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ABSTRACT

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected
membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids,
and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase
separation of membrane lipids in the complex biological membranes are still not fully
understood. Nevertheless, alterations in the membrane lipid composition affect the lateral
organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells,
including neurons, astrocytes, and microglia, and are characterized by a high enrichment
of specific lipids, depending on the cell type. These lipid rafts seem to organize and
determine the function of multiprotein complexes involved in several aspects of signal
transduction—thus regulating the homeostasis of the brain. The progressive decline of
brain performance along physiological aging is at least in part associated with alterations
in the composition and structure of neural lipid rafts. In addition, neurodegenerative
conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s,
Huntington’s, and Alzheimer’s diseases, frequently are characterized by dysregulated lipid
metabolism, which in turn affects the structure of lipid rafts. Several events underlying the
pathogenesis of these diseases appear to depend on the altered composition of lipid rafts.
Thus, the structure and function of lipid rafts play a central role in the pathogenesis of

many common neurodegenerative diseases.

INTRODUCTION

WHAT ARE LIPID RAFTS?
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When the writers discuss about lipid rafts with colleagues at dedicated meetings, we are
always surprised to realize that different scientists use the term “lipid rafts” to describe
biological entities that can be significantly different. In other words, “lipid rafts” does not
have the same meaning for all, thus, we think that asking the question “what are lipid
rafts?” is not useless. Gerrit van Meer and Kai Simons formulated the lipid rafts hypothesis
in 1988 to address the question “how the molecular composition of the different cellular
compartments is generated and maintained”(2). Simons and van Meer reported that the
lipid composition of the apical and basolateral membranes of polarized cells from intestinal
and kidney epithelia is radically different. Notably, apical membranes are strongly enriched
in glycosphingolipids and cholesterol, with a GSL:phospholipid:cholesterol ratio near to
1:1:1, and a very low content in PC, a very unusual plasma membrane composition (3-8).
The tight junctions, separating the apical and basolateral domains, serve as a diffusion
barrier maintaining this difference (8), however to explain how it is created, van Meer and
Simons hypothesized that GSL and cholesterol are sorted from glycerophospholipids
along the traffic route before reaching the cell surface (convincing experimental proof for
this hypothesis came only 21 years later (9)), and speculated that the ability of
sphingolipids to self-associate, due to their property to form a tight network of
intermolecular hydrogen bonds (10, 11), could represent the major driving force for the
sorting. Later on, this concept was broadened and refined by taking into consideration the
role of cholesterol (also enriched in the apical membranes of polarized epithelial cells) in
stabilizing sphingolipid clusters via tight interactions with their hydrophobic hydrocarbon
chains (12), and by the assumption that lipid rafts might be the result of lateral phase
separation of a liquid-ordered (lo) phase in fluid biological membranes (13-15). In other
words, the key concept underlying the lipid raft hypothesis is that some membrane lipids,
due to their intrinsic features, might be responsible for the creation of lateral order within

biological membranes. This concept was not particularly innovative. In the mid ‘70s, shortly
3
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after the formulation of the fluid mosaic model by Singer and Nicholson, studies of the
thermal effects on the aggregational properties of membrane lipids, in relatively simple
membrane models, suggested that fluid-fluid phase separation, due to incomplete
miscibility of lipids (as the consequence of molecular mismatches between different lipids),
could represent a major driving force for the creation of a certain degree of lateral order
within cell membranes (16-19). In 1982, Karnovsky elegantly postulated that phase
separation of different membrane lipids environment could drive the “organization of the
lipid components of membranes into domains” (20). On the other hand, the lipid raft
hypothesis by van Meer and Simons translated this concept from biophysics to cellular
biology, by speculating about the possible biological functions of lipid-driven membrane
domains. The original possible biological function attributed to lipid rafts was their role in
sorting different proteins along the trafficking route and in targeting these proteins to
specific membrane compartments (e.g., the apical vs. basolateral membrane in polarized
epithelial cells). However, for about a decade, the fortune of lipid rafts was quite limited
(Figure 1). Two events mostly contributed to the sudden booming of raftology:

1) In 1992, Brown and Rose published a seminal paper reporting that apical GPI-
anchored proteins from epithelial cells can be enriched in a low density, Triton X-
100-insoluble fraction, enriched in GSL and depleted of typical basolateral
membrane proteins (21). This experimental evidence supported the hypothesis that
the association of proteins with GSL-enriched membrane domains in intracellular
site might represent a mechanism for their sorting to the apical membrane.
Probably even more importantly, the paper by Brown and Rose provided a working
definition of lipid rafts and a putative biochemical method for their separation.
Insolubility in Triton X-100 as a criterion to define lipid raft components was
subsequently fiercely criticized. On the other hand, about 2,000 papers have been

published using this method, and evidences obtained by alternative methods (such
4
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as detergent solubilization using detergents other than Triton X-100, detergent-free
methods for the separation of lipid rafts, and methods for the direct recognition of
lipid rafts at the cell surface) highlighted the several limitations of the Triton X-100
method, however they were not able to substantially confute the main findings
obtained by this method, still widely used (see (22-27) for examples of recently
published papers from very heterogeneous research areas, and our recent
methodological paper about the Triton X-100 method). The discussion on this topic
is outside the scopes of this review, but we invite readers to refer to our previous
publications for an extensive coverage (27, 28).

The great leap forward in the lipid raft theory was probably represented by the
article entitled “Functional rafts in cell membranes” by Simons and lkonen (29). In
this paper, the authors emphasized the finding that several proteins (and lipids,
even if surprisingly they mentioned about phosphoinositides and sphingomyelin,
apparently neglecting two decades of research pointing out the importance of GSL
as modulators of signaling pathways) involved in signal transduction were enriched
in “detergent-insoluble, glycolipid-enriched complexes”, and postulated that lipid
rafts might serve as “relay stations in intracellular signaling”. Within two years since
the publication of this article, the number of papers per year having “lipid rafts” as
keyword increased by a factor of 10 (Figure 1). Nowadays, the importance of
association with lipid rafts for apical sorting of proteins, and in general of lipid rafts
as a sorting machinery still remains unclear and controversial (30-37). On the other
hand, lipid rafts became enormously popular and have been involved in an
incredible number of different cellular functions and biological events, and

dysregulation of raft-related events has been linked to a number of pathologies.

