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Abstract

We develop a model of monopolistic competition with a di�erentiated inter-
mediate good and variable elasticity of technological substitution. The model
allows to study the nature and origins of external increasing returns. We single
out two sources of scale economies: specialization and competition. The former
depends only on how TFP varies with input diversity, while the latter is fully
captured by the behavior of the elasticity of substitution across inputs. This
distinction gives rise to a full characterization of the rich array of competition
regimes in our model. The necessary and su�cient conditions for each regime to
occur are expressed in terms of the relationships between TFP and the elasticity
of substitution as functions of the input diversity. Moreover, we demonstrate
that, despite the folk wisdom resting on CES models, specialization economies
are in general neither necessary nor su�cient for external increasing returns to
emerge. This highlights the profound and non-trivial role of market competition
in generating agglomeration economies and other phenomena driven by scale
economies.
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1 Introduction

Consider the standard thought experiment in urban and regional economics:
what if two economies (e.g., cities, regions) have a similar production struc-
ture, but one is larger than the other? The answer to this question is key for
understanding some empirical patterns the New Economic Geography seeks to
explain. For example, Rosenthal and Strange (2004) provide strong empirical
evidence that wages in larger cities/regions are higher. Whether the same holds
for prices is debatable. Indeed, Handbury and Weinstein (2015) describe higher
prices in larger markets as a �common �nding�, but show that this relationship
can be reversed after controlling for several measurement biases. In addition to
that, Bellone et al. (2016) provide evidence that markups are lower at larger
markets.

A plausible mechanism behind agglomeration economies relies on the as-
sumption of external increasing returns (EIR henceforth).1 Basically, the pres-
ence of EIR implies that ex post an increase in the size of the economy results
in a more than proportional increase in aggregate output, even if the individual
�rm-level technologies have ex ante constant returns to scale (CRS henceforth).
EIR emerge from various sources and play a big role in shaping market outcomes
and spatial patterns.

One source of EIR is specialization: deeper division of labor boosts aggregate
productivity. Another driving force of EIR is market competition: a larger mar-
ket invites more �rms, which eventually results in lower prices, lower markups,
and higher �rm-level output. To the best of our knowledge, the interactions
between specialization and competition in shaping EIR have never been studied
within a uni�ed setting. Instead, these two forces have been mainly analyzed
separately from each other within two di�erent, although related, families of
models.

In this paper, we look closer at the sources of EIR, and study how EIR
channel the impact of city size on key equilibrium variables: wages, prices, and
markups. To achieve our goal, we develop a two-sector model in the spirit of
Ethier (1982) with a non-speci�ed CRS production function in the �nal-good
sector. The relationship between input diversity and TFP captures the spe-
cialization/complexity e�ect, while the behavior of the elasticity of substitution
describes the competition e�ect.

Our main contribution is to demonstrate how using a non-speci�ed produc-
tion function with variable elasticity of substitution (VES henceforth) allows to
study jointly specialization economies and competition e�ects. More precisely,
we derive a necessary and su�cient condition for EIR in the �nal good sector
to occur. This condition is expressed in terms of the TFP and the elasticity
of substitution as functions of input diversity. We demonstrate that specializa-
tion economies per se are, in general, neither necessary nor su�cient for EIR to
emerge. What matters is the interplay between the specialization/complexity
e�ect and the competition e�ect. This unexpected result stands in a sharp

1See, e.g., Ch. 2 in Duranton and Puga (2004) or Ch. 3 in Fujita and Thisse (2013).
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contrast to what happens when the world is CES: the competition e�ect is not
present due to zero impact of entry on pro�t-maximizing markups. To sum up,
in the CES case, �specialization economies = EIR�. This explains why specializa-
tion economies have long been viewed as the dominant factor of scale economies,
while the impact of market competition was, in this regard, de�nitely underes-
timated. On the contrary, our result highlights the non-trivial role of market
competition in generating agglomeration economies and other phenomena driven
by EIR (including, potentially, endogenous long-run economic growth).

Our other �ndings are as follows. First, we fully describe the rich array
of equilibrium regimes in our model, and characterize the impact of horizontal
innovation on prices, markups, and wages.2 More precisely, we �nd necessary
and su�cient conditions for competition to be (i) either price-decreasing or
price-increasing, (ii) either markup-decreasing or markup-increasing, and (iii)
either wage-increasing or wage-decreasing. The �rst condition involves only TFP
as a function of input diversity, the second � only the elasticity of substitution,
while the third blends both.

Second, we �nd that the competition e�ect may either reinforce or weaken
the impact of the specialization e�ect on aggregate output. In our analysis,
how the competition e�ect interacts with the specialization e�ect depends on
whether the elasticity of substitution across the intermediate inputs (evaluated
at a symmetric outcome) decreases or increases as a function of input diversity.

Third, our approach allows for complexity externalities, which may lead to
a reduction of TFP in the �nal good sector in response to expanding variety of
intermediate inputs.3

Finally, our main results hold for any production function which satis�es
the properties of symmetry, strict quasi-concavity, and CRS, as well as having
well-de�ned marginal products of inputs.

We believe that our contribution makes an important theoretical advance-
ment compared to recent work on monopolistic competition with VES on the
consumer's side. As an example, Zhelobodko et al. (2012) only distinguish
between price-increasing and price-decreasing competition, as in their model
prices and markups always move in the same direction in response to market
size shocks. The reasons behind the deep di�erences in the results of the two
settings, despite their formal similarity, are as follows. The counterpart of our
TFP function in Zhelobodko et al. (2012) would be the representative con-
sumer's utility level as a function of product variety. Due to the love for variety,
which is a standard assumption in this family of models, the utility level would
always increase in product diversity. Hence, no consumption-side counterpart of
complexity diseconomies would occur. Moreover, even if we choose to introduce
(e.g. á la Benassy, 1996) a negative consumption externality in order to capture
a cost of processing information about more varieties, doing so will not a�ect
the equilibrium pattern. Indeed, as shown by Dhingra and Morrow (2019), the

2Following the literature, what we understand by �horizontal innovation� is entry of new
intermediate input producers.

3Examples of how this externality may work in growth theory can be found in Howitt
(1999), Dalgaard and Kreiner (2001), and Bucci (2013).
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behavior of the utility level in this type of models is crucial for welfare analysis,
but is totally unrelated to the properties of free-entry equilibrium, while the
elasticity of substitution yields a su�cient statistic for equilibrium behavior.
On the contrary, in our model, the market outcome is determined by the inter-
action between the specialization/complexity e�ect and the competition e�ect.
Having two primitives � the TFP function and the elasticity of substitution �
instead of just one is the key property of our model which allows us to study
jointly specialization/complexity and competition e�ects and results in a richer
array of equilibrium patterns.

Literature review. The �specialization vs competition� dichotomy has
been conceptualized by Adam Smith (1776), who was a prominent spokesman
in favor of both a deeper division of labor and freer competition (Sandmo, 2011,
Ch. 3).

