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Abstract. Given a real number τ , we study the approximation of τ by signed harmonic
sums σN (τ) :=

∑
n≤N sn(τ)/n, where the sequence of signs (sN (τ))N∈N is defined “greedily”

by setting sN+1(τ) := +1 if σN (τ) ≤ τ , and sN+1(τ) := −1 otherwise. More precisely, we
compute the limit points and the decay rate of the sequence (σN (τ) − τ)N∈N. Moreover, we
give an accurate description of the behavior of the sequence of signs (sN (τ))N∈N, highlighting
a surprising connection with the Thue–Morse sequence.
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1. Introduction

Riemann’s rearrangement theorem [23, §1.1] asserts that any conditionally convergent series
can be rearranged to converge to any given τ ∈ R∪{±∞}. The classical proof of this result is
constructive: assuming τ ∈ R, one first sums the positive values until they exceed τ , then one
sums the first few negatives values until going below τ , and so forth. Much in the same way,
one can show that for all τ ∈ R there exist sequences (sn)n∈N with sn ∈ {±1} such that

∞∑
n=1

sn
n

= τ.

A natural question is then to determine whether one can find sequences (sn)n∈N such that the
partial sums σn :=

∑n
m=1

sm
m converge to τ particularly quickly. The rate of convergence of σn

to τ , however, has a clear limitation, since |σn−σn−1| = 1
n for all n ∈ N, and so |σn−1−τ | ≥ 1

2n
for infinitely many integers n. One can then modify the problem along two different routes.
The first approach is to allow the sequence to change and study the asymptotic behavior of

mN (τ) := min{|σN − τ | : s1, . . . , sN ∈ {±1}} .

This approach was considered by the authors [11], where it is shown that

(1.1) mN (τ) < Kτ,ε exp

(
− 1

log 4− ε
(logN)2

)
for every ε > 0 and some constant Kτ,ε > 0. This inequality was obtained by interpreting
the problem probabilistically, studying the rate of convergence in distribution of the random
variable

∑∞
n=1

Zn
n , where the Zn are independent uniformly distributed random variables in

{−1,+1}.
The sequence of signs realizing the minimums mN (τ) and mN+1(τ) are not related, in general.

In particular, the first one is not a subsequence of the second one, and a universal sequence
(sn)n∈N giving the best approximation does not exist. Rather than taking the minimum over
all possible choices for the (sn)n∈N, the second approach is then to fix a specific sequence
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(sn)n∈N and to determine whether |σn − τ | can go to zero extremely quickly with n running
along a subsequence (nk)k∈N. A natural choice for a sequence

(
sn(τ)

)
n∈N with

σn(τ) :=
n∑

m=1

sm(τ)

m

(and σ0(τ) := 0) converging to τ is the following:

(1.2) sn(τ) :=

{
1, if τ ≥ σn−1(τ);

−1, if τ < σn−1(τ).

In other words, analogously to the proof of Riemann’s rearrangement theorem, one chooses
sn(τ) = −1 if the partial sum σn−1(τ) exceeds τ , and sn(τ) = 1 otherwise (see Section 2 below
for other possible choices when σn−1(τ) = τ). We call this a greedy approximation to τ by
signed harmonic sums since at every step, given σn−1(τ), the value of sn(τ) is chosen so that
the distance of σn(τ) from τ is minimized.

In this paper we consider the second approach, analyzing the decay of σn(τ) − τ . Thus,
we stress that from now on, with sn(τ) we mean the deterministic sequence defined by (1.2).
Surprisingly, the behavior of the sequence sn(τ) is not chaotic, but is extremely structured and
allows one to prove precise results on the asymptotic behavior of σn(τ)− τ .

Our first result determines the set S′k(τ) of limit points of the sequence

Sk(τ) :=
(
(σn(τ)− τ) · nk

)
n∈N

for all integers k ∈ N (the case k = 0 being trivial, since the sequence tends to 0). Surprisingly,
only a few limit points can arise.

Theorem 1.1. There exist sets X1, X2, . . . which are non-empty, pairwise disjoint, countable
and with Xh ∩Q = ∅ for all h, such that for all integers k ∈ Z≥0 and all τ ∈ R one has

(1.3) S′k+1(τ) =



{0,±c0}, if k = 0 and τ /∈ X1;

{±c0/2}, if k = 0 and τ ∈ X1;

{0,±ck,±∞}, if k ≥ 1 and τ /∈ Yk+1;

{±ck/2,±∞}, if k ≥ 1 and τ ∈ Xk+1 = Yk+1 \ Yk;
{±∞}, if k ≥ 1 and τ ∈ Yk;

where Yk := ∪h≤kXh and ck := 2(k2)k!.

Let Y∞ := ∪∞h=1Xh. Notice that Y∞ is countable, and thus in particular has Lebesgue
measure zero. From Theorem 1.1 one immediately deduces the following corollary.

Corollary 1.2. For all integers k ≥ 0 and all τ ∈ R one has S′k+1(τ) ⊆ {0,±ck,±ck/2,±∞}.
Moreover, if τ /∈ Y∞ one has S′k+1(τ) = {0,±ck,±∞} for all k ≥ 1.

