrometry, aim to 
identify and semi-quantify every likely lipid species contained in the samples [3–5]. Employing this 
technique, different tasks can be performed: (1) characterization, identification, and quantification of 
specific lipid species known to be related to pathological events, and (2) identification of new 
prognostic or diagnostic biomarkers able to discriminate with higher specificity and sensitivity the 
healthy phenotype from the pathological ones. The strength of lipidomic is to identify single species 
that stand for significant changes and offers broad-spectrum information on the inherently dynamic 
process. In this process, metabolites and, thus, their concentrations are continuously exposed to 
synthesis or degradation. By clustering metabolites that are simultaneously interested in changes, it 
is possible to identify pathways and cell functions involved in the studied stimulus or dysfunction 
[6]. Among chronic inflammatory and lipids-related diseases, cystic fibrosis (CF) is a significant and 
well-characterized fatal illness. CF is a pulmonary disease caused by different mutations in the gene 
for the chloride/carbonate channel CFTR. These mutations are responsible for dysregulation in the 
electrolytic equilibrium within the protective mucus of respiratory airways, leading to lung chronic 
inflammation and infections, together with pancreatic insufficiency and multiple organs dysfunction 
[7]. Pharmacological treatment aimed at CFTR function recovery failed in the clinical practice, and 
CF has no effective cure at present [8]. Lipid alterations in CF patients have been extensively reported. 
In particular, abnormalities in blood fatty acid (FA) composition have been described, showing a high 
level of saturated (SFA) and monounsaturated (MUFA) together with low levels of omega-3 and 
omega-6 polyunsaturated fatty acids (PUFA) in respect to a healthy control [9,10]. Alteration in the 
human CF plasma lipid profile comprises a modification in the levels of phospholipids and 
lysophospholipids (e.g., PC and LPC), cholesterol, cholesterol esters, and hypertriglyceridemia [11–
13]. In addition, peripheral cholesterol accumulation was evidenced in the respiratory airways [14]. 
The cause of lipids altered homeostasis in CF is still debated, and it has been attributed to enhanced 
lipid synthesis that can derive from intestinal malabsorption [12], as well as from peripheral and 
systemic inflammation [15]. At a cellular level, it was demonstrated that CF cells exhibit increased 
lipid synthesis, possibly due to altered proteostasis [16,17], which can be counteracted by the 
sphingolipid synthesis inhibitor myriocin [18,19]. 

In this manuscript, we present a novel lipidomics approach aimed at identifying those lipid 
species that unequivocally sign CF pathophysiology. We evaluated the lipid tract of the CF broncho 
epithelial cell line, being the airways of the first body district involved in chronic inflammation and 
infection in these patients. Our data strengthen and specify previous reports, demonstrating that CF 
broncho epithelial cells exhibit a significant increase of all lipid species analyzed in comparison to the 
normal broncho epithelial cell line. Most importantly, we unequivocally indicate the ether-
glycerophospholipids, cholesterol esters, and glycosylated sphingolipids as classes of molecules 
accurately representative of CF and not well-characterized yet as pathological markers. Our findings 
open a new bursting and crucial research field for the development of innovative CF therapeutic 
approaches. 

2. Materials and Methods 

2.1. Reagent and Chemicals 

Lipids standard were purchased from Avanti Polar Lipids (Alabaster, AL, USA). The chemicals 
acetonitrile, 2-propanol, methanol, chloroform, formic acid, ammonium acetate, and ammonium 
formate were purchased by Sigma-Aldrich (St. Louis, MO, USA). All aqueous solutions were 
prepared using purified water at a Milli-Q grade (Burlington, MA, USA). 
  



