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High-resolution in situ transcriptomics of
Pseudomonas aeruginosa unveils genotype
independent patho-phenotypes in cystic
fibrosis lungs
Elio Rossi 1, Marilena Falcone 1, Søren Molin2 & Helle Krogh Johansen 1,3

Life-long bacterial infections in cystic fibrosis (CF) airways constitute an excellent model both

for persistent infections and for microbial adaptive evolution in complex dynamic environ-

ments. Using high-resolution transcriptomics applied on CF sputum, we profile transcriptional

phenotypes of Pseudomonas aeruginosa populations in patho-physiological conditions. Here

we show that the soft-core genome of genetically distinct populations, while maintaining

transcriptional flexibility, shares a common expression program tied to the lungs environ-

ment. We identify genetically independent traits defining P. aeruginosa physiology in vivo,

documenting the connection between several previously identified mutations in CF isolates

and some of the convergent phenotypes known to develop in later stages of the infection. In

addition, our data highlight to what extent this organism can exploit its extensive repertoire of

physiological pathways to acclimate to a new niche and suggest how alternative nutrients

produced in the lungs may be utilized in unexpected metabolic contexts.
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V iscous secretions in the lungs of cystic fibrosis (CF)
patients create a favorable environment for microbial
infections. Pseudomonas aeruginosa is one of the most

frequently encountered bacteria in CF airways, and despite
antibiotic treatment the infections most often become chronic.
Aggressive antibiotic treatment, however, is able to control pro-
gression and exacerbations of the infection1 allowing patients to
survive for decades. During this long time of infection, complex
selective forces drive P. aeruginosa adaptation through genetic
modifications such as single-nucleotide polymorphisms2 and
various genetic rearrangements3,4. These adaptive mechanisms
transform environmental clones into descendant lineages capable
of persisting in the CF airways. To date, the adaptive processes of
long-term lung survival have been described through whole-
genome sequencing (WGS) of longitudinal collections of P. aer-
uginosa CF isolates, and identification of a small number of
sequential patho-adaptive mutations conserved in genetically
distant P. aeruginosa populations2,5–7. However, since CF isolates
display a high genetic and phenotypic variability8, genetic studies
are limited in their ability to predict how the observed genetic
differences are translated into better adapted phenotypes in the
actual environment, in which the bacterial physiology plays a
critical role in determining the final outcome9. Thus, independent
clones having gone through independent evolutionary trajectories
can achieve similar expression programs in the same environ-
ment10, and it is not uncommon that conserved patho-adaptive
mutations do not display the expected phenotypic properties2.

Although different studies have gained knowledge about how
genetic adaptation contributes to reshape bacterial gene expres-
sion in P. aeruginosa CF isolates5,11, the difficulties in recreation
of the conditions characterizing CF lungs12,13 have prevented
establishment of a complete and realistic overview of how
genetically distant lineages behave in the lungs. In particular, it is
unknown to what extent evolutionarily distinct lineages adopt a
similar gene expression program that reflects common pheno-
typic traits contributing to persistence in patho-physiological
conditions. To address these issues, we have developed a meta-
transcriptomics investigation strategy for the total RNA content
in CF sputum, analyzing at the single-gene level the transcrip-
tional profile of P. aeruginosa communities in their real envir-
onment as indicators of their in vivo phenotypes. We successfully
applied this strategy to a cohort of CF patients infected by dif-
ferent P. aeruginosa lineages, which have adapted for more than
200,000 generations to the CF lung environment, thus repre-
senting a late stage of the evolutionary process. We show that,
despite a long independent evolutionary history constrained in
the lungs of specific patients, a common end point transcriptional
program specifically connected to the CF lung environment can
be identified. In particular, we identify lineage-independent gene
expression profiles affected by the patho-physiological conditions
in the CF lungs, which are associated with responses to stress
(oxidative, antibiotics, and osmotic) and physiological acclima-
tion, and find evidence for changed utilization of multiple
redundant and/or alternative nutrient acquisition systems, sug-
gesting that metabolic rewiring may contribute to P. aeruginosa
ecological flexibility and persistence in the lungs.

Results
Pseudomonas aeruginosa high-resolution in vivo tran-
scriptome. In order to investigate in vivo gene expression of P.
aeruginosa populations infecting CF lungs, we performed RNA-
sequencing directly on 12 CF sputum samples obtained from 5
chronically infected patients (Fig. 1 and Supplementary Table 1).
For three samples (P24M1_S1, P30M0_S1, and P11F2), we
sequenced total RNA without depletion of ribosomal RNA in

order to evaluate the feasibility of the technique and the per-
centage of reads deriving from the human transcriptome. Stable
rRNA accounted for nearly 70% of the total sequences recovered,
and human transcripts dominated the non-ribosomal RNA pool
(ca. 95%) (Supplementary Table 2). Non-human RNA, including
bacterial RNA, represented on average only 5% of the total reads
(Supplementary Table 2). In order to obtain a high-resolution
analysis of the P. aeruginosa transcriptome, we depleted rRNA
from all subsequent samples and generated ~180 million reads
per sample. Informative non-rRNA transcript numbers increased
three times with ~150 million non-rRNA reads per sample of
which 4% represented non-human reads (Supplementary Fig. 1
and Supplementary Table 2). Although all samples yielded
enough reads assignable to the P. aeruginosa genome sufficient
for a high-resolution transcriptome, we excluded those not
depleted from ribosomal RNA. In this way we avoided additional
bias deriving from a different processing procedure.

Analysis of the relative representation of the major transcrip-
tionally active microbial genera in each sputum sample
(Supplementary Note 1 and Supplementary Figs. 2 and 9) reveled
a low complexity microbiome, typical of a late stage of the
infection. As expected, Pseudomonas represented the dominant
genus in all patients (Supplementary Fig. 2), while the additional
identified genera have previously been associated with old
chronically infected patients14–17, and included both Gram-
positive (Streptococcus, Rothia, Staphylococcus, and Granulica-
tella) and Gram-negative bacteria (Riemerella, Stenotrophomonas,
Porphyromonas, and Veillonella) (Supplementary Fig. 2); no
obvious bias towards one of the two bacterial classes was
observed.

