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A theory of phonon-mediated superconductivity in strong-coupling amorphous materials is de-
veloped based on an effective description of structural disorder and its effect on the vibrational
spectrum. The theory accounts for the diffusive-like transport of vibrational excitations due to
disorder-induced scattering within the Eliashberg theory of strong-coupling superconductivity. The
theory provides a good analytical description of the Eliashberg function α2F (ω) in comparison with
experiments, and allows one to disentangle the effects of transverse and longitudinal excitations on
the Eliashberg function. In particular, it shows that the transverse excitations play a crucial role in
driving an increase or excess in the Eliashberg function at low energy, which is related to the boson
peak phenomenon in vibrational spectra of glasses. This low-energy excess, on one hand drives
an enhancement of the electron-phonon coupling but at the same time reduces the characteristic
energy scale ωlog in the Allen-Dynes formula. As a consequence, the non-monotonicity of Tc as a
function of alloying (disorder) in Pb-based systems can be rationalized. The case of Al-based sys-
tems, where disorder increases Tc from the start, is also analyzed. General material-design principles
for enhancing Tc in amorphous superconductors are presented.

I. INTRODUCTION

Since its discovery in vapor-deposited amorphous films
by Buckel and Hilsch1,2, superconductivity in amorphous
(structurally disordered) materials has attracted much
interest both from the experimental and from the
theoretical/computational point of view. Since many
different forms of ”disorder” are possible in condensed
matter systems (structural, electronic, magnetic, substi-
tutional etc) we should focus here on structural disorder,
i.e. disorder in the spatial arrangement of atoms such
as the one encountered in amorphous metal alloys (also
known as metallic glasses).
Typically, superconductivity in amorphous materials is
strongly-coupled, with the electron-phonon coupling pa-
rameter λ > 1 and the superconducting gap much larger
than the BCS prediction, ∆ � 1.76 kB Tc ≡ ∆BCS .
Hence, it should be described using the Eliashberg theory
of strong-coupling phonon-mediated superconductivity.
A large value of the ratio of the superconducting gap to
the critical temperature in phonon-mediated supercon-
ductivity could be also due to phase fluctuation effects
(see3 and references therein). For clarity, the latter
mechanism will not be discussed in this manuscript.

Early work established that structural atomic disorder
may promote an increase of λ upon going from the crys-
talline to the amorphous state. Some elements which are

poor superconductors in the crystalline phase, such as Ga
and Bi, or they do not superconduct at all such as Be4,
become superconducting in the amorphous state5,6.This
can be explained with the fact that these elements do
not have a dense packed structure in the crystalline
phase, but rather an open lattice structure, hence dis-
order promotes superconductivity by effectively densify-
ing the structure5. Other elements such as Pb are good
superconductors in the crystalline phase thanks to their
dense packed structure, and, in this case, the introduc-
tion of disorder lowers the Tc

5,7.

In general, good crystalline superconductors are insen-
sitive to dilute (non-magnetic) impurities, as predicted
early on by Anderson8. A sizable effect of disorder be-
comes apparent when the lattice structure becomes amor-
phous. Typically, structural disorder leads to a mono-
tonic decrease of Tc, even when λ increases with disor-
der, due to the faster decrease of the characteristic energy
scale with disorder. In some cases even a superconductor-
insulator transition (SIT) is observed9. The instances
where disorder actually increases Tc in amorphous su-
perconductors are relatively rare and limited to the cases
discussed above (where lattice structure is ”open” in the
crystal phase), and include situations where disorder is
promoted by alloying or granular superconductors10–12.
Furthermore, understanding the effect of structural dis-
order on superconductivity is crucial also for high-Tc ma-
terials such as cuprates, which are affected by substitu-
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tional disorder being out of stoichiometry13,14.

