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Abstract: The work function is the parameter of greatest interest in many technological applications 

involving charge exchange mechanisms at the interface. The possibility to produce samples with a 

controlled work function is then particularly interesting, albeit challenging. We synthetized 

nanostructured vanadium oxides films by a room temperature Supersonic Cluster Beam Deposition 

method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an 

investigation of the electronic structure of several vanadium oxides films as a function of the oxygen 

content via in-situ Auger, valence-band photoemission spectroscopy and work function measurements. 

The experiments probed the partial 3d density of states, highlighting the presence of strong V3d-O2p 

and V3d-V4s hybridization which influence 3d occupation. We show how controlling the 

stoichiometry of the sample implies a control over work function, and that the access to nanoscale 

quantum confinement can be exploited to increase the work function of the sample relative to the bulk 

analogue. In general, the knowledge of the interplay among work function, electronic structure, and 

stoichiometry is strategic to match nanostructured oxides to their target applications.  

Keywords: Vanadium oxides, Work function, Auger, nanostructured films, oxidation state control, 

SCBD, 3d occupancy 
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At present, the demand of energy is one of the main concerns of all major economies, driving a 

strong worldwide demand for low-power-consumption electronics. The development of a technology 

easy to handle on large scale and able to provide efficient devices is of primary importance for our 

society. The interest in organic semiconductors, has risen strongly because of high efficiency 

applications (e.g. OFET, OPV and OLED)1,2 and for the eases of manipulation at industrial level.3 

Organic semiconductors do not have intrinsic charge carriers: these have to be supplied by electrodes, 

i.e., hole and electron injection layers. Therefore, a typical organic semiconductor device (OSD), 

consists of an active layer sandwitched between two electrodes. The optimization of the charge 

injection at the electrode-active layer interface is paramount to maximize the efficiency of the 

device.2,4,5 

In general, this can be accomplished by tailoring the energy levels of the organic semiconductor 

(HOMO, LUMO and Ionization Potential, IP) and the work function (WF) of the electrodes.6 In the 

active layer, the HOMO and LUMO act respectively as donor and acceptor levels while in the 

electrodes the Fermi level (FL) plays both roles. Ideally to minimize energy losses, the FL of Hole 

Injection Layers in OSDs should be as close as possible to the HOMO level (high WF) of the active 

layer and the FL of the electron injection layer should be close to the LUMO level (low WF).6–8 

Therefore, control over the electrodes WF is highly desirable for this application. Transition metal 

oxides (TMO) have been investigated because of their versatility, since their electrical and chemical 

properties can be tuned to maximize the charge injection within molecular interfaces.4–6,8,9 TMOs have 

been used as efficient Hole Injection Layers (HIL) (MoO3, WO3, V2O5 
8,10,11)  and electron injection 

layer (ZrO2 
12).  

Among TMOs, vanadium oxides are interesting materials for technological applications. Vanadium 

([Ar] 3d34s2) is a very reactive element and different oxides such as VO, V2O3, VO2 and V2O5 
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characterized by the oxidation states: V+2, V+3, V+4 and V+5, respectively, can be synthetized. The WF 

of vanadium oxides can be tuned by changing the stoichiometry of the sample,6,13,14 or its 

dimensionality. The nanoscale dimensions in thin films and nanoparticles can be an important degree 

of freedom to control the WF of any oxide, resulting in significant deviations of the electronic structure 

from that of the bulk. For nanoparticles the reduced size enhances the electronic density confinement 

leading to a clear size dependence of the WF.15–18 Moreover, oxides are prime cases of strong-

electronic-correlation systems. VO2 and V2O3 exhibit sharp, fast and reversible metal insulator 

transitions (MIT) triggered by temperature19 and characterized by a nanoscale phase separation.20–23 

Synthetizing nano-sized samples with a tunable electronic structure is therefore relevant for many 

applications. 

Here we show how it is possible to control the stoichiometry of nanostructured (NS) vanadium oxide 

films using a pulsed-vaporization cluster source (namely the Pulsed Microplasma Cluster Source – 

PMCS 24–26) and the Supersonic Cluster Beam Deposition (SCBD) method. Synthetizing samples with 

tunable oxidation state allowed us to unravel the systematic changes of the electronic structure of 

vanadium oxides NS films as a function of oxygen content. Understanding the evolution of the valence 

band (VB) electronic structure as a function of stoichiometry allows tailoring the chemical reactivity of 

a sample. An accurate knowledge of the interplay between valence band features, WF, and 

stoichiometry, is essential to match the optimum condition for a desired application: it is particularly 

important in OSD where energy level alignment plays a crucial role in determining the efficiency of the 

device. 