Cells 2020, 9, 1197 3 of 16 

 

2.2. Cell Culture 

Human bronchial epithelial cell line (IB3), derived from a CF patient (ΔF508/W1282X) provided 
by LGC Promochem (Teddington, UK), were grown in LHC-8 medium supplemented with 5% FBS, 
1% penicillin/streptomycin at 37 °C, and 5% CO2. Healthy (H) human lung bronchial epithelial cell 
line (16HBE14O, initially developed by Dieter C. Gruenert) were provided by Luis J. Galietta 
(Telethon Institute of Genetics and Medicine—TIGEM, Napoli, Italy). Originally HBE primary cells 
were grown in LHC-8, although in the present study they were cultured as recommended (Merck 
Millipore SCC150 datasheet) in MEM Earle’s salt supplemented with 5% FBS, 1% 
penicillin/streptomycin at 37 °C, and 5% CO2. For cell lipidomics, 1 × 105 cells/100-mm plate in 5 mL 
medium were plated, harvested when confluence has reached 90%, washed in PBS, and pelleted. 

2.3. Lipids Extraction 

Lipid extraction was completed by a modified version of the Folch method [18]. Cells (about 1 × 
106) were reconstituted in 100 µL of water + 0.1% proteases inhibitor cocktail, and a small aliquot was 
used for total protein quantification by the Bradford dye-binding method. For lipid extraction, 100 
µL of aqueous samples were added with 850 µL of a methanol/chloroform mixture (2:1, v/v), then 
sonicated for 30 min. The organic phase was evaporated under a stream of nitrogen. The residues 
were dissolved in 100 µL of isopropanol/acetonitrile (2:1, v/v), centrifuged for 10 min at 13,400 RPM, 
and withdrawn in a glass vial. 

For a targeted sphingolipids analysis, after the addition of the methanol/chloroform mixture (2:1 
v/v), samples were incubated overnight in an oscillator bath at 48 °C. Then, to enhance their recovery, 
alkaline methanolysis was performed by incubation at 37 °C for 2 h with 75 µL of potassium 
hydroxide 1 M in methanol. After neutralization with 75 µL of acetic acid 1 M in methanol, samples 
were evaporated. The residues were dissolved in 100 µL of methanol, centrifuged for 10 min at 13,400 
RPM, and withdrawn in a glass vial. 

2.4. LC-MS/MS Untargeted Method 

The LC-MS/MS consisted of a Shimadzu UPLC coupled with a Triple TOF 6600 Sciex (Concord, 
ON, CA) equipped with Turbo Spray IonDrive. All samples were analyzed in duplicate in both 
positive and negative mode with electrospray ionization. The instrument parameters were: CUR 35, 
GS1 55, GS2 65, capillary voltage 5.5 kV, and source temperature 350 °C. Spectra were contemporarily 
acquired by both full-mass scan from 200–1500 m/z (100 ms accumulation time) and data-dependent 
acquisition from 50–1500 m/z (40 ms accumulation time, top 18 spectra per cycle 0.8 s). Declustering 
potential was fixed to 50 eV, and the collision energy was 35 eV, with a collision energy spread of 15 
eV. 

The chromatographic separation on an Acquity BEH C18 column 1.7 µm 2.1 × 50 mm (Waters, 
Franklin, MA, USA), equipped with a precolumn [20], was achieved using, as mobile phase A, 
water/acetonitrile (60:40) and, as mobile phase B, 2-propanol/acetonitrile (90:10), both containing 10-
mM ammonium acetate and 0.1% of formic acid. The flow rate was 0.4 mL/min, and the column 
temperature was 45 °C. The elution gradient was set as below: 0–2 min (45% B), 2–12 min (45–97% 
B), 12–17 min (97% B), 17–17.10 min (97–45% B), and 17.10–21 min (45% B). 

