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Abstract 
 

In this paper we present a novel simple procedure to compute the focal length of a 

camera. The method is based on zooming in and out only a single point. The same approach 

allows computing the principal point when only two points are available on a pair of 

images surveyed with a different focal length. Experimental results show that the method is 

as accurate as classical full calibration methods. Moreover, its application to augmented 

reality produces more accurate results than when the simple pin-hole model is considered.  

 

Keywords: Calibration; Cross-ratio; Focal length; Augmented reality; Zooming. 

 

1. Introduction 

 
Digital video applications, like sports video and TV shows, are more and more 

interested in compositing real video with digital models in real-time to add information 
content or increase the attractiveness through special effects [1]. To achieve this, the 
calibration parameters, which describe the projection of the 3D digital models on the 2D 
video images, have to be known. The procedure to determine these parameters is called 
camera calibration. The main difficulty to obtain on-the-field, real-time operation is related 
to the identification of good feature points and to the definition of an adequate model, 
which guarantee a reliable estimate of the parameters. We will focus here on camera 
calibration when zoom lenses are used. 

Two are the main approaches to this problem. Classical calibration procedures adopt 
non-linear optimization and/or algebraic matrix manipulation, to compute the parameters 
altogether: both exterior (camera’s position and orientation with respect to a given 
reference frame) and interior (focal length, principal point and distortion field) [1, 2, 4]. 
These procedures are based on surveying a 3D distribution of control points of known or 
partially known position, spread inside the calibrated volume [3]. However, such a 
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distribution is difficult to obtain in real situations and a host of calibration techniques, 
based on surveying simplified distributions such as linear, planar or circular have been 
developed [5, 6]. Methods of this category cannot be employed when camera parameters 
are changed often. In fact, they require stopping filming, setting-up the calibration object, 
surveying it and computing the parameters. Only afterwards, filming action can resume.  

A different approach is based on computing the parameters from feature points 
automatically identified directly on the video image sequence. This approach belongs to the 
framework called “Structure from Motion” [7], and it has originated several calibration 
procedures [8, 9]. However, as a good distribution of feature points and a good 
initialization to converge are required (cf. Results Section), these techniques operate mainly 
on-line but not in real-time (cf. commercial products like Boujou and Realviz [10, 11]). 

Two main simplification of the calibration model can be accepted for real-time 

operation: that the position of the principal point is fixed and known and that the distortion 

field can be neglected ([2, 4]). A further simplification can be obtained considering that the 

introduction of zooming lenses has limited camera movements during filming: different 

scene frames being obtained simply by zooming. In this condition, the only parameter 

required to project 3D digital models onto the scene, can be reduced to the actual focal 

length. This is changed often with zoom lenses, and each time it has to be determined. For 

this reason simple focal determination techniques have been derived. They are based on 

extracting lines from an image and evaluating the vanishing points: two vanishing points 
associated to two orthogonal directions, are sufficient to determine the actual focal length 
[9]. 

An even simpler approach is proposed here. It is shown that only one single point is 
sufficient to determine the actual focal length of a camera. This can be obtained through an 
innovative use of the projective transformation and requires that the image of the point is 
acquired with the actual focal length and two other known focal lengths, for instance the 
minimum and the maximum ones. Besides this we propose also an elegant solution for 
computing the principal point which requires only two points. Results on real images are 
reported and discussed. 

 

2. Mathematical Background and Description of the Method 

 

We will start with the pin-hole camera model (Fig. 1a), which is characterized by the 

position of the principal point, intersection of the optical axis with the image plane, 

C(xC,yC), and by the focal length, f, which is the distance of the image plane from the 
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projection centre, F. The pixel squareness is known: as it is independent from camera 

zoom, its value reported in the camera factory specifications can be used. The position of 

the principal point is supposed constant and known. Distortions are not considered. 

 The projection of a 3D point, P(X,Y,Z), on the image plane of the video camera, 

p(xp,yp), is described by the projective equations, which contain a factorization of the 

interior and exterior parameters in homogeneous notation: 

p = K M D P (1) 

where: 

 

               (2)  

R and T are the exterior parameters and represent the orientation (3x3 matrix) and the 

location of the camera with respect to an external reference frame. For convenience, the 

exterior reference frame is positioned in F, with the X,Y axes parallel to those of the image 

plane. In this case, D becomes equal to the identity matrix leading to the following 

simplified projection equation:  

p = K M P (3)  

which, for xp and yp is: 
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well known in the computer vision community. Eqs. (4) represent only an approximation of 

the real projective transformation as they are based on the implicit assumption that the 

centre of projection, F, does not move; when focal length is changed, the image plane is 

implicitly moved further or closer to F (cf. Fig. 1a).  