Specialization e�ects are unequivocally captured by Ethier-type models (Ethier,
1982), i.e. two-sector monopolistic competition models in which the �nal good
sector technology displays constant elasticity of substitution (CES) across dif-
ferentiated inputs. The treatment of competition e�ects in the modern eco-
nomic literature is, instead, at least twofold. On the one hand, in di�erentiated
oligopoly models used in industrial organization, competition e�ect is often syn-
onymous to a pro-competitive e�ect: markups fall with the the number of com-
petitors due to strategic interactions. A notable exception is Chen and Riordan
(2008), who study price-increasing competition using a discrete-choice model
of product di�erentiation. On the other hand, Dixit-Stiglitz-type models (Dixit
and Stiglitz, 1977), i.e. monopolistically competitive environments in which
the �nal consumption good is di�erentiated, have been recently revisited and
extended to the VES case, both on the consumer's side (Behrens and Murata,
2007; Bilbiie et al., 2012; Bertoletti and Etro, 2016, 2017) and on the producer's
side (Kimball, 1995; Smets and Wouters, 2007). In these models, �rms do not
behave strategically because each separate �rm is negligibly small compared to
the whole market.4 However, markups still vary in response to entry and exit
of �rms due to non-isoelastic demands. Just like the one based on di�erentiated
oligopoly, the approach of monopolistic competition with VES is �exible enough
to capture both price-decreasing and price-increasing competition (Zhelobodko
et al., 2012; Parenti et al., 2017). Based on that, �competition e�ects� and
�pro-competitive e�ects� are not synonymous to us in the rest of the paper. By
competition e�ects we mean any changes in the market outcome channeled by
the VES between di�erentiated varieties, without expecting a priori any par-
ticular direction of those changes. In contrast, specialization e�ects are those
channeled through changes of TFP in response to entry/exit of �rms.

It is worth stressing that the joint role of specialization and competition
in generating EIR and shaping market outcomes has received, till now, very
little attention in the literature. Studying these two forces is an intriguing
task, as they may give rise to opposite e�ects on aggregate production. As

4In a recent survey, Thisse and Ushchev (2018) discuss the deep linkages between di�eren-
tiated oligopoly models and non-atomic monopolistic competition with VES.
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pointed out by Kremer (1993), more complex technologies involving a larger
number of production tasks and/or more di�erentiated intermediate inputs may
be detrimental to manufacturing activities, e.g. due to higher risks of failure. In
other words, complexity diseconomies, as opposed to specialization economies,
may occur.5 Furthermore, as discussed above, competition may be either price-
decreasing or price-increasing. These considerations suggest that the interaction
between the two e�ects may lead to rich and unexpected market outcomes with
non-trivial implications for urban and regional economics.

We believe that the main reason why the interaction between specialization
and competition in generating EIR has de�nitely been understudied in the liter-
ature can mostly be found in the large popularity of the CES assumption. This
assumption is appealing as it makes models tractable. The �ip-side is that the
equilibrium markup, which may serve as a reverse measure of the toughness of
competition, remains una�ected by entry and/or by market-size shocks. As a
consequence, the CES assumption eliminates the competition e�ect. The Mar-
shallian externalities approach introduced by Abdel-Rahman and Fujita (1990)
to study agglomeration economies at the city level widely use the CES assump-
tion,6 and so do many other strands of economic literature.7 Hence, neither of
these literatures allows distinguishing clearly between the impacts of specializa-
tion/complexity and toughness of competition on aggregate output and wages.
This paper aims to �ll this gap.

The rest of the paper is organized as follows. Section 2 describes the model.
Section 3 characterizes the equilibrium for a given number of input-producing
�rms. We also suggest a classi�cation of competitive regimes in the intermedi-
ate input sector, based on the impact of entry on prices, markups, and wages.
Section 4 deals with a free-entry equilibrium, and studies how the interaction be-

5To measure complexity diseconomies empirically, Hidalgo et al. (2007) use the average
product density as a proxy for the degree of complexity of a country's production structure: an
economy with a higher average product density must possess more capabilities and technical
competences to produce simultaneously within a denser space of activities. Using data on net
trade �ows to compute an average product density index, Ferrarini and Scaramozzino (2016)
provide more recent empirical evidence for complexity diseconomies.

6Duranton and Puga (2004) and, more recently, Fujita and Thisse (2013) provide extensive
surveys of this strand of literature.

7Just to make an example, the CES assumption is almost ubiquitous in endogenous growth
models with horizontal innovation (Grossman and Helpman, 1990; Romer, 1990). These mod-
els generally highlight the positive e�ects of specialization, disregarding other possible e�ects
which may stem from an increase in the toughness of market competition. Two notable excep-
tions are Bucci and Matveenko (2017), and Boucekkine et al. (2017). Bucci and Matveenko
(2017) extend Romer (1990) to the case of a non-CES, non-homothetic aggregate production
function in the �nal good sector, which leads to variable markups in the intermediate good
sector. Each �rm's markup is a function of the �rm-level output, which in turn is a�ected by
the TFP in the �nal good sector. In Boucekkine et al. (2017), variable markups emerge due
to a non-CES preference structure in a horizontal innovation growth model à la Grossman
and Helpman (1991, Ch. 3) . While in Boucekkine et al. (2017) �rms' market power and
long-run growth are negatively related, in Bucci and Matveenko (2017) the relation between
markups and economic growth is non-monotonic, which seems to match better the empirical
evidence (Aghion et al., 2005; Aghion and Gri�th, 2005). See the concluding section of the
present paper for a deeper discussion about these issues.
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tween the specialization/complexity e�ect and the competition e�ect generates
EIR. Section 5 discusses possible applications of our framework to some issues of
urban and regional economics (including urban hierarchy, a micro-foundation of
quantitative spatial models, and a justi�cation for the use of �exible empirical
strategies in studying the relationship between city size and wages). Section 6
concludes.

2 The Model

The economy is composed of two vertically related sectors. The intermediate
inputs sector (sector I henceforth) produces a di�erentiated intermediate good
under monopolistic competition. The number of �rms in this sector (I-�rms
henceforth) is endogenous due to free entry, while the only production factor is
labor. Each worker inelastically supplies one unit of homogeneous labor. The
labor market is perfectly competitive.

The �nal good sector (sector F henceforth) involves a unit mass of perfectly
competitive �rms (F-�rms henceforth) sharing the same CRS technology, which
uses varieties of the intermediate good as inputs. The departure of our modeling
strategy from Ethier (1982) is that we drop the standard CES assumption,
working instead with a non-speci�ed CRS production function.

2.1 Sector F
The production of the homogeneous �nal good requires a continuum [0, n] of
inputs, each representing a speci�c variety of a horizontally di�erentiated in-
termediate good. All �rms operating in sector F are endowed with the same
production function F :

Y = F (q, n), (1)

where Y is the output of the �nal good, q = (qi)i∈[0,n] is the vector of inputs
used in production, n stands for the number (or, more precisely, the mass) of
intermediate inputs.8

We make the following assumptions. First, F (q) is concave in q, i.e., each
input exhibits a diminishing marginal product (see Appendix A1 for a mathe-
matical de�nition of the marginal product under a continuum of inputs). Sec-
ond, F (q) is positive homogeneous of degree 1. Third, F (q) is symmetric, i.e.,
any permutation of intermediates does not change the output Y . The reason
for imposing such a symmetry, which typically holds in monopolistic competi-
tion contexts, is to refrain from placing any ad hoc asymmetries on sector I.
Finally, we do not make any speci�c assumption about the sign of ∂F/∂n: the
production externality can be either positive or negative. A negative production
externality could mean that, even if a �rm eventually chooses not to use a newly
developed type of input, collecting information about it still requires some cost.