Accumulating pieces of information about the composition and possible biological

functions of lipid rafts soon led researchers to realize that lipid rafts are extremely complex

5
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entities, and that different experimental approaches are able to unveil only partial aspects
of the complex their nature. Indeed, the lack of a golden standard for the study of lipid rafts
led to a fierce debate questioning even the real existence of such structures, and the need
of a “consensus” definition of lipid rafts vigorously emerged. In 2006 (when the number of
lipid raft-related publication reached a plateau of ~400 papers, lasting for about 10 years),
the Journal of Lipid Research published a consensus definition of membrane rafts,
originated by the discussion within the Keystone Symposium on Lipid Rafts and Cell
Function “Membrane rafts are small (10-200 nm), heterogeneous, highly dynamic, sterol-
and sphingolipid-enriched domains that compartmentalize cellular processes. Small rafts
can sometimes be stabilized to form larger platforms through protein-protein and protein-
lipids interactions” (38). This definition had the great merit to emphasize the nature of lipid
rafts as highly dynamic and heterogeneous, non-equilibrium entities, confirmed along the
years by the development of different techniques allowing to directly visualize lipid rafts on
the cell surface and to overcome the major limitations posed by the use of the detergent
method (or other methods of isolation of lipid rafts that did not allowed to address the
dynamic aspects). These techniques encompassed fluorescence recovery after
photobleaching, fluorescence resonance energy transfer, single-particle tracking
techniques in their different declinations, and, more recently, Stimulated Emission
Depletion Microscopy (STED) (the first fluorescence microscopy technique able to break
the limit imposed by the diffraction barrier, thus allowing to reach a spatial resolution at the
nanometer level, together with a temporal resolution in the range of milliseconds). The
interpretation of the data gathered by using these different approaches should carefully
consider the great differences in terms of spatial and temporal resolution among the
different techniques used. However, altogether they confirmed the main tenet of the lipid
raft hypothesis, demonstrating the non-random distribution of cell surface molecules

(proteins and lipids), with a high level of lateral organization with different hierarchy,
6
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leading to the (co)existence of membrane rafts differing in their composition, size and
spatial and temporal dynamics. Lipid rafts in intact cells are short-ranged structures,
however their size varies between the nanometer (39-46) and the micrometer scale (47-
49). They are non-equilibrium structures, with a lifespan ranging from microseconds (50-
52) to milliseconds and seconds (42-48). These two features confirm that lipid rafts can
undergo deep reorganization upon diverse biological stimuli.

The studies in intact cells and/or in reconstituted membranes closely approaching the
complexity of the natural systems have also confirmed the importance of fluid-fluid phase
separation of membrane lipids as a major (even if probably not the only) driving force in
the dynamic organization of lipid rafts (hypothesized by Simons and van Meer on the basis
of a huge body of experimental evidence, however deriving from studies on highly
simplified membrane models). Surprisingly to us, this aspect was much underestimated in
the Keystone consensus definition, probably reflecting a rather protein-centric vision of
lipid rafts. Fluid phase separation has been observed in giant unilamellar vesicles formed
by brush border membrane lipids (53), in vesicles derived from different cells (54-56), and
in budded HIV virus membranes (57) (membrane vesicles naturally originated from cells).
Cross-linking of GM1 ganglioside in plasma membrane derived from A431 cells induced
lateral reorganization the membrane with the formation of micrometer-scale GM1- and
cholesterol-enriched domains, able to recruit lipid-anchored proteins, and characterized by
a lower translational diffusion and a higher degree of lateral order if compared to the
surrounding membrane (58, 59), in reasonable agreement with what expected for a
putative lo phase. STED microscopy confirmed that transient confinement of GPI-
anchored proteins in nanoscale membrane domains in living cell membranes is dependent
on sphingolipids and cholesterol (44, 45).

All considered, a reasonable definition of lipid rafts should consider as central the

importance of lipid-driven lateral organization in the assembly, maintenance and dynamics
7
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of these structures. In this sense, sphingolipids, especially glycosphingolipids, and
cholesterol are central player in lipid raft biology. We have summarized the structural
features which favor the phase separation of sphingolipid- and cholesterol-enriched
membrane domains (“lipid rafts”) in recent review articles (60). Of course, “lipid-driven”
does not exclusively implies lipid phase separation. As exemplified in the next sections,
specific lipid-proteins interactions within lipid rafts definitely contribute to their biological
roles. However, emphasizing the importance of lipids is crucial when discussing the role of
lipid rafts in the nervous system, the tissue with the highest enrichment in sphingolipid and
cholesterol, and in particular their role in neurodegenerative diseases, which, even if
incredibly diverse and heterogeneous, are characterized almost invariantly by deep
alterations in the homeostasis of these lipids.

LIPID RAFTS IN THE NERVOUS SYSTEM

The link between lipid rafts and the nervous system is not surprising for many reasons.

At the cellular level, the main cellular populations present in the nervous system, neurons,
myelin-forming cells (oligodendrocytes in the central nervous system, Schwann cells in the
peripheral nervous system) and astrocytes, are highly polarized cells with incredibly
sophisticated levels of lateral organization in different membrane subcompartments.

At molecular level, in the human body, the brain is the organ with the highest content in
amphipathic lipids (61-63). In particular the different plasma membrane specializations of
neural cells are highly enriched in cholesterol (64, 65) and in sphingolipids, sphingomyelin
and glycosphingolipids. In addition to cholesterol and sphingolipids, the classical lo phase-,
raft-forming lipids, the nervous system is characterized by the abundancy of other lipids
able to influence the organization of lipid rafts. Phosphatidylglucoside (PtdGic) is a recently
discovered, unique glycoglycerolipid (66) present in different mammalian cell types but
particularly expressed in the two primary neurogenic regions of the adult brain (67). PtdGlc

shares two peculiar features with GSL: the asymmetric localization in the outer leaflet of
8
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the plasma membrane, and the ability to undergo lateral segregation with the formation of
PtdGlc-enriched lipid rafts (68, 69). In addition, endocannabinoids, usually not regarded as
typical lipid raft lipids, have been reported to be associated with lipid rafts in neurons (70)
and microglia (71).

In the case of sphingolipids, their expression is not homogeneous in different brain areas
and cellular populations. Brain gray matter and neurons are characterized by a high
content in sphingomyelin and in complex polysialogangliosides (72-74). Myelin and
oligodendrocytes are also enriched in sphingomyelin, on the other hand the main myelin
glycolipids are galactosylceramide and in its sulfated derivatives, in particularly, 3-O-
sulfogalactosylceramide (or sulfatide) (75, 76) (in addition, about 26% of myelin dry weight
is represented by cholesterol) (62). Astrocytes and microglia are characterized by a lower
sphingolipid content and by the presence of simpler glycolipid species, even if specific
compositional studies for these cell types are quite rare (77, 78).

Sphingolipid expression in brain cells appears tightly regulated along development, adult
life, and physiological aging. The ganglioside total amount and the molecular complexity
markedly increase from the embryonic stages to the postnatal life in chicken (79), murine
(80) and human brain (73), as well as in vitro models of differentiating neurons (79-86).
Similarly, galactolipids synthesis is activated during terminal differentiation of
oligodendrocytes and is maximal during the extension and wrapping of the myelin sheaths
(87).