Additionally, another chromatographic separation was reached on an Acquity CSH C18 column 
1.7 µm 2.1 × 100 mm (Waters, Franklin, MA, USA) equipped with a precolumn by using, as mobile 
phase A, water/acetonitrile (60:40) and, as mobile phase B, 2-propanol/acetonitrile (90:10), both 
containing 10-mM ammonium acetate and 0.1% of formic acid. The flow rate was 0.4 mL/min, and 
the column temperature was 45 °C. The elution gradient (%B) was set as below: 0–2.0 min (40%), 2.0–
2.5 min (40–50%), 2.5–12.5 min (50–55%), 12.5–13.0 min (55–70%), 13.0–19.0 min (70–99%), 19.0–24.0 
min (99%), and 24.0–24.2 (99–40%) and kept constant until 30 min. Five microliters of clear 
supernatant were directly injected in the LC-MS/MS.  
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2.5. Lipidomic Data Processing 

The correct identification and relative quantification were attained using MS-DIAL (version 4.0) 
software [21–23]. Data raw files (.wiff) were converted into .abf format in order to perform retention 
time correction, peak alignment, and identification. The latter was achieved by comparison of 
experimental spectra with those in the LipidBlast library [24], using both accurate mass and MS/MS 
fragmentation (Table S1) data (total identification score >70%). Prevalent adducts were previously 
investigated in our experimental conditions, and thus, the identification was restricted only on them. 
MS and MS/MS tolerance for peak profile were set to 0.01 and 0.05 Da, respectively. Data were then 
filtered for blank samples signals with a fold change >10. A quality control pooled sample (QC, a mix 
of all samples in the batch) was prepared and injected several times (every four samples) during the 
batch analysis to test the instrumental variability. Lipids that presented a coefficient of variation 
(CV%) ≥30% in the QC were excluded for further investigation [25]. Then, to restrict biological and 
analytical variances, normalization was completed by correcting the peak intensities (Equation (1)) 
of each lipid for both (1) the amount of protein in the extract injected (µg) measured by the Bradford 
method and (2) the variation in the response of QCs dispersed evenly throughout the batch (by the 
Lowess algorithm). Lipids containing either a high number of unsaturations or odd-chain fatty acids 
were manually excluded. An overview of the entire lipid metabolism was represented as the summed 
amounts, after normalization, of the individual lipids per subclass (an example is shown in Equation 
(2)). 

AmountX=
Peak intensity ×  after normalization

µg protein injected  (1) 

AmountCer=AmountCer1 + AmountCer2 + AmountCer n (2) 

2.6. Statistical and Data Analysis 

As a first approach to evidence differences in lipid metabolisms between healthy and CF, the 
different classes (sum of the concentrations of the species) were compared by t-test with GraphPad 
Prism 7.0 (GraphPad Software, Inc, La Jolla, CA, USA). Then, for biomarker discovery, data tables 
with the lipids identified under both healthy and pathological conditions were formatted as .csv files 
and uploaded to the MetaboAnalyst server (version 4.0) [26,27]. Data were checked for integrity, 
filtered by interquartile range, log-transformed (generalized logarithmic transformation), and auto-
scaled. If multiple isomeric lipid species were detected, the sum of their abundances would be further 
considered. This operation is driven by the fact that the exact position and stereochemistry of the 
unsaturations could not be deduced from this kind of experiment. The comparison between CF and 
healthy cells was performed by both univariate and multivariate methods. The volcano plot showed 
the statistical significance and the fold change of each lipid identified by selecting only those with a 
p-value < 0.05 (corrected for false discovery rate) and a fold change (FC) >2. Partial least squares 
discriminant analysis (PLS-DA) was performed in order to increase the group separation and 
investigate the variables with a Variance Importance in Projection (VIP) score >1. These features could 
be considered as a potential biomarker of CF [28]. The quality of the PLS-DA models was assessed 
by cross-validation: R2 and Q2 (i.e., cross-validated R2) should be >0.8 in order to avoid overfitting or 
unreliable estimations [29]. The potential lipids biomarkers were finally determined, combining uni- 
and multivariate analysis by the combination of the VIP score in the PLS-DA model together with 
corrected p-value and fold change both derived from the Volcano plot. Specifically, it was taken into 
consideration the products of the VIP score (>1), −log10 p-value (>1.3), and |log2FC| (>1), here named 
as the impact factor (IF; Equation (3)). Enrichment analysis was performed, on normalized data from 
MetaboAnalyst, using LION/web by the ranking mode, with a one-tailed Welch 2-sample t-test as 
the local statistics [6]. Changes in lipid patterns between CF and healthy phenotypes were connected 
to the main branches of LION ontology and, especially, lipid function, cellular component, and 
physical-chemical properties. The chi-square or binomial tests were used to compare observed with 
expected data distributions. 
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3. Results 