Results and discussion  

Nanoparticles size and morphology  

 In order to investigate the morphology of nanoparticles deposited by SCBD, a deposition of 0.3 sec 

has been performed on a TEM grid with amorphous C supporting film. In fig.1 the TEM image is 
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shown for VO2.2. Even though the nanoparticles aggregate into nanoparticle agglomerates, it is still 

possible to clearly distinguish them. The intense agglomeration of nanoparticles even after few second 

deposition makes TEM images unsuitable for accurate size distribution analysis. Still, the size of the 

nanoparticles can be assessed in the range 3-6 nm for most of them. No large differences have been 

observed for samples with different deposition parameters. Preliminary in-situ XANES study showed 

that nanostructured films are actually amorphous (See supplementary materials). However, in high 

magnification TEM images a crystalline lattice is in some cases observed (see Fig.S11 in 

Supplementary), which is ascribed to crystallization of amorphous material under the high energy TEM 

electron beam.   

 

 

Figure 1: TEM image of the nanoparticle assembled nanostructured film for VO2.2 
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Oxidation control and measuring the stoichiometry of the films 

To investigate the stoichiometry, i.e., the ratio between oxygen and vanadium atoms, we performed 

core-level XPS spectra of V 2p and O 1s electrons. Quantitative information has been extracted by 

fitting simultaneously the line-shape of V 2p and O 1s core levels which is a known indicator of the 

stoichiometry.27 For each component (vanadium and oxygen) we used a pseudo Voigt curve;28 we 

report the complete set of fitting parameters in the supplementary material.  

From now on we use the stoichiometric ratio thus measured, x= [# of oxygen atoms]/[# of vanadium 

atoms], in the range 0≤x≤2.5 to identify the samples since exists a one to one correspondence between 

x and a specific sample. 

Figure 2: V2p and O1s spectra of vanadium and oxygen. a)  V2p and O1s core level spectra of all 

samples. Peak positions of the vanadium components for different oxidation state are highlighted by 

straight vertical lines; b) V2p and O1s core level spectra and fit curve of VO2.2. The individual fit 

components are shown as coloured curves. The label O 1s sat indicates the features generated by the 

Mg Kα3 and Mg Kα4 component of the radiation. 
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The core level spectra of V 2p and O 1s electrons of different vanadium oxides synthesized by SCBD 

are shown in the left panel in Fig. 2; the right panel shows the decomposition of the experimental 

spectrum into its different fit components for a selected sample (VO2.2). This result proves that the 

applied method may be used to synthesize VOx
 films with controllable stoichiometry in the range 

0.5<x<2.45. The complete set of core level spectra used in this work can be found in the supplementary 

materials.  

Films with stoichiometry x<1 (VO0.53 in Figure 2) are called sub-oxides, i.e., oxides in which the 

electropositive element is more abundant than oxygen. Generally, only a severe temperature treatment 

(T>1000 K) under high vacuum allows obtaining vanadium sub-oxides 29,30 while using SCBD method 

we are able to synthetize them  at room temperature.  

Auger L3M2,3M4,5 spectroscopy 

The stoichiometric vanadium oxides: VO, V2O3, VO2 and V2O5 have nominally 3, 2, 1 and 0 3d 

unpaired electrons, respectively. Auger decays with one hole in the VB (i.e., of the form V XYM4,5) 

probe the V 3d partial density of states (DOS) and therefore can be linked to 3d occupation number and 

to sample stoichiometry. The atomic vanadium electronic configuration is [Ar] 3d34s2, so that the 

Auger channel involves 3d electrons while the 4s electron contribution is negligible.  