One can also obtain sharp explicit bounds for σn(τ)− τ .

Corollary 1.3. Let k ≥ 0 and let τ /∈ Yk. Then there are infinitely many n such that

(1.4) 0 < (σn(τ)− τ)nk+1 < ck,

and infinitely many n such that

(1.5) 0 < (τ − σn(τ))nk+1 < ck.

In particular, if τ /∈ Y∞, then there is a subsequence of
(
σn(τ)− τ

)
n∈N that decays faster than

any power of n.

Remark 1.4. Corollary 1.3 is slightly sharper than what follows from Theorem 1.1. Its proof
also shows that the n satisfying one of (1.4) and (1.5) form an arithmetic progression modulo
2k when n is sufficiently large.
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Figure 1. The graphs of − log |σn(τ)−τ |
logn for 2 ≤ n ≤ 104 for τ =

√
2+2

√
5 /∈ Y∞

(left) and τ = U3,2 = 1
8((2
√

2− 1)π + log 4) ∈ X3 (right).

For almost all τ one can even determine exactly how small |τ − σn(τ)| can be. Indeed,
one obtains that, for almost all τ , the distance |τ − σn(τ)| is infinitely often as small as

e−(logn)
2/ log 4(1+o(1)) and that this bound is optimal. It is quite remarkable that the sequence

sn(τ) allows one to recover, albeit for a subsequence and only for almost all τ , exactly the
estimate (1.1) obtainable with probabilistic methods [11].

Theorem 1.5. For almost all τ ∈ R one has

(1.6) lim inf
n→∞

log |τ − σn(τ)|
(log n)2

= − 1

log 4
.

Remark 1.6. Equation (1.6) does not hold for all τ ∈ R. For example, by Theorem 1.1 one
has that (1.6) does not hold for all τ ∈ Y∞. Indeed, if τ ∈ Xk one has that |τ − σn(τ)| is
always larger than a constant times n−k. In the opposite direction, in Proposition 5.9 below
we shall show that for any function f : N → R>0 there exists a real number τ such that
|τ − σn(τ)| < f(n) infinitely often.
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Figure 2. The plot of
log |σmj (τ)−τ |

(logmj)2
for τ = 0 and 1 ≤ j ≤ 265 (i.e., mj < 1010),

where mj is the minimal integer such that |σmj (τ) − τ | < |σm(τ) − τ | for all
m < mj . Note that the sequence is not far from −1/log 4 ≈ −0.721 . . . which
Theorem 1.5 predicts as the liminf for almost every τ .

The proofs of Theorem 1.1 and Theorem 1.5 are based on a surprising connection between
the sequence (sn(τ))n∈N and the Thue–Morse sequence (tn)n≥0. This is a binary sequence
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whose first few values are

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, . . .

and which can be defined in several equivalent ways. For example, it can be defined by setting
tn := 0 (respectively, tn := 1) if the binary expansion of n has an even (respectively, odd)
number of 1s. Alternatively, it can be defined by the recurrence relation

t0 := 0, t2n = tn, t2n+1 = 1− tn,

or by the L-system which starts with 0 and at each step substitutes the digits 0 and 1 with
0, 1 and 1, 0, respectively (see [13, 14, 15, 16] and [25, Section 2.2]). Furthermore, the Thue–
Morse sequence is 2-automatic, meaning that tn is obtained by feeding a deterministic finite
automaton with an output function with the base-2 representation of n [5, Example 5.1.2].
The Thue–Morse sequence has repeatedly appeared in several fields of mathematics, including
dynamic systems, combinatorics, number theory and approximation theory, and has been
studied extensively in its many aspects. We refer for example to [1, 12, 18, 19, 24, 26, 27, 28, 29]
and to the nice survey of Allouche and Shallit [6] for a more extensive discussion of the ubiquity
of the Thue–Morse sequence.

For our purposes, it is more convenient to modify the Thue–Morse sequence so that it takes
its values in {±1}, and thus we set εn := (−1)tn for all n ≥ 0.

The first connection between the Thue–Morse and our greedy sequence is apparent from the
following identity [30, 35] (see [4, 7, 32] for some generalizations)

∞∏
n=0

(
1− 1

2n+ 2

)εn
=

1√
2
.

Shallit observed, and Allouche and Cohen [2] later proved, that for all n one has
∏j−1
n=0(1 −

1
2n+2)εn > 1/

√
2 if and only if εj = 1. In other words, passing to the logarithms,

∑∞
n=0 εnf(n)

is the greedy series for −1
2 log 2 with respect to the weight function f(x) := log(1− 1

2x+2).