3.1. Pre-Analytical Optimization 

Folch extraction followed by alkaline methanolysis is the gold-standard for sphingolipids 
quantification [30,31]. This specific extraction protocol warrants a higher extraction rate of 
sphingolipids species by suppressing the interferences of preeminent phospholipids [32,33]. Hereby, 
as expected, it was confirmed that the samples treated with alkaline methanolysis displayed a higher 
intensity of sphingolipids (Figure S1). Curiously, the procedure used for total lipid analysis yielded 
a higher number of sphingolipids species correctly identified (84 vs. 104, considering the main 
subclasses: ceramides, hexosylceramides, and sphingomyelins). The sphingolipids profile, measured 
as fold changes between the two cell lines, fairly differed when using the two extraction protocols 
(Figure S1). Taking these results altogether, we decided to avoid the methanolysis in the untargeted 
lipidomics approach, limiting this specific treatment to the target sphingolipids analysis. 

3.2. Optimization of the Analytical Conditions for Lipidomics Analysis 

Using a mixture of 14 chemically pure lipids (differential ion mobility system suitability kit, 
synthetic lipid mix, Avanti Polar, Alabaster, AL, USA) covering all the subclasses, two distinct 
mobile-phase modifiers, and two different columns were tested. Ammonium acetate and an Acquity 
CSH column gave the maximum peak intensities (Tables S2 and S3) and the best lipidome coverage 
(Figure S2). CSH column was verified in +34% in lipids identified correctly (995 vs. 741, Figure S2). 
This was probably related to a better separation of different lipid classes. The number of IDA 
experiments in a cycle-time was also taken into consideration: using the configuration with 20 
spectra/cycle, not surprisingly, the number of total spectra acquired was about two-fold in respect to 
the top 10 (Figure S3). 

3.3. Performances of the Untargeted Lipidomics Analysis 

MS-DIAL performances were evaluated by running standard samples containing a mixture of 
chemically pure lipids with a concentration of 1 µg/mL (10 ng injected): 10/14 (65%) lipids were 
identified correctly matching for both MS and MS/MS data, 3/14 (21%) were identified only by 
accurate mass, and 1/14 (7%) was not recognized at all (Table S4). The normalization method is critical 
to balance variations and eliminate experimental or biological biases. Internal standard-based 
normalization is the gold standard for targeted analysis of metabolites, but for untargeted analysis, 
it has been demonstrated that the method is out-performed by other approaches. The use of a few 
selected internal standards is not reasonable for the untargeted analysis of complex biological 
mixtures, since lipids, also comprising in the same class, displayed different chemical structures (e.g., 
fatty acid chains) and chromatographic behaviors. The choice of internal standards normalization 
was for the above reasons avoided. 

An alternative approach to reduce the analytical and biological variabilities could be the use of 
the total ion count (TIC) [34,35]. The TIC was tested in our experiment (ochre curve in Figure 1) and 
gave satisfactory results with both cell lines, but we noted a limited linearity range in dependence on 
the amount of proteins in each sample (data not shown). 