A reason for this apparently scattered evidence in su-
perconductors may also be due to the lack of theoret-
ical frameworks able to disentangle and describe, in a
reductionist way, the effect of structural disorder on the
strong-coupling superconductivity. This delay of theory
is imputable to the difficulty of providing an effective de-
scription of structural disorder on the vibrational spec-
trum of amorphous solids, where a long-standing issue
is represented by the the so-called boson peak or excess
of soft vibrational modes which shows up in the VDOS
upon normalizing it by the Debye law ω215,16, and for
which a deeper understanding has emerged only recently
as follows.

Recent work has highlighted that phonons start to be-
have as non-ballistic excitations already at rather low
wavevectors k due to disorder-induced scattering. It
has been established, with the help of numerical simula-
tions, that the largest part of vibrational density of states
(VDOS) of amorphous materials is made of diffusive-like
excitations, i.e. excitations which propagate with a dif-
fusive law due to intense scattering promoted by disor-
der. These excitations are sometimes referred to as ”dif-
fusons”17 and also play an important role in controlling
the (low) thermal conductivity of amorphous materials18.
The crossover from ballistic phonons at low k to diffusons
at higher k is of the Ioffe-Regel type, i.e. the wavelength
of the phonon becomes comparable to the mean free path
at some value of k 19,20. This crossover is also responsi-
ble for a pronounced peak in the VDOS, often referred
to as the ”boson peak”, since in Raman scattering ex-
periments it exhibits the same T -dependence as the Bose
function, thus pointing at the ”harmonic” origin of this
effect, consistent with the diffusive-like nature of the ex-
citations being due to elastic scattering events15.

Recently, a theoretical model has been proposed which
provides a unified description of the VDOS and phonon
spectrum of amorphous materials based on an effective-
field description of phonons/diffusons21. In this work
we adopt this effective description of vibrations in dis-
ordered systems as the starting point to evaluate the
electron-phonon coupling semi-analytically, and to an-
alyze the effect of structural disorder on superconduc-
tivity in amorphous materials at a deeper level. The
theoretical model is able to provide successful fittings of
the Eliashberg function for various amorphous materi-
als, with very few physical parameters such as speeds of
sound and linewidths (the latter related to the diffusivity
D of the excitations). The model is able to predict a num-
ber of results, including the non-monotonic behaviour of
λ as a function of disorder (depending on the value of
speed of sound) that was already predicted at the level
of BCS theory22, and to provide qualitative estimates of
Tc which feature highly non-trivial trends as a function
of disorder as discussed below in the application to Pb-
and Al-based materials.

II. THEORETICAL FRAMEWORK

Our starting point is an equation of motion for the
elastic displacement field u in an isotropic solid (i.e. such
that longitudinal and transverse components can be de-
coupled). Aside from the standard elastodynamic part
coming from linear elasticity theory, the equation con-
tains a term describing momentum diffusion. In this way,
the time evolution of the displacement field can cover
both the ballistic (propagon) and the diffusive (diffuson)
regimes of vibrational excitations, with the latter regime
becoming comparatively more prominent upon increas-
ing k, close and beyond the Ioffe-Regel crossover. The
full dynamics is then described by the simple differential
equation:

∂2uλ
∂t2

= v2λ 4 uλ +Dλ
∂ 4 uλ
∂t

, (1)

where vλ and Dλ are the (dressed) speed of propagation
and the diffusion constant of the λ branch, respectively.
The subscript λ refers to either longitudinal λ = L or
transverse λ = T displacement field.
In the following we shall consider both L as well as T exci-
tations, because in amorphous solids there is no momen-
tum conservation in electron-phonon scattering, hence
in the derivation of the Eliashberg equations also the T
phonons contribute to the pairing, as the dot products do
not vanish, differently from what happens in ordered su-
perconductors where momentum conservation and Umk-
lapp conditions lead to the cancellation of the transverse
phonon contributions23,24.