The regulated regional expression of glycolipid patterns, even if the result of a very
complex metabolic and trafficking machinery (88) (89, 90) (91, 92), is mainly linked to
changes in the expression and activity of the biosynthetic enzymes (glycosyltransferases).
In particular, the shift in ganglioside expression observed during neuronal differentiation is
obtained with the concomitant and opposite regulation of the two glycosyltransferases at

the branching point in the ganglioside biosynthetic pathway (80, 90, 93).
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The synthesis of complex sphingolipids is vital for the development and proper
maintenance of the nervous system. Cells lacking glucosylceramide synthase (GCS) (94,
95), and thus totally deprived of glucosylceramide-based sphingolipids, do survive and
grow normally. However, the global deletion of GCS in mice is embryonic lethal with total
absence of cellular differentiation beyond the primitive germ layers (96), while neural cell-
specific deletion of GCS is characterized by early severe neurological defects and death
within 3 weeks (97). This indicates that the correct synthesis of these lipids is crucial for
the complex network of cell-cell and cell-microenvironment interactions that characterize
the maturation of the nervous system. Similarly, the genetic deletion of the key enzyme for
the synthesis of myelin glycolipids, UDP-galactose ceramide galactosyltransferase (CGT)
(98, 99), led to the production of non-functional myelin. As the result, the speed of nerve
conduction in CGT-null mice is similar in myelinated and unmyelinated axons (98), and the
mice show a severe hypomyelination phenotype. This is remarkable, considering that
these mice indeed produce myelin sheath in amount and appearance very similar to wild
type mice, due to the increased synthesis of high levels of hydroxy-fatty acid-containing
GlcCer and sphingomyelin. However, the synthesis of these abnormal sphingolipids is not
able to replace the function of the lacking galactolipids at the molecular level (98, 99).

The functional relevance of sphingolipids in brain cell membranes is at least in part linked
to their ability to laterally compartmentalize the membrane in distinct domains. As recalled
previously, sphingolipids bear at least three distinctive molecular features (28, 100-102)
favoring their phase separation respect to the bulk glycerolipid membrane environment.
Lateral segregation of sphingolipids is driven by the formation of a thick network of
intermolecular hydrogen bonds at the water/lipid interface of the bilayer (10, 103, 104), due
to presence in the ceramide backbone of functional groups acting as donors and acceptors
for hydrogen bonds. The importance of this network of hydrogen bonds in stabilizing the

lateral segregation of membrane lipids is highlighted by the observation that the simplest
10
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sphingolipid, ceramide, is able to drive, by itself, the formation of lipid rafts. Ceramide has
important roles as a bioactive molecule per se, acting on diverse targets, both at the
plasma membrane level and at intracellular level. Different sphingomyelinases are present
in plasma membrane or can be translocated to the plasma membrane from intracellular
sites upon different stimuli. In addition, one isoform of sphingomyelin synthase is enriched
in the plasma membrane. Thus, the plasma membrane ratio between ceramide and
sphingomyelin can be effectively regulated at local level. In addition, ceramidases and
sphingosine kinases are also associated with the plasma membrane, thus hydrolysis of
sphingomyelin has been regarded by many authors mainly as a mechanism to generate
bioactive ceramide and/or sphingosine 1-phosphate (105). On the other hand, ceramide
itself is able to segregate within the plasma membrane forming ceramide-rich platforms, a
specialized subtype of lipid rafts. Apparently ceramide rafts do represent a third type of
membrane domain (in addition to the typical raft liquid-ordered phase and to the liquid-
disordered non-raft membranes), characterized by a gel-like structure (106). Indeed, for
some Authors the major function of ceramide generated at the plasma membrane is not
that of second messenger, but rather that of modulator of membrane structure (107). The
structural changes promoted by the formation of ceramide-rich rafts not only affects the
segregation of membrane receptors and other signaling molecules (a classical function
attributed to lipid rafts). In particular, the sphingomyelin/ceramide interconversion at the
plasma membrane has potentially important consequences on the membrane
organization, strongly influencing not only membrane lateral but also membrane topology
and in particular curvature. Reorganization of lipid membrane domains into ceramide-rich
signaling platforms has been reported to occur upon different receptor-dependent and -
independent stimuli (108, 109). The dramatic change of lipid aggregational properties
associated with generation of ceramide from plasma membrane amphiphilic lipids (107,

110) has been suggested to be responsible for massive rearrangements of lipid raft
11
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organization, leading to the coalescence of pre-existing small-scale rafts into large
ceramide-rich signaling platforms (108, 109), possibly coupled with changes in membrane
curvature and eventual inward or outward vesiculation (100, 111). From this point of view,
it is worth to note that ceramide can be generated in the plasma membrane also from
glycolipids, by complete removal of their oligosaccharide chains (112).

In addition, sphingomyelin and gangliosides in neurons are rich in saturated fatty acids,
whose chains are extended and ordered in the core of the lipid bilayer and can interact
tightly with cholesterol (113), also present at high enrichment in brain cell membranes. The
close interaction of cholesterol via its planar a-face with the ordered acyl chains of acyl-
lipids, filling in the hydrophobic gaps between the acyl chains, is a key factor in the
stabilization of the lo phase. In the case of glycosphingolipids, a further driving force for
segregation is represented by the bulkiness of the hydrophilic head groups and by its
potential to establish strong conformational correlations in glycolipid clusters (100).

Thus, we speculate that one of the major functional roles of sphingolipids in neural cell
membranes is the formation and stabilization of lipid rafts, and that the functional
importance of sphingolipids is mirrored by that of lipid rafts. However, this speculation is
somewhat challenged by the incredible number of different glycosphingolipids molecular
species found in the brain, resulting from the combination of the high complexity of in the
hydrophilic head groups (in particular for gangliosides) (114) and to the heterogeneity in
the ceramide backbone, in terms of fatty acid (115, 116) and sphingoid base composition
(117, 118). In addition, we already mentioned that different brain areas and different brain
cell populations are characterized by a specific glycolipid composition. This has been
known for a long time (119), however we are fully appreciating the heterogeneity in the
distribution of different gangliosides in the brain only in recent times, after imaging mass
spectrometry was applied to the analysis of brain gangliosides. In our opinion the new

findings in this sense are quite amazing. For example, imaging mass spectrometry of
12
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gangliosides in the three distinct layers of the molecular layer of the dentate gyrus of the
hippocampus revealed a striking composition difference, notably dependent on the
structure of the ceramide backbone, and in particular by the presence of d18:1 or d20:1
sphingosine (120). Interestingly, differential expression of ganglioside species
characterized by a different long-chain base composition has been recently reported also
for other brain areas (121, 122). On the other hand, different spatial distribution depending
on the hydrophilic portion (e.g., different distribution of GD1a and GD1b species) was also
recently reported (123). Imaging mass spectrometry applied to this field of research is still
in the need of technical refinements, however it is easy to predict that it will soon unveil
novel aspect in the biology of sphingolipids in the brain. Notably, this technique has been
recently applied to the analysis of APP transgenic mouse brain, a model for the study of
AD, unveiling deep differences in the regional alterations of ganglioside composition (124),
only partially confirming previous data obtained in other AD mice models and in AD
patients.