8Note that the production function (1) involves n not only via q, but also as a separate
argument, which captures a production externality.
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To show that our approach encompasses a broad range of technologies used
in the literature, we provide a gallery of examples.

1. CES: variations on a theme. Our �rst example is the standard CES
production function:

F (q) ≡

 n̂

0

qρi di

1/ρ

, 0 < ρ < 1. (2)

One possible extension of (2) is to introduce a multiplicative TFP term
varying with n (Ethier, 1982; Benassy, 1996):

F (q) = nν

 n̂

0

qρi di

1/ρ

, 0 < ρ < 1. (3)

The TFP factor nν in (3) captures the production externality. When such
externality is positive (ν > 0), we deal with specialization economies, otherwise
we deal with complexity diseconomies. See Appendix A2 for more details.

Second, the constant ρ in (2) may be replaced by a function ρ(n), as in Gali
(1995), who assumes ρ′(n) > 0, i.e. that varieties become better technological
substitutes as their number increases.

2. Kimball's �exible aggregator. Kimball (1995) proposed a �exible
class of production functions implicitly de�ned by:

n̂

0

φ
(qi
Y

)
di = 1, (4)

where φ(·) is an increasing, strictly concave, and su�ciently di�erentiable func-
tion.9 When φ(·) in (4) is a power function, we fall back to the CES-case.
Using Kimball's �exible aggregator is a well established way to generate vari-
able markups in macroeconomic and trade models (Smets and Wouters, 2007;
Amiti et al., 2019).

3. Translog technologies. Two other examples of tractable non-CES
technologies are given by the translog production function (Kim, 1992) and
translog price index (Feenstra, 2003), given, respectively, by:

lnF (q) =
1

n

n̂

0

ln qidi−
α

2

 n̂

0

(ln qi)
2di− 1

n

 n̂

0

ln qidi

2
 , (5)

lnP (p) =
1

n

n̂

0

ln pidi−
β

2

 n̂

0

(ln pi)
2di− 1

n

 n̂

0

ln pidi

2
 . (6)

9To guarantee that a solution to (4) does exist for any n, one should assume additionally
that φ(0) ≤ 0, while φ(∞) =∞.
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The factor 1/n in (5) � (6) captures negative production externalities.10

We think that working with an arbitrary well-behaved symmetric CRS tech-
nology allows for more �exibility compared to focusing on Kimball's aggregator
(4) or any other reasonably broad subclass of symmetric CRS production func-
tions. In Section 2.3, we provide a mathematically more precise argument to
this view.11

Specialization economies vs complexity diseconomies. We are now
equipped to give precise de�nitions for the specialization economies and com-
plexity diseconomies. Consider the behavior of F at a symmetric outcome, i.e.
when qi = q for all i ∈ [0, n]. Denote by ϕ(n) the level of output that can
be produced when a �rm uses one unit of each intermediate input. Formally,
ϕ(n) ≡ F

(
I[0,n], n

)
, where IS is an indicator of S ⊆ R+. Given F-�rm's to-

tal expenditure E on intermediate inputs under unit prices, the specialization
economies capture the idea that the division of labor generates productivity
gains, namely a larger variety of intermediate inputs allows to produce a larger
amount of �nal output. To put this in a more formal way, note that, because of
CRS, output of the �nal good equals qϕ(n) when q units of each intermediate
are employed. Hence, the specialization e�ect takes place if and only if

E

n
ϕ(n) >

E

k
ϕ(k), where k < n.

In other words, specialization economies occur if and only if ϕ(n)/n increases
with n, or, equivalently, when the elasticity of ϕ(n) exceeds 1:

ϕ′(n)n

ϕ(n)
> 1. (7)

Otherwise output of the �nal good decreases with the intermediate inputs'
range. In the latter case, we face complexity diseconomies.

To make these general de�nitions more intuitive, we illustrate them in Ap-
pendix A2 for the case of the augmented CES production technology (3).

TFP function. Since ϕ(n)/n captures how total output of the �nal good
varies with input diversity, the total quantity of the di�erentiated input em-
ployed being �xed, we �nd it reasonable to dub ϕ(n)/n the TFP function.
Since this function will play a crucial role in what follows, we choose to treat
it as one of the two fundamental primitives of our model (the second one to
be de�ned below). We may equivalently de�ne specialization economies as the
situation when the TFP function increases in n.

Specialization vs complexity: a dual description. Each F-�rm seeks
to minimize production costs per unit of output:

min
q

n̂

0

piqidi s.t. F (q) ≥ 1. (8)

10As shown by Matsuyama and Ushchev (2017), the translog technologies (5) � (6) are
beyond Kimball's �exible aggregator (4).

11See also Table 1 and the discussion below (Section 3.2).
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taking the total output Y as given. The value function P (p) of the F-�rm's
problem (8) is the price index, or the unit cost function.12 By the duality
principle, the production function F (q) and the unit cost function P (p) can be
uniquely recovered from each other. Furthermore, the duality principle allows
a convenient description of the trade-o� between specialization and complexity
in terms of the price index. Namely, when pi = p for all i ∈ [0, n], then the
�nal-good producer will purchase all inputs in equal volumes: q = Y/ϕ(n).
Consequently, the price index can be expressed as follows:

P =
n

ϕ(n)
p. (9)

Combining (9) with our de�nition of specialization economies, we conclude
that the price index decreases with the range n of inputs if and only if special-
ization economies take place.

Let us use examples to gain more intuition about the specialization/complexity
trade-o�. For the standard CES technology (2), the TFP function is a power
function of the form ϕ(n)/n = n1/(σ−1). Since σ > 1, specialization economies
take place. The same is true for any production function described by the Kim-
ball's �exible aggregator (4) with φ(0) = 0, for which ϕ(n)/n = φ−1(1/n). On
the contrary, the translog production function (5) exempli�es complexity dis-
economies, as in this case the TFP function, ϕ(n)/n = 1/n, decreases with n.
Finally, the dual translog (6) is a borderline case, since the TFP function is
constant: ϕ(n)/n = 1. As a result, specialization and complexity fully balance
each other.

The following result summarizes the properties of the above classes of pro-
duction functions.

Proposition 1.
(i) Kimball's �exible-aggregator technologies (4) satisfying φ(0) = 0 exhibit

specialization economies;
(ii) the translog production function (5) generates complexity diseconomies;
(iii) the translog cost function (6) strikes the exact balance between special-

ization economies and complexity diseconomies.
Proof. See Appendix A3. �
Proposition 1 highlights the �exibility of our approach, which encompasses a

wide variety of such technologies. In particular, our way of modeling production
technology is more general than Kimball's �exible aggregator, as Kimball-type
production functions include neither the augmented CES, nor the translog tech-
nologies.

12In the CES case, the price index is given by the well known formula:

P (p) =

 n̂

0

p1−σi di

1/(1−σ)

.
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2.2 Sector I
There is a continuum of intermediate input producers sharing the same tech-
nology, which exhibits increasing returns to scale. We believe the assumption
that technologies are identical across �rms is not critical, since Combes et al.
(2012) provide solid empirical evidence that productivity advantages of larger
cities stem from agglomeration economies rather than selection e�ects.