The presence of other bacterial species did not interfere with
correct assignment of reads to P. aeruginosa (Supplementary
Note 2 and Supplementary Fig. 10). For all samples, we were able
to uniquely map between 1 and 10 millions reads to the P.
aeruginosa genome (Supplementary Table 3), providing sufficient
coverage to reliably quantify and compare transcripts abundance
across samples18. On average, we detected 87% (range 72–95%,
median 90%) of the annotated coding sequences (CDS), with a
positive correlation between the number of detectable transcripts
and the number of generated reads (Supplementary Fig. 3).

The established workflow was found to be reproducible
(Supplementary Note 3), introducing only negligible variations
in technical replicates of P. aeruginosa transcriptomes. Indeed,
normalized read counts showed a strong correlation (Pearson’s
correlation coefficient >0.99; Supplementary Fig. 4) between
replicates deriving from a single sputum sample that was split in
two, each part being processed independently. Similarly, we
observed a high correlation (r= 0.99) when we compared the
transcriptional profiles of P. aeruginosa obtained from two
independent expectorates collected and analyzed on the same day
from a single patient (P30M0_S3 and P30M0_S4) (Supplemen-
tary Fig. 4). The correlation was high between the two
expectorates despite a great difference in the biological diversity
(Supplementary Fig. 2), which might derive from the uneven
distribution of bacteria in the sputum or by the formation of
heterogeneous aggregates19,20. Thus, independent of population
size and structural distribution of the bacteria in separate sputum
samples, the transcriptomic variation within the dominant P.
aeruginosa population can be considered extremely low within
the same patient, and each sputum sample being a good predictor
of the transcriptional activity in the lungs at a given time point
consistent with reports in other lung pathogens21.

Soft-core genome as basis for inter-clonal comparisons. Two
patients of this investigation were infected by single P. aeruginosa
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clone types belonging to the DK01 (P30M0) and the DK02 clone
type (P73F1), respectively, and one patient (P77F1) by a mixture
of these two clones, as suggested from the analysis of whole
genome sequencing (WGS) data on clones isolated from the
collected expectorates and from previously published data22.
Patient P24M1 was infected with DK01 in addition to a second
previously unidentified lineage (UNK) (Supplementary Table 1).
Overall, representative clones obtained from different patients,
but belonging to the same clone type, were separated on average
by >5000 genetic variations (Supplementary Table 4), suggesting
that the analyzed transcriptional profiles always originated from
clones with a long independent evolutionary history and with a
strong distinct genetic background.

At first, to determine similarities between gene expression
profiles of populations growing in the lung environment, we used

an unsupervised approach on gene expression deriving from the
whole genome (n= 5976 CDS). We compared the in vivo
transcriptomes with those originating from in vitro cultures of the
reference strain PA14 and of five clinical strains isolated from the
expectorates used for in vivo RNA-seq (Supplementary Table 1
and Supplementary Fig. 5). We used Pearson correlation
combined with hierarchical clustering (HCA) computing the
uncertainty in clustering via multiscale bootstrap resampling.
Independent of the origin and the growth conditions, two
significant clusters corresponding to transcriptomes expressed
from the reference strain PA14 and clinical isolates were
identified (Fig. 2a and Supplementary Fig. 6), revealing a strong
effect of genetic diversity on the analysis; indeed, genes expressed
in one strain, might not be expressed in other samples due to
genetic variation affecting the correlation measurement23.
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Illumina Illumina

In vivo transcriptome In vitro transcriptome

In vivo

a

c

b

S1 S2 S3T1
S3T2
S4T1
S4T2S1 S2 S3

S3S2S1

S1

S1T2
S1T1

P11F2

P24M1

P30M0

P73F1

P77F1

Jul 16 Oct 16 Jan 17

Date

Hospitalized

Oral, inhalation

Oral, inhalation,
intravenous

Antibiotic administration

Clone type

DK01/DK02

DK02

DK01

DK02/UNK

DK02

In vivo gene
expression
signature

Differential
expression

analysis

SLP buffer (< 1 min)
Total RNA isolation
RNA-seq library preparation

RNA stabilization
Total RNA isolation

RNA-seq library preparation

Total sputum transcripts

In vitro expression

Gene expression
quantification

In vitro transcripts

Quality filtering

rRNA-removal

In silico separation

Non-human reads

Community composition

Gene expression
quantification

In vivo expression

Fig. 1 Experimental design and patients included in the study. a Schematic representation of the experimental design. In the thick mucus layer, bacterial
communities thrive in a harsh environment. To capture the best representation of in vivo transcription, sputum samples were collected directly from adult
CF patients followed at the Copenhagen Cystic Fibrosis Clinic at Rigshospitalet and nucleic acid content was stabilized in less than 1 min using sputum pre-
lysis and preservation buffer (SLP buffer), followed by total RNA isolation, RNA-seq library preparation, and sequencing (for a complete description see
Methods). From the same or a second sputum sample, we isolated, for some patients, more than ten single P. aeruginosa clones and studied their gene
expression in laboratory condition (in vitro). b Simplified schematic representation of the in silico analysis workflow. Total reads were quality-filtered and
any rRNA contaminant removed. Human reads were separated by mapping high-quality reads directly on human GRCh38 genome. Reads not assignable to
human genome were used to evaluate microbial community composition and to assess in vivo P. aeruginosa gene expression. Transcription deriving from
in vitro cultures of P. aeruginosa were used as a reference for identifying differentially gene expressed in vivo. c Overview of longitudinally collected
samples. Clone types colonizing each patient are reported. Assignment of clone type was obtained by whole genome sequences from isolates obtained
during this study or from previous isolates. A generic indication of antibiotic treatment and intravenous administration is provided (for a complete overview
see Supplementary Table 1)
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Consistently, in samples with the lowest correlation coefficients
we observed the strong presence of outliers represented by non-
conserved genes (accessory genes, Supplementary Fig. 7). Genetic
diversity also dominated group separation when we used
principal component analysis (PCA) and k-means clustering on
normalized counts (Fig. 2b).