It turns out that the connection between the sequence of signs sn(τ) and the Thue–Morse
sequence is much broader than the result of Allouche and Cohen might suggest. Indeed, sn(τ)
can be written in terms of the Thue–Morse sequence for all τ . We describe this connection in
the following result, which is the key ingredient in the proof of Theorem 1.1.
We let Br denote the block (εn)0≤n<2r for all r ∈ Z≥0. Also, given two or more vectors vi =
(vi,j)j , with (v1, v2, . . . ) we mean the vector (or infinite sequence) obtained by concatenating
the vectors v1, v2, . . . Moreover, given a vector v and a scalar κ, with κ · v we mean the vector
v multiplied by the scalar κ; for example, (−1) ·Br = (−εn)0≤n<2r .

Theorem 1.7. Let τ ∈ R. Then there exist a non-decreasing sequence (ki)i∈N, with ki ∈ Z≥0
for all i, and a sequence (κi)i∈N, with κi ∈ {±1}, such that

(1.7) (sn(τ))n∈N = (κ1 ·Bk1 , κ2 ·Bk2 , κ3 ·Bk3 , . . . ).

Moreover, limi→∞ ki = +∞ if τ /∈ Y∞, whereas if τ ∈ Xk for some k, then ki = k and κi = 1
for i large enough.

Since for all r1, r2 ∈ Z≥0 with r1 ≤ r2 the block Br2 contains the block Br1 , we immediately
deduce the following corollary.

Corollary 1.8. If τ /∈ Y∞, then for all r ≥ 0 the sequence (sn(τ))n∈N contains the block Br
infinitely many times.

We remark that Theorem 1.7 characterizes the elements of the exceptional sets Xk as the
real numbers such that the expansion (1.7) is eventually periodic with repeating block Bk (in
fact, this will actually be our definition of Xk). In particular, the elements in Xk can be written
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as a rational number plus Uk,m for some m ∈ [0, 2k), where

(1.8) Uk,m :=
+∞∑
n=1

fk(n+m)

n
,

with fk being the 2k-periodic function such that fk(n) = εn for all n ∈ [0, 2k). (Notice that
Uk,m = −Uk,m+2k−1 for all m ∈ [0, 2k−1).) For small k one can easily write the values Uk,m
explicitly. For example,

(1.9) U1,0 = − log 2, U2,0 = −1
4(π + log 4), U2,1 = −1

4(π − log 4).

and so, in particular,

X1 ⊆ Q± log 2, X2 ⊆ Q± 1
4(±π ± log 4).

In general the constants Uk,m can be written in terms of logarithms of cyclotomic units in

Q(ξ), where ξ is a primitive 2k-root of unity. Baker’s theorem can then be used to show that
Uk,m is transcendental for all choices of k and m. We refer to Section 4 for more details on the
sets Xk and the constants Uk,m.

Since the Thue–Morse sequence plays a special role in our work, we examine the case of the
constant

τ0 :=

+∞∑
n=1

εn−1
n

,

in more detail. This constant appears as the value at s = 1 of the Thue-Morse Dirichlet series∑∞
n=1

εn−1

ns , which was studied in [2, 3]. In Section 6 we prove that this series converges, and
that the sequence (εn)n≥1 indeed coincides with the sequence of signs produced by the greedy
algorithm (much as in the aforementioned work of Allouche and Cohen [2]). In other words,
εn−1 = sn(τ0) for all n ∈ N. We remark that this is not immediate. Since the Thue–Morse
sequence is not eventually periodic, then τ0 /∈ Y∞ and the results in Corollaries 1.2–1.3 apply
to τ0. However, since we know the sequence (sn(τ0))n∈N exactly, we are able to prove these
results in an explicit form.

Theorem 1.9. For all n ≥ 1 we have sn(τ0) = εn−1. Moreover, let k ≥ 1, and let n = 2kn′

with n′ odd. Then |σn − τ0|nk ≤ ck−1, and (τ0 − σn(τ0))n
k+1 ∼k εnck as n′ goes to infinity.

Finally, (1.6) holds for τ = τ0 in the more precise form

(1.10) lim inf
n→∞

log |τ0 − σn(τ0)|+ 1
log 4(log n)2

log n log log n
=

1

log 2
.

The first part of this theorem allows one to compute τ0 very quickly. The decimal represen-
tation of τ0 with 50 correct digits is:

τ0 = 0.39876108810841881240743054440027306033680891546719 . . . .

In this paper we focused on the case of signed harmonic sums, but our work could also
be extended with little effort to signed sums of the form

∑
n s

α
n(τ)n−α for any α ∈ (0, 1]

(and, to some extent, also to more generic weight functions). In particular, Theorems 1.1, 1.5
and 1.7 still hold (removing the statement Xh∩Q = ∅), once one replaces Sk(τ) with Sαk (τ) :=(
(σn(τ)− τ) · nk+α−1

)
n∈N and ck with cαk := 2(k2)α(α+ 1) · · · (α+ k − 1).

One can also generalize the problem to other directions. For example, one can consider
the analogous problems in higher dimensions or can require that sn takes its values in the
k-th roots of unity rather than in {±1}. For k 6= 2 the greedy algorithm again produces a
representation for every complex τ . The rate of convergence has a similar behavior, but some
new phenomena appear, and it is possible that in this case the role of the Thue–Morse sequence
is played by its analogue for the base-k representations of numbers. We still need to study
these generalizations in depth.
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Notation. For ease of notation, in the following we shall usually omit the dependence of τ
in sn(τ) and σn(τ). We stress, however, that the sequences (σn)n and (sn)n are the sequences
obtained from the greedy algorithm (1.2) applied to τ . Finally, given a set I ⊆ R, we indicate
with χI(x) the characteristic function of I.