 

2.1 Computation of the Focal Length 

 

To compute the focal length taking into account the movement of the projection 
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centre we have developed a novel view of the perspective projection. Let us consider three 

images of one 3D point P: p1, p2, p3 (Fig. 1b). Two of these are taken with known focal 

lengths, f1 and f3 and a third one with the focal length that we want to compute, f2 (actual 

focal length). The point P is projected on the image plane π through the points F1, F2, and 

F3, which belong to the same line (the focal axis, a). We notice that: 

• the points p1, p2, p3 and the principal point C are always collinear; 

• the points F1, F2, and F3 and the principal point C are always collinear; 

• the points F1, F2, F3, p1, p2, p3 and the principal point C lie on the same plane. 

• the points C, F1, F2, F3 and C, p1, p2, p3 share the same cross-ratio: 

[C F1 F2 F3] = [C p1 p2 p3] (5) 

If we suppose that the image plane reference system has the z axis parallel to the 

optical axis, a, we can write: Fj = [0, fj] and pj = [p’j; 0], where p’j is the offset position of 

pj: p’j = [xpj –xC; ypj –yC]. If two focal lengths are know (for example f1 and f3) along with 

the principal point, C, and the position on π of the three points p1, p2, and p3, the unknown 

focal length, f2, can be computed as: 
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Two focal lengths are particularly useful: the minimum and maximum ones. These 

can be estimated once, off-line, through a distribution of control points of high accuracy [2, 

3, 4] are derived from factory specifications. We explicitly notice that in this derivation the 

image plane is considered constant (anchored to the camera body), while F moves, 

translating on the optical axis. 

 

2.2 Computation of the Principal Point 

 

To compute the principal point, we start from the consideration that, given the image 

plane π, and two different points F1 and F2 on the focal axis a (Fig. 2a), we can define a 

projective transformation ω onto π, via a new plane π’, as follows. Let us consider a point 

P on π’ and let p1 and p2 be the projections of this point onto π, from the projection centres 

F1 and F2. The projective transformation ω: π → π, can be defined as: 
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ω(p1) = p2 (7) 

It is possible to show that: 

1 given a point pj on the image plane π, the points pj, ω(pj), C, F1 and F2 lay always 

on a unique plane; 

2 the three points pj, ω(pj), and C are always collinear; 

3 every straight line s passing through C and its image ω(s) satisfy the following 

constraint: ω(s) = s; 

4 and, at last, ω(C) = C. 

 

The last observation suggested to us the following algorithm. Take two images of at 

least two points, each with a different focal length, (e.g. by zooming); three points are 

shown in Fig. 2b for sake of clarity. Let us call pj qj the pairs of points measured on the 

image plane π and r, s, t the lines through these pairs of points. The principal point will lie 

at the intersection of these lines (focus of expansion [9, 12]). An alternative method to 

compute the principal point is based on the determination of the eigenvalues and 

eigenvectors of the homology ω. We verified experimentally that this second solution, 

although elegant, is particularly sensitive to errors on point measurement and it was not 

pursued further. 

 

2.3 Adding Digital Objects to the Images 

 

The same novel view of the cross-ratio has suggested to us a technique to add digital 

objects to acquired images. Let us suppose that an object is present in the two images, I1 

and I3, acquired respectively with f = f1 and f = f3. Suppose that we want to insert the same 

object, or a digital object similar to that, into a third image, I2, acquired with f = f2 (cf. Figs. 

4). 

In this situation the position of the (virtual) object in I2 can be computed through the 

cross-ratio as: 
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Similar reasoning allows determining the area occupied on the image by an object 

surveyed with minimum and maximum focal length.  

 

3. Experimental Results 

 

The algorithm has been extensively tested on different sets of natural images taken 

with different cameras.  

To evaluate the quality and reliability of the estimate of the actual focal length a 

planar black and white 7 x 9 chessboard with 30mm square length, was used (cf. Fig. 3). 