Firm i's labor requirement for producing output qi is given by f+cqi, where
f > 0 is the �xed cost and c > 0 is the constant marginal production cost.
Thus, the pro�t πi of �rm i is de�ned by πi ≡ (pi − cw)qi − f , where w is the
wage rate. The inverse demand �rm i faces stems from the �rst-order condition
in the cost minimization problem in the F-sector:

pi
P (p)

= Φ(qi,q), (10)

where Φ(qi,q) ≡ ∂F/∂qi is the marginal product of input i,13 while P (p) is the
price index de�ned by (8), which now plays the role of a market aggregator,
as it captures all the cross-price e�ects in the demand system for intermediate
inputs. See Appendix A4 for derivation of (10). Note that, since F (q) satis�es
diminishing marginal returns, the inverse demand schedules (10) are downward-
sloping.

Firm i seeks to maximize its pro�t:

max
qi

[(P (p)Φ(qi,q)− cw) qi] , (11)

Because sector I is monopolistically competitive, each I-�rm takes the price
index P as given. Hence, the �rst-order condition for (11) is given by

Φ(qi,q) + qi
∂Φ

∂qi
=
cw

P
. (12)

Furthermore, given the mass n of I-�rms, the quantity pro�le q must satisfy
the labor balance condition

c

n̂

0

qidi+ fn = L, (13)

which equates total labor supply to total labor demand.
The second-order condition, as well as technical details of possibly multiple

solutions, are discussed in Appendix A5.
Elasticity of substitution and competition e�ect. The �rst-order con-

dition (12) for pro�t maximization may be recast as

13Formally, the partial derivatives ∂F/∂qi are not well-de�ned in the case of a continuum of
inputs, which may seem to be an obstacle for working within a framework where the functional
F is non-speci�ed. It turns out, however, that putting slightly more structure on the space of
input vectors q potentially available for the �nal good producers makes things work as if the
marginal products were well-de�ned. See Appendix A1 for technical details.
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pi − cw
pi

= η(qi,q), (14)

where η is the marginal product elasticity :

η(qi,q) ≡ −∂Φ

∂qi

qi
Φ(qi,q)

. (15)

At a symmetric outcome, when pi = p and qi = q for all i ∈ [0, n], (14) boils
down to

p− cw
p

=
1

σ(n)
, (16)

where σ(n) is the elasticity of technological substitution14 evaluated at the sym-
metric outcome:

σ(n) ≡ 1

η(qi,q)

∣∣∣∣
qj=qi ∀j∈[0,n]

. (17)

We are now equipped to de�ne the competition e�ect. The pricing rule (16)
implies that the pro�t-maximizing markup equals 1/σ(n), hence σ(n) represents
toughness of competition among the I-�rms. In particular, σ′(n) > 0 means
that competition gets tougher when more �rms enter. We call such competi-
tion markup-decreasing. In the opposite case, when σ′(n) < 0, competition is
markup-increasing. Hence, like the specialization/complexity e�ect, competi-
tion e�ect may be of either sign as well.

To grasp the intuition of the above de�nitions, consider some examples.
Under the CES technology, pro�t-maximizing markups are una�ected by entry
of new I-�rms. Under the translog technologies, the pro�t-maximizing markups
are given by:

Translog production function Translog expenditure function
1− αn 1

1+βn

Hence, both these technologies induce markup-decreasing competition. Fi-
nally, when the production function is given by Kimball's �exible aggregator
(4), we have

1

σ(n)
= −ξφ

′′(ξ)

φ′(ξ)

∣∣∣∣
ξ=φ−1(1/n)

. (18)

In this case, competition is markup-decreasing if and only if the elasticity of
φ′(ξ) in ξ evaluated at ξ = φ−1(1/n) is an increasing function. To illustrate how
markup-increasing competition may arise, consider a Kimball-type production
function whose aggregator function φ(·) is given by φ(ξ) = ξa + ξb, where 0 <

14As de�ned by Nadiri (1982). Parenti et al. (2017) extend Nadiri's de�nition to the case
of a continuum of inputs and prove that (17) holds true. Note that σ(n) is independent of
�rm-level output q because, due to the CRS property of F (q), η(qi,q) is homogeneous of
degree zero in (qi,q).
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a < b < 1. It is readily veri�ed that this technology gives rise to a �bipower�
inverse demand schedule (Mrázová and Neary, 2017). The elasticity of φ′(ξ) is
given by

−ξφ
′′(ξ)

φ′(ξ)
= 1− a− b(b− a)

b+ aξ−(b−a)
,

and decreases in ξ, hence competition is markup-increasing.

2.3 The TFP and the elasticity of substitution as the prim-
itives of the model

We have already noticed that the TFP function ϕ(n)/n and the elasticity of
substitution σ(n) determine the key properties of, respectively, the F-sector
and the I-sector behavior. For this reason, we choose to treat these two objects
as the primitives of the model. We show below that both the taxonomy of
competition regimes (Section 3) and the condition for EIR to emerge (Section
4) will be characterized in terms of properties of these two functions.

We now come back to the issue of justifying the level of generality we choose
to work at. Indeed, at this level of generality, the TFP function and the elasticity
of substitution may be viewed as two independent ingredients of our approach,
in the sense that the information about one of them is generically insu�cient to
recover the other, which makes both of them the true primitives of our model.
Focusing on a more speci�c class of technologies would imply a non-trivial re-
lationship between the two. To illustrate this point, consider the family of
production functions described by Kimball's �exible aggregator (4). In this
case, the TFP function is given by

ϕ(n)

n
= −φ(ξ)

ξ

∣∣∣∣
ξ=φ−1(1/n)

, (19)

while the elasticity of substitution satis�es (18). As a consequence, the two
fundamentals are linked via the aggregator function φ(·), which allows unam-
biguously recovering one of them from the other. Therefore, focusing on certain
classes of production functions may lead to a priori unsuspected restrictions on
the primitives of the model.

3 Entry and the market outcomes

In this section, we study how horizontal innovation a�ects the market outcomes.
We fully characterize the behavior of the economy in response to expanding in-
put diversity. Our purpose here is to highlight the fundamental role of the rela-
tionship between the TFP function and the elasticity of substitution in shaping
various competition regimes.
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3.1 Equilibrium for a given number of I-�rms

We choose the �nal good to be the numeraire by normalizing its price to 1.
Hence, the pro�t of an F-�rm is given by (1 − P )Y . Perfect competition sug-
gests free entry, which implies P = 1. Combining this with (9) pins down the
equilibrium input price at a symmetric outcome:

p∗(n) =
ϕ(n)

n
. (20)

Equation (20) reveals that the equilibrium input price equals the TFP.
Hence, the input price increases with the number of �rms n in sector I if and
only if specialization economies occur (see Section 2.1).

We now �nd the equilibrium magnitudes other than p∗(n). First, combining
(16) with (20) and P = 1 yields the wage rate:

w∗(n) =
1

c

σ(n)− 1

σ(n)

ϕ(n)

n
. (21)

Second, plugging (21) into the product market balance Y = Lw, we obtain
the aggregate output:

Y ∗(n) =
L

c

σ(n)− 1

σ(n)

ϕ(n)

n
, (22)

Equations (21) and (22) provide decomposition of, respectively, equilibrium
wage and output15 into the competition e�ect captured by [σ(n)− 1]/σ(n), and
the specialization/complexity e�ect captured by ϕ(n)/n. The former increases
with n if and only if σ′(n) > 0, while the latter increases if specialization
economies prevail over complexity diseconomies.