2. Preliminary considerations and the proof of Theorem 1.1

In the definition (1.2) of the sequence (sn)n we defined sn := +1 whenever σn−1 = τ .
Of course, other choices are also possible, and one could even decide to stop the algorithm
whenever such equality is achieved. Another natural choice would be that of defining (sn)n as
in (1.2) when τ ≥ 0 and putting instead

sn(τ) :=

{
1, if τ > σn−1(τ);

−1, if τ ≤ σn−1(τ);

when τ < 0. Notice that this alternative definition would ensure that (sn(τ))n is odd in τ for
all τ 6= 0. The conclusions of this paper are essentially independent of the choice made in these
special cases, so we chose the definition (1.2) since it slightly simplifies some statements. In
any case, independently of the choice made, the equality σn = τ (which clearly requires τ ∈ Q)
could only be achieved at most one time.

Proposition 2.1. Let h ∈ Z and k ∈ N with (h, k) = 1. Let (rn)n be a sequence taking values

in {±1}. Then there exists at most one N ∈ N such that
∑N

n=1 rn/n = h/k. Moreover, if such
an N ≥ 2 exists, then it satisfies N ≤ 3 log k.

Proof. Suppose, to get a contradiction, that there exist N,M ∈ N, with N < M , such that∑N
n=1 rn/n =

∑M
n=1 rn/n = τ . In particular,

(2.1)

M∑
n=N+1

rn
n

= 0.

Let 2ν be the greatest power of 2 dividing some integer in the range N +1, . . . ,M . Notice that
we can assume that M ≥ N + 2 (otherwise the sum contains a unique term, which cannot be
0), and in particular ν ≥ 1. Now there exists a unique m in N + 1, . . . ,M that is divisible by
2ν . Indeed, if there were two such integers m,m′ with m < m′, then, letting m = 2νg with g
odd, we would have that N + 1 ≤ m < m + 2ν ≤ m′ ≤ M . But m + 2ν = 2ν+1 g+1

2 , which

contradicts the maximality of ν. Writing ` := lcm(n+ 1, . . . , n′), we have that
∑M

n=N+1 rn
`
n is

odd and hence non-zero, contradicting (2.1).

To prove that N ≤ 3 log k one can proceed in a similar way, observing that if
∑N

n=1
rn
n = h

k ,
then k is divisible by all prime powers in (N/2, N ]. In fact, let pν be any prime power in
(N/2, N ]. Then N < 2pν , so that pν is the unique number in [1, N ] that is divisible by pν .

Hence, when we multiply the sum
∑N

n=1
rm
m by the least common multiply of the denominators,

we get an integer which is congruent to rpν modulo pν ; in particular, it is not divisible by p.

Thus k ≥ eψ(N)−ψ(N/2), where ψ(x) is the Chebyshev’s function. By [31, Theorem 8] one easily
deduces that ψ(N)− ψ(N/2) > N/3 for all integers N ≥ 2 and the result follows. �
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The set W := {τ ∈ R : σN = τ for some N ∈ N} does not seem easy to characterize,
similarly to what happens in analogous problems on Egyptian fractions (cf. [21, §D11]). It is
clear, however, that W ⊆ Q, that W is nonempty (for example, it contains 1, 1/2 = 1 − 1/2,
1/6 = 1 − 1/2 − 1/3) and that it is a decidable set of Q, as there is an algorithm that, for
every τ ∈ Q, is able to determine if τ ∈ W in a finite number of steps. We shall not consider
the problem of studying W in this paper. However, we remark that by Proposition 2.1 the
equality σN = τ can be achieved only once for each τ , and so W does not depend on which
version of the greedy algorithm we use.

2.1. Sequence of signs and the corresponding inequalities. A sequence of inequalities
corresponds to every sequence of signs (sn)n; indeed, one has

(2.2) sn+1 = +1 ⇐⇒ σn ≤ τ and sn+1 = −1 ⇐⇒ τ < σn.

In particular, one has that sn+1 = +1 and sn′+1 = −1 with n′ > n if and only if σn ≤ τ < σn′ ,
whereas the reversed inequality holds if sn+1 = −sn′+1 = −1. In both cases

(2.3) sn+1 · (τ − σn) = |σn − τ | ≤ |σn′ − σn| =
∣∣∣∣ n′∑
m=n+1

sm/m

∣∣∣∣.
Thus |σn−τ | ≤ (n′−n)/(n+1) and stronger conclusions may be drawn if one is able to bound

the sum
∑n′

m=n+1 sm/m more effectively, which in turn amounts to controlling the sequence of
signs (sm)m. The following proposition gives a first example of this phenomenon.