Upon Fourier transforming the displacement field u,
one readily obtains the associated Green function or
propagator,

Gλ(ω, k) =
1

ω2 − Ω2
λ(k) + i ω Γλ(k)

(2)

where the propagating term is given by Ω2
λ = v2λ k

2 . The
diffusive damping due to harmonic disorder-induced scat-
tering, following from Eq.(1), is given by Γλ(k) = Dλ k

2.
This diffusive form of the damping is supported by sev-
eral simulation studies15,19,20,25 over a broad range of k.
Following Ref.17, and comparing with our Eq. (2), we
can define three separate regimes and corresponding ex-
citations. (I) The propagons. This is the limit in which
dissipation is not dominant, vk � Dk2 and the exci-
tations are still well defined quasiparticles undergoing a
ballistic motion. (II) The diffusons. This regime appears
beyond the Ioffe-Regel limit vk ∼ Dk2 at which the dis-
sipative term becomes dominant. At this point, there are
not well-defined quasiparticles anymore and the dynam-
ics is totally incoherent, collective and diffusive. In this
range, it does not make sense to think of ballistic con-
cepts such as the mean free path of propagation, simply
because there are no propagating particles. (III) The lo-
cons. This is the extreme limit, usually relevant close to
the edge of mobility near the Debye frequency, in which
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the modes are completely (Anderson) localized. Not only
the modes do not propagate but also their diffusion con-
stant vanishes. The diffusons are also possibly related
to the random-matrix structure of the eigenvalue spec-
trum of the dynamical (Hessian) matrix, as suggested in
Refs.26.

Let us remark that the liquid-like diffusive dynam-
ics of the diffusons is governed by the Einstein law? :
D ∼ 〈x2〉/τ , where τ is the characteristic relaxation time
between two successive jumps, which, in this regime, de-
creases upon making the amount of disorder larger.

The above propagator leads to a dynamic structure
factor (spectral function) for inelastic processes

Bλ(ω, k) = − 1

π
ImGλ(k, ω + iδ) (3)

where δ = ω Γ. Using the propagator of Eq.(2), this
leads to a Lorentzian function for the inelastic dynamic
structure factor

B(ω, k) =
ω Γ(k)

π[(ω2 − Ω2(k))
2

+ ω2 Γ2(k)]
(4)

which has been used many times in the past to describe
inelastic X-ray scattering data of vibrational excitations
of amorphous materials27–30, as well as MD simulations
data of disordered solids25.

The Eliashberg electron-phonon spectral function can
be written as31:

α2 F (~k,~k′, ω) ≡ N (µ) |g~k,~k′ |
2 B(~k − ~k′, ω) (5)

where N (µ) is the electronic density of states (EDOS)
at the chemical potential µ and g~k,~k′ the electron-boson

matrix element. Following Ref.31, the Fermi-surface-
averaged spectral function is:

α2 F (ω) =
1

N (µ)2

∑
~k,~k′

α2 F (~k,~k′, ω) δ(ε~k −µ) δ(ε~k′ −µ)

(6)
After assuming constant matrix elements g~k,~k′ ≡ g,

Eq.(6) for a one-phonon branch can be re-written as:

α2 F (ω) =
g2

N (µ)

∑
~k,~k′

B(~k − ~k′, ω) δ(~k2 − µ) δ(~k′
2
− µ)

(7)

in which we took a quadratic electronic band ε~k = ~k2.
We compute the previous sum by converting it to a two
dimensional integral using

∑
~k = V2

(2π)2

∫
k dk dφk with

k ∈ [0,∞] and φk ∈ [0, 2π]. The last step is to notice

that B(~k−~k′, ω) is only a function of (~k −~k′)2 and that
such distance in polar coordinates can be expressed as

(~k − ~k′)2 = k2 + k′
2 − 2 k k′ cos(φk − φk′).

All in all, we can perform immediately the integral over
the moduli using the definition of delta functions and we

obtain the final result:

α2 F (ω) =
g2

4 (2π)4 N

∫ ∑
λ

Bλ(X2, ω) dφk dφk′ (8)

B(X2, ω) =
ωDX2

π (ω2 − v2X2)
2

+ ω2D2X4
(9)

X2 ≡ 2µ (1 − cos(φk − φk′)) (10)

where the sum runs over phonon branches λ, and we
used the fact that the electronic density of states in two
dimensions is constant, N (µ) = N. This final integral in
Eq.(8) can be performed numerically.