Finally, to determine the per-�rm output q∗(n) in sector I, we observe that
at a symmetric equilibrium the labor balance condition (13) takes the form:

(cq + f)n = L (23)

Solving (23) with respect to q, we �nd:

q∗(n) = (L− fn)/(cn).

Clearly, q∗(n) always decreases with the mass n of input-producing �rms.

3.2 The impact of entry on prices, wages, and markups

Prices, wages, and markups are all endogenous in our model. Putting together
(20), (16), and (21), we observe that the entry of new �rms need not move
these variables in the same direction. In what follows, we say that competi-
tion is (i) price-decreasing if dp∗(n)/dn < 0, and price-increasing otherwise; (ii)

15Up to, respectively, the coe�cients 1/c and L/c, which are independent of the input
diversity n.

13



markup-decreasing if d[(p∗(n)− cw∗(n))/p∗(n)]/dn < 0, and markup-increasing
otherwise; (iii) wage-decreasing if dw∗(n)/dn < 0, and wage-increasing other-
wise.

Proposition 2 summarizes the main results of Subsection 3.1 in terms of the
above taxonomies.

Proposition 2. Competition is:
(i) price-increasing if specialization economies prevail over complexity dis-

economies, and price-decreasing otherwise;
(ii) markup-decreasing if σ′(n) > 0, and markup-increasing otherwise;
(iii) wage-increasing if and only if the inequality

ϕ′(n)n

ϕ(n)
+

1

σ(n)− 1

σ′(n)n

σ(n)
> 1 (24)

holds, and wage-decreasing otherwise.

Proof. Parts (i) and (ii) follow, respectively, from (20) and (16). To prove
part (iii), we di�erentiate both parts of (21) with respect to n, which yields:

dw∗(n)

dn
=

1

cn

σ(n)− 1

σ(n)

ϕ(n)

n

(
ϕ′(n)n

ϕ(n)
+

1

σ(n)− 1

σ′(n)n

σ(n)
− 1

)
.

Hence, we have: dw∗(n)/dn > 0 if and only if (24) holds. This proves part
(iii) and completes the proof. �

The intuition behind Proposition 2 is as follows. Whether competition is
price-decreasing or price-increasing is determined solely by the properties of the
TFP function ϕ(n)/n. In contrast, the behavior of markups in response to entry
can be fully characterized in terms of the elasticity of substitution σ(n) across
input varieties. Finally, both ϕ(n) and σ(n) play a role in determining the
impact of entry in sector I on the equilibrium wage. The condition (24) states
that, for the market outcome to be wage-increasing, it must be that either TFP,
or the elasticity of substitution, or both grow su�ciently fast in n.

Two more comments are in order. First, (24) yields a necessary and su�cient
condition for EIR to emerge (see Proposition 3 in Section 4). Indeed, since
this condition blends ϕ(n) and σ(n), it reveals that neither the TFP function
alone nor the elasticity of substitution alone provide su�cient information to
say whether external scale economies take place. Ultimately, what matters is
the interplay between the two. Thus, both market interactions and non-market
forces matter for EIR to emerge.

Second, Proposition 2 highlights the novelty of our results compared to Zh-
elobodko et al. (2012), who work with a one-sector Dixit-Stiglitz-type framework
and �nd that entry leads to a drop or a hike in markups depending solely on
how the elasticity of substitution varies with the individual consumption level.
Moreover, the framework of Zhelobodko et al. (2012) neither allows to distin-
guish between markup-decreasing and price-decreasing competition, nor entails
any e�ects of entry on the wage. Thus, our model provides a richer and subtler
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taxonomy of market competition. To see this in more detail, Table 1 provides
a compact summary of our results for di�erent types of production functions.

Translog cost CES production Translog production
function function function

Price No e�ect ↑ ↓
Markup ↓ No e�ect ↓
Wage ↑ ↑ No e�ect

Table 1: The impact of entry on prices, markups and wages for di�erent types of
production functions

Table 1 shows that under the translog cost function prices are neutral to
entry, markups decrease with entry, and wages increase with entry. In the CES
case, both prices and wages increase in response to entry, while the markups
remain unchanged. Finally, under a translog production function wages re-
main unchanged when new �rms enter, while prices and markups fall. These
comparisons highlight the key role of the interaction between the specializa-
tion/complexity e�ect.

As revealed by part (i) of Proposition 2, our approach allows for both price-
increasing and price-decreasing competition, depending on whether specializa-
tion economies prevail or not over complexity diseconomies. This result is im-
portant because it can be viewed as a theoretical answer to the inconclusive
empirical �ndings discussed in the Introduction.

Most empirical work tends to suggest that larger markets exhibit higher
prices, lower markups, and higher wages. Table 1 reveals that neither the CES
production function, nor any of the two translog technologies can fully capture
all these patterns alone. However, Proposition 2 suggests a quali�ed answer to
the question of what kind of production function might ultimately work. Ac-
cording to (24), if competition is both price-increasing and markup-decreasing,
then it is also wage-increasing. Hence, any production function that satis�es
both nϕ′(n)/ϕ(n) > 1 (specialization economies) and σ′(n) > 0 (increasing elas-
ticity of substitution) generates price-increasing, markup-decreasing and wage-
increasing competition.

4 External increasing returns to scale

This section provides the main result of this paper, as it describes how the mu-
tual interaction between the specialization/complexity tradeo� and the compe-
tition e�ect generates EIR.

4.1 Free-entry equilibrium

De�ne a symmetric free-entry equilibrium as a vector (p∗, q∗, n∗, w∗, Y ∗), which
satis�es (20), (16), (21), the labor balance condition (23), and the zero pro�t
condition:
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(p− cw)q = wf. (25)

Equilibrium number of �rms. We �rst pin down the equilibrium number
n∗ of I-�rms. To do so, we restate (25) as follows:

p− cw
p

=
f

f + cq
, (26)

i.e., the markup equals the share of �xed cost in an I-�rm's total production
cost. Combining (26) with the pricing rule (16) and the labor balance (23), we
obtain:

σ(n) =
L

fn
. (27)

The equilibrium number of �rms n∗ is uniquely pinned down by (27) if
and only if the elasticity of σ(n) exceeds −1, which holds when σ(n) is either
increasing or decreasing not too fast in n.

Specialization and competition under free entry. Given n∗, using
(16) and (25) yields the equilibrium �rm's size:

q∗ =
f

c
· [σ(n∗)− 1]. (28)

According to (28), any (f/c)-preserving shock that generates additional en-
try in the intermediate sector would lead to a larger �rm size q∗ if and only if
σ′(n) > 0.

Plugging (28) into the production function of sector F , we obtain the aggre-
gate output Y ∗:

Y ∗ =
L

c
· σ[n∗(L)]− 1

σ[n∗(L)]
· ϕ[n∗(L)]

n∗(L)
, (29)

while plugging n∗ into (21) pins down the equilibrium wage w∗:

w∗ =
1

c
· σ[n∗(L)]− 1

σ[n∗(L)]
· ϕ [n∗(L)]

n∗(L)
. (30)

In equations (29) � (30), the term [σ(n∗)−1]/σ(n∗) captures the competition
e�ect, which stems from sector I . This term increases with n, hence with the
population size L, if and only if competiton is markup-decreasing. The term
ϕ(n∗(L))/n∗(L) represents the specialization/complexity e�ect and increases
with population if and only if specialization economies take place, which is
equivalent to price-increaing competition (Proposition 2).