QC sample (see Methods) was used to calibrate the symmetric biases using weighted scatterplot 
smoothing (Lowess algorithm on MS-DIAL) for analytical signal correction [21,36,37]. The choice of 
normalization should be executed with the aim of decreasing variation not only in QC but also in 
experimental groups [38,39]. Therefore, we lessen the biological variability by normalizing data on 
the total protein content of the sample. Lowess coupled with biological normalization is presented as 
a single curve (green) in Figure 1. The latter showed the same performance of TIC, with about 70%–
90% acceptable features (CV% < 30%) and, thus, was finally selected for our purpose. These 
normalization techniques were compared to the raw, not normalized data (red curve in Figure 1). In 
this limited context, specifically in the comparison between two phenotypes, the different 
normalization methods demonstrated minimal experimental variations among them, and so we 
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proposed to choose the Lowess coupled with biological normalization (green in Figure 1). Lack of 
normalization significantly affected the results on the HBE cell line (Figure 1B). 

The intra-batch variability, which is the coefficient of variation (CV%) of the QC sample 
dispersed throughout the batch, was about 16%. 

 
Figure 1. Cumulative frequency distribution of the coefficient of variations (CVs) (%) in (A) pool 
samples, (B) healthy HBE, and (C) cystic fibrosis (CF) cell extracts obtained for the precision 
evaluation of different normalization protocols comprehensive of results from both polarities. The 
dotted line indicates the separation between features within 30% of the CV, which is intended as the 
maximum permitted for the validation. The graphs showed the better performance of Lowess coupled 
to µg proteins as the normalization technique, reaching (A) 89%, (B) 64%, and (C) 68% in acceptable 
features (with a CV% inferior to 30%). (D) Graphs show the mean ± SD of the percentage of acceptable 
features (with a CV% inferior to 30%) between the different normalization techniques.  

3.4. Untargeted Lipidomics of Cystic Fibrosis 

MS-DIAL recorded, considering data from both polarities and after blank filtration, n.13375 
mass spectra in the whole set of samples, of which, n. 7787 (58%) presented the MS/MS data. The 
software revealed n.1863-annotated lipids (MS2-matched, 14%), and, after a manual validation, the 
final number was restricted to n.1159 (8.4%), which were grouped in the different classes and 
subclasses (Figure S4). 

The distribution profile of lipid classes in healthy (H, HBE) and cystic fibrosis cells (CF, IB3) was 
achieved by summing all the normalized intensities of the lipids identified within the single classes 
(an example is shown in Equation (2)). As expected, in CF, we found a significant general 
accumulation of all lipid species, in particular ceramides, hexosylceramides, lactosylceramides, GM3, 
and cholesterol esters (Figure 2). In addition, ether-linked phospholipids (etherPL) were found to be 
highly modulated by the disease. Specifically, ether-linked phosphatidylcholine (fold change CF/H: 
14.56) are the most abundant class recognized in our cell model, followed by ether-linked 
phosphatidylethanolamine (fold change CF/H: 4.75). No statistical differences were found in the 
concentrations of free fatty acids, dihydroceramides, sphingomyelins, phosphatidylcholines, 
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phosphatidylinositols, sphingosine, free cholesterol, acylglycerols, cardiolipins (data not shown), and 
acylcarnitines (data not shown). 

 
Figure 2. Lipid content comparison between healthy epithelial (H, n = 3 independent biological 
replicates) vs. cystic fibrosis (CF, n = 3 independent biological replicates) cells. Graphs represent the 
lipid amount (Amount, mean ± SD), which indicates the sum of the metabolites intensities within a 
class after normalization (see Equation (1)). Two-tailed unpaired t-tests were performed in each lipid 
class to establish a statistical difference (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001). 
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Univariate and multivariate statistical approaches were employed in order to select relevant 
lipids for cellular phenotype discrimination. Volcano plot analysis selected n. 632 lipids (81.3% 
elevated and 18.7% reduced in CF vs. healthy), which contemporarily presented a fold change > 2 
and a corrected p-value < 0.05 (Figure 3). 