As already mentioned, phase separation of membrane sphingolipids/cholesterol is not the
only lipid-dependent contribution to the lateral organization of membrane domains, driving
the compartmentalization of other membrane components. The existence of direct
interactions between glycosphingolipids and/or cholesterol and several membrane proteins
of great functional relevance for the nervous system has been described. The binding of
GM1 gangliosides to TrkA neurotrophin receptor membrane receptors has been described
long time ago (125). N-glycosylation of the receptor is crucial for the co-localization of
TrKA with GM1 within lipid rafts, suggesting that either a glycan-glycan interaction is
involved, or that the conformation of the receptor able to interact with GM1 is stabilized by
its glycosylation (126). More recently, molecular docking studies revealed that GM1
oligosaccharide is able to occupy a hydrophilic pocket in the TrkA-NGF complex,

stabilizing it and favoring the receptor dimerization (127). Similar findings clearly suggest
13
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that the binding of GM1 and TrkA does not simply represent a molecular mechanism for
the recruitment of the protein in a specific lipid raft.

Several proteins that interact with glycosphingolipids or are preferentially associated with
lipid rafts are characterized by the presence of a characteristic amino acid sequence
termed the "sphingolipid binding domain". The sphingolipid-binding domains has been
identified in different membrane-associated neurotransmitter receptors, such as the human
serotonin1A receptor (128, 129). The sphingolipid binding motif in serotonin1A receptor
has been recently characterized at the molecular level, and it has been shown to be highly
conserved along evolution (130), this suggesting its functional relevance in the biology of
these receptors, and possibly in other G-protein coupled receptors. Other neurotransmitter
receptors, such as the human B2-adrenergic receptor (131) and the nicotinic acetylcholine
receptor (132), bear distinctive cholesterol-binding domain(s), which are able to interact
with different modalities with the cholesterol molecule, that, despite its apparently simple
structure, is characterized by a marked asymmetry. Intriguingly, the presence of more than
one cholesterol binding domain has been reported in the same membrane protein: in the
transmembrane stretch of the nicotinic receptor, distinct cholesterol consensus domains,
with different preference for the outer vs. the inner membrane leaflet, have been described
(133). Very interestingly, glycolipid- and cholesterol-binding domains have been identified
in amyloidogenic proteins relevant to major brain pathologies, including a-synuclein and -
amyloid peptide. In both proteins it is present a loop centered on a tyrosine residue (134),
which is involved in their interaction with glycosphingolipids, a relevant step in the
conformational transition which precedes the oligomerization and subsequent formation of
insoluble fibrils. Similarly, cholesterol binding domains have been identified in the
structures of a-synuclein (135), in the amyloid precursor protein (136, 137) and in -
amyloid peptide (138, 139). In some cases, the binding of a certain protein with

glycosphingolipids and cholesterol is not only specific, but somewhat cooperative. For
14
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example, a-synuclein can bind to different gangliosides at the surface of brain cells
depending on the cell type (i.e., with GM3 in astrocytes, or with GM1 in neurons). In both
cases, the binding with the ganglioside induces a conformational change in a-synuclein,
that is permissive for a high affinity interaction with cholesterol in the plasma membrane.
This, in turn, enhances a-synuclein oligomerization (140).

Clearly, we need to learn more about the cell-specific functions of different
glycosphingolipids species, and of cholesterol, and about the specific lipid-protein
interactions, whose repertoire is likely to widen up in the future.

On the other hand, the complexity in glycolipid distribution among different brain cell
populations has important consequences also from the point of view of phase separation.
Recent studies highlighted that the dynamics of lipid phase separation are much more
complex than expected. Single-molecule imaging of different fluorescent GM1, GM3 and
SM analogues in living cell plasma membrane has revealed that the clustering of
sphingolipids around a GPl-anchored protein is the result of a series of transient events,
encompassing the formation of homo- and heterodimers, small clusters and larger
aggregates, where the sphingolipid molecules are in continuous and rapid exchange
between the raft environment and the bulk of the plasma membrane (141-145). Thus,
formation and stabilization of lo lipid rafts in cellular membrane is much more complex and
dependent on the specific lipid composition of a given membrane that predicted on the
basis of the data previously available from the study of model membranes.

Lipid rafts in neurons

Regarding neuron cell biology, membrane receptors represent the most relevant example
of proteins whose functions are modulated by their association with lipid rafts. In neurons,
these lipid rafts-associated receptors exhibit an extensive variety, in terms of ligand type

(including endocannabinoids, neurotrophins, and several neurotransmitters), downstream
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signal transduction mechanism (GPIl-anchored receptors, tyrosine kinase receptors,
adhesion molecules coupled with intracellular non-receptor tyrosine kinases of the Src
family, and G protein-coupled receptors (72, 84, 146-155)), and dynamics of receptor
association with membrane domains. For example, some receptors, upon activation,
translocate from/to lipid rafts to/from a non-raft membrane region or a different population
of membrane domain or other intracellular sites, thus allowing the reciprocal engagement
of co-receptor molecules that do not interact in the resting state, or allowing segregation of
molecules that co-cluster in the resting state. Other receptors, instead, normally reside in
lipid domains while in the resting state and their activation leads to propagation of signals
to other components present in these domains (156).

An example of this kind of lateral interaction is represented by the binding of GM1 to the
Trk family neurotrophin receptors. GM1, who due to its neuroprotective and neurotrophic
effects is being taken into consideration as therapy for different diseases characterized by
neuronal damage (157-161), is able to interact with Trk neurotrophin receptor, both in vitro
(125) and in vivo (162-164), substituting or enhancing neurotrophins in their actions (165).
This interaction, which seems to be mediated by hydrogen bonds and ionic interactions
between the oligosaccharide portion of GM1 and the extracellular moiety of Trk (127),
determines receptor activation (166) and increases Trk kinase activity, NGF-dependent
receptor homodimerization and autophosphorylation (159, 166-169). Moreover, the local
activation of a plasma membrane-associated ganglioside sialidase, which leads to an
increase in GM1 levels consequently increasing Trk activation in specific domains at the
surface of unpolarized neurons, was able to locally induce actin depolymerization and to
trigger axon formation (170) (Figure 2). Furthermore, responsiveness to NGF and
membrane distribution of Trk are altered by anti-GM1 antibodies from patients with the
most severe form of Guillain-Barré syndrome, associated with axonal pathology (171).