Proposition 2.2. Let τ ∈ R. Then after the first change of sign the sequence (sn)n has no
three consecutive equal terms. As a consequence, |σn − τ | ≤ 2/(n + 1) for all n following the
first sign change. In particular, the series

∑∞
n=1 sn/n converges to τ .

Proof. The definition of the greedy process and the fact that the harmonic series diverges show
that the sequence (sn)n contains infinitely many changes of sign. In particular, to prove the
first assertion of the proposition it suffices to show that one cannot have

−sn = sn+1 = sn+2 = sn+3 = 1 or − sn = sn+1 = sn+2 = sn+3 = −1

for n large enough. Indeed, if the former equality is satisfied, then by (2.2) we have

σn < σn+1 < σn+2 ≤ τ < σn−1,

whence

1/n = σn−1 − σn > σn+2 − σn = 1/(n+ 2) + 1/(n+ 1),

and this is impossible for n ≥ 2. Analogously, one excludes the second case. The bound for
σn − τ , and thus the convergence of the series, follows immediately from (2.3). �

Since |σn+1 − σn| = 1
n+1 for all n, one cannot significantly improve the inequality of

Proposition 2.2 for all large enough n. However, the signs patterns exhibited by Theorem 1.7
allows us to draw stronger conclusions for arbitrarily large n. The following lemma allows one

to control the sum
∑n′

m=n+1 sm/m when sm is given by the ±1-valued Thue–Morse sequence

εn := (−1)tn . Before stating it, we define the function gk(x) for k ∈ Z≥0 and x > 0 as

(2.4) gk(x) :=
∑

0≤`<2k

ε`
x+ `

.

This function, which could also be defined as a 2k−1-th iteration of the operator (∆αf)(x) :=
f(x)− f(x+α) on the function g0(x) := 1

x (cf. Lemma 3.1 below), will play an important role
in the proofs of our results.
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Lemma 2.3. Let r =
∑

0≤j≤q 2hj > 0 with h0 > h1 > · · · > hq. Then, as x→∞, we have∑
0≤`<r

ε`
x+ `

∼ (−1)q
chq
xhq+1

.

In particular, for all k ∈ Z≥0 we have

(2.5) gk(x) ∼ ck
xk+1

,

as x→ +∞. Furthermore, for x ∈ R>0, the function gk(x) is positive, decreasing and satisfies
gk(x) < ckx

−k−1.

We postpone the proof of this lemma to Section 3 (cf. Corollary 3.4 and Lemma 3.5). We
now show how this lemma, in combination with Theorem 1.7, implies Theorem 1.1. Before
moving to the proof, we record the “folding” property of the Thue–Morse sequence in terms
of εn:

(2.6) εn+m = εnεm ∀n,m ≥ 0 with n < 2h

where h is the greatest nonnegative integer ν such that 2ν divides m. In particular,

(2.7) εn+2h = −εn ∀n,m ≥ 0 with n < 2h

(see [13] and [25, Section 2.2]).

Proof of Theorem 1.1. We only deal with the case k ≥ 1, the case k = 0 being very similar.
Also, we postpone the proof that the sets X1, X2, . . . are pairwise disjoint, countable and with
Xk ∩Q = ∅ for all k to Section 4.

First, assume that τ /∈ Yk+1. By Theorem 1.7, there exist N, j ∈ N such that

(2.8) (sn)n≥N = (κj ·Bkj , κj+1 ·Bkj+1
, κj+2 ·Bkj+2

, . . . )

with ki ≥ k + 2 for all i ≥ j. By (2.6), for h, k ≥ 0 we have

Bk+h = (ε0 ·Bk+2, ε1 ·Bk+2, . . . , εh ·Bk+2).

Hence, (2.8) can be rewritten as

(sn)n≥N = (δ0 ·Bk+2, δ1 ·Bk+2, δ2 ·Bk+2, . . . )

where (δm)m is a sequence with values in {±1}.
Now let M = N +2k+2m with m ≥ 0, so that sn+M = δmεn for 0 ≤ n < 2k+2. In particular,

sM+2k+1 = −sM and so by (2.3) and (2.5) we have

|σM−1 − τ | ≤ |σM−1+2k+1 − σM−1| =

∣∣∣∣∣ ∑
0≤`<2k+1

δmε`
M + 1 + `

∣∣∣∣∣ ∼ ck+1

Mk+2
,

as m→∞ (i.e., M →∞). It follows that, writing 0 ≤ r < 2k+2 as in Lemma 2.3, we have

Mk+1(σM−1+r − τ) = Mk+1(σM−1 − τ) +Mk+1
∑

0≤`<r

δmε`
M + `

= o(1) +
(−1)qδmchq
Mhq−k (1 + o(1))

as m→∞, whence

lim
m→∞

δm(N + 2k+2m)k+1(σN+2k+2m−1+r − τ) =


0, if r ∈ {0, 2k+1};
ck, if r = 2k;

−ck, if r = 2k + 2k+1;

(−1)q∞, if r /∈ {0, 2k, 2k+1, 2k + 2k+1}.

The fact that S′k+1(τ) = {0,±ck,±∞} then follows.