The ideal Auger decay to probe the partial 3d DOS is the V L3M4,5M4,5, characterized by two holes in 

the conduction band. Unfortunately, in vanadium oxides this decay channel is obscured by the O K 

L2,3L2,3 Auger electrons, even for an extremely low amount of oxygen.31 V L3M2,3M4,5 Auger decay is 

experimentally observable and 3d electrons give the main contribution to this channel.32,33  

As shown in Fig. 3a the Auger L3M2,3M4,5 of vanadium oxides exhibits two main features labelled V 

and U. As pointed out by Sawatzky and Post, these two components are correlated with the oxidation 

state.34 Feature V becomes dominant as the oxidation state increases: it is related to V 3d electrons 

covalently bound to O 2p electrons. Feature U is associated to unpaired 3d electrons. To extract 
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quantitative information about the 3d contribution in the VB, we fit the Auger V L3M2,3M4,5 spectra 

using three pseudo Voigt curves: one for feature V, one for feature U, and the last for the small 

contribution from the O K L1L1 decay at ~477 eV.  

Figure 3: a) Comparison of Auger L3M2,3M4,5 spectra of vanadium oxides NS films with 

stoichiometric ratio 1.27, 1.6 and 2.2 in the kinetic energy range 455-482 eV. The spectra are vertically 

shifted for clarity in order to highlight the behavior of features labelled U and V (see text). b) 

Correlation between stoichiometry and Auger fraction  (U/(U+V)) as obtained by fitting the Auger L-

3M2,3M4,5 spectra. The blue line is the best least-squares fit of the experimental data with a straight line 

of fixed intercept (at x=0 the fraction of unpaired electrons must be equal to 1). The best-fit slope is k = 

-0.320±0.005. 

The background has been modelled using the Shirley curve. The Auger fraction (U/(U+V)) where U 

and V refer to the area of the two features), can be associated to the fraction of unpaired 3d electrons 

relative to the total number of 3d electrons. The behaviour of the Auger fraction vs. 𝑥 is reported in 

Fig. 3b, along with the best fit to a straight line (intercept =1, best fit slope is k =-0.320±0.005). 
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In the pure metal, no oxygen atoms are available to form V-O bonds, thus V = 0 and U/(U+V)=1; 

accordingly, in the straight-line fit the intercept is held at 1. Likewise, in the maximum oxidation state 

(x=2.5) the fraction should be zero because no unpaired 3d electrons are present and U=0. Actually, the 

extrapolated value for x=2.5 is different from zero: U/(U+V)|2.5 =0.2±0.01, denoting a partial 3d 

occupancy. This is not unusual for 3d0 compounds because of the strong 3d-2p hybridization  in the 

specific case of V2O5, these results confirm previous published resonant photoemission (ResPes) 

experiments.35,36 The number of unpaired 3d electrons in the samples has been calculated multiplying 

by 3 (which is the number of the nominal 3d electrons in vanadium atom) the Auger fraction U/(U+V). 

For the stoichiometry value for which no experimental data are available, the Auger fraction value has 

been extrapolated by the straight line fit of the experimental data. In Table 2 we report the number of 

unpaired 3d electrons per vanadium atom equal under the above assumptions. They are not in good 

agreement with the occupation number calculated by Zimmerman and co-workers,37 suggesting that 

further theoretical investigations are necessary.  

We would like to underline here also that data in Table 1 refer to the core-hole ionized systems and do 

not necessarily reflect neutral VOx features. For example, on the one hand, the extrapolated values are 

in good agreement with measured values of unpaired 3d electrons for VO2, suggesting that the core-

hole effect in this oxide is negligible. On the other hand, the data for the V2O3 oxide suggest that only 

1.56, instead of two, 3d electrons are unpaired. In this system, we point out the presence of a mixed 

band of 4s-3d character near the Fermi energy. 

Table 1: Extrapolated values of the unpaired 3d electrons per vanadium atom. 

Stoichiometric oxides  

(oxidation state) 

# of unpaired 3d 

electrons per V atoms 

(this work) 

# of unpaired 3d 

electrons per V atoms 

(Zimmerman et al.) 

Nominal # of unpaired 

3d electrons per V atom 

V2O5 (+5) 0.6 ± 0.04  1.3 0 

VO2 (+4) 1.08 ± 0.03 1.9 1 
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V2O3 (+3) 1.56 ± 0.02 2.6 2 

VO (+2) 2.72 ± 0.02 - 3 

 

However, for the V2O3 these results are not in agreement with Hard-X-Ray PES spectra which showed 

a VB with a pure 3d character near the Fermi level and 4s character centred at ~8 eV binding energy.38 

This suggests us that in V2O3 the core-hole effect is relevant. For VO no data are available in the 

literature but a strong 4s-3d hybridization is known to occur. To reproduce the VB features of this 

system using LCAO (Linear combination of atomic orbitals) and APW (Augmented plan-wave) 

computational methods, the electron configuration {V(3d44s1) O(2p4)}, which implies a strong 4s-3d 

hybridization,39–41 has to be considered. Moreover, in this case, the percentage of unpaired 3d electrons 

has to be multiplied by four instead of three, obtaining the value of 2.72 ± 0.02 unpaired electrons. 