The impact of genetic diversity can be reduced by restricting
the analysis to genes conserved in the species core genomes, with
the additional effect of strongly limiting the number of genes
under study. In an attempt to provide the best resolution possible
while coping with genetic differences, we decided to analyze
expression of 5102 (85% of PA14 CDS) genes constituting the
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Fig. 2 Core genome analysis reduces genetic variability uncovering a shared transcriptional program. a Gene expression correlation expressed as Pearson’s
correlation coefficient (r) and visualized as heat map of expression profiles deriving from the transcriptional activity of the whole genome (left panel, n=
5976 CDS) or soft-core genome (right panel, CDS conserved in 95% of the strains considered; n= 5102 CDS). Row and column clustering is based on
results from pvclust analysis. Major significant clusters are highlighted by dashed rectangles, and solid lines in the side dendrograms. Dashed lines in
dendrograms represent branches with AU values <95% and thus not considered significantly supported by data. b Cluster refinement by principal
component analysis (PCA) and group identification based on k-means clustering on PCA data considering gene expression from the whole genome (left
panel) or only coding sequences conserved in the soft-core genome of P. aeruginosa (right panel). Clusters identified by k-means analysis are labeled
depending on major features of samples included in the group. For both analysis, rLog-normalized counts were used as representation of gene expression
(see Methods)
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soft-core genome (genes conserved in 95% of P. aeruginosa
genomes, Supplementary Data 1 and Methods). Restriction of the
analysis to the soft-core genome strongly reduced the presence of
outliers in comparisons between genetically distant populations,
improving the reliability of the correlation measurement
(Supplementary Fig. 7). Thus, HCA showed that separation
based on the genetic background was less distinct, while other
features, such as growth phases for in vitro samples, and intra-
venous antibiotic administration for sputum samples, markedly
contributed to the formation of the clusters (Fig. 2a). Similarly,
PCA analysis reflected these changes separating the transcrip-
tional profiles based on their respective environments and growth
state rather than their genetic background (Fig. 2b). We obtained
the same results when we considered expression of genes from the
far more restrictive core genome of the species (n= 2319 CDS)
(Supplementary Fig. 7 and Supplementary Fig. 8), indicating that
further reducing the number of genes analyzed would not provide
any significant benefits to the analysis. Therefore, we focused our
analysis on expression of genes belonging to the soft-core
genome.

Based on hierarchical clustering and PCA, the data show the
formation of three distinct groups of expression: profiles
representing in vivo communities (Cluster I, lungs), others
representing in vitro cultures in exponential phase (Cluster II, lab.
exp.) and stationary phase (Cluster III, lab. stat.) (Fig. 2b).
Interestingly, the clusters grouped irrespective of their genetic
background and evolutionary history. For example, the reference
strain PA14 does not represent a separate group (Fig. 2b), but
instead shows transcriptional patterns closely related to clinical
isolates growing in vitro, suggesting that expression originating
from soft-core genes is driven by conserved signals reflecting
growth in a given environment. Moreover, clinical isolates grown
in vitro clustered separately from the related in vivo transcrip-
tional profiles, suggesting that clinical strains that evolved in CF
lungs maintain a certain degree of gene expression plasticity,
through which they achieve similar transcriptional patterns as the
genetically distinct PA14 strain. Similarly, in vivo samples
grouped together despite differences in genetic background,
evolutionary history, patient, co-infecting microbes, and anti-
biotic treatment (Fig. 2, Supplementary Fig. 2 and Supplementary
Table 1). This suggest, as seen in laboratory evolutionary
experiments, that genotypes descending from independent
evolutionary trajectories can disclose related phenotypic traits
reflecting the growth conditions10.

Conserved transcriptional program in multiple clone types.
Clustering analysis suggested that despite genetic differences, P.
aeruginosa in CF airways had similar transcriptional phenotypes
distinct from gene expression of the same bacteria grown in
laboratory condition, either in exponential or in stationary phase.
To characterize the transcriptional changes defining the P. aer-
uginosa physiology when growing in the mucus layer, we com-
pared in vivo (Cluster I, lungs in Fig. 2b) and in vitro
transcriptomes, in particular Cluster I vs. Cluster II (lab. exp.) and
Cluster III (lab. stat.). We identified 554 and 874 differentially
expressed genes when comparing Cluster I vs. Cluster II and
Cluster I vs. III, respectively, while 664 genes were expressed
similarly in the two comparisons (Fig. 3a and Supplementary
Data 2). Gene enrichment analysis based on COGs and KEGG
pathway classification systems (Fig. 3c) suggests that expression
of genes involved in metabolic pathways (such as carbon and
purine metabolism), translation (in particular ribosome biogen-
esis), amino acid transport and metabolism (with the exception of
tyrosine metabolism), and biosynthesis of secondary metabolites
are significantly reduced in vivo, when compared with cells

growing in exponential phase in laboratory conditions. In con-
trast, genes belonging to the class of carbohydrate transport and
metabolism are significantly stimulated. When compared to cells
in stationary phase, in vivo populations had lower expression of
genes involved in quorum sensing, chemotaxis, propanoate
metabolism, benzoate and geraniol degradation, lipid transport
and metabolism, and secondary metabolites transport and
metabolism. Genes involved in coenzyme transport and meta-
bolism, in particular in porphyrin metabolism, and those con-
nected with fructose and mannose were increased in vivo when
compared to stationary cells in laboratory conditions. Finally,
functional enrichment of genes shared between the two com-
parisons indicated that in in vivo populations transcription of
genes involved in inorganic ion transport and metabolism, in
particular iron and sulfur uptake, and in ABC transporters was
significantly higher. Expression of genes belonging to energy
production and conservation, cell motility and flagellar assembly,
and TCA cycle functional classes was significantly lower in vivo
than in cells growing in vitro in exponential or stationary phases.
Thus, in vivo gene expression profiles constitute a unique phy-
siological state different from what is usually defined as expo-
nential or stationary phase in laboratory conditions. This suggests
transcriptional acclimation in the CF lung promoting a low-
energy, low-growth, non-motile physiological state.

Since the high-level resolution of our approach provided a
possibility to analyze environmentally driven changes in detail,
we further dissected the contribution of each differentially
expressed gene common to all comparisons (Fig. 3a, b) and
analyzed how distinct transcriptional processes involved in
bacterial stress responses and cell metabolism might be correlated
with in vivo conditions.

