High-resolution ensemble precipitation simulations over a small domain with complex topography

Ioannis Sofokleous¹, Adriana Bruggeman¹, Corrado Camera², George Zittis³ ¹ Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus ² Dipartimento di Scienze della Terra "A. Desio" University of Milan, Milan, Italy ³ Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus

Objective

- This study aims to select an ensemble of the Weather Research and Forecasting model (WRF) for high-resolution hydrological applications
- Different dynamical downscaling options are evaluated:
 - 1. Domain configurations (3)
 - Initialization frequencies (2) 2.
 - 3. Physics parameterizations (18 combinations - members)
- Five evaluation metrics for daily and sub-daily (30 min) precipitation and a Composite Scaled Score (CSS) are used
- A stepwise evaluation approach is followed for a 3-month simulation period
- Study area: Cyprus in the Eastern Mediterranean

 (\mathbf{i})

(cc)

Stepwise Evaluation Method

Simulation experiments	# experiments	Calibration period			
Step 13 domain setups × 1 initialization × 18 members × 1 month	54	Jan 2012			
Step 2 1 domain setup × 2 initializations × 18 members × 2 months	72	Jan 2012, May 2012			
Step 3 1 domain setup × 1 initialization × 18 members × 3 months	54	Oct 2011, Jan 2012, May 2012			
Model configurations tested					

Domain setup	Initialization frequency	Physics parameterisations
12-4-1 6-1a 6-1b	5-days 30-days	18 members

Method: Evaluation measures

For daily amounts

- 1. Bias (mm)
- 2. Mean Absolute Error (mm)
- 3. Modified Nash-Sutcliffe Efficiency
- 4. Kling-Gupta Efficiency

For 30-min amounts > 15mm (extreme events)

5. Hit rate * Bias ratio, for Bias ratio < 1 (underestimation)

or

Hit rate / Bias ratio, for Bias ratio > 1 (overestimation)

For relative performance of ensemble members

6. Composite Scaled Score (CSS): ranges from 0 (best performance) to 1 (worst performance) and combines the values of the five evaluation measures

 $CSS_{i} = \frac{1}{N_{s}} \sum_{s=1}^{N_{s}} \left(\frac{x_{s,i} - x_{s,worst}}{x_{s,best} - x_{s,worst}} \right)$

i: index of member (1-18)

s: index of evaluation measure (1-5)

N_s: Number of evaluation measures (5)

x_{s,i}: Value of evaluation measure s for member i

x_{s.worst}: Worst value of the measure for all members

x_{s,best}: Best value of the measure for all members

1. Domain configurations

WRF precipitation is initially evaluated for three domain setups and 18 members for January 2012

1. Domain setups

 \rightarrow Least errors in WRF simulated precipitation are found with the 12-4-1 domain setup

T1

Average value and standard deviation of MAE of accumulated precipitation (mm) for 18 members for January 2012.

Total precipitation bias (mm) for January 2012

2. Initialization frequencies

→ The shorter initialization frequency (5-days) leads to similar WRF performance with the longer frequency (30-days)

Average value and standard deviation of MAE of accumulated precipitation (mm) for 18 members for January and May 2012.

3. Physics parameterizations – Composite Scaled Score

The Composite Scaled Score (CSS) for 18 members (T1-T18) for October 2011 and January and May 2012 and the average CSS for the three months

¹ Microphysics	: 5 – Ferrier	6 – WRF Single Mome	nt-6	16 – WRF Double Moment-6	
² Cumulus:	1 — Kein-Fritch	2 – Betts-Miller-Janjic		3 – Grell-Freitas	
³ Planetary Boundary Layer: 1 – Yonsei University 2 – Mellor Yamada Janjic					
<u>4Surface Layer</u> : 2 - Eta Similarity 91 - MM5 similarity					

 \odot

٢

BY

FFWRC

3. Physics parameterizations – Composite Scaled Score

- → **Microphysics:** Ferrier (T7-T12, CSS=0.56) and WRF-Double-Moment-6 (T13-T18, CSS=0.56) outperform WRF-Single-Moment-6 (T1-T6, CSS=0.43)
- → Cumulus: Betts-Miller-Janjic (CSS=0.59) outperforms Kein-Fritch (CSS=0.49) and Grell-Freitas (CSS=0.47)
- → Surface layer/ Boundary layer: Different members with the same schemes achieve different CSS. E.g. T2 with CSS=0.66 and T6 with CSS=0.26 for Yonsei University/MM5-similarity
- \rightarrow Top five members: T2, T10, T11, T13, T18 with average CSS>0.58

Summary

 → A stepwise evaluation approach for high resolution, dynamical downscaling of ERA5 was developed and tested for a small, topographically complex domain (Cyprus) :

- Precipitation with a three-nested domain setup outperforms the two-nested domain setup with similar size (1488×1248 km²) and a two-nested domain setup with smaller size (826x768 km²)
- 2. Short initialization frequency (5-day) and monthly initialization lead to similar model performance. The same is not true for larger domain setups according to previous studies
- 3. A Composite Scaled Score (CSS), which combines the values of multiple evaluation metrics, makes the evaluation of WRF simulations more comprehensive than single metric evaluation.