Valence band PES 

Valence band spectra of vanadium oxides can be divided into two regions along the Binding Energy 

(BE) axis as can be seen in Fig. 4a: the O 2p band (2.5 - 10 eV BE, Fig. 4b) and the V 3d (Fermi level - 

2.5 eV BE, Fig. 4c) 

The V 3d region is populated by unpaired 3d electrons. The corresponding spectral feature shape and 

position depend on the oxygen amount present in the material, which determines the DOS via crystal 

field effects. The position of the V 3d band exposes the metal character of sub-oxides, i.e., a finite DOS 

at the Fermi level. This indicates that the amount of oxygen in these samples is not sufficient to break 

the degeneracy of 3d levels 6 and that the independent particle approximation is sufficient for a 

theoretical band description. V 3d band of VO1.27 clearly exhibits two features, one centred around 1.5 

eV and a second at ~0.4 eV (indicated by arrow in Fig. 4c. These features can be associated to the V3+ 

and V2+ components of the core-level spectra (See supplementary materials). A small, but finite DOS at 

the Fermi level is also present, supporting the picture of vanishing of the 3d degeneracy. For higher 
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values of the stoichiometric ratio, we observe a decrease of the V 3d band spectral weight, which is 

transferred to the O 2p band. An interesting case is that of VO2.45, a defective variant of V2O5, whose V 

3d band is populated due to oxygen vacancies. The latter generates V4+ ions, because of the large 3d-2p 

hybridization.34,42  

Figure 4: a) full valence band spectrum of VO2.45 in the BE region [0-10] eV reported as representative 

spectra. O 2p and V 3d regions of the valence band spectra (b and c respectively) for VO0.53, VO1.27, 

VO1.6, VO2.1, VO2.2 and VO2.45 oxides: b) Comparison of the spectra of the O 2p region. Spectra are 

vertically shifted in order to highlight the behavior of the feature labelled A, B and C; c) comparison of 

the spectra in the V 3d region, near the Fermi level (dotted line). The arrows indicate VO1.6 features. 

The intensity of the spectra is normalized to the maximum value of O2p region. d) BR as a function of 

the stoichiometric ratio. The red curve is the fit obtained using the eq. 1 including the 3d-2p 

hybridization term; the blue dotted curve is obtained considering ionic model of the valence band. 
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As shown in Fig. 4b, the O 2p region exhibits a fine structure due to the superposition of V 4s, V 3d 

and O 2p orbitals. To qualitatively describe these VB features we use the LCAO band model 

terminology. For the high oxidation states, three features (labelled A, B and C) are clearly visible, 

whose relative intensity evolves with the stoichiometry. The A component is assigned to the 

superposition of V 4s and O 2p orbitals.38 The DOS behind the B feature is dominated by the mixture 

of O 2p – and V 3d orbitals, while the electron yield in the C region is dominated by the non-bonding O 

π* orbitals with a small contribution from V 3d electrons.43,44 For the samples with lower oxidation, the 

C feature decreases rapidly, while the relative intensities of A and B structures remain almost 

unchanged. For x<1.6, the π* contribution (C) is negligible and the spectral weight is centred around A 

and B with an inversion of their intensity ratio. This can be explained considering the behaviour of the 

cross-sections and the number of V 3d and O 2p electrons. The only exception to the scenario described 

above is represented by the VB spectrum of the sub-oxide sample, which has its maximum between A 

and B and where none of the features so far described can be recognized. This intermediate feature 

could be a superposition of A and B, i.e. indicate a mixed 4s-3d valence band. Further experimental 

investigation and theoretical support is however necessary to clarify this issue.  

Because of overlapping contributions from multiple orbitals,45 a quantitative analysis correlating VB 

spectral features to stoichiometry is difficult. The fit of the spectral features with fixed line-shapes does 

not provide reliable value and their interpretation is questionable without a priori knowledge of the 

superposition degree of the contributing orbitals. To overcome this problem, we introduced a semi-

empirical formula, which correlates the branching ratio of V 3d and O 2p bands with the stoichiometry. 