Now assume that τ ∈ Xk+1. By Theorem 1.7, there exists N ∈ N such that

(sn)n≥N = (Bk+1, Bk+1, Bk+1, . . . ).
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Since the sets Xh are pairwise disjoint, we have that τ /∈ Yk. In particular, the above argument
gives

lim
m→∞

(N + 2k+1m)k+1(σN+2k+1m−1+r − τ) = (−1)q∞

for 0 < r < 2k+1, r 6= 2k. We shall now show that the above limit is ck/2 when r = 0. Similarly
one shows that the limit is −ck/2 when r = 2k.
By grouping the sums in the Bk+1 blocks, one sees that

τ =
∞∑
n=1

sn
n

= σN−1 +
∞∑
h=0

2k+1−1∑
`=0

ε`
N + h2k+1 + `

= σN−1 +
∞∑
h=0

gk+1(N + h2k+1).

It follows that

(2.9) τ − σN+2k+1m−1 =

∞∑
h=m

gk+1(N + h2k+1).

By Lemma 2.3 gk+1 is positive and decreasing. Thus by (2.5) as x→ +∞ one has∑
h≥0

gk+1(x+ h2k+1) =

∫ +∞

0
gk+1(x+ u2k+1) du+O(x−k−2)

=
1

2k+1

∫ +∞

x
gk+1(u) du+O(x−k−2)

=
1

2k+1

∫ +∞

x

( ck+1

uk+2
+ o(u−k−2)

)
du+O(x−k−2)

=
ck+1

2k+1(k + 1)xk+1
+ o(x−k−1) =

ck
2xk+1

+ o(x−k−1),

since (k + 1)2kck = ck+1. Thus, by (2.9) we obtain

lim
m→∞

(N + 2k+1m)k+1(σN+2k+1m−1 − τ) = ck/2,

as claimed. Collecting the above results one obtains S′k+1(τ) = {±ck/2,±∞} for τ ∈ Xk+1.

Finally, the case τ ∈ Yk of (1.3) can be proven easily along the same lines. �

Proof of the Corollary 1.3. Since τ /∈ Yk, then by Theorem 1.7 one has that there exists N ∈
N such that the sequence (sn)n≥N can be written as a concatenation of blocks ±Bk+1 =
±(Bk,−Bk). It follows that the sequence (sn)n contains infinitely many blocks (Bk,−Bk) and
infinitely many blocks (−Bk, Bk). Now if (sr)m≤r<m+2k+1 = (Bk,−Bk) then applying (2.3)

with n = m− 1 and n′ = m+ 2k − 1, we obtain

0 ≤ (τ − σm−1) ≤
∣∣∣∣m+2k−1∑

r=m

εr/r

∣∣∣∣ = gk(m) < ckm
−k−1 < ck(m− 1)−k−1,

where in the third inequality we used Lemma 2.3. Also, by Proposition 2.1, the first inequality
is strict if m is large enough. It follows that (1.5) is satisfied for infinitely many m and one
proves in the same way that the same holds for (1.4). �

3. Thue–Morse sums and the proof of Theorem 1.7

3.1. The function gk(x) and other Thue–Morse sums. We recall that the function gk(x)
was defined in (2.4) as a certain logarithmic average of the Thue–Morse sequence, and that we
defined the operator ∆αf as (∆αf)(x) := f(x)− f(x+ α).

Lemma 3.1. For all k ∈ N and x > 0 we have

(3.1) gk(x) = (∆2k−1 ◦ · · · ◦∆2 ◦∆1)g0(x)
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or, equivalently,

(3.2) gk(x) = (−1)k
∫ 2k−2

0
· · ·
∫ 20

0
g
(k)
0 (x+ u1 + · · ·+ uk) duk · · · du2 du1.

Proof. Since g0 admits derivatives of any order for x > 0, Equation (3.2) follows immediately
from (3.1). Now we prove (3.1) by induction on k. For k = 1, the equality is immediate. Now
let k ≥ 2 and suppose the claim is true for k− 1. Then we split the range of summation [0, 2k)
in the definition of gk into [0, 2k−1) ∪ [2k−1, 2k) and shift the variable in the second range by
2k−1. We get

gk(x) =
∑

0≤`<2k

ε`
x+ `

=
∑

0≤`<2k−1

ε`
x+ `

+
∑

0≤`<2k−1

ε`+2k−1

x+ 2k−1 + `
= gk−1(x)− gk−1(x+ 2k−1),

since ε`+2h−1 = −ε` by the folding property (2.7). Thus, by the inductive hypothesis we have

gk(x) = ∆2k−1gk−1(x) = (∆2k−1 ◦ · · · ◦∆2 ◦∆1)g0(x),

as claimed. �

The following lemma shows that any logarithmic average of the Thue–Morse sequence can
be expressed as a combination of the functions gk(x).

Lemma 3.2. Let r :=
∑

0≤j≤q 2hj > 0 with h0 > h1 > · · · > hq, and let rj :=
∑

i<j 2hi. Then∑
0≤`<r

ε`
x+ `

=
∑

0≤j≤q
(−1)jghj (x+ rj).