At this point, we can use the standard definition for
the electron-phonon mass enhancement parameter:

λ(v,D) = 2

∫ ∞
0

α2 F (ω)

ω
dω (11)

determining the effective (dimensionless) strength of the
electron-phonon interactions. In order to estimate the
critical temperature Tc, we use the Allen-Dynes formula
32 given by:

Tc =
f1 f2 ωlog

1.2
exp

(
− 1.04 (1 + λ)

λ− u? − 0.62λu?

)
(12)

where

ωlog = exp

(
2

λ

∫ ∞
0

dω
α2F (ω)

ω
lnω

)
(13)

represents the characteristic energy scale of phonons for
pairing in the strong-coupling limit, while f1, f2 are semi-
empirical correction factors, as defined in 32. The param-
eter u? encodes the strength of the Coulomb interactions
and it is determined experimentally and tabulated in the
literature for various materials; we will take it as an ex-
ternal input from tabulated literature data. That said,
all the SC properties are determined by the shape of the
spectral function α2F (ω). Finally, the SC gap can be
estimated from:

2 ∆

kB Tc
= 3.53

(
1 + 12.5

(
Tc
ωlog

)2

log

(
ωlog
2Tc

))
. (14)

III. THEORETICAL PREDICTIONS

A. Linear in ω trend of α2F (ω) at low frequency

Since, as will be shown below, the low-frequency be-
haviour of the Eliashberg function α2F (ω) is dominated
by the two transverse modes (both with same frequency),
we start by focusing on a single phonon branch in Eq.(8),
to represent the transverse acoustic modes, with diffusion
constant D ≡ DT and propagation speed v ≡ vT .
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Figure 1. One-branch calculation of the electron-phonon spec-
tral function α2F (ω). The y−axes is shown in arbitrary units.
The diffusion constant goes from D = 0.1 (lighter line) to
D = 2 (darker line). The values of the other parameters are
kept fixed. The inset shows the low frequency scaling ∼ ω for
the red line data. The scaling is independent of the value of
the diffusion constant D.

In Fig.1 we present theoretical predictions from the
above model which show the linear in frequency be-
haviour of the Eliashberg function α2F (ω) in the low
ω limit. This behaviour was predicted by Bergmann33

using a heuristic argument based on accounting for addi-
tional electron-phonon scattering processes due to lack of
momentum conservation and of standard Umklapp con-
ditions in disordered systems, and was confirmed exper-
imentally in metal alloys34.

In our model, the linear behaviour in ω of the Eliash-
berg function at low ω comes directly from the form of
the Lorentzian used to model the phonon spectral func-
tion, cfr. Eq.(4) and Eq.(9). A similar result was derived,
also using a Lorentzian for damped phonons, by Belitz35

focusing on metals with impurities where the damping
originates from anharmonicity promoted by the defects.
In our case, the effective damping D is not originated
by anharmonicity (which anyway at low T is always low)
but rather from the diffusive motion of vibrational exci-
tations, hence by the diffusivity of the ”diffusons” in a
strong-disorder context.

B. Increasing and non-monotonic behaviour of λ
with disorder

In Fig.2 we plot the behaviour of the electron-phonon
coupling parameter λ evaluated using Eqs.(8)-(11) as a
function of the diffusivity D of the vibrational excita-
tion, which represents a parameter directly linked with
structural disorder in the material. This is because upon
increasing the disorder, the number of scattering events
increases, thus leading to a larger value of D 17,19,20,26.

A non monotonic behaviour of λ as a function of the
diffusion constant D is shown in Fig.2 for sufficiently low
values of speed of sound v. The height of the peak de-
creases with the speed of sound v, and at the same time
the position of the peak shifts to larger values of D.