Starting from the assumption that a VB spectrum can be divided into its fundamental contributions, and 

considering V3d-O2p hybridization, we arrived at a similar equation for the outer valence branching 

ratio as for the Auger (eq.1). 
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𝐵𝑅 =
𝐼𝑉3𝑑

𝐼𝑂2𝑝+𝐼𝑉3𝑑
=

1−0,32𝑥

(
𝜎𝑂2𝑝

𝜎𝑉3𝑑
+𝑎)𝑥+1+𝛫𝑠𝑑+𝑏

      (1) 

 

The detailed derivation of this BR equation is reported in the supporting information. BR experimental 

data have been extracted from the valence band spectra by integrating the V 3d and the O 2p regions to 

obtain IV3d and IO2p respectively. In Fig. 4d the BR values from the full set of samples are displayed 

and compared with the best-fit obtained from equation 1 (red curve) using a and b as free parameters 

(a= 4.5±0.7 and b= 0.5±0.6 in Fig. 4d). The good agreement among the experimental points and the fit 

supports the use of the proposed model for stoichiometry quantification using UPS and once more it 

underlines the failure of the Ionic picture model to describe the valence features of vanadium oxides. 

The Work Function 

In vanadium oxides the WF increases simultaneously with the oxidation state ranging from the value of 

4.3 eV of the pure vanadium up to ~7 eV as in stoichiometric V2O5.
10 
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Figure 5: a): comparison of the onset energy of the secondary electron onset collected with the He I 

(21.22 eV) discharge lamp of VO0.53, VO1.6, VO2.1, VO2.2, and VO2.45 NS films. For each film the 

relative WFs are also reported. b) Comparison of the WF of VOx NS films (circles) with bulk data 

taken from literature 6,10,13,46 (squares) for the stoichiometric ratio x in the range 0 -2.5. The dashed line 

is the best least square fit of the NS films data. 

The measurements of the WF of these films have been performed measuring the VB spectra (see Fig. 

5a) upon negatively biasing the sample by ~ -9 V to determine the secondary electron onset energy. 

The WF has been calculated as:  

WF = hvHe I (21.22 eV) - BESo 

where BESo is the binding energy corresponding to the secondary electron onset. The dependence of 

WF from stoichiometry in these NS vanadium oxides films is depicted in Fig. 5b. 

A straight line can fit data of NS films: 

       𝑊𝐹 = 𝑤0 + 𝑤1𝑥               (2) 

Where w0 and w1 are fit parameters. The slope has a value of 𝑤1 = 1.7 ± 0.13 𝑒𝑉 and the intercept 

𝑤0 = 2.99 ± 0.23 𝑒𝑉.  

Some experimental and extrapolated WF value are listed in Table 2, together with data available in the 

literature for bulk samples. Extrapolated and measured values of the WF of NS films are systematically 

larger than their bulk counterpart. This may be due to a size effect, which determines the enhancement 

of the electronic density by confinement within the nanostructure. It is well known since 80’s that the 

WF of small spherical nanoparticles is larger than that of bulk.15–18 

Table 2: WF values of NS films and reference bulk materials taken from the literature.6,13,14,46 The 

extrapolated values are labelled by *. The NP diameters have been obtained using the eq. 3. 

Oxide NS film WF  [eV] Bulk WF [eV] NP diameter [nm] 

VO2.45 7±0.1 6.313 1.54±1.0 
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VO2.2 6.74±0.1 - - 

VO2.1 6.65±0.1 - - 

VO2 *6.39±0.33 5.1546 0.9±0.3 

VO1.6 5.73±0.1 4.6514 0.9±0.3 

V2O3 *5.61±0.29 4.96 1.7±1.1 

VO1.27 5.46±0.1 - - 

VO0.53 3.7±0.1 - - 

 

Zhou and Zachariah deeply investigated the size dependence of the WF of aggregated NP.17 They 

claimed that for assembled NP, the deviation respect to the bulk strongly depends on the size of the 

primary particles and weakly from the size of the aggregate. Assuming that the fundamental units of 

the nanoparticle-aggregate are spherically shaped, using the eq. (3) it is possible to estimate the average 

diameter of each element:  