Transcriptional acclimation to CF airways stresses. In infected
lungs, high levels of reactive (RNS) and oxidative (ROS) agents
are present as a result of the host immune system24. RNS and
ROS cause DNA damage, and consistently we observed upregu-
lation of the DNA-damage-inducible regulator LexA and of
several genes under its control (Supplementary Data 2). In vivo
responses to RNS species are mainly driven by an increased
expression of NO reductase and flavo-hemoglobin protein Fhp
(Supplementary Data 2). Similarly, expression of genes encoding
ROS scavenging enzymes (ahpB, ahpC, ahpF, katA, katB, sodM,
ohr, and glutathione peroxidases), proteins involved in redox
balance maintenance (LsfA, trxB2, PA14_27520, PA14_09950,
PA14_32590, and PA14_32595), ROS-insensitive variants of
metabolic enzymes (fumC1), and homologs to the E. coli MsrQP
system (PA14_62100 and PA14_62110) implicated in repairing
periplasmic-oxidized protein25 were upregulated (Supplementary
Data 2).

An additional source of stress is represented by the continuous
antibiotic treatments. In addition to genetically acquired drug
resistance, environmentally driven expression of specific and
generic mechanisms contributes to establish phenotypically
tolerant physiological states, which are thought to be a main
determinant for treatment failure. Despite different antibiotic
treatments (Supplementary Table 1), we observed a convergent
induction in expression of specific efflux pumps and transporters
(mexE and qacH/emrE) (Supplementary Data 2), involved in
resistance to virtually all antibiotics administered to the patients
(Supplementary Table 1)26–28. Likewise, expression of the ß-
lactamase encoding ampC gene and the ampC-regulator
AmpDh3, and of CzcRS29, were higher in vivo contributing to
ß-lactam resistance (Supplementary Data 2). Reduction of pmrB
and colR genes involved in resistance to the widely used
polymyxin drug class24,30, and induction of the aminoglycoside
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inactivating enzyme, AphA31 (Supplementary Data 2) might, as
well, contribute to fine-tuning the resistance to these two
antibiotic classes.

Finally, the thick dehydrated mucus layer imposes osmotic
stress on P. aeruginosa12. In the lung, accumulation of osmo-

protectants, in particular glycine-betaine (GB)32 obtained from
degradation of phosphatidyl choline and sphingomyelin lipids-
derived choline33 and L-carnitine, seems to represent the major
strategy to respond to the high salt concentration. Indeed, high-
level expression of genes responsible for choline and L-carnitine
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degradation to GB (opuCD, betA, betB, and cdhC) and of the
transcriptional repressor, BetI, was observed in vivo; in contrast,
the gbt gene, required for choline and glycine betaine utilization
as carbon source, was repressed in vivo indicating that GB is
primarily used as osmo-protectant rather than for carbon and
nitrogen acquisition.

Energy production, carbon and micronutrients metabolism.
The transcriptional profile of P. aeruginosa in sputum samples
showed a marked shift towards a mixed anaerobic/micro-aero-
philic respiration suggested by induction of the denitrification
operons nor, nir, nar, nos, and nap. Furthermore, expression of
terminal oxidases with high affinity to oxygen (ccoOQP2, ccoN3/
PA14_40510), induced when oxygen tension is low (2% O2)34,35,
was also increased in the lungs (Supplementary Data 2). A strong
induction of a putative thiosulfate reductase-encoding operon
(PA14_64540 - PA14_64560), indicates that thiosulfate might be
an additional terminal electron acceptor during growth in mucus
(Supplementary Data 2). No genes involved in pyruvate fer-
mentation were affected, with the exception of the adhA gene,
encoding an alcohol dehydrogenase, which was induced in vivo,
whereas the formate dehydrogenase-encoding genes fdnH and
fdhE genes were repressed (Supplementary Data 2).

By and large, we observed a general reduction of expression of
genes involved in central carbon metabolism including those
encoding for the sugar transporter gltBFK-oprB and for enzymes
involved in pyruvate degradation to oxaloacetate (PA14_71740)
and acetyl-CoA production from pyruvate (aceEF) (Fig. 4 and
Supplementary Data 2). Similarly, expression of genes coding for
enzymes of the lower part of the TCA cycle (sucA, sucC, and lpd)
and of the hypothetical malate dehydrogenase PA14_19190 was
reduced, while the transporter for the TCA intermediate α-
ketoglutarate (PA14_72960) was stimulated in vivo. Increases in
aceA expression suggest that isocitrate is preferentially channeled
through the glyoxylate shunt and not funneled through
decarboxylation steps of TCA cycle (Fig. 4 and Supplementary
Data 2). We also observed a general induction in sputum samples
of the lldA gene involved in L-lactate utilization, an abundant
carbon source in CF sputum36.
Access to various restricted micronutrients represents another

challenge for P. aeruginosa populations growing in the mucus
layer. Indeed, more than 30% (n= 154) of the genes differentially
expressed in vivo were related to acquisition of iron (n= 78), zinc
(n= 33), sulfate (n= 36), and phosphate (n= 8) and were
consistently stimulated in the lungs environment (Fig. 3b and
Supplementary Data 2). Different genes involved in iron
acquisition from heme (phu, has operons, and hemO and hxuC
genes), as well as those involved in pyoverdine biosynthesis,
secondary iron-scavanging systems from xeno-siderophores, and
the ferric-citrate uptake regulators FecIR were specifically induced
in the lungs (Supplementary Data 2).

Interestingly, we noted that while significantly induced in the
in vivo populations (Supplementary Data 2), the operons
involved in pyochelin biosynthesis and uptake showed a strong
polarization in expression levels in different in vivo subpopula-
tions: transcript numbers where high in samples from patients
P30M0 (DK01) and P73F1 (DK02), while low in those from
P77F1 (DK01 and DK02) and P24M1 (DK02 and UNK) (Fig. 5).
Expression of the pyochelin biosynthesis operon depends on the
PchR activator in presence of iron together with the Fur regulator
(Fig. 5). Although strains isolated from the respective expecto-
rates (PA-P77F1 and PA-P24M1A/B) harbored non-synonymous
mutations in the fur gene (Supplementary Data 3), Fur-
dependent repression of the pchR, and pvdS genes was not
eliminated. Indeed, expression of the two Fur-controlled genes
was similar in strains with no mutations in the regulator (high
in vivo/iron-limited and low in vitro/not limited) (Fig. 5). We
identified a single non-synonymous mutation in the pchR coding
sequences associated with strain PA-P77F1, but no mutations
explaining the in vivo repression of pch operons were found in
isolates from the patient P24M1. Thus, while genetic adaptation
offers a simple explanation for the divergent in vivo expression
observed for patient P77F1, different and less obvious genetic
modifications, and/or responses to specific environmental condi-
tions, might drive the reduction of pch expression in the
expectorate from patient P24M1.