Chemometric analysis by supervised PLS-DA (Figure 4A) was then used to maximize the 
separation between groups and to determine important features of CF by VIP value >1, which were 
n. 709. Since PLS-DA tends to overfit data, the model was validated [40] by the Leave-one-out cross-
validation method, displaying an R2 and Q2 of 0.96 and 0.94, respectively. 

 
Figure 3. The volcano plot is a combination of fold change and t-tests: X-axis is log2(fold change, FC), 
and Y-axis is −log10 (adjusted for false discovery rate). Dots indicate features that presented both a FC 
>2 and p-value < 0.05. Lipids in pink and green are reduced (n.118) and augmented (n.514) in CF vs. 
H, respectively. 

 
Figure 4. (A) Partial least squares discriminant analysis (PLS-DA) chemometric analysis. (B) Box and 
whiskers plots (line at median, and box stretched from the 25–75th percentiles; whiskers indicated the 
10–90th, whereas outliers were plotted as single points) of the discriminant lipids (n = 624) subdivided 
for lipid classes and evaluated by their IF scores (see Equation (3)). Grey boxes designated lipid classes 
that displayed an IF< cut-off (visualized as a dotted line and calculated as the lower confidence limit 
of the median of the features considered). 
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Biomarker selection was finally performed combining the data obtained with the different scores 
from the Volcano plot and PLS-DA. The uni- and multivariate analyses were combined, by restricting 
features to n.624, in order to increase the discrimination power between the two phenotypes. To 
achieve this goal, for each identified feature, the IF score (data not shown) was calculated using the 
VIP score, p-value, and FC (see Equation (3)). From the n. 624 lipids, the top 100 discriminant lipids, 
which distinguished the pathological phenotype of CF from healthy bronchial cells significantly, are 
listed in Table S5. 

IF =| log2 FC|·(- log10 p value )·VIP score (3) 

The high presence of lipids bringing an ether-linked acyl chain is shown within this group .In 
order to have an overview of the main alterations of the lipid CF phenotype, we added a further 
discriminating analysis that increases the screening of the feature and focuses the attention only on 
the most significant changes between CF vs. healthy. We proposed the use of the median IF for each 
lipid class (Table S6), which was graphed as box and whiskers plot (Figure 4B). All the classes were 
then compared with an arbitrary cut-off (6.5), that we chose to be the lower confidence limit of the 
median calculated from all the features (n.624). The classes represented by white boxes demonstrated 
an IF median superior to the cut-off, and therefore, were considered as the most significantly 
modulated: etherPL, cholesterol esters, and sphingolipids (especially hexosyl- and 
lactosylceramides). 

Future validations on the identified biomarkers are highly suggested, possibly on patient-
derived primary cells, since this preliminary study analyzed an immortalized cell line. Altered lipid 
composition, showed in Figure 2, was reflected in different lipid ontologies, indicating lipid function, 
cellular component, and chemical and physical properties (Figure 5A). The enrichment analysis 
showed a highly significant modification in the lipids implicated in cell membrane compositions 
(lipid function ontology). When looking at lipid components, the endoplasmic reticulum and 
mitochondria compartments are significantly modified in CF vs. healthy cells. Finally, these lipid 
alterations are also reflected in modifications on chemical and biophysical properties: specifically, 
affecting chain lengths, saturation, and ether-bound composition of glycerol- and sphingolipids. We 
noted a quantitative increase in the levels of saturated and monounsaturated fatty acids (SFAs and 
MUFAs) in CF vs. healthy, whereas the polyunsaturated (PUFAs) species resulted unchanged (Figure 
2). Otherwise, in the subgroup of the top 100 discriminant lipids, we observed a prevalence % of 
PUFAs (Figure 5B). In the same way, we noted a prevalence % of ether-PL over ester-bound 
phospholipids (Figure 5C). 
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Figure 5. (A) Enrichment analysis (top 40) of CF vs. H phenotypes. The dotted line indicates the cut-
off value of significant enrichments (q < 0.05). Bar length is related with the enrichment (−log q-values 
corrected for false discovery rate, FDR), whereas colors are dependent to the type of the enrichment: 
lipid function, cellular component, and physical-chemical properties. (B) Distribution of the acyl 
chain unsaturation from all lipid fraction (%) in CF vs. H discriminant lipid group (top 100). (C) 
Distribution of the ester and ether linkages in phospholipids (%) in CF vs. H in the discriminant lipid 
group (top 100). In (B) the chi-square test and in (C) binomial test, revealed a p-value < 0.05. 