     𝑊𝐹𝑛𝑝 = 𝑊𝐹𝑏𝑢𝑙𝑘 +
1.08

𝐷𝑛𝑝
            (3) 

WF is expressed in eV and the diameter (Dnp) in nm. Eq. (3) cannot provide an accurate size evaluation 

since the spherical shape approximation is too general and is not adequate to describe the complex 

shape-size relation. Indeed, a fractal-like nanostructured distribution is showed by TEM (see Fig. 1 and 

supplementary materials) in our samples. Still, the results of eq.(3) can be indicative of the order of 

magnitude of the nanoparticles size. The diameters listed in Table 2, suggest that the main components 

have a size of the order of 1-2 nm, in agreement with the few nm particles observed in TEM images. In 

addition, the calculated diameters for different stoichiometries are similar, within the uncertainty. The 

result suggests that the nanoparticles nucleation conditions within the PMCS are not heavily affected 

by the small amount of oxygen present in the gas mixture, i.e. the size and shape are not depending by 

nanoparticles stoichiometry, as confirmed by TEM. The observation of such size effect in WF 

measurements,  is an addtitional confirmation that that  NS films synthetized with the SCBD grow 

without coalescence retaining the memory of the small size of their gas-phase precursors.47–51 As a 

consequence of this “memory effect” SCBD allows to exploit quantum confinement to synthetize 
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samples with a remarkably high WF and a low stoichiometry without any sputtering process or 

additional heating treatment. 

An interesting case is that of suboxides. Despite the quantum confinement enhancement, for x<0.76 the 

WF of the films is smaller compared to the one of pure bulk vanadium, most likely owing to the 

arrangements of vanadium and oxygen atoms in suboxides that determine a thin electron depletion 

layer on the surface of the sample.  As demonstrated by Leung and co-workers, WF modifications 

induced by electronegative elements depends from the fine details of the electron density at the surface, 

which may lead to a decrease of the work function of metal oxides.52  

The low WF of suboxides could be extremely useful if they are used as electron injection layer in an 

OSD, since as in OLED the optimization of the cathode WF may increase the efficiency.7,53 We would 

like to point out that the straight line trend of eq. 3 is not valid for x=0. Vanadium  bulk WF is 4.3 eV, 

therefore, because of the above mentioned considerations on quantum confinement, for nanostructured  

vanadium we expect a WF>4.3 eV. This implies that exists a point x* for which the WF will start to 

increase, reducing the stoichiometric ratio thus disobeying the linear relation of eq. 3.  

Conclusions 

By using the SCBD approach at room temperature, we grew different NS vanadium oxides films with 

controllable oxidation state. We systematically investigated using in-situ Auger spectroscopy VOx 

electronic structures as a function of the stoichiometry. From the analysis of the Auger spectra we 

quantitatively correlated the 3d spectral weight of the DOS with the amount of oxygen inside the films. 

Results confirm the failure of the ionic picture to describe the 3d occupancy in NS vanadium oxides, 

and the role of the hybridization in all VOx NS film. We have shown that the amount of unpaired d 

electron exhibits a linear dependence from the oxygen content, indicating a strong 4s-3d and 3d-2p 

hybridization varying with stoichiometry. Based on the data we propose heuristic model which links 

the outer valence BR with the stoichiometry, again pointing out the importance of V3d-O2p 
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hybridization in these VOx films. In addition we observed the occurrence of a linear correlation 

between WF and stoichiometry in the range 0.5<x<2.45. The observed “memory effect” allowed to 

exploit the nanograin structure of these films resulting in a quantum confinement enhanced WF. By 

controlling the oxidation state degree of freedom and accessing the nanoscale we demonstrate the 

unique capability of this method to synthetize NS films with a tunable WF (3.7-7 eV), together with the 

possibility to grow at room temperature hole or electron injection layers. SCBD emerges as an effective 

approach for the control of the electronic structure and work function of materials.  