In order to clarify how the degree of competitive toughness may impact the
aggregate production function, we observe that total output Q∗ ≡ n∗q∗ in sector
I is given by

Q∗ =
L

c

(
1− f n

∗

L

)
=
L

c

σ(n∗)− 1

σ(n∗)
. (31)
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Equation (31) follows from (23), (27), and (28). Using (31), the aggregate
production function (29) may be restated as follows:

Y ∗(L) =
ϕ [n∗(L)]

n∗(L)
Q [L, n∗(L)] . (32)

The �rst term in (32) captures the specialization/complexity e�ect in sec-
tor F , while the second term keeps track of the competition e�ect. In other
words, in our framework competition among input-producing �rms a�ects to-
tal output of the �nal good through the total amount of the intermediate input.
More precisely, equations (27) and (31) imply that Q [L, n∗(L)] increases more
than proportionately with L if and only if competition is markup-decreasing.
This, in turn, leads to competition generating a tendency toward external in-
creasing (decreasing) returns to scale in sector F . Compared to the standard
CES model (where Q is readily veri�ed to be exactly proportional to L, so that
a competition e�ect cannot be taken into account), in the general case that we
are analyzing there are two sources of EIR: the specialization/complexity e�ect
and the competition e�ect.

Equations (29) � (30) help us understand more thoroughly where the limi-
tations of the CES production function come from: the term [σ(n∗)− 1]/σ(n∗),
which appears in (29) � (30), is constant under CES. Hence, the specialization
e�ect would be the only source of EIR in the �nal good sector.

4.2 How EIR emerge

We are now equipped to characterize the comparative statics of the free-entry
equilibrium with respect to the population size L. Our purpose here is to analyze
how aggregate output varies with L and when EIR in the F-sector emerge. The
central result of the paper is as follows.

Proposition 3. EIR take place if and only if (24) holds, or, equivalently, if
and only if competition is wage-increasing.

Proof. Under an increase in L, the left-hand side of equation (27) remains
unchanged, while the right-hand side is shifted downwards. As a consequence,
the equilibrium mass n∗ of �rms increases with L whenever the equilibrium is
stable (see Section 4.1 for a discussion of stability). Combining this with (29),
we �nd that the average product of labor Y ∗(L)/L increases with L if and only
if [σ(n) − 1]ϕ(n)/n is an increasing function of n, which is equivalent to the
necessary and su�cient condition (24) of wage-increasing competition. �

As discussed in Section 3, what renders competition wage-increasing or wage-
decreasing is the interplay between the competition e�ect and the specializa-
tion/complexity e�ect. Thus, Proposition 3 stresses the importance of the in-
teraction between these two e�ects in generating EIR. Indeed, by comparing
(24) with the necessary and su�cient condition (7) for specialization economies
to arise, we �nd that that the former contains an additional term, nσ′(n)/σ(n),
which captures the competition e�ect and is missing in (7). For the condi-
tions (24) and (7) to coincide, this additional term must be zero, which is only
true in the CES case. This explains why the previous studies have generally
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explained the emergence of EIR by appealing solely to the presence of special-
ization economies. Meanwhile, the role of market interactions among �rms in
this process has been largely (and perhaps undeservedly) neglected.

As for the relationship between n∗ and L, we have the following result.
Proposition 4.
(i) The mass n∗ of �rms increases less than proportionately to L if and only

if competition is markup-decreasing.
(ii) Compared to the CES case, markup-decreasing competition dampens the

specialization e�ect, but simultaneously triggers a positive competition e�ect.
Things get reversed under markup-increasing competition.

Proof. Part (i) follows immediately from equation (27), while part (ii)
follows from combining part (i) with (29). �

Table 2 summarizes our results about the roles that market-size and the
interaction between the specialization and competition e�ects play in deter-
mining the equilibrium market-outcome under markup-decreasing and markup-
increasing competition, respectively:

σ′(n) > 0 σ′(n) < 0

n∗
increases less than proportionally increases more than proportionally
in response to an increase in L in response to an increase in L

Y ∗, w∗
specialization e�ect weakened, specialization e�ect reinforced,
positive competition e�ect negative competition e�ect

Table 2: The impact of market-size and the interplay between the competition and the
specialization e�ects in determining the equilibrium market-outcome: markup-decreasing vs

markup-increasing competition

4.3 Examples

To illustrate the interactions between the specialization/complexity e�ect and
the toughness of competition in generating EIR, consider the following examples.

CES production function. In this case, equation (27) is linear, i.e. the
number of �rms is proportional to total labor supply L. Hence, the competition
e�ect is washed out, and the specialization e�ect is the only source of EIR. The
aggregate production function is given by

Y ∗(L) = AL1/(1−ρ), A ≡ ρ

c

(
1− ρ
f

)ρ/(1−ρ)
.

Translog cost function. Combining (6) with (27) yields βn2 + n = L/f ,

which implies n∗ =
(√

1 + 4L/f − 1
)
/(2β). In this case, the number of �rms

grows proportionally to
√
L. This is because, unlike the CES case, competition is

tougher in a larger market. Furthermore, as stated by part (iii) of Proposition 1,
complexity diseconomies and specialization economies exactly o�set each other.
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Therefore, the competition e�ect becomes the main force shaping the resulting
aggregate production function which is given by

Y ∗(L) =
f

4βc

(√
1 + 4L/f − 1

)2
. (33)

Equation (33) suggests that the average product of labor Y ∗(L)/L increases
in L for all L ≥ 0. In other words, EIR take place. However, the source of these
increasing returns is radically di�erent from that in the CES case. Namely, ag-
glomeration economies stem here solely from market interactions across �rms,
while in the classical CES-based models they are generated entirely by techno-
logical externalities embodied in the specialization/complexity tradeo�.

Translog production function. In this case, the competition e�ect is
even stronger. Indeed, as implied by (5), (27) takes the form: 1− αn = fn/L.
Hence, n∗ = L/(αL + f), which implies that the equilibrium mass of �rms is
bounded from above by 1/α. In other words, even when population L grows
unboundedly, the number of �rms the market invites to operate remains limited
due to very tough competition. The aggregate production function is then given
by

Y ∗(L) =
α

c
L. (34)

Thus, in the case of the translog production function, the resulting technol-
ogy exhibits constant returns to scale. This result is in line with Proposition 3:
EIR arise only when competition is wage-decreasing, while under the translog
production function entry has no impact on wages (see Table 1 in Section 3.2).