Similar to the iron acquisition system, we observed a strong
induction of genes controlled by the Zur regulator and required
in zinc-limiting conditions: putative zinc uptake systems, Zn2
+-independent paralogs of metabolic enzymes (pyrC2 and folE2),
ribosomal proteins (rpmE2 and rpmJ), and the stringent response
mediator DskA2 (Supplementary Data 2). Induction of DskA2 in
in vivo samples, was matched by repression of the zinc-dependent
paralog DskA (Supplementary Data 2), indicating that stringent
response is mostly driven by the Zn2+-independent DskA2 in the
lungs.

Genes induced in sulfate-limiting conditions, in particular the
CysAWT-sbp transporter and those involved in the acquisition of
sulfur from organic compounds, including taurine and other
organosulfonates were stimulated by CF airways environment
(Supplementary Data 2). Additionally, a putative transporter
implicated in sulfite/sulfoacetate excretion (PA14_27270) was
induced in bacteria growing in mucus.

Discussion
High-resolution sequencing of the total informative RNA species
contained in expectorates of CF patients, provided an unprece-
dented insight into adaptive gene expression of P. aeruginosa in
actual physio-pathological conditions. Although our observations
are drawn from a limited number of samples, our sample set is
more coherent, structured and larger than any previous
study37,38. In particular, it comprises longitudinal samples from

Fig. 3 Differentially expressed genes regulated by in vivo conditions and their functional classification. a Venn diagram of total differentially regulated genes
in the CF expectorates (Cluster I) compared to strains grown in laboratory conditions in exponential (Cluster I vs. Cluster II) and stationary phase (Cluster I
vs. Cluster III). Shared genes in the center are highlighted by a white outline. b Volcano plot showing the magnitude of the differential gene expression
shared between Cluster I vs. Cluster II and Cluster I vs. Cluster III comparisons. Each dot represents one coding sequence with detectable expression in
both conditions. Thresholds for defining a gene significantly differentially expressed (log2(FoldChange)≥ |1.3|, adj. p value ≤0.05) are shown as dashed and
solid lines, respectively. Red dots: genes consistently induced by in vivo conditions. Blue dots: genes consistently repressed by in vivo conditions. c
Distribution of differentially expressed genes both common and unique to the comparisons Cluster I vs. II and Cluster I vs. III is based on COGs and KEGG
pathway classification systems. Gene association for each category was obtained from Pseudomonas.com database. In each plot, the percentage of genes
significantly upregulated (red bars on the right) or downregulated (blue bars on the left) associated to each functional category is reported. Asterisks
denote functional categories significantly enriched (adjusted p value ≤0.05, hypergeometric test after Bonferroni correction). Open black bars represent
the proportion of the entire genome in the specific category
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four patients with stable bacterial populations, representing gene
expression variability in distinct clone types (inter-clonal diver-
sity) and within the same clone type undergoing a within-patient
independent evolution (intra-clonal diversity). It should be noted
that, although gene expression from expectorates is a good pre-
dictor of the average physiology in different lung compart-
ments21, our approach can only capture gene expression trends in
the whole P. aeruginosa population and do not discriminate
between phenotypically different sub-populations, including
planktonic or aggregate cells, and other phenotypes such as small
colony variants39. However, although providing limited dis-
closure of phenotypic and genetic heterogeneity, our approach
has the effect of favoring a robust identification of strong global
transcriptional patterns, which are shared across multiple clone
types, and which represent the most relevant phenotypes of
in vivo infections.

In our study we observe that the growth environment strongly
impacts the transcriptional profiles of clinical isolates. In this
sense, despite genetic differences deriving from independent
accumulation of mutations in response to selective pressures
operated in the lung environment for more than 30 years (Sup-
plementary Table 4 and Supplementary Data 3), all lineages share
similar transcriptional patterns in a specific environment (Fig. 2,
lungs and laboratory conditions). Moreover, in laboratory con-
ditions the transcriptional responses of clinical isolates deriving
from the genes comprising the species soft-core genome (i.e.,
5102 CDS) are similar to the one deriving from the reference
strain PA14, which has not undergone to the same selective
pressure of the lungs environment. This suggests that regulatory
networks in clinical isolates are not strictly constrained by the
mutations accumulated during the long-term adaptive process in
the CF lungs environment. There are two interesting implications
from these observations: (i) transcriptional plasticity, and thus
ecological flexibility, is maintained regardless of a long adaptive

specialization in the CF environment (although fitness in alter-
native environments most likely is reduced), and thus a broad
spectrum of transcriptional responses may help preserving a high
degree of genetic diversity despite strong selection pressures,
favoring P. aeruginosa evolvability over strong specialization; (ii)
assessments of phenotypic properties based on analysis of clinical
isolates in laboratory conditions may strongly bias conclusions
about in vivo bacterial physiology. This is particular relevant in
clinical settings where a low correlation between antibiotic sus-
ceptibility testing and treatment outcome is often observed40,41.
For example, we observe that in vivo expression of genes con-
tributing to antibiotic tolerance is higher than in laboratory
conditions, providing a simple explanation why antibiotic toler-
ance is often overlooked in the clinic.

Our analysis of bacterial in vivo gene expression in lungs of CF
patients shows that common physiological functions can be
recognized in heterogeneous populations. Indeed, based on the
existence of a shared transcriptional program, we identified a core
set of in vivo transcriptional phenotypes, which independent of
the genetic background (Supplementary Table 1) represent
acclimation to strong environmental factors in the lungs. We
observed responses to oxidative and osmotic stress, antibiotic
exposure, restricted access to metal ions, and DNA damage. The
congruence between the observed phenotypes and the known
conditions found in lungs12,13 underline the authenticity of the
collected data.