The position of the peak Dmax increases linearly with
v, as shown in the inset of Fig.2. The non-monotonicity
strongly depends on the speed of sound v, as shown in
Fig.4, with the peak becoming less prominent (broader
and lower) and shifted to larger D values as the speed of
sound v increases.

The non-monotonic dependence of λ upon the disorder
parameter D may be ascribed to the fact that increasing
the disorder brings about two competing effects. On one
hand, the Lorentzian vibrational peak becomes bigger
(since D sits in the numerator of the Lorentzian), which
makes more phonon states accessible for pairing at low ω
(again, in the absence of restrictions put by momentum
conservation and Umklapp conditions, as already noted
by Bergmann33). We note that the proliferation of
low-frequency transverse excitations plays a crucial role
in the λ enhancement due to the 1/ω weight factor in the
Eliashberg integral. On the other hand, however, upon
increasing D further, the Lorentzian becomes broader
and eventually shallower (less peaked) due to the term
∼ D2 in the denominator of the Lorentzian. This can be
seen as a manifestation of the fact that the lifetime of
the vibrational excitation, τ ∼ D−1, becomes too short
to allow for efficient pairing (linewidth broadening with
disorder).

The increasing part of the curve, may explain the in-
crease of Tc found (rarely) in certain experimental sys-
tems. However, one should also consider how the overall
energy scale ωlog for strong-coupling superconductivity
changes upon varying the disorder.

In order to illustrate the interplay between these op-
posing tendencies, in the next Sections we apply the
above model to real data of amorphous metal and alloys.

IV. EFFECT OF DISORDER ON Tc: THE CASE
OF Pb-BASED MATERIALS

We consider the case of Pb as a model material for
which experimental data are available, where the struc-
tural disorder of the sample can be varied continuously
from the pure crystalline material limit (zero disorder)
to the amorphous alloy (strong disorder)7, by means of
alloying. Furthermore, a mildly disordered state is ob-
tained experimentally from a fine granular mixture of
tiny crystallites, e.g. an example of a granular supercon-
ductor state5,7.

As shown in Fig.3, these four states characterized by
different degrees of disorder, can be fitted very nicely
using our diffusons model, Eq.(8) using DL and DT as
fitting parameters (see Table I for the values of the fitting
parameters), while the ratio of vL/vT ∼ 1.8 is fixed to
typical values of isotropic amorphous materials20. In par-
ticular, the experimental Eliashberg functions features
two distinct peaks, at low and high ω, which correspond
to the transverse (low frequency) and longitudinal (high
frequency) vibrational excitations, respectively. It is ev-
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Figure 2. Electron-phonon coupling constant λ as a function
of the diffusivity D of transverse vibrational excitations, for
various values of the transverse speed of sound. The units
for both axes are arbitrary. The inset shows how the position
of the maximum varies as a function of the speed of sound;
the curve is fitted very well by a linear relation (solid line).
The relative amplitude of the peak between the line at large
v (bottom purple line) and the one at small v (top blue line)
where the peak is maximum, is about a factor 5.

ident that, upon increasing the alloying and hence the
disorder, both peaks become much broader which corre-
sponds to a significant increase of bothDL andDT , i.e. of
the diffusivity of the vibrational excitations. The increase
and the broadening, are comparatively much bigger for
the transverse excitations which goes along with the bo-
son peak effect in the VDOS15,21. This effect is important
for the creation of new pairing states, hence for the en-
hancement of λ. At the same time, however, the softening
of the transverse excitations causes a monotonic lowering
of the overall energy scale ωlog upon increasing the disor-
der parameter D ≡ DT , as displayed in Fig.4 (top panel),
obtained upon using the theoretical fitting with Eq.(8) of
the experimental data inside Eq.(13). The trend of ωlog
vs DT is well fitted by ωlog = 5.96 + 26.6D−0.37T , hence,
importantly, it will eventually saturate to a constant (see
below for the important consequences of this trend).