A micro-foundation for an S-shaped production function. Finally,
we provide a simple micro-foundation for an S-shaped aggregate production
function, which has been widely used in growth theory and development eco-
nomics, especially in the analysis of poverty traps.16 Consider a Kimball-type
technology associated with the aggregator function φ(ξ) ≡ aξρ− b, where a and
b are positive constants, while 0 < ρ < 1. Here, a can serve as a measure of
�overall� TFP, while b shows the strength of the complexity externality. Solving
in closed form for the production function, we obtain

F (q) = A(n)

 n̂

0

qρi di

1/ρ

, A(n) ≡
(

a

1 + bn

)1/ρ

. (35)

The TFP function underlying (35) is given by

ϕ(n)

n
=

1

n

(
an

1 + bn

)1/ρ

, (36)

16See Skiba (1978), and, more recently, Azariadis and Stachurski (2005), as well as Banerjee
and Du�o (2005), for examples on the possible consequences of using S-shaped production
functions within these two branches of the economic literature. The idea dates back at least
to Shapley and Shubik (1967).
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while the elasticity of substitution across inputs is constant and is given by
σ = 1/(1−ρ), just like in the standard CES case. Using (36), it is readily veri�ed
that ϕ(n)/n increases in the input diversity n for all n < 1/(ρb) and decreases
otherwise. Hence, the TFP function is bell-shaped, meaning that specialization
economies occur when the intermediate input is not too much di�erentiated,
otherwise complexity diseconomies prevail.

The resulting aggregate production function Y ∗(L) reads as

Y ∗(L) =
f

1− ρ

(
L

L+ af/(1− ρ)

)1/ρ

. (37)

According to (37), increasing returns to scale arise when L is su�ciently
small; otherwise, decreasing returns to scale occur.

5 Possible applications: a discussion

How our approach can be applied to speci�c issues in urban and regional eco-
nomics remains an important question to ask. We believe it potentially has a
variety of applications, including productivity and specialization of cities, the
determinants of city structure and land prices, cross-sectoral linkages, and com-
parisons between equilibrium and optimal city sizes. We focus here on three
possible applications, which we �nd most straightforward and interesting.

First, our VES framework may shed more light on the urban hierarchy phe-
nomenon, i.e., the coexistence of cities of di�erent sizes (Christaller, 1933; Lösch,
1940; Henderson, 1974; Tabuchi and Thisse, 2006; Hsu, 2012). The fact that
city sizes form hierarchical patterns has strong empirical support (Gabaix and
Ioannides, 2004). To show how our approach can be applied to explaining this
phenomenon, consider the standard agglomeration model with sharing external-
ities (Duranton and Puga, 2004). In that model, no urban hierarchy can emerge,
because all cities have the same size in a stable equilibrium. This strong pre-
diction is a byproduct of the CES production function. Using instead a general
production function of type (1), one may expect the consumption curve to have
multiple peaks and troughs.17 Consequently, multiple stable equilibria may
emerge. This, in turn, implies a non-degenerate city size distribution, hence
urban hierarchy. We �nd this way of modeling urban hierarchy appealing for
the following reason. Recent models of urban systems (Behrens et al., 2015;
Behrens and Robert-Nicoud, 2015; Davis and Dingel, 2019) assume that indi-
viduals are heterogeneous in various dimensions. Similarly, using a bare-bones
model of the origin of cities, de Palma et al. (2019) show that ex ante hetero-
geneity in individual preferences is critical for urban hierarchy to emerge. In
contrast, our approach may give rise to a non-degenerate city size distribution
without assuming any ex ante heterogeneity across individuals.

17In contrast, under CES the consumption curve is bell-shaped, see Duranton and Puga
(2004) p. 2075, Fig. 1.
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Second, quantitative spatial models (Diamond, 2016; Gaubert, 2018) seek
to reproduce real-world urban systems and to quantify the consequences of
various shocks and/or counterfactuals. However, those models �remain agnostic
on the source of agglomeration externalities and their speci�c functional form�
(Gaubert, 2018). Our approach could help to replace this �agnosticism� with
more solid microeconomic foundations.

Finally, international trade studies display growing interest to wage inequal-
ity (Amiti and Davis, 2012; Helpman et al., 2010). Our �ndings suggest that
part of wage dispersion is due to cross-country di�erences in the way special-
ization and competition interact with each other. A closely related issue is how
city-level wages vary with city size. Although it is widely acknowledged by ur-
ban and regional economists that larger cities pay, on average, higher wages, the
exact form of that relationship is ambiguous. Typically a log-linear relationship
implied by the CES model is estimated, with city-speci�c dummies used to im-
prove the �t (Duranton, 2014). Our paper provides theoretical underpinnings
for using �exible empirical strategies based on non-linear speci�cations and/or
non-parametric estimation methods.18

6 Concluding remarks

We have developed an Ethier-type two-sector model with variable elasticity
of technological substitution across intermediate inputs. The model suggests
a clear decomposition of external increasing returns (EIR) into two sources:
the specialization/complexity e�ect, and the competition e�ect. The former is
generated within the �nal good sector and shows how employing more varieties
of intermediate inputs fosters/deters the production of the �nal good, while the
latter stems from the market interactions among �rms within the intermediate
input sector. The market outcome is determined by the joint behavior of the
TFP and the elasticity of substitution, which are both functions of the input
diversity. In other words, the interplay between the competition e�ect and
the specialization/complexity e�ect plays a key role in shaping the equilibrium
properties of our model economy.

We have fully characterized the market outcomes driven by the interplay
between the two above e�ects. This characterization has been useful in clarifying
the origins of EIR. In particular, we have shown that, due to the interference of a
non-trivial competition e�ect, the presence of specialization economies is neither
necessary nor su�cient for EIR to emerge. This result highlights the limitations
of the CES monopolistic competition model in studying production externalities:
this approach, indeed, overlooks the relevance of the competition e�ect, as the
level of market power does not vary with the number of �rms. Therefore, our
analysis points to the need for more work on the role of market competition

18Needless to say, we acknowledge that factors other than specialization economies and mar-
ket competition also play a signi�cant role in determining the city size-wage gap. Moreover,
this gap may be di�erent across workers being heterogeneous in experience and/or ability (see,
e.g., Baum-Snow and Pavan, 2012). These issues are out of the scope of our paper.

21



in shaping agglomeration economies and other economic phenomena driven by
scale e�ects. In addition to that, we argue that our theoretical �ndings are
in line with recent empirical evidence on the behavior of prices, markups and
wages with respect to the size of the economy. Finally, we sketch a possible
application of our modeling approach to explaining urban hierarchy, providing
microeconomic foundations to quantitative spatial models, and justifying the
use of �exible empirical strategies in studying the relationship between city
sizes and wages.

Two lines of further research seem to be of considerable interest. First, our
VES-approach could lead to a richer R&D-based endogenous growth theory.
However, this is a truly ambitious task, as in traditional horizontal R&D-based
growth models (featuring constant returns to scale to rival inputs in the aggre-
gate production function, F ), endogenous markups would ultimately depend on
the number n of available di�erentiated intermediate inputs. With n in�nitely
growing over time due to �rms' research e�orts, and without any other serious
modeling alteration, the existence of a long-run balanced growth path equi-
librium, commonly characterized by constant (though endogenous) markups,
would de�nitely be compromised, unless strong assumptions are made about
the R&D process. Moreover, as highlighted by Boucekkine et al. (2017), Bucci
and Matveenko (2017), and Matsuyama et al. (2018), these assumptions have
crucially to do also with the speci�c choice of VES preferences/technologies
being made. Hence, it seems to us that an interesting research project to be
de�nitely pursued in the future could, as a matter of fact, well consist in �nding
new modeling-paths for adapting our approach (based on variable and endoge-
nous markups) also to the framework provided by dynamic, general-equilibrium,
R&D-based growth theory. This is clearly not an easy task (and, indeed, it is
outside the scope of the present article), but it is probably worth putting it into
the future research-agenda of any interested growth theorist, as the reward (in
terms of new theoretical/modeling scenarios) can be really very high.