Proof. The proof is by induction on q. The case q = 0 holds true by definition. Let q ≥ 1,
and suppose the claim is true for q − 1. The definition of r shows that r = rq + 2hq , so that,

splitting the range of summation [0, r) into [0, rq) ∪ [rq, rq + 2hq) and shifting the variable in
the second range by rq, we get∑

0≤`<r

ε`
x+ `

=
∑

0≤`<rq

ε`
x+ `

+
∑

0≤`<2hq

ε`+rq
x+ rq + `

.

The dyadic representation of rq contains q − 1 nonzero digits, hence the inductive hypothesis

may be applied to the first term. Moreover, in the second sum ` < 2hq < 2hq−1 ≤ rq, thus
ε`+rq = ε`εrq = (−1)qε`, so that∑

0≤`<r

ε`
x+ `

=
∑

0≤j≤q−1
(−1)jghj (x+ rj) + (−1)q

∑
0≤`<2hq

ε`
x+ rq + `

.

By definition the second sum on the right is ghq(x+ rq) and the proof is complete. �

We now describe the asymptotic behavior of gk(x).

Lemma 3.3. Let k ≥ 0. Then, as x→∞, we have gk(x) = ck
xk+1 +Ok(x

−k−2), where ck is as
in Theorem 1.1.

Proof. We show that gk(x) = ck/x
k+1 + φk(1/x) with φk analytic in a neighborhood of 0 and

with a zero of order at least k + 2 at x = 0. This is obvious for k = 0. Suppose it is true for
k ≥ 0. We have

gk+1(x) =
ck
xk+1

+ φk(1/x)− ck
(x+ 2k)k+1

− φk(1/(x+ 2k)) =
(k + 1)2kck

xk+2
+ φk+1(1/x)

with

φk+1(x) = φk(x)− φk(x(1 + 2kx)−1)− ckxk+1
(

(1 + 2kx)−k−1 − 1 + (k + 1)2kx
)
.

Clearly φk+1(x) is analytic in a neighborhood of 0 and has a zero of order at least k + 3 at

x = 0. Moreover, by definition, (k + 1)2kck = 2
k(k−1)

2
+k(k + 1)! = ck+1, as desired. �
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Corollary 3.4. With the same notation as in Lemma 3.2, as x→∞ we have∑
0≤`<r

ε`
x+ `

∼ (−1)q
chq
xhq+1

.

3.2. Inequalities for gk(x).

Lemma 3.5. For all m, k ≥ 0 and all x > 0 we have

2(k2)
(m+ k)!

(x+ 2k)m+k+1
< (−1)mg

(m)
k (x) < 2(k2)

(m+ k)!

xm+k+1
.

In particular, for all k ≥ 0, gk(x) is positive and decreasing for x > 0.

Proof. The claim is clear for k = 0. Suppose k ≥ 1. The operator ∆α commutes with the

differentiation. Thus (3.1) and (3.2) applied to g
(m)
k show that

(−1)mg
(m)
k (x) =

∫ 2k−1

0

∫ 2k−2

0
· · ·
∫ 20

0
(−1)m+kg

(m+k)
0 (x+ u1 + · · ·+ uk) duk · · · du2 du1.

The measure of the domain of integration is 2(k2) and so the claim follows, since for x < u <
x+ 2k−1 + · · ·+ 20 = x+ 2k − 1 one has

(m+ k)!

(x+ 2k)m+k+1
< (−1)m+kg

(m+k)
0 (u) =

(m+ k)!

um+k+1
<

(m+ k)!

xm+k+1
. �

Corollary 3.6. For all k ≥ 0 and all x > 0 we have

gk(x) < gk−1(x).

Proof. We have gk(x) = gk−1(x)− gk−1(x+ 2k−1) < gk−1(x). �

Lemma 3.7. Let k ≥ 0. Then for all x ≥ (k + 1)2k+2 we have gk(x) < 4
3gk(x+ 2k).

Proof. For a, k ≥ 0, let

hk(x, a) := 4gk(x+ a)− 3gk(x).

The operator ∆α is linear, and thus for all k ≥ 1 we have

hk(x, a) = hk−1(x, a)− hk−1(x+ 2k−1, a).

In particular, the analogues of the identities (3.1) and (3.2) also hold for hk. Moreover, for

m ≥ 0 and a/x < m+1
√

4/3− 1 we have

(−1)mh
(m)
0 (x, a) = m!

(
4

(x+ a)m+1
− 3

xm+1

)
> 0.

Reasoning as in the proof of Lemma 3.5 we get that

hk(x, a) > 0

for a/x < k+1
√

4/3− 1. Now for x ≥ 0 and 0 ≤ ρ ≤ 1 we have (1 + x)ρ − 1 ≥ ρx+ ρ(ρ− 1)x
2

2

and so k+1
√

4/3− 1 ≥ 5k+6
18(k+1)2

> 1
4(k+1) . The lemma then follows by taking a = 2k. �

Lemma 3.8. For x ≥ 2k+1k and 0 ≤ h < k we have gk(x) < 1
2gh(x+ 2k).