Using the theoretical fittings of the experimental data
with Eq.(8) inside Eq.(11), now considering all three
branches, one longitudinal and two transverse, we ob-
tain the behaviour of the electron-phonon coupling con-
stant λ as a function of disorder, here quantified by DT ,
displayed in Fig.4 (central panel). Clearly, λ presents a
monotonic increasing trend as a function of DT , which is
well fitted by a power-law function λ = 1.69 + 0.07D1.82

T ,
which is the dashed line in the plot. Hence, disorder pro-
motes the electron-phonon coupling in this system, as
theoretically predicted by the model (Fig.2).

Using λ and ωlog determined in this way inside the
Allen formula Eq.(12), we obtain the behaviour of Tc as
a function of disorder in Fig.4 (bottom panel). Because

of the comparatively faster decrease of ωlog with increas-
ing disorder, the initial trend is a monotonic decrease of
Tc upon increasing DT . This estimated trend is in qual-
itative agreement with the reported experimental trend
for Tc for these systems, where Tc ' 7.2K for both the
crystalline and the granular (mildly disordered) sample,
while Tc ' 6.5K for the amorphous Pb0.9Cu0.1 alloy7,
thus presenting also a monotonic decrease with disorder.

However, upon increasing the alloying, which in turn
increases the structural disorder further, the Pb0.75Bi0.25
alloy presents a higher Tc compared to the less disordered
Pb0.9Cu0.1. This fact suggests that, at sufficiently strong
disorder, the Tc becomes an increasing function of struc-
tural disorder (and of the degree of alloying, as in this
case). This is explained with the fact that ωlog even-
tually saturates to a horizontal asymptote upon further
increasing DT , whereas λ keeps increasing with DT in an
unbound way. Using the empirical fitting functions pre-
sented above for λ and ωlog inside the Allen formula we
obtain the dashed line in Fig.4 (bottom panel) where the
upturn enhancement after the minimum clearly reflects
the fact that ωlog eventually saturates, whereas λ does
not.

The trend is indeed explained with the competition
between ωlog, which is a monotonic decreasing function
of disorder due to the broadening of transverse exci-
tations at low energy as seen above (which lowers the
characteristic energy scale), and λ, which is a monoton-
ically increasing function of disorder in the system, in
the Allen formula Eq.(13). It is clear from Fig.4(a) that
there is a saturation in the decrease of ωlog with increas-
ing disorder upon going from Pb0.9Cu0.1 to Pb0.75Bi0.25,
and the respective values of ωlog are very comparable,
while at the same time λ keeps increasing with disorder.
This is, once again, fully in agreement with experimen-
tal measurements (tabulated in36,37), where Tc ' 6.5 for
Pb0.9Cu0.1 while Tc ' 6.9 for Pb0.75Bi0.25.

This analysis suggests a possibly important principle
for material design: while structural disorder promotes
the enhancement of electron-phonon coupling hence of
λ, at the same time the softening and broadening of the
transverse excitations (related to the boson peak phe-
nomenon) should be compensated by a broadening of the
longitudinal excitations towards higher frequency so as to
saturate the decrease of ωlog with disorder. This is indeed
the case in the above analysis where the ”saturation” of
ωlog upon going from Pb0.9Cu0.1 to Pb0.75Bi0.25 is con-
trolled by the increase of DL which increases nearly by
a factor two. Our analysis of the Pb-based alloys shows
that indeed upon increasing the alloying there is a cre-
ation of pairing states at high frequency promoted by the
broadening of the longitudinal excitations which arrests
the decrease of ωlog and thus inverts the decreasing trend
of Tc with disorder.
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Figure 3. Theoretical model fittings of the electron-phonon
spectral function for Pb-based materials. The data are taken
from Ref.7,and refer to pure crystalline Pb (blue), granular
microcrystalline Pb (red), amorphous alloy Pb0.9Cu0.1 (black)
and amorphous alloy Pb0.75Bi0.25 (orange), the latter taken
from Ref.38.