4. Discussion 

In this study, we investigated the unusual lipid composition in CF epithelial bronchial cells using 
an untargeted LC-MS/MS approach. Before each experiment, to ensure that our study produced 
clinically valid results, we felt the need to carry out a comprehensive optimization study of each step 
of the method used. We tested two different modified Folch extraction protocols, and we chose the 
one with the higher number of species identified. We have also highlighted that the use of longer 
column (10 vs. 5 cm) and with peculiar silica charged surface allows improving the separation 
between phosphor- and sphingolipids compared to inert silica (BEH). Furthermore, we highlighted 
the strength of a conservative data-dependent approach in untargeted lipidomics to uncover 
pathophysiological mechanisms implicated in a disease and, in particular, in CF. It took dedicated 
time and attention to find the most suitable method for normalizing data before statistical processing, 
highlighting how this step is particularly critical in biological samples. We propose the use of an 
innovative statistical index (impact factor) able to combine data from different tests, augmenting the 
robustness of the discovery results and the consequent biological implications. 

CFTR misfunction in CF is associated with altered lipid homeostasis, consisting in inflammatory 
ceramide accumulation in the lung, sterol accumulation in the airways, hepatic steatosis, and plasma 
dyslipidemia [11,12,17,41–43]. 

In this preliminary study, we aimed to validate the untargeted lipidomics by the application on 
the IB3 immortalized CF cell line. Secondly, we accrue to confirm the described lipid alterations and 
identify the potentially related signatures of the disease (in Figure 6). We strongly feel that our 
findings on CF lipidomic deregulation need additional confirmation, possibly using patient-derived 
primary cells or lung biopsies. These data do not attempt to give conclusive findings on the lipid 
profile in CF but rather to show the importance of a reliable, large-scale analytical method to shed 
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light on biological mechanisms. Despite the use of a single cell line, our results confirm many of the 
literature findings and disclose interesting topics that deserve further investigations. 

 
Figure 6. Overview of the lipid biosynthetic and metabolic pathways. Colored dots represented the 
lipid changes in CF bronchial epithelial cells. 

The first observation is that, in CF epithelial cells, ceramide and glycosylated sphingolipids 
accumulate (Figure 2), such as hexosylceramides, lactosylceramides, and GM3 
(monosialogangliosides). Ceramides are implicated in inflammation [44,45], and their accumulation, 
in CF cells, was previously demonstrated by us and others [15,46–48]. Studies from our group already 
demonstrated, through in vivo and in vitro CF models, the therapeutic role of reducing ceramide 
synthesis [46,49]. 

Besides, a reduced pool of luminal surface sphingosine, derived from apical membrane ceramide 
hydrolysis, has been previously reported in CF airways from Grassmé et al. [48], but when looking 
at the total bulk of cellular sphingosine, we did not observe any significant reduction. 

Notably, in this study, using the untargeted lipidomics approach, we observed a significant 
increase in hexosylceramides (Figure 2). Although poorly characterized up to now, the accumulation 
of hexosylceramides was demonstrated to exacerbate the inflammation [50,51]; moreover, its 
synthesis was increased in damaged tissues [52]. In addition, hexosylceramides, which may link 
either glucose or galactose to ceramide, and lactosylceramides have been associated with oxidative 
stress and promotion of the inflammatory pathway [53]. The gangliosides (see GM3 in Figure 2) at 
the membrane were significantly increased. However, the high-ranked discrimination score (IF) 
found in hexosylceramides (Figure 4B) was not paralleled by polyglycosylated species such as GM3. 
We speculate that CF cells can enhance ceramide glycosylation to reduce its accrual and related 
inflammatory stress. The process of glycosylation is also enhanced in tumor metabolism [54]. This 
hypothesis opens new questions on the physiologic role of this lipid metabolism, and it requires 
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further investigations at the aim of identifying innovative biomarkers in inflammatory diseases and 
potential therapeutic targets. 