These antibodies also inhibit NGF-induced Trk autophosphorylation (171). This example of
16
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the role of lateral organization in regulating the fate of neurons shows how the major
players, from the substrates and enzymes necessary to synthesize GM1, to the Trk
receptor, to the machinery regulating actin polymerization involved in events downstream
to receptor activation, all need to be associated with certain membrane domains, which
are distributed asymmetrically on the neuronal surface.

Trk receptors association with GM1-rich membranes is also important for the interaction
between the receptors and signal transducers such as Src family non-receptor tyrosine
kinases, typically higher in neuronal lipid rafts in a cell- and stage-specific manner (72,
161, 172), and who present an activity finely regulated by gangliosides.

Lipid rafts in astrocytes

As mentioned in previous paragraphs, PtdGlc, whose saturated fatty acyl chains, C18:0 at
sn-1 and C20:0 at sn-2 of the glycerol backbone, has the ability to undergo lateral
segregation thus forming phosphatidylglucoside-rich lipid rafts (PGLRs) (68, 69). In
astrocytes, these rafts were shown to regulate astrogliogenesis, by controlling EGFR
tyrosine kinase activity during mid-embryonic to early postnatal stages of mouse brain
development (173).

More conventional ganglioside-enriched lipid rafts in astrocytes are also involved in
homeostasis, regulating glutamate clearance through EAAT2 modulation (174) and
potassium buffering through the modulation of Kir4.1(175), and play roles in the signaling
leading to ganglioside-induced autophagic astrocyte death (176). Moreover, they can
modulate astrocytic inflammatory signaling. DJ-1 is a ubiquitous protein, highly expressed
in both brain and peripheral tissues, that was initially described as an oncogene and
whose mutations are associated with autosomal recessive forms and some sporadic cases
of Parkinson disease (177). Recent evidence suggests that DJ-1 is a multifunctional
protein that has potent antioxidant properties and protects neurons against oxidative

stress-induced cell injury (178). Moreover, its association with lipid rafts, in fact, regulates
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the inflammatory response to lipopolysaccharide (LPS) through the modulation of the
LPS/TLRA4 lipid raft-dependent pathway (179).

Lipid rafts in oligodendrocyte maturation, myelin formation and stabilization

Mature oligodendrocytes (OL) are the CNS myelin-forming cells. These cells go through
strictly regulated differentiation steps (180) which culminate in the formation of the myelin
membrane, a multilayered membrane wrapping around axons which present its own
peculiar cytoarchitecture, characterized by the presence of several different functional
microdomains, including caveolar domains, tetraspanin-enriched microdomains, and
sphingolipid-enriched domains (181, 182). The latter are involved in several functional
aspects of OL (183). For example, galactosylceramide-rich and sulfatide-enriched domains
are involved in myelin stabilization (Figure 3). In fact, trans-interactions between
galactosylceramide and sulfatide in opposing extracellular surfaces of the myelin sheath
form specialized “glycosynapses” which increase the stability of the membrane wrapping
(184-187). Moreover, oligosaccharide-mediated trans interactions between GT1b and
GD1a gangliosides on the axonal surface and MAG (188-191), whose localization is
regulated by galactolipid-rich domains (192), is necessary for long-term axon-myelin
stability (Figure 3).

Galactosylceramide-rich and sulfatide-enriched domains also modulate the lateral
distribution and co-clustering of several myelin proteins, thus regulating proliferation,
survival and differentiation of oligodendrocytes (183). In early stages of myelin
development, only few of the typical myelin proteins are associated with lipid rafts. By the
mid-myelination stage, however, when galactosylceramide (GalCer) and sulfatide are
synthesized at detectable levels, the myelin proteins PLP and MOG tend to localize in lipid
rafts, and, in the final stages of myelination, MAG and MBP are also translocated into lipid
rafts (192-195). Interestingly, the association of PLP to GalCer- and cholesterol-rich

domains in the Golgi complex, which is a critical step sorting of components destined for
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the myelin membrane, is required for correct assembly of the protein in the myelin
membrane (196). Moreover, sulfatide seems to be necessary for the transport of PLP to
myelin membranes via a transcytotic mechanism (197). Neurofascin155 (NF155), which
associates with sulfatide and stabilizes axon-glial contacts, is also recruited into lipid rafts
during the final stages of myelin development (192, 194).

Lipid rafts in microglia

Microglial cells are widely regarded as the resident immune cells of the brain, constantly
scanning through the microenvironment with their long protrusions, readily sensing
alterations in tissue homeostasis and integrity (198).

Lipid rafts, in these cells, are involved in several processes. For example, they play a role
in lysophosphatidylcholine (LysoPC) induction of ROS production, which leads to caspase-
1 activation and to the subsequent IL-13 processing. They are also involved in the
internalization of a-synuclein (a-syn) through the interaction between ganglioside GM1, an
unknown receptor, and the a-syn protein (199). Moreover, caveolins, membrane adaptor
proteins associated with lipid rafts, have been identified as structural and metabolic
regulators of microglia. In particular, it has been observed that the switch between a
resting phenotype and an immunoinflammatory one is associated with a switch in the
caveolin isoform expression. When cells are in the inactive state, Caveolin-1 (Cav-1) levels
are low and the protein is localized in cytoplasmic vesicles and at plasma membrane level.
Caveolin-3 (Cav-3) instead is highly expressed and localizes in cellular processes and
perinuclear regions. Upon microglia activation, concomitantly with the changes in cell
morphology, Cav-3 expression lowers, whereas Cav-1 expression increases. Cav-1 in
these cells enhances mitochondrial function and acts as a negative regulator of
microtubule stability, and, since lipid raft marker flotillin-1 levels increase alongside Cav-1
levels, it has been hypothesized that lipid rafts might be involved in the regulation of the

morphology changes associated with the inactive-active state transition (200).
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ALTERED LIPID RAFT ORGANIZATION AND NEURODEGENERATIVE DISEASES
Considering that control of lipid composition is a physiological mechanism for the
modulation of lipid raft-dependent cellular functions in the nervous system, it is not so
surprising that alterations of lipid metabolism, subsequently leading to abnormal lipid raft
organization and functioning, are often associated with neurodegenerative diseases.
Indeed, genetic defects (lack of an enzyme activity or of an activator protein required for
the enzyme activity) leading to the impairment of the sphingolipid degradation pathway at
the lysosomal level cause the primary accumulation of the undegraded sphingolipid
substrate in the lysosome. This is the common feature of a very heterogeneous family of
lysosomal storage diseases, the sphingolipidoses. Almost all of sphingolipidoses, even if
very diverse in their clinical manifestations, are characterized by severe neurological
involvement and neurodegeneration. Lysosomal impairment due to the engulfment of
undegraded substrate is likely the main causative factor behind the pathology; however,
several papers suggest that escape of sphingolipids from the lysosome and their
interaction with plasma membrane and intracellular membranes might lead to altered
organization of lipid rafts, which could represent an important player in the
ethiopathogenesis of sphingolipidoses. This topic has been extensively covered in a recent
review (201) and will not be further discussed here.