Pb-based materials
pure granular Pb0.9Cu0.1 Pb0.75Bi0.25

DT 0.358 0.582 1.735 4.90057
DL 0.116 0.348 0.366 0.55303

Table I. Data of vibrational excitation diffusivities obtained
from the fit in Fig.3 using the theoretical model, Eq.(8).

V. ENHANCEMENT OF Tc INDUCED BY
DISORDER: THE CASE OF ALUMINUM

A famous example of a system where disorder leads to
an enhancement of Tc is represented by Al. Experimental
data of the Eliashberg function α2F (ω) were obtained by
Dayan using electron tunnelling measurements on both
crystalline Al and granular Al39. The experimental data
have been fitted with our theoretical model, Eqs.(8)-(10)
and the comparison is shown in Fig.5. Thanks to the
cubic structure of Al, also here the main peaks refer to
acoustic transverse excitations (the low-energy peak) and
to longitudinal excitations (the high-energy peak), while
optical modes provide negligible features in comparison.
It is seen that the theoretical model provides an excel-
lent fitting for the granular Al where it perfectly catches
the ∼ ω trend at low ω typical of amorphous supercon-
ductors. The fitting is less accurate for the crystalline
sample at low ω where instead α2F (ω) ∼ ω2 at low en-
ergy. This is due to the fact that in the crystalling sample
there is a clean Debye ∼ ω2 scaling which extends over a
broad energy range, whereas in the granular sample the
structural disorder induces a deviation from Debye’s law
with an excess of low-energy modes, closely related to the
boson peak phenomenon15,16. This excess of vibrational
modes thus clearly gives an excess of pairing states which
leads to an enhancement of λ in the granular Al with re-
spect to crystal Al, due to the additional 1/ω weight in
the definition of λ, see Table II for the values of λ.

On the other hand, however, the excess of low-energy
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Figure 4. Behavior of characteristic physical parameters de-
scribing superconductivity for the four different Pb-based sys-
tems with varying disorder as a function of the transverse
diffusivity parameter DT . Symbols refer to the values of the
three different systems in Ref.7 for pure Pb, granular and
Ref.38, while dashed lines are empirical fitting trends. Top
panel: the characteristic energy scale (prefactor in the Allen
formula for Tc), ωlog. Middle panel: the electron-phonon
coupling constant λ for the four systems. Bottom panel:
the critical temperature for the onset of superconductivity,
Tc calculated from the Allen formula Eq. (12) in the text.
For reference, the experimentally measured Tc values are (in
order of increasing DT ): 7.2K (pure Pb), 7.19K (granular mi-
crocrystalline), 6.5K (Pb0.9Cu0.1), 6.9 (Pb0.75Bi0.25). These
data are explicitly tabulated in36,37, where also the original
experimental references are quoted.

modes also causes a decrease of ωlog upon going from
crystalline to granular, see Table II for the respective val-
ues. If the decrease ωlog however is not too big to cancel
the enhancement due to increased λ in the Allen formula,
then an overall enhancement of Tc is possible. This is in-
deed the case of Al, and we can explain this again with
the fact that the high-energy longitudinal peak in Fig.5
gets broader and moves to higher energy for the granular
sample, hence DL increases quite significantly from 1.15
for crystalline to 1.6 for granular Al (Table II).

This analysis is fully consistent with the conclusions
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drawn in the analysis of Pb-based systems and fully con-
firms that an enhancement of Tc in amorphous systems
is achievable whenever both the transverse DT and the
longitudinal DL phonon diffusivities increase upon going
from crystalline to disordered. While the increase of DT ,
related to the boson peak in the VDOS, promotes the
increase of λ, the increase of DL puts a bound on the
decrease of ωlog, thus leading to an overall increase in Tc.

Figure 5. Theoretical modelling of Eliashberg function for Al-
based materials. Symbols: experimental data of Eliashberg
function α2F (ω) measured by electron tunnelling from Ref.39.
Continuous lines: model fitting for crystalline Al (solid line)
and granular Al (dashed line). The inset show the different
scaling in the low-energy limit for crystalline and granular Al.