Furthermore, we observed an increase in lysophospholipids (Figure 2), specifically in LPC, 
which was shown to increase during chronic inflammation [55,56]. Mainly, it was found to be 
incremented in CF bronco epithelial cells, and, for that reason, it can be considered as a possible 
marker for the chronic inflammatory status [57]. 

We measured a significant increase in storage lipids, such as cholesterol esters (Figure 2). As 
previously mentioned, this might be related to the inflammatory status associated with lipid 
accumulation and to altered lipid intracellular traffic. These data are in-line with reported evidence 
of cholesterol accumulation in CF bronchi [14,16,58] and, most importantly, with increased 
concentration of cholesterol esters in pediatric CF patients with bronchoalveolar lavage fluid vs. 
control subjects [59,60]. Mutated CFTR cells may display an altered lipid synthesis, along with lipid-
defective storage, mobilization, and structural usage. These biochemical alterations could sustain 
chronic inflammation and an inadequate response to infection [19,61]. 

To note, we also observed a significant increase in etherPL (Figure 2). This finding was also 
supported by the increased presence of ether-linked fatty acids in lipids extracted from CF 
bronchoalveolar lavage [56]. Ether lipids, characterized by an ether bond between glycerol and the 
fatty acid in the sn-1 position, are essential membrane regulators of fluidity and fusion. Our results 
suggest that CFTR alteration and disturbance of the membrane composition are somehow linked 
[62,63]. The increase in ether-link-bearing lipids may be a response to enhanced membrane stability 
[64]. In addition, it was suggested that ether lipids are involved in regulating cell differentiation, 
cellular signaling, and reducing oxidative stress by acting as endogenous antioxidants [65]. 

High levels of SFAs and MUFAs, along with low levels of omega-3 and omega-6 PUFAs, have 
been reported in CF plasma [9,10,66]. In our CF cell model, we confirmed the quantitative increase of 
SFAs and MUFAs as compared to control cells (Figure 2). Looking at the top 100 discriminant lipids, 
however, PUFA species are more represented (Figure 5B) with respect to healthy cells. The observed 
lipid modifications could impact the biophysical properties of cell membranes, mainly modulating 
the membrane stability and membrane protein’s function [67,68]. Considering that, in the literature, 
plasma levels of PUFAs in CF were found to be reduced [9,10,66], however, the link between CF 
pathophysiology and this abnormality remains unclear [69]. 

5. Conclusions 

In this study, we developed an untargeted high-throughput lipidomics workflow and applied it 
to the study of the unusual lipid composition in a CF epithelial bronchial cell line. We propose the 
innovative use of the impact factor statistical index to augment the robustness of the discovery, along 
with the biological and clinical significance. The tested model of the CF bronchial cell line (IB3) 
displayed a pervasive alteration in the lipid metabolism that, in turn, modified the lipid storage, cell 
membrane composition, and proinflammatory lipids. Future studies, possibly on patients’ primary 
cell lines, are required to elucidate our experimental findings further and uncover the 
pathophysiological mechanisms implicated in CF. 

Abbreviations 

H healthy phenotype 
CF cystic fibrosis 
Cer ceramides 
DHCer dihydroceramides 
HexCer glucosylceramides 
LacCer lactosylceramides 
GM3 gangliosides 
Gb3 globotriaosylceramide 
SM sphingomyelins 



Cells 2020, 9, 1197 13 of 16 

 

Chol free cholesterol 
CE cholesterol esters 
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