Interestingly, we did not identify any preferred strategy to
counteract stress or nutrient limitation. In fact, our data suggest
that the infection success of P. aeruginosa reflects its ecological
flexibility and the ability to differentially express multiple
redundant pathways that exert similar biological functions8. For
example, although we did observe a preference in iron acquisition
from heme, as previously deduced from genetic data42, additional
induction of the entire Fur regulon, and of other scavenging
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mechanism (Supplementary Data 2) may represent more optimal
solutions for exploiting all the available iron sources. Interest-
ingly, in vivo populations can show polarized expression of the
pyochelin biosynthesis operon that seems to be relevant in the
lungs but not for all populations (Fig. 5). Pyochelin has a lower
affinity for iron than other siderophores, but it is more energy
efficient, and is preferentially used when the concentration of iron
is less limited43. We observed that differences in expression might
be the result of single genetic mutations (patient P77F1) in the
pchR gene, i.e., the most direct regulator of pyochelin biosynth-
esis, or either (1) be the result of more complex and less
restrictive regulatory modifications or (2) potentially be depen-
dent on specific environmental conditions (patient P24M1). This
once more strengthens the idea that similar expression profiles
could arise from genetically distinct populations, and that genetic
heterogeneity is important for transcriptional plasticity allowing
different populations to express the fittest phenotype in the
appropriate condition.

We found the same physiological flexibility in the simultaneous
stimulation of molecular pathways strictly required in anaerobic
conditions and pathways expressed at low oxygen levels. This
might reflect (i) the presence of defined transcriptionally active
subpopulations inhabiting different niches (aerobic / anaerobic),
or (ii) the concurrent expression of complementary systems that
maximize the utilization of all the available electron acceptors,
including oxygen, nitrogen and thiosulfate. Although our data
cannot be used to distinguish between subpopulations, the lack of
a strong stimulation of fermentative genes (Fig. 4 and Supple-
mentary Data 2) might indicate that energy production require-
ment is fulfilled by the utilization of multiple respiratory
acceptors in the large part of the population.

Reduced expression of genes involved in active growth (Fig. 3c
and Supplementary Data 2) was accompanied by reduced
expression of genes involved in central carbon metabolism and a
redirection of carboxylic acids through the glyoxylate shunt with
a net reduction of reducing potential. Rewiring of central carbon
metabolism may reflect the availability of carbon sources.
Although P. aeruginosa carbon preference is poorly understood in
CF lungs, it is speculated that six carbon sources are primarily
utilized in the mucus (proline, alanine, arginine, glutamate,
aspartate, and lactate)36; with the exception of lactate dehy-
drogenase lldA gene, no other gene involved in degradation of
these molecules was significantly increased in vivo. However, we
did observe a strong repression of glucose transporter genes as
well as genes involved in glycolysis and gluconeogenesis (Fig. 4
and Supplementary Data 2). Glucose is suggested to be present at
milli-molar concentrations in CF secretions, but it is considered a
secondary carbon source for P. aeruginosa36. We cannot exclude
that the reduction of expression of genes in the central carbon
metabolism is part of more complex adaptive phenotypes that
cope with environmental stresses rather than reflecting any car-
bon source preference. Indeed, in vivo conditions promote
expression of the aceA gene and a reduction of genes constituting
the lower, NADH-producing, part of TCA cycle possibly resulting
in an increased funneling of carbon atoms through the glyoxylate
shunt. These metabolic modifications have been found to be
important for protecting bacteria from antibiotics, and in general
from ROS species44–46, and thus might play a central role for
persistence in CF airways.

Additional carbon sources are available in CF lungs36. Sur-
prisingly, we observed strong induction of genes involved in
sulfate starvation response (Supplementary Data 2), although
sulfate is not limited in the lungs47, and in fact is found at slightly
higher concentration in CF sputum (~270 µM)36 than in LB
medium (100–150 µM)48. In particular, growth in mucus stimu-
lates expression of genes involved in uptake and degradation of

organo-sulfonates. Induction of sulfate starvation related gene
expression, despite non-limiting conditions, has been observed
during P. aeruginosa infections in a plant model49, and was
ascribed to host-dependent modulation of anion availability in
the micro-environment surrounding the bacteria49. Importantly,
the most abundant free organo-sulfonate, taurine, found in many
tissues and in particular those under elevated levels of oxidative
stress50 such as CF lungs, can be fermented51 or directly used as
carbon and nitrogen source52. Accordingly, we observed that a
gene encoding a hypothetical exporter involved in excretion of
sulfite/sulfoacetate, a by-product of reactions involved in taurine
utilization as nitrogen and carbon source, was induced in vivo. It
is therefore tempting to speculate that induction of organo-
sulfonate uptake and expression of sulfate-inducible genes in vivo
is connected to C and N metabolism rather than being exclusively
directed to sulfate acquisition. Similarly, P. aeruginosa clinical
isolates can exploit mucins as sulfur source47, but additionally as
carbon source after desulfurization, a mechanism that requires
the activity of the glyoxylate shunt53. Further investigations are
needed to validate additional contributions of potential carbon
sources to P. aeruginosa survival in the lungs.

In summary, we provide a first detailed and organic gene-level
representation of P. aeruginosa transcriptional phenotypes in CF
lungs at a late stage of the infection. Our findings are not strongly
restricted by genetic constraints and can therefore be considered
as wide-spread strategies. This type of data may be considered
potential platforms for identifying new therapeutic relevant tar-
gets in actual host environment, in particular for combined
therapies, which could involve non-antibiotic molecules inter-
fering with the in vivo physiology of the cell by modifying central
carbon metabolism as recently suggested46. Nevertheless, further
studies including a wider patient cohort and additional clone
types are required to determine to what extent these patho-
phenotypes are important for other clone types and in earlier
stages of infection, when patho-adaptive mutations are limited,
and transcriptional acclimation plays a predominant role.

Methods
Study cohort, samples collection, and processing. All sputum samples were
collected at the Copenhagen Cystic Fibrosis Center at the University Hospital,
Rigshospitalet, Denmark, from five chronically infected CF patients (median age
47.5 years, range 39.0–54.0 years) in stable condition visiting the outpatient clinic
or hospitalized for routine intravenous antibiotic therapy (IV) (Fig. 1c and Sup-
plementary Table 1). Each patient was characterized by different CFTR mutations,
although all variations resulted in a severe phenotype (Supplementary Table 1). All
patients were chronically infected with P. aeruginosa for more than 30 years
(median years chronically infected 40.5, range 33.0–43.0 years), equivalent to
~200,000 generations19.

