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Abstract.. Recurrent Backpropagation networks have been 
used to build up a neural receiver for GSM signals.'l'he 
simulations have been carried out considering an AWGN 
channel, corrupted by ISI, fading and Doppler. The 
experimental results show that the neural receiver performs 
better than a classic choerent one and it improves its 
performances when the number of training samples is 
increased, 

I. INTRODUCTION 

The growing spread of mobile radio systems and their 
severe channel constraint:, [ l]  are leading to the search 
for new techniques which :odd reconstruct a satisfactory 
signal using methods cc'mputationally less cxpensive 
than Viterbi equalizers m d  both coherent and non- 
coherent demodulators. 
As equalization can be seen as an inverse filtering 
problem [2] and demoduli.tion is substantially a inapping 
of received signals on an expected set of symbols, Neural 
Networks can put themselves as efficicnt alternatives to 
the classical techniques because it is well-known that 
they behave as nonlinear hlters [3] and are powerful 
classification tools [4]. Besidcs, the traditional approach 
uses linear filtering techniques, while the channel has 
non-linear features and Neural Networks show 
interesting performances in treating non-lincxity [SI 
For these reasons we wished to experiment a fully neural 
receiver (equalizer plus demodulator). In order to cope 
with the time-varying features of the channel, wc chose 
to adopt Recurrcnt Networks, which have shown 161 to 
be the most powerful neural architecture i n  inodcling and 
forecasting the behavior of dynarnic systems. In the 
following section we will justify this assumption. ?'he 
other sections are devot:d to the description of our 
model and to the experimental results. 

11. DYNAMICAL NETWORKS FOR SPAT10 
TEMPORAL PATTERNS 

We can define as spatio-tmporal pattern a function x(t) 
which maps any time t into one point in the n- 
dimensional input space: x(t) : i t,,, t i  I +  I<" 
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It is possible to represent a spatio-temporal patteirn as a 
trajectory x(t) in the input space, and aim of the neural 
network is to implement a transformation that ass'ociates 
to the function x(t) an output function y(t) at any time t. 
Several methods have been proposed in the past for 
spatio-t~mporal neural processing [7]. The eldest idea 
has been that of transforming temporal data into a 
sequence of data. When a new input set is received, the 
previous data are eliminated, and so on. Afterwards time- 
delay networks have been studied, where the information 
at the time t is shifted in a chain of nodes: the number of 
nodes determines the number of time intervals on which 
the information is sampled. Besides, neural networks that 
acccpt frequency-encoded information have been 
proposed, actually adopting the rncthod of choice of 
biological sensors. Another method consists of 
niodifying the neurons in such a way that they sum up the 
data over time, allowing a slow decay of historical 
information. 

Most of the networks above described are actually 
networks without memory. Better performance:s have 
been provided by strictly dynamical networks whose 
architecture is characterized by a state feedback [5]  
realized through suitable connections among nodes. In 
the state feedback the nodes receive as incoming signal 
both the network inputs and the output of the other nodes 
including its own. 
A network frequently used as a dynamical model is the 
Multilayer Perccptron (MLP). Actually, this network 
model is still a static one, which processes time series 
data by converting the temporal sequence into ii static: 
pattcrn by unfolding the sequence over timc, but it is 
possible to give the MLP a recurrent archiiecture. 
Introduced by Rumelhart and Williams [8] and improved 
by Pineda [9], this model, called backpropagation 
recurrent network (RBP) presents input vectors v,, ..., v,,, 
and output vectors U', ,.., uVN ... 
The output from the first layer is 

u j ( k )  0 5  j 5 N  

vJ(k) N + l < j < L  
z .  = 
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where zJ is the output from the first layer, vJ is the current 
input and zo is the possible bias node. 
The current output is: 

ui(k + 1) = f (I i (k))  

where 

Thus the node equation [SI is 

where f is the sigmoid function 

The learning algorithm of the RBP network is similar to 
that of the static MLP,. As for the standard 
backpropagation, this algorithm is based on the search 
for the minimum error F(W) using the descent gradient 
technique 