This pattern is widely adopted [5, 8] as it allows a reliable identification of the chessboard 

square corners, which serve as feature points. The results presented here were obtained 

from images acquired with a Sony DSC-S50 digital camera, with a target of 640 x 480 

pixels. Minimum and maximum focal length, reported by the factory, was 6.1mm and 

18.3mm respectively (zoom 3x).  

Chessboard square corners were identified semi-automatically with Matlab™ software 

made publicly available by [13]. The parameters estimated with the method presented here 

were evaluated comparing them with those obtained with the classical technique proposed 

by Zhang [8] and implemented in the same software package [13]. Typical results are 

reported in Table I. They are referred to ten different calibration session, where in each 

session camera was calibrated with six different focal lengths: the minimum and the 

maximum and four intermediate ones. For each focal length, the chessboard was acquired 

in at least 25 different positions and orientations for Zhang’s algorithm, while it was 

acquired in the same single position for all the focal lengths for the method presented here. 

A subset of ten of the forty-eight chessboard corners were extracted randomly and used to 

determine the focal length with the method presented here. 

We first checked that the principal point does not move significantly with zooming. 

The obtained mean and standard deviation of the principal point position obtained with 

Zhang’s algorithm averaged over the six calibrations, each with a different focal length, 
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was: (322.62; 220.28) ± (0.94;1.84) pixels (Table I). This is well in accordance with the 

data reported in the literature [4, 12, 14]. Moreover, for this particular digital camera the 

pixel form factor was one up to the sixth decimal digit, as reported in the factory 

specifications. The principal point value obtained with the method presented here is slightly 

less stable than in Zhang’s calibration. 

The focal length value was similar for both methods, with generally a smaller 

standard deviation for the method presented here. Moreover, we explicitly notice that for 

long focal lengths the estimate becomes critical for the limited amplitude of the field of 

view. In this situation, Zhang’s algorithm requested up to 150 images to get a reasonable 

estimate of the focal length (standard deviation below 10 pixels). Similar problems were 

encountered when using Bundle adjustment in combination of control points of known 

position [3]. The method proposed here does not suffer from this problem: only one single 

point is sufficient also for long focal lengths as shown with the next data set. 

Typical results obtained compositing digital objects and real images are presented in 

the soccer field images of Figs. 4. Here a portion of the field was surveyed with a Fuji, 

FinePix S602 digital camera, 2048 x 1536 pixels. We trusted the minimum (f1 = 8mm) and 

maximum (f3 = 48mm) focal lengths declared in factory specification.  

The image taken with f1 (wide angle, I1) is shown in panel (a), while the image taken 

with f3 (macro zoom, I3) is shown in panel (b). The zooming effect here is very large, being 

a 6x. In these two images a soccer ball was present close to the corner flag. A third image 

(Fig. 4c) was taken with an intermediate focal length (image I2);  

We first notice that there is only one point which can be determined with a high 

reliability, which is the mast base of the corner flag. This point is used to compute the focal 

length with the method described in Section 2.2 (Eq. (6)). The value obtained was 24.4mm, 

which was congruent with the position of the zoom slider on the camera.  

We then wanted to add the soccer ball also in this image, in the same position and 

with adequate size. To the scope, Eqs. (7) were applied to the six vertexes of the central 

white hexagon of the soccer ball pattern to compute their position in the image I2. The 

soccer ball image in I1 was then shrank to fit these points and added to the image taken with 

the intermediate focal length, I2. The error in the ball position (measured in the hexagon 

vertexes) was of [-2.083±0.68; 6.42±0.82] pixels on the x and y directions respectively. The 

difference in ball size was less than 1 pixel. The difference between the true ball and the 

ball added on the image is difficult to be appreciated also in the zoom circle at the bottom 
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right of Fig. 4c.  

 

4. Discussion 

 
Zoom lenses are more and more used in digital videos as they allow capturing the 

smallest details and to get a panoramic view of the same scene with the same camera. This 
reduces the need of camera motion and simplifies the procedure of camera calibration. In 
this paper, thanks to a different view of the cross-ratio in the perspective projection, the 
focal length can be computed using only one single point. This greatly simplifies the 
problems related to identification and matching multiple points over different images.  