In order to stabilize RNA, and preserve the original transcriptome of the cellular
communities, expectorates were collected directly from a patient and immediately
added to 4 ml of freshly prepared sputum pre-lysis and preservation buffer (SLP
buffer: 4 ml 1× DNA/RNA shield per 1–2 ml sputum sample, Zymo Research,
USA; 200 mM Tris(2-carboxyethyl)phosphine, TCEP; 100 µg ml−1 Proteinase K)
and vigorously shaken by hand until the samples were homogenous and completely
lysed. Regardless of the volume and viscosity of the sample, the use of SLP buffer
resulted in completion of the collection and pre-lysis step in less than 2 min.
Stabilized samples were stored on ice and further processed on the same day or
stored at −80 °C for no more than 2 days. To isolate P. aeruginosa bacteria for
in vitro analysis, we collected a second sputum sample and isolated 10–100 single
colonies of P. aeruginosa per sample by plating or streaking serial dilutions on
selective media.

Nucleic acid isolation from sputum samples. To extract total RNA we adapted
the protocol by Lim and colleagues37 to our collection procedure. Briefly, pre-lysed
samples stored in SLP buffer were transferred to a 15-ml centrifuge tube prefilled
with 1 volume of Trizol® LS Reagent (Invitrogen) and 1 ml of Zirconium/glass
beads (0.1 mm diameter, Carl Roth GmbH), and were bead-beaten on a horizontal
shaker four times for one minute, in order to assure complete lysis of human and
bacterial cells. After each iteration, the sample temperature was lowered by incu-
bation of the tube on ice for 1 min. Samples in Trizol LS were briefly centrifuged to
pellet beads, and the supernatant was split in multiple 1-ml aliquots to which 270 µl
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of chloroform was added. After shaking vigorously by hand for 15 s, samples were
incubated for 2 min at room temperature and then centrifuged at 13,000 × g at 4 °C
for 30 min to separate the aqueous phase from the phenol phase. All the RNA
species longer then 17 nt were purified from the recovered aqueous phase using the
RNA Clean & Concentrator™-25 (RCC) kit (Zymo Research), accordingly to the
supplier’s protocol. After an initial quality control and quantification on Nanodrop
(280/260 and 280/230 ratios were always higher than 1.9 and 2.2, respectively),
50–100 µg of total RNA were treated with 6–10 U of TURBO™ DNase (Invitrogen),
and reactions were purified on-column using the RCC kit. As RNA extracted from
sputum samples resulted always in partially degraded samples, to increase RNA
quality and remove intrinsic background noise we size-selected the RNA reco-
vering RNA species longer than 200 nt following the protocol supplied with the on-
column purification kit. Recovered RNA was precisely quantified using fluorimetric
quantitation with Qubit® RNA BR Assay kit (Invitrogen), and fragmentation state
and RNA quality were assayed using RNA Nano kit on an Agilent Bioanalyzer 2100
machine (Agilent Technologies). All samples had an RNA integrity number (RIN)
between 5 and 6, typical for partially fragmented samples. As RIN values from
fragmented samples are not considered a sensitive measurement of RNA quality,
we followed Illumina guidelines developed for formalin-fixed, paraffin-embedded
(FFPE) samples measuring the percentage of RNA fragments >200 nucleotides
(DV200). All samples included in this study had a DV200 ranging between 60 and
75% and were classified as medium high-quality samples according to Illumina
prescriptions. When required, DNAase-treated samples were concentrated through
ethanol precipitation.

Strains, growth, and RNA extraction from laboratory cultures. The laboratory
strain PA14 and the clinical strains PA-P30M0, PA-P24M1A, PA-P24M1B, PA-
73F1, and PA-PA77F isolated from either the same expectorate used for in vivo
RNA-seq analysis or from a second sputum sample collected concurrently (Sup-
plementary Table 1), were grown in flasks in order to obtain reference tran-
scriptomes representative of naïve and completely adapted strains. All strains were
grown in LB medium at 37 °C in full aeration, achieved by shaking at 150 rpm per
minute. Growth conditions were selected to barely resemble those typically found
in the lungs36,54. Cells were harvested during mid-exponential and late stationary
phases. Transcription was blocked adding 1 volume of cold stop solution (5% H2O-
saturated phenol in ethanol) to 1 volume of bacterial culture in a pre-chilled
collection tube. Supernatant was removed after centrifugation at 8000 × g at 4 °C
for 10 min. Pellets were snap-frozen in an ethanol-dry-ice bath and stored at −80 °
C for at least one night before proceeding to RNA extraction. Frozen samples were
re-suspended in 200 µl 1× TE buffer containing 50 µg ml−1 Proteinase K and 100
µg ml−1 lysozyme. After 5-min incubation on ice, RNA was extracted from re-
suspended pellets using Trizol LS reagent (750 µl) and purified from recovered
aqueous phases using RCC columns (Zymo Research). Between 10 and 15 µg of
total RNA were treated with 2 U of Turbo™ DNAse and the reactions were purified
using RCC columns. RNA quality and integrity were assayed using RNA Nano kit
on an Agilent Bioanalyzer 2100 machine. Samples with a RIN higher than 9 were
used for preparing sequencing libraries.

Library preparation and RNA sequencing. To evaluate the feasibility and sen-
sitivity of the technique a pilot experiment was set up as follows: ~ 1 µg of total
RNA of samples P30M0_S1, P24M1_S1, and P11F2_S1 were used as input to
prepare strand-specific sequencing libraries using Illumina TruSeq mRNA kit. No
rRNA-depletion was performed, and total RNA was directly added to fragment,
prime, finish (FPF) mix solution. Sequencing libraries were prepared following the
manufacturer’s instructions adjusting the fragmentation time to 6 min in order to
cope with the partially fragmented nature of the samples. For all other samples
used in this study, 300–500 ng of total RNA were depleted of ribosomal RNAs
using RiboZero Epidemiology Gold kit (Epicentre). Samples enriched in mRNA
species were used as input for preparing strand-specific libraries using ScriptSeq V2
kit (Epicentre) following the manufacturer’s instructions. To overcome the partially
fragmented nature of the samples, the fragmentation step time was reduced after
optimization to 3 min.

For transcriptional analysis of laboratory cultures ~500 ng of total RNA were
used as input for the rRNA removal procedure and cDNA libraries were prepared
from rRNA-depleted samples using ScriptSeq V2 kit following the standard
protocol without additional modifications. After quality and size distribution check
on DNA HS chips on an Agilent Bioanalyzer 2100 machine, libraries were pooled
in equimolar amounts and sequenced on an Illumina NextSeq 500 machine. An
average of 200 million 75-bp-long reads per sample, either single-end or paired-
ends, were generated for cDNA libraries deriving from sputum samples, while
sequencing libraries from laboratory cultures were sequenced to a depth of 15–20
million reads per sample (75 bp, paired-ends).