Fig. 1 - The employed GSM communication system 
111. T H E  NEURAL RECEIVER 

The Neural Receiver (NR) presented in  this paper has 
been realized using RBP networks. The NR has been 
tested using QPSK modulation with a 6 poles 
Butterworth filter with bandwith .75/Tb limiting the 
bandwidth of a fading channel with Doppler effect. 
. Information is coded by means of a NRZ sequence 
divided into packets using the same structure as the GSM 
burst [ l]  (Fig. l).. 
The base band representation of a QPSK rnodulatcd 
signa! is made up of two quadrature that have been 
processed simultaneously by the same network. The 

number of nodes of the RRP network employed in the 
experiments for QPSK demodulation has a been selected 
experimentally. in our case, with QPSK signals, best 
performances have been obtained using a network with 
74 input nodes, 148 hidden nodes and 74 output nodes, 
which allows the network to maintain a simmetry with 
respect to the middle part of the QPSK burst, that is a 
known sequence of bits.. The network has been trained 
with noise corrupted symbols. 
observations of the input signal are provided through a 
delay line whose number of taps has been set equal to the 
number of input nodes. The equalizer produces an 
output which is a function of both the previous outputs 
and the inuuts on the delav line. (Fig. 2). 

............................. 

................................. 7 
................................................. 

Fig 2 - Recurrent Backpropagation Network used 
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1V.EXPERIMENTAL RESULTS 

The performances of the neural receiver have been tesled 
under different working (conditions and compared with 
those of a coherent system to account for both 
transmitter, receiver and channel band limits. 
In particular, we have used a Butterworth filter in order 
to obtain a better simulation of the real transmission 
conditions. Besides, the filtering has introduced a high 
grade of intersymbol interference (13) that has helped 
the network task by increasing the correlation between 
the received symbols. 

Symulation programs have been written in C on 
DecStation 5000/240. On such a platform, the time 
necessary to achieve corlvergence, with a MSE lower 
than 0.001 on the given training set has bcen always less 
than 24 hours. 
The results obtained during the testing have shown a 
good performance of the network with the growing of 
the sample. In fact the nei.work has always coinc to 
convergence, even though the time required becomes 
longer and longer while the number of samples is 
increased and the channel paranicters are set to simulate 
worse transmission conditions. However, during the 
testing phase, the network has shown to improve its 
performances with the growing of the learnt sample (Fig. 
3) 
In the following we report the graphic showing the 
generalization capabilities of the network with respect to 
the bit number used for the training (AWGN channcl 
with ISI, fig. 4). 
The subsequent graphics (Fig. 5 ,  Fig. 6, Fig. 7 ) show the 
behaviour of the BER with ,the growing of the SNR for a 
neural receiver trained with 7104 saniples, in the chaiincl 
conditions typical of G!;M systems sirnulations with 
gaussian noise, fading. Doppler effect in three 
environmebts: 

a rural area 
hilly terrain 

* urban area 

V. CONCLUSIONS AND FUTURE RESEARCHES 

The work has shown the plausibility of a neural rcceivcr 
able to recover a GSM signal affected by gaussian noise, 
ISI, &ding, Doppler effect on any terrain. 
An advantage of such a bo1  is its virtual independency 
from the SNR variations. 
Our experiments indicated t,nat, having the possibility of 
training the network with a high number of samples 
(using parallel computei.s or very long times on 
standard workstations), i t  will be possible to highly 
improve the network performances, currently already 
better than those of the c a s s i a 1  choerent recciver evcn 
in prohibitive conditions. 
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Fig. 3 - Performances improvenipnt of the network 
depending on the sample number. 
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Fig. 4 - BER variation with gaussian noise and IS1 
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Fig. 5 - BER variation in rural area. 
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The limits of this approach are given by the need of 
switching on different weight matrices depending on the 
area variations. 
It is currently under investigation an unsupervised 
version of the same recurrent network that allows the 
real time learning avoiding the problem of several 
dedicated training phases. 
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Fig. 6 - BER variation in hilly area 
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Fig. 7 - BER variation in urban area 
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