Aluminium
crystalline granular

DT (fit) 2.2 2.4
DL (fit) 1.15 1.6

λ (interpolation) 0.358 0.410
λ (fit) 0.376 0.430

ωlog (interpolation) 25.2 meV 20.6 meV
ωlog (fit) 23.2 meV 20.4 meV

Tc (interpolation) 0.60 K 1.71 K
Tc (fit) 0.76 K 2.11 K

Table II. Values of parameter found in the analysis of crys-
talline and granular Al using our model. The values of DL

and DT are obtained by fitting the experimental α2F (ω) from
Ref.39 to our model. The values of λ, ωlog and Tc are either
obtained using the fitted function α2F (ω) from our model,
”(fit)”, or from a spline interpolation to the experimental data
, ”(interpolation)”.

VI. SUMMARY

We developed a theoretical modelling framework for
the superconductivity of amorphous materials based on
the effective concept of diffusons17,26 to quantitatively
describe the underlying vibrational excitations which are
significantly affected by disorder-induced scattering phe-
nomena. The model leads to an analytical form for the
Eliashberg function α2F (ω) in terms of the transverse

and longitudinal speeds of sound vT , vL and of the dif-
fusivities DT and DL of transverse and longitudinal vi-
brational excitations (the latter are also related to sound
absorption coefficients35). In particular, DT controls the
broadening of the transverse excitations which is very
significant upon increasing the disorder. Hence, being
this parameter particularly sensitive to structural disor-
der, it provides a natural way to quantify the extent of
structural disorder in a given material.

The model provides a number of predictions: (i) it re-
covers the linear-in-ω trend of α2F (ω) at low ω 5,33,35;
(ii) it predicts a non-monotonic behaviour of the electron-
phonon coupling λ with a maximum as a function of
disorder, which turns into a monotonic increasing trend
upon increasing the speed of sound; (iii) it predicts a
linear increasing dependence of the maximum in λ vs
disorder as a function of the speed of sound.

In particular, the increase of λ with disorder is con-
trolled by the proliferation of low-frequency transverse
excitations which contribute decisively inside the Eliash-
berg integral due to the 1/ω weight in the integral. Even
though λ is seen to increase with disorder, either mono-
tonically or up to some maximum, the net effect of dis-
order on Tc can induce a monotonic decrease of Tc with
disorder because the characteristic energy scale ωlog de-
creases significantly (and often comparatively faster) due
to the proliferation of low energy transverse excitations
upon increasing the disorder.

The model can be used to fit experimental data of
α2F (ω) in an attempt to rationalize the effect of struc-
tural disorder on Tc across a broad spectrum of materi-
als. From the fitting, the values of vibrational line-widths
DT and DL can be extracted as an output, which can be
used to effectively quantify and parameterize the extent
of disorder in specific materials.

As an example to illustrate the usefulness of the ap-
proach in rationalizing a scattered amount of experimen-
tal data on amorphous materials, we applied the theoret-
ical model to experimental data of Pb-based materials.
In these systems, the disorder can be varied all the way
from the pure crystalline Pb to alloys with increasing
disorder. Since crystalline Pb is already a good super-
conductor owing to its close-packed FCC structure4,5,
introducing disorder leads to a decrease of the Tc even
though λ increases monotonically with increasing disor-
der. The net decrease is controlled by the decrease of the
characteristic energy scale ωlog with disorder, due to the
proliferation of low-energy vibrational excitations which
cause the decrease of ωlog. However, upon increasing the
alloying further, the decreasing trend of ωlog appears to
saturate and no longer wins over the enhancement of λ
due to disorder. This leads to an inversion of the trend
and Tc is shown to increase upon increasing the disorder.
The predicted trend for Tc is in qualitative agreement
with experimental measurements, which also feature this
trend inversion.

All in all, the proposed model could be useful to
rationalize a large amount of scattered experimental
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evidence about the effect of structural disorder on
superconductivity, including recent developments14,40

and as a means to provide chemical-design principles for
optimizing the Tc of amorphous superconductors.
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