Second, our VES Ethier-type modeling approach could help better under-
stand global value chains. Despite a number of recent prominent contributions
in this area (including Costinot et al., 2013; Alfaro et al., 2019), we believe that
decomposing the impact of production structure on the characteristics of global
value chains would be a useful contribution. To accomplish a project like this,
we would need more than two sectors and a richer pattern of vertical relation-
ships between sectors, as well as a non-trivial distribution of various production
activities in space. Also, it would be necessary to relax the assumption of per-
fect competition in the �nal-good sector, in order to take into account strategic
interactions driving the organizational decisions of �rms. Doing so would result
in a model generating a much more complex bundle of general-equilibrium ef-
fects than the �specialization/complexity vs competition� dichotomy, which is
our current focus. Therefore, the e�ective investigation of these possible new
research questions is ultimately left to future work.19

19We are particularly grateful to the anonymous referees for bringing these issues to our
attention.
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Appendix

A1. Marginal products under a continuum of inputs

We restrict our attention to such input vectors q that have a �nite second
moment, i.e.

´ n
0
q2i di < ∞. In other words, q ∈ L2 ([0, n]). Intuitively, this

assumption allows mean and variance of the input vector to be well-de�ned.
Following Parenti et al. (2017), we also assume Fréchet-di�erentiability of

the production function, i.e. we postulate that there exists a functional Φ :
R+ × L2 → R+, such that

F (q + h) = F (q) +

n̂

0

Φ(qi,q)hidi+ ◦ (||h||2) for all q,h ∈ L2. (38)

In (38), || · ||2 stands for the L2-norm, i.e. ||h||2 ≡
√´ n

0
h2idi, whereas

Φ(qi,q) is the marginal product of intermediate input i. Concavity of F implies
that Φ is decreasing in qi.
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Lemma. Let F : L2 → R+ be a Fréchet-di�erentiable functional, which is
positive homogeneous of degree 1. Then (i) Φ(qi,q) is positive homogeneous of
degree zero in (qi,q), and (ii) the Euler's identity

F (q) =

n̂

0

qiΦ(qi,q)di, (39)

holds.

Proof. To prove part (i), we recast (38) as follows:

F (tq + th) = F (tq) +

n̂

0

Φ(tqi, tq)thidi+ ◦ (t||h||2) for all q,h ∈ L2, t ∈ R+.

(40)
Dividing both sides of (40) by t and using homogeneity of F , we obtain

F (q + h) = F (q) +

n̂

0

Φ(tqi, tq)hidi+ ◦ (||h||2) . (41)

Combining (38) with (41), we �nd that φ(tqi, tq) is a Fréchet derivative of F
computed at q for any t > 0. By uniqueness of Fréchet derivative, φ(tqi, tq)
must be independent of t, which proves part (i) of the Lemma.

To prove part (ii), note that (38) implies the following identity:

F ((t+ τ)q)− F (tq)

τ
=

n̂

0

Φ(tqi, tq)qidi+
◦(τ)

τ
for all τ ∈ R. (42)

Using homogeneity of F and Φ, we obtain (39) as the limiting case of (42)
under τ → 0. �

A2. Specialization economies and complexity diseconomies
under augmented CES

In this Appendix, we illustrate the general de�nitions of specialization economies
and complexity diseconomies (see Subsection 2.1) by considering the special case
of the augmented CES production technology given by (3). In equation (3),
when su�ciently negative, ν is a measure of the magnitude of the complexity
e�ect : a larger number of intermediate inputs being simultaneously combined
within the same production process can lead to a reduction in aggregate output
(we come back to this issue immediately below). To be more precise, complexity
diseconomies are said to occur if and only if ν < 1−1/ρ, otherwise specialization
economies take place. The logic behind these de�nitions is as follows: evaluating
the total output Y given by (3) at a symmetric vector of inputs,20 we obtain

20i.e. such that qi = q for all i ∈ [0, n], where q > 0 is given.
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Y = nν+1/ρq. The above inequalities keep track of whether Y increases more or
less than proportionately with n. The baseline case described by (2) corresponds
to ν = 0, hence the baseline CES technology always exhibits specialization
economies.

It is worth noting that a negative production externality need not result
in complexity diseconomies. Consider the augmented CES when production
externality is negative but not too strong: 0 > ν > −(1− ρ)/ρ. In this case, we
have

ϕ′(n)n

ϕ(n)
= 1/ρ+ ν > 1,

whence specialization economies occur. We conclude that only a su�ciently
strongly negative production externality can generate complexity diseconomies.

A3. Proof of Proposition 1.

(i) If a production function satis�es (4), we have

ϕ(n)

n
=

1/n

φ−1(1/n)
. (43)

Because φ(·) is increasing and concave, it must be that φ−1(·) is increasing
and convex. If φ(0) = 0, then the elasticity of φ−1(·) always exceeds 1. As a
consequence, ϕ(n)/n decreases in 1/n and increases with n.

When φ(0) 6= 0, the above argument is no longer valid. Indeed, as implied
by (36), production function given by (35) provides a counterexample. This
completes the proof of (i).

(ii)-(iii). As shown in Section 2.1, under (5) we have ϕ(n) = 1, while (6)
yields ϕ(n) = n for all n > 0. Combining this with the de�nition (7) of special-
ization economies completes the proof. �

A4. Deriving the inverse demands (10) for inputs.

The FOC for cost minimization in the F-sector is given by

pi = λΦ(qi,q), (44)

where Φ(qi,q) is the marginal product of input i (see Appendix A1), while λ
is the Lagrange multiplier of the �rm's program (8). Multiplying both sides
of (44) by qi, integrating both sides w.r.t. i across [0, N ], and using Euler's
identity (39) (see Appendix A1), we get:

ˆ N

0

piqidi = λ

ˆ N

0

qiΦ(qi,q) = λF (q). (45)

As implied by the F-�rm's pro�t maximization program (8), we have:

ˆ N

0

piqidi = P (p), F (q) = 1. (46)

29



Using (45) � (46), we �nd that λ = P (p). Plugging λ = P (p) back into
(44), we obtain the inverse demand schedule (10) for input i. �

A5. Second-order conditions and no asymmetric equilibria

Observe that the left-hand side of (12) is positive homogeneous of degree zero.
This implies that the solution of (12) cannot be unique. Indeed, multiplying a
solution of (12) by a constant yields another solution. The �proper� equilibrium
is pinned down by the labor balance condition (13).

To guarantee that equation (12) is compatible with pro�t-maximizing be-
havior by �rms, the second-order condition must hold, which amounts to as-
suming that the real operating pro�t [Φ(qi,q)− cw/P ] qi of �rm i is strictly
quasi-concave in qi for all q.

To rule out a continuum of asymmetric equilibria in the quantity-setting
game of �rms, we introduce a stronger assumption: the left-hand side of (12)
is decreasing in qi for any q. Imposing this condition is equivalent to assuming
that the operating pro�t of each �rm is strictly concave in its output. This
assumption holds for the CES and, more generally, for any production function
of the type (4) such that

−φ
′′′(ξ)

φ′′(ξ)
ξ < 2 for all ξ > 0.

This rules out the possibility of asymmetric equilibria because (12) has a
unique solution q∗i (q), which is the same for all �rms i ∈ [0, n].
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