Reads processing and mapping. For all RNA-seq experiments, low-quality bases
and contaminant adapters were trimmed using Trimmomatic (v 0.35)55, discarding
reads shorter than 35 nt (minimum length to avoid excessive human reads con-
tamination in meta-transcriptomes). Reads were further processed using Sort-
MeRNA tool (v 2.1)56 to remove reads generated from residual rRNA transcripts.
For RNA-seq experiments deriving from pure cultures grown in laboratory

conditions, processed reads were mapped against P. aeruginosa UCBPP-PA14
genome (NCBI: NC_008463.1) using BWA (0.7.15-r1140) aligner and MEM
algorithm with defaults parameters. For meta-transcriptomes deriving from spu-
tum sample, high-quality human and bacterial reads were separated in silico by
mapping reads using BWA aligner and MEM algorithm against the human genome
assembly GRCh38.p9 retrieved from NCBI database. All sequences aligning to
human genome were discarded. Reads not mapping on the human genome were
used as input for analyzing the transcriptionally active community, to evaluate
interference of other bacteria to species-specific reads assignment and to asses P.
aeruginosa gene expression in vivo.

Pang-enome analysis and determination of core genome. Gene constituting P.
aeruginosa pan-genome (Supplementary Data 1) were identified through pan-
genome analysis using Roary tool with default parameters57.

Seventy-nine P. aeruginosa genomes marked as complete, including 63 deriving
from human-associated pathogens and 11 from CF patients, were downloaded
from NCBI assembly database and used as input for the tool. The complete list of
RefSeq accession numbers is available in Supplementary Data 1. Genes conserved
in 95% of the analyzed genomes (n= 75) were defined as species soft-core gene set
(n= 5102), while genes conserved in 100% of the analyzed genomes (n= 2319)
were defined as belonging to core gene set as previously suggested58.

Gene expression analysis. For gene expression analysis, mapped reads deriving
either from sputum samples or batch cultures were analyzed following the same
procedure. Briefly, reads mapping on each annotated coding sequence of P. aer-
uginosa PA14 genome (NCBI, assembly GCF_000014625.1) were counted using
htseq-count version 0.7.259 and counts normalized using regularized log trans-
formation performed using the rlog Transformation function contained in the R
package DESeq260 with option blind set as “True”. Normalized counts were used to
evaluate whole transcriptome similarities using hierarchical clustering analysis
(HCA), principal component analysis (PCA) and k-mean clustering on PCA-
reduced data. HCA was performed using the function “pvclust” in the R package
pvclust using Pearson’s correlation coefficient (1 – cor(), “cor” option) as a distance
method and “ward.D2” as hclust method. Statistical support for clusters was
obtained using multi-scale bootstrapping implemented in the same function, with
the number of bootstraps set as 10,000 considering significant clusters with an
Approximated Uncertainty (AU) p value ≤0.05. Sample correlation and clustering
were visualized as dendrograms and heat maps using the R packages Dendextend
and ComplexHeatmap. Principal component analysis on normalized reads counts
was performed using prcomp() function with scale option set as “FALSE”. PCA-
reduced data was clustered using k-means algorithm identifying the optimal
number of clusters using the NBClust function contained in the NBClust package
using all available indexes.

Differential gene expression (DEG) analysis between transcriptomes deriving
from sputum samples and batch cultures was performed using the R package
DESeq2, considering statistically significant genes with a Log2(FoldChange) ≥ |1.3|
and an adjusted p value ≤0.05. DEGs were inspected and functional class
enrichment was performed using the provided “term_erich.py” python script using
gene-term associations present in COGs and KEGG classification databases
obtained from Pseudomonas.com. Classes with a p value (Hyper-geometric test)
and adjusted p-value (Bonferroni correction for multiple tests) ≤0.05 were
considered statistically significant.

Whole genome sequencing and genetics analysis. Genomic DNA was extracted
using DNA Blood and tissue Kit (Qiagen) from P. aeruginosa isolated clones from
sputum samples. Libraries were prepared using the NexteraXT kit (Illumina) and
sequenced using a MiSeq machine with an approximate coverage of >50-fold.
Reads were trimmed, and low quality reads and potential contamination from
adapters were removed using Trimmomatic (v 0.35) tool55. Reads were mapped
against the P. aeruginosa PA14 genome (NC_008463.1) using BWA MEM algo-
rithm, and duplicated reads marked using Picard tools. GATK was used to re-align
around microindels and to call variants using HaplotypeCaller algorithm (setting
-ploidy 1)61. SNPs were extracted if they met the following criteria: a quality score
of at least 50, a root-mean-square (RMS) mapping quality of at least 25 and a
minimum of three reads covering the position. Microindels were filtered based on a
quality score of at least 500, an RMS mapping quality of at least 25 and support
from at least one-fifth of the covering reads. Variations unique to each clone
belonging to the same lineage were used to determine potential transmissions and
to estimate an average evolutionary distance expressed in years based on previously
calculated within-patient mutation rate of 2.6 SNPs per year2 for normo-mutable
strains and 100 SNPs per year for hypermutators62.

Determination of P. aeruginosa clone type from whole genome sequences was
performed by comparing each clinical isolate genome sequence with those of P.
aeruginosa clones isolated from other CF patients2,6,7,22. Clones that differed for
less than 10,000 genetic variations were considered to belong to the same clone
type. Assignation of clone types infecting each patient was either derived from
whole genome sequencing obtained from representative isolates collected from
patients’ sputum samples used in this study or previously published data22.
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Ethical approval and consent to participate. Use of the samples was approved by
the local ethics committee at the Capital Region of Denmark Region Hovedstaden
(registration number H-4-2015-FSP), and all patients gave informed consent.
Transcriptional profiles deriving from human cells were discarded.

Code availability. A thoroughly commented analysis of in vivo and in vitro gene
expression, and code to generate the main figures and results of this work is
available in the Zenodo repository (https://doi.org/10.5281/zenodo.1162703).
Access to the developed analysis pipeline deployed at Danish National Super-
computer is possible previous agreement with corresponding authors.

Data availability. Raw sequence read data supporting the results of this work are
available in the EMBL-EBI European Nucleotide Archive (ENA) under the
Accession No. PRJEB24688. RNA-seq data deriving from sputum samples have
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