On the other hand, the defective lysosomal metabolism of sphingolipids can in some cases
lead to the generation of abnormal metabolites. The most typical case is Krabbe disease.
This disease, caused by loss-of-function mutations of the enzyme B-galactocerebrosidase,
is characterized by severe brain impairment, demyelination and irreversible neurological
damage. The lack of B-galactocerebrosidase activity results in the elevation of its
substrate, GalCer. Apparently accumulation of GalCer is per se not detrimental, however
GalCer is metabolized into the lysosphingolipid galactosylsphingosine, or psychosine, and

it has been hypothesized that the severe phenotype of the disease could be due to
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psychosine toxicity (202). However, the molecular mechanisms underlying psychosine
toxicity are poorly understood. Recently, it has been shown that psychosine accumulates
in lipid rafts from brain and sciatic nerve from twitcher mice (the animal model for the
infantile variant of the disease) and from human Krabbe patients, disrupting the lipid raft
architecture with the consequent altered distribution of lipid raft proteins, inhibition of
protein kinase C (203), and impairment of lipid raft-mediated endocytosis in neural cells
(204). Remarkably, accumulation of high levels of different lysosphingolipids was detected
in several othe sphingolipidoses, including Gaucher’s, Fabry’s and Niemann Pick diseases
(recently reviewed in (205), suggesting that interference with lipid raft organization by

accumulated lysosphingolipids might represent a common pathogenetic mechanism.

In this section, we will focus on several common neurodegenerative diseases whose
onset is not primarily considered to be related to defects in sphingolipid metabolism. On
the other hand, for different and diverse reasons, a common trait of these diseases are
alterations in sphingolipid and cholesterol homeostasis, and convincing evidence indicate
that the resulting anomalous composition/organization of lipid rafts is an important
causative element of the neurodegenerative manifestations.

However, before analyzing the changes of lipid raft composition associated with several
neurodegenerative diseases, it is worth to recall that a variety of alterations of brain lipid
composition have been correlated with the process of physiological aging. Along aging,
brain faces a progressive overall reduction of its total lipid content, alterations of
polyunsaturated fatty acid content and profile, decreased ganglioside content, and altered
sphingoid base composition of SLs (for review see (206)). It is difficult to prove a causative
relationship between these numerous and complex lipid composition changes and the
gradual decline of physiological performance that occurs during brain aging. However,

there is some recent evidence that these changes have major effects on the

21

020z ‘LT dunC uo ‘INVITIVIN OLY3dTV YO3.LOIdIg Ye Bio l:mmm woly papeojumod


http://www.jlr.org/

SASBMB

JOURNAL OF LIPID RESEARCH

physicochemical properties of lipid rafts (e.g., local membrane microviscosity). which
seems to associate with the decline of physiological performance of the aging brain. In
other words, lipid rafts seem to undergo a natural aging process. As mentioned above,
gangliosides in particular have been reported to decrease along aging in human and
mouse brain. The trends of variations are quite complex, and differ in different brain areas
and depending from the age range considered (73, 74, 207-209). The most pronounced
changes in ganglioside composition associated with aging were an increase in the simpler
gangliosides species, paralleled by a reduction of the complex gangliosides of the a-
pathway (GD1a and GT1a) (74, 209). The progressive loss of brain gangliosides observed
along aging (73, 74, 207-209) has been hypothetically associated with reduced neuronal
and synaptic plasticity, which are in many aspects controlled by lipid rafts. On the other
hand, we reported that ceramide is enriched in lipid rafts in aging cultured neurons (210).
Importance of lipid rafts with abnormal organization, for example, has been suggested in
Huntington’s disease, Parkinson’s disease and Alzheimer’s disease and examples of this
will be described in the following paragraphs.

In some cases the abnormal composition of lipid rafts has specific consequences for a
given neurodegenerative disease. On the other hand, there are common raft-dependent
mechanisms potentially contributing to the onset of different diseases. For example, as
described before and discussed in specific in the next sections, association with lipid rafts
with abnormal composition seems to be an important player in the amyloidogenic

processing and in the aggregation of AB peptide and a-synuclein.

More recently, lipid rafts have also emerged as potential modulators of the genesis and
functions of extracellular vesicles (EVs). EVs are membrane vesicles released by cells,
characterized by highly heterogeneous size, structure, and molecular content (211). EVs

are produced by all cells of the nervous tissue and have been found to play physiological
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functions as well as pathophysiologic roles in inflammatory and degenerative diseases
(212-214). In eukaryotic cells, EVs can derive from the plasma membrane (called
ectosomes or microvesicles (MVs)) as well as from the multivesicular bodies (called
exosomes) and it has been shown that exert their function as mediators of cell-to-cell
communication (215-218). In this respect, the hypothesis that modulation of lipid raft
composition and lateral heterogeneity might serve as a determinant for inclusion/exclusion
of membrane lipids and proteins into MVs, and that these MVs could originate from
specific membrane microdomain is becoming more and more popular (219).

Intriguingly, exosomes contain and diffuse different pathogenic proteins such as a-
synuclein and amyloid precursor protein (220-222). In 2012 Russo et al. published a paper
demonstrating that exosomes, secreted by both neurons and activated microglia, embitter
neuronal dysfunction and accelerate PD progression because participate in spreading
around a-synuclein and increasing neuroinflammation (223).

It is very important to underline that, not only the protein cargo of EVs, but also the
sphingolipids in the EV membrane can have a fundamental role in neurogenerative
disease. There are several evidence in the literature demonstrating an important role of EV
sphingolipids in neurodegenerative pathological conditions in which EVs are involved. In
particular Yuyama et al. (224) demonstrated that glycosphingolipids present at the
exosome surface are involved in the pathogenic aggregation of the AB peptide. Exosomal
glycolipids forming clusters (rafts?) able to bind to AR peptide, and these complexes
behave as templates for further AB aggregation. Yuyama et al., on the basis of these
results together with the results published by Yanagisawa et al. (225) demonstrating that
GM1 associates with AR peptide in the brain of AD patients, suggested that in exosomes
there are specific areas enriched of glycosphingolipids that bind to AR peptide and induce

its aggregation.
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Other evidence demonstrates that exosomes are highly enriched in cholesterol and
sphingomyelin that, on their turn, stimulate AR peptide assembly promoting the lateral
packing of gangliosides on membranes (224, 226, 227).

Thus, the organization of different lipids at the surface of exosomes and other EVs might
represent a still poorly investigated aspect of the involvement of lipid rafts in different

neurodegenerative diseases.