Experimental methods 

All samples were produced in-situ under ultra-high vacuum (UHV) conditions (base pressure <210-9 

mbar) by using the SCBD apparatus equipped with a PMCS which is available at Lab. TASC-

Analytical Division54. The PMCS is a pulsed-cluster source driven by a high-power pulsed electric 

discharge. In the present experiment, the PMCS was operated with a vanadium cathode (6 mm diam. 

rod, purity 99.9 %, EvoChem GmbH) generating a supersonic beam of vanadium metal or oxide 

cluster. To obtain homogeneously oxidized nanoparticles, we used Ar (high purity Ar: 99.9995%, 

SIAD) as carrier gas, mixed with a controlled amount of oxygen (Table 1, supplementary materials) 

resulting in an Ar-O2 gas mixture. The working parameters of the PMCS have been kept constant for 

all the samples synthetized (delay between gas injection and discharge firing = 0.6 ms; discharge 

operating voltage 0.925 kV; discharge duration 80 µs; pulsed-valve aperture driving signal duration 

time 157 µs; pulse repetition rate 3 Hz; Ar pressure 70 bar). The nanostructured film deposition rate 

measured by a quartz-crystal microbalance ranged from ~30 Å/s for pure Ar as carrier gas, to ~5 Å /s 

for the highest oxygen concentration. To probe the vanadium oxidation state, we deposited VOx films 

with >300 nm thickness on Si or Cu substrates. The typical size of all the samples is about 2 cm2. The 

samples are deposited by landing the supersonic beam of nanoparticles onto clean substrates placed 

inside the sample-preparation chamber of the XPS characterization facility (base pressure <210-9 



18 

 

mbar) and then transferred, maintaining UHV conditions, via a linear translation manipulator into the 

analysis chamber where pressure was kept below 510-10 mbar.  Here they are characterized by X-ray 

Photoemission Spectroscopy (XPS) using a Mg Kα lamp (1253.6 eV, not monochromatic) and studied 

by UPS using a He lamp (He I 21.22 eV) coupled to a hemispherical analyser (PSP, 120 mm). The 

morphology and the size of the clusters has been analysed by Transmission Electron Microscopy 

(TEM) by means of a field-emission TEM (JEM2100F-UHR, JEOL) operated with beam energy 200 

KV. 
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Figures legends and tables: 

Figure 1: TEM image of the nanoparticle assembled nanostructured film for VO2.2 

Figure 2: V2p and O1s spectra of vanadium and oxygen. a)  V2p and O1s  core level spectra of all 

samples. Peak positions of the vanadium components for different oxidation state are highlighted by 

straight vertical lines; b) V2p and O1s core level spectra and fit curve of VO2.2. The individual fit 

components are shown as coloured curves. The label O 1s sat indicates the features generated by the 

Mg Kα3 and Mg Kα4 component of the radiation. 
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Figure 3: a) Comparison of Auger L3M2,3M4,5 spectra of vanadium oxides NS films with 

stoichiometric ratio 1.27, 1.6 and 2.2 in the kinetic energy range 455-482 eV. The spectra are vertically 

shifted for clarity in order to highlight the behavior of features labelled U and V (see text). b) 

Correlation between stoichiometry and Auger fraction  (U/(U+V)) as obtained by fitting the Auger L-

3M2,3M4,5 spectra. The blue line is the best least-squares fit of the experimental data with a straight line 

of fixed intercept (at x=0 the fraction of unpaired electrons must be equal to 1). The best-fit slope is k = 

-0.320±0.005 

Figure 4: a) full valence band spectrum of VO2.45 in the BE region [0-10] eV reported as representative 

spectra. O 2p and V 3d regions of the valence band spectra (b and c respectively) for VO0.53, VO1.27, 

VO1.6, VO2.1, VO2.2 and VO2.45 oxides: b) Comparison of the spectra of the O 2p region. Spectra are 

vertically shifted in order to highlight the behavior of the feature labelled A, B and C; c) comparison of 

the spectra in the V 3d region, near the Fermi level (dotted line). The arrows indicate VO1.6 features. 

The intensity of the spectra is normalized to the maximum value of O2p region. d) BR as a function of 

the stoichiometric ratio. The red curve is the fit obtained using the eq. 1 including the 3d-2p 

hybridization term; the blue dotted curve is obtained considering ionic model of the valence band. 

Figure 5: a): comparison of the onset energy of the secondary electron onset collected with the He I 

(21.22 eV) discharge lamp of VO0.53, VO1.6, VO2.1, VO2.2, and VO2.45 NS films. For each film the 

relative WFs are also reported. b) Comparison of the WF of VOx NS films (circles) with bulk data 

taken from literature 6,10,13,46 (squares) for the stoichiometric ratio x in the range 0 -2.5. The dashed line 

is the best least square fit of the NS films data. 

 