The method relies on an accurate estimate of two focal lengths: typically the 

minimum and maximum ones. These focal lengths should be such that they can be set again 

in the field. They can be estimated ones off the field with accurate markers, or we can rely 

on the factory data. Once these two focal lengths have been measured, the method allows a 

reliable estimate of the focal lengths in the entire range, and in particular of the longest 

ones. These are particularly difficult because of the geometrical set-up: classical solutions 

require many images to produce good results. Other focal lengths, between the maximum 

and the minimum one, could be identified on the camera and measured. This would 

improve the accuracy of the method. 
The projection model used requires two assumptions. First, the principal point is 

known and is in a constant position. This is a reasonable assumption with modern CCD 
sensors: in many cameras, its displacement can be compared with the localization error of 
the features and it can be neglected [2, 4] (cf. Table I). Therefore it can be estimated once, 
off the field along with the minimum and maximum focal lengths. The second assumption 
is the neglect of the distortion field. This can offset image measurements, the offset 
increasing mainly in radial direction from the image centre and therefore having more 
impact on points close to the image borders. The distortion field is usually taken into 
account when very precise measurements are required and/or high distortion field is present 
[2, 9, 14, 15]. However, when the distortion field has moderate entity, and selected feature 
points are not close to the border, it can be left out from the calibration model [10].  

The power of the method presented here is well exemplified by the very small error in 
the position computed in images taken with an arbitrary focal length, I2, of the same points 
measured on the images taken with reference focal lengths. Typical mean offset was of a 
few pixels, which has to be considered extremely small given the resolution of the cameras. 
In the soccer sequence the error in the object’s position amounts to less than 0.1% in the 
horizontal direction and less than 0.4% in the vertical one (and it was not the smallest error 
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obtained in all the sequences that we have taken). The error was usually mainly along the y 
direction. This asymmetry in the error may be ascribed to the experimental conditions. The 
camera was mounted on a tripod and no remote control was given to the user to simulate 
the most frequent operating conditions.  
 

4.1 Comparison with simple projective model 

 

Projective transformation through zoom lenses is correctly represented by the thick-

lens-model, which is based on the definition of an inner and outer principal point [15, 16] 

(Fig. 5a). The distance between these two points increases during zooming in. The 

corresponding geometry is represented in Fig. 1b and the relationship between a point in 

3D space and its projection on the image plane taken with a different zoom, is described by 

Eqs. (6).  

In computer vision, very often, this model is simplified by assuming that the image 

plane translates and the principal point is fixed. Under this condition (Fig. 1a) Eqs (4) are 

derived. To compute an unknown focal length, f2 (the actual focal length) we have to 

measure two projections of the same 3D point on the image plane, each taken with a 

different focal length: p2 is obtained when the unknown focal length f2 was used and pk 

with the known fk, (e.g. the minimum or the maximum focal length). From pk p2 and fk,  f2, 

can be computed through Eqs. (4) as: 
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Once f2 has been determined, the position of any point measured with focal length fk, 

pk(xk, yk), can be identified over the image taken with focal length f2 simply as: 

( )

( )
k

CkC

k
CkC

f
fyyyy

f
fxxxx

2
2

2
2

−+=

−+=

 (10) 

These equations derive from the simplification in the projection equations described 

in this Section and lead to the large errors as it can be clearly seen in the soccer sequence 

(Fig. 4d). Here the actual focal length, f2, was computed through Eq. 9 using the same point 
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at the mast base of the corner flag, used to calibrate with the method introduced here. Two 

different values were obtained: f2 = 12.3mm when the image taken with the maximum focal 

length was considered (fk = f3 and pk = p3), and f2 = 40.2mm when fk = f1 and pk = p1. We 

have then determined the position of the soccer ball and its size in the intermediate image, 

assuming f2 = 12.3mm, which has given the best result with this solution (Fig. 4d). The 

mean offset of the same six points identified in Fig. 4c (Section 3) was [-40.2 ± 0.99 25.4 ± 

7.09] pixels in the horizontal and vertical direction respectively. Moreover, the ball 

diameter was 19 pixels larger than in the real image.  

Form this experiment it is clear that the displacement of the projection centre when 

zooming has to be taken into account if large errors have to be avoided.  

 

5. Conclusion 

 

In this paper we present a novel simple procedure to compute the focal length of a 

zooming camera. The method is based on zooming in and out only one single point. 

Experimental results show that the method produces results comparable to classical 

calibration methods. In particular, in comparison with Zhang’s method, the estimate of the 

focal length is reliable also at large focal lengths, where Zhang’s algorithm requires much 

more images. Experimental results support the need of an accurate projective model of 

zooming, which is able to take into account the translation of the projection centre. Large 

errors are originated by models which fail to achieve this. 
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