Lipid rafts in Huntington’s Disease

Huntington’s disease (HD) is a monogenic, progressive neurodegenerative disorder with
an autosomal dominant pattern of inheritance. Its cause is a mutation in the huntingtin
gene resulting in a polyglutamine expansion in the N-terminus of huntingtin (Htt) (228,
229), a scaffold protein involved in transcriptional control of neural gens, autophagy, and
vesicular traffic (230). Ganglioside synthesis and expression of the glycotransferases
involved in this process are altered both in cellular and animal models of HD (231-233)
and in the striatum of HD human brains (234). GM1, in particular, decreases markedly
(38% reduction vs wild type) and this reduction correlates with an increased susceptibility
to neuronal death. GM1 administration is able to restore normal survival in HD cells in
vitro, via activation of the PI3K/Akt pathway and huntingtin phosphorylation (233).
Interestingly, sphingosine-1-phosphate (S1P) metabolism is also altered in several models
of HD, and treatment with fingolimod is able to restore GM1 normal levels in HD mice
(233, 235).

Cholesterol levels are also altered in HD. Cells expressing mutated Htt have an increased
content of cholesterol, in particular in lipid rafts, together with an enrichment of the GluN2b
subunit of NMDA (N-Methyl-D-Aspartate) ionotropic glutamate receptors in these domains
(236). Moreover the expression of cholesterol hydroxylase enzyme CYP46A1, which is

downregulated in HD, is neuroprotective against mHtt induced toxicity both in in vitro and
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in vivo models of HD (237). This enzyme is protective against NMDAR-mediated
excitotoxicity in HD models however, while CYP46A1 is able to reduce cholesterol content
in lipid rafts in wild type neurons, its overexpression in HD neurons was not able to restore
normal cholesterol levels in these domains (238).

It has been proposed that the alteration in cholesterol metabolism could be underlying the
myelin deficits in HD (239). White matter abnormalities appear early in the course of the
disease and worsen with age (240). Moreover, mice expressing reduced levels of Htt show
alterations in OPC maturation and white matter tract impairments during
development(241), and OPCs isolated from neonatal HD mouse brains and derivative
oligodendrocytes exhibit deficits in the levels of myelin-related genes ((242). The levels the
two major glycosphingolipids in myelin, galactosylceramide (GalCer) and sulfatide, are

also decreased in a mouse model of HD (232).

Lipid rafts in Parkinson’s disease

Cholesterol balance in the brain and cholesterol serum levels are altered in of Parkinson’s
disease (PD) patients (243, 244). Several proteins whose mutations have been causally
correlated with PD, including parkin, PINK1, a-synuclein, and DJ-1, have been detected in
lipid rafts in the brain, neurons, and astrocytes (179, 245-247). In fact, parkin regulates
expression of caveolin 1, altering lipid rafts and the cell to cell transmission of a-synuclein
(248).

a-synuclein is involved in lipid trafficking into the cell. It binds fatty acids and acts as a
transport facilitator between cytosol and membrane compartments and modulates the
uptake of fatty acids in the neuronal membrane (249). Moreover, a-synuclein can modulate
lipid metabolism by reducing the hydrolysis of lipid droplets (250) and plays a role in lipid
membrane homeostasis, via inhibition of phospholipase D1 and D2 (251), and

organization of membrane components (252).
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The expression of several ganglioside biosynthetic genes is reduced in PD, consistently
with the reduction in the levels of GM1, GD1a, GD1b and GT1b observed in the substantia
nigra of PD brains (253). Association of a-synuclein with lipid rafts affects both the
trafficking and the three-dimensional structure of the protein, and a-synuclein has been
shown to interact with gangliosides and cholesterol (199, 246). Moreover, binding of a-
synuclein to GM1 inhibits fibril formation and binding and specificity of GM1 are enhanced
by N-acetylation of a-synuclein (246, 254). Furthermore, inhibition of GD3 synthase has
been shown to have neuroprotective properties in the MPTP mouse model of PD (255).

Maijor lipid alterations in lipid composition, including a marked decrease in GalCer and
sulfatide, have also been observed also in lipid rafts purified from the frontal cortex of PD

patients (256).

Lipid rafts in Alzheimer’s disease

The amyloid precursor protein (APP), a transmembrane protein enriched in neurons, is not
a raft protein per se, however, a significant amount of APP tends to localize in lipid rafts
after palmitoylation (257). The Src kinase family member Fyn and Dab1 are essential for
the targeting of APP to lipid rafts, which is essential for both its physiological function and
its pathological processing (258).

APP cleavage is usually considered to be modulated within lipid raft microenviroment
(259) and these microdomains contain APP-derived proteolytic fragments and enzymes
involved in APP amyloidogenic processing. Moreover, AR production is preferentially
localized within lipid rafts (260).

Cleavage of APP by y-secretase leads to the formation of AR and to the release of the
APP intracellular C terminus domain (AICD), both able to affect cellular lipid composition
(261). In particular, AICD released from APP can affect lipid raft composition through the

regulation of plasmalogen synthesis (mediated by the regulation of alkyl dihydroxyacetone
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phosphate synthase expression (262)) and of SL synthesis (mediated by the regulation of

serine-palmitoyltransferase expression (263)).

Both cholesterol and sphingolipid metabolism are altered in Alzheimer’s disease (AD).
Evidence on the role of cholesterol in AD is controversial. While there is a clear correlation
between mutations of ApoE and the genetic risk of developing AD, opposite findings have
been reported on cholesterol levels, precursors and metabolic enzymes in the brain of AD
patients, and various studies have tried to correlate levels of the circulating lipids or lipid
lowering treatments to AD risk however results are controversial and results non-
conclusive (264, 265). In fact, AICD downregulates low-density lipoprotein receptor-related
protein 1 (LRP1), also known as ApoE receptor, thus regulating both ApoE and the
cholesterol levels in the brain (266). Moreover, APP knockout increases both ApoE activity
and cholesterol levels (266). On the other hand, increase of toxic A oligomers, rather than
non-toxic monomer, leads to an increased synaptic cholesterol concentration,
accompanied by an increased activation of a cholesterol ester hydrolase (CEH), with
consequent decrease in cholesterol ester concentrations (267-270).

If we consider sphingolipid metabolism, there are several alterations in AD. Sulfatide and
sphingomyelin are decreased in AD post-mortem brains of individuals with pre-clinical or
early stage disease (271). Moreover sphingomyelin (SM) plays a role in APP regulation. In
fact, sphingomyelinases activation, with consequent SM depletion, promotes abnormal
APP processing and cellular trafficking, while Ap accumulation activates sphingomyelinase
and mediates the cleavage of SM (272). Furthermore, ganglioside metabolism is altered in
both animal models and human AD. The pattern of alterations of these lipids however is
highly complex and depends on factors such as age of onset and type of mutation. In fact,
decreased ganglioside levels with altered ratios between a-series and b-series structures

and elevated levels of simpler gangliosides have been reported in several AD brain
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regions (119, 273-279). Expressions of genes involved in the sphingolipid metabolism, for
example GD synthase, were also found altered in brains of AD patients (280). GD3
increases APP cleavage by y-secretase, leading to the formation of AR and AICD which,
through two different mechanisms, work synergistically to block the production of GD3. AR
binds GM3, rendering it unavailable for GD3 synthase while increasing the overall ratio of
a-series:b-series ganglioside, while AICD, interacting with the adaptor protein F365,
decreases GD3 synthase at transcriptional level (273).

GM1 and GM2 were found to be higher in lipid rafts from the frontal and temporal cortices
of AD patients (281). GM1, in particular, while it has a neuroprotective effect in vivo (282-
284), has been shown to increase AB generation and aggregation in vitro (285).

Moreover, GM1 regulates AB membrane binding and its associated structural changes,
oligomerization and fibrillation in a cholesterol-stimulated manner (286-289). The multiple
roles of lipid rafts underlying AD are summarized in Figure 4.

Lipid rafts and multiple sclerosis

Multiple sclerosis is not primarily a neurodegenerative disease; however,
neurodegeneration is the unavoidable long-term consequence of myelin loss in MS
patients.

Cholesterol is one of the main components of the myelin sheath. Most of the transcripts of
genes involved in cholesterol biosynthesis are downregulated both in MS animal models
and in MS human brains (290-292). Moreover, it has been hypothesized that this
downregulation could be inhibiting the fast and efficient remyelination in MS (291). In fact,
an overall downregulation of the genes of the cholesterol biosynthetic pathway has been
reported in MS in humans, suggesting a possible role of cholesterol in demyelination and
remyelination (293). Cholesterol ester, unlike in AD, is accumulated in MS lesions (294).
On the other hand, inhibition of HMG-CoA reductase leads to a reduction both in

demyelination and in inflammation in the EAE model (295).
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ApoA-I may also play a role in MS. In fact, a negative correlation between ApoA-I levels
and the worsening of the symptoms in MS has been reported. MS patients in an advanced
state of the disease have lower plasma levels of ApoA-I compared to subjects with stable
relapsing remitting disease and healthy age-matched controls (296). Fingolimod has been
shown to reduce cholesterol toxicity in human macrophages in vitro, through increase of
ATP binding cassette transporter A1 (ABCA1) levels and, consequently, of endosomal
cholesterol efflux to ApoA-I (297). Statins are also able to increase ApoA-I levels however
their use for MS therapy have delivered conflicting results (298-302).

LINGO1, a functional component of the Nogo receptor signalling complex that participates
in a NgR1-p75/TROY-LINGO1 multisubunit complex, negatively regulates oligodendrocyte
differentiation, while the ErbB2 receptor positively regulates it (303-305). Due to their role
in OL differentiation, deregulation of LINGO1 and ErbB2 could also be involved in MS and
their reciprocal regulation is tied to lipid rafts. In fact, LINGO1 inhibits ErbB2 translocation
to lipid rafts and reduced LINGO1 activity correlates with an increased ErbB2

phosphorylation and an increased oligodendrocyte differentiation in vitro and in vivo (305).

CONCLUDING REMARKS

Lipids in the brain are major components, involved in processes such as neurogenesis,
signal transduction, neuronal communication, membrane compartmentalization and
modulation of gene expression. Due to their structural and physiological roles, alterations
in lipid metabolism could reflect an aberrant brain function. It is the case of
neurodegenerative pathologies such as AD, PD and HD, where alterations of membrane
lipid composition and lipid homeostasis have been reported. These alterations in lipid
composition subsequently determine alterations in lipid raft composition, thus affecting
their physicochemical properties and the function of raft-associated proteins in

neurodegenerative diseases. The development of new technologies able, for example, to
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circumvent the optical diffraction limit is proving crucial to shed light on lipid rafts
composition and dynamics. In fact, during the past years new techniques that allow not
only direct visualization, but also quantitative characterization of nanoscopic structures
have emerged (306). Moreover, since the field of super-resolution optical methods is
active and constantly improving, it is likely that in the next years researches will be able to
analyse the dynamics of objects with molecular scale precision at subsecond time scale.
Furthermore, combination of different techniques such as electron microscopy and super-
resolution fluorescence microscopy could provide detailed information on the organization
of nanoscale molecular structures. Considering all this, the developing of technologies
allowing to directly visualize dynamics of molecules within the rafts and to provide
quantitative information thus leading to a more precise determination of lipid rafts
composition and characterization of their effects on protein/protein and lipid/protein

associations could allow to define new potential therapeutic targets for these diseases.
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FIGURES

Figure 1. Results of PubMed search using the keywords ‘lipid rafts’, from 1990 to 2019.

Figure 2. Schematic model for GM1/TrkA-dependent axon specification in neurons. Local
activation of sialidase Neu3 in specific membrane domains, with consequent increase in
GM1 levels, increases local recruitment of activated NGF receptor TrkA (pTrkA). Effectors

PI3K and Rac1 are consequently recruited, ultimately leading to rapid initial polarized
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outgrowth, thus triggering axon formation. Reproduced with modifications from (156), with

permission. © Elsevier

Figure 3. Glycolipid-enriched membrane domains in myelin. Glycolipid-glycolipid and
glycolipid-protein interactions have various roles in myelin formation, maintenance and
functioning but also in axon-myelin stability and communication. On one hand, GD1a and
GT1b, enriched in axonal lipid rafts, interact with MAG which in turn interacts with Nogo-
R1 (NgR1) who, through interaction with p75/TROY and LINGO-1, activates RhoA leading
to axon outgrowth inhibition. On the other hand, GalCer and sulfatide on opposing
membrane surfaces in myelin sheaths interact with other via a trans interaction forming a
“glycosynapse” which results in clustering of membrane domains and loss of cytoskeleton
integrity, thus leading to the formation of mature myelin. Reproduced from (156), with

permission. © Elsevier

Figure 4. Roles of lipid rafts in AD. Targeting of APP to lipid rafts with an altered
composition can disrupt normal APP-dependent signal transduction and promote APP
proteolytic processing via the actions of - and y-secretases. Moreover, AICD, released
intracellularly, can affect the lipid composition of lipid rafts, while membrane-bound AR in
lipid rafts, following its interaction with GM1, triggers the formation of insoluble amyloid
fibrils and the release of toxic soluble AR aggregates. Interestingly, these aggregates need
to interact with lipid raft-associated PrP to exert their negative effects on neurons.

Reproduced from (307), with permission. © Wiley
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