Proof. By Corollary 3.6, it suffices to prove the claim when h = k − 1.
Applying Lemma 3.7 twice, for x ≥ 2k+1k we have

gk(x)− 1
2gk−1(x+ 2k) = gk−1(x)− gk−1(x+ 2k−1)− 1

2gk−1(x+ 2k)

< 1
3gk−1(x+ 2k−1)− 1

2gk−1(x+ 2k) < − 1
18gk−1(x+ 2k) < 0,

as desired. �
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Lemma 3.9. Let r =
∑

0≤j≤q 2hj > 0 with h0 > h1 > · · · > hq. Then, if r < 2k and

x ≥ 2k+1(k + 1), we have

(−1)q
∑

0≤`<r

ε`
x+ `

> gk(x− 2k) > gk(x) > 0.

Proof. First we observe that the inequality gk(x− 2k) > gk(x) > 0 follows by Lemma 3.5.
Write rj =

∑
i<j 2hi ; by Lemma 3.2 we have

(−1)q
∑

0≤`<r

ε`
x+ `

− gk(x− 2k) =
∑

0≤j≤q
(−1)j+qghj (x+ rj)− gk(x− 2k).

If q is odd this is(
ghq(x+ rq)− ghq−1(x+ rq−1)

)
+ · · ·+

(
gh3(x+ r3)− gh2(x+ r2)

)
+
(
gh1(x+ r1)− gh0(x+ r0)− gk(x− 2k)

)
.

For all ` ≥ 1 we have r` = r`−1 + 2h`−1 and thus, by Lemma 3.8, for all x ≥ 2k+1k we have

gh`(x+ r`)− gh`−1
(x+ r`−1) >

1
2gh`(x+ r`) > 0.

Moreover, since r0 = 0 and h0 < k, by Lemma 3.8 for x > 2k+1(k + 1) > 2k+1k + 2k we have

gh1(x+ r1)− gh0(x+ r0)− gk(x− 2k) > gh1(x+ r1)− 3
2gh0(x+ r0) > 0.

The case q even is analogous and slightly simpler. �

Corollary 3.10. Let 0 < r < 2k and x ≥ 2k+1(k + 1). Then

sgn

( ∑
0≤`<r

ε`
x+ `

)
= −εr.

Proof. Lemma 3.9 shows that the sign is (−1)q, which is −εr because q + 1 is the number of
times the digit 1 appears in the dyadic expansion of r. �

3.3. Proof of Theorem 1.7. The following lemma provides the crucial step in the proof of
Theorem 1.7. It shows, for large enough n, that if the distance of σn−1 to τ is less than gk(n)
then either this distance is also less than gk+1(n) or σn−1+2k has distance from τ which is less

than gk(n+ 2k).

Lemma 3.11. Let k ≥ 0 and assume that n ≥ 2k+1(k + 1) is such that

(3.3) σn−1 ≤ τ < σn−1 + gk(n).

Then for 0 ≤ r < 2k+1 one has sn+r = εr and one of the following inequalities holds:

σn−1 ≤ τ < σn−1 + gk+1(n),(3.4)

σn−1+2k − gk(n+ 2k) ≤ τ < σn−1+2k .(3.5)

Similarly, if n ≥ 2k+1(k + 1) is such that

(3.6) σn−1 − gk(n) ≤ τ < σn−1,

then for 0 ≤ r < 2k+1 one has sn+r = −εr and one of the following inequalities holds:

σn−1 − gk+1(n) ≤ τ < σn−1,

σn−1+2k ≤ τ < σn−1+2k + gk(n+ 2k).
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Proof. We shall consider only the case where (3.3) holds, the other case being analogous.
Assuming (3.3), by Lemma 3.9 and Corollary 3.10 we have

(3.7) sgn

(
σn−1 − τ +

∑
0≤`<r

ε`
n+ `

)
= sgn

( ∑
0≤`<r

ε`
n+ `

)
= −εr

for all r ∈ (0, 2k). Moreover, if σn−1 6= τ , then the claim holds also for r = 0, since sgn(σn−1−
τ) = −1 = −ε0. The equalities in (3.7) and the definition of the greedy algorithm then imply
that, in any case,

(3.8) σn−1+r = σn−1 +
∑

0≤`<r

ε`
n+ `

for all r ∈ [0, 2k].

This relation with r = 2k and the equality
∑

0≤`<2k
ε`
n+` = gk(n) in Lemma 3.2 show that

σn−1+2k = σn−1 +
∑

0≤`<2k

ε`
n+ `

= σn−1 + gk(n),

which is part of what we have to prove in this case. Further, this equality and (3.3) imply that

(3.9) σn−1+2k − gk(n) ≤ τ < σn−1+2k .

In particular, this implies that

(3.10) σn+2k = σn−1+2k −
1

n+ 2k
= σn−1+2k −

ε0
n+ 2k

.

By (3.9) and appealing once again to Lemma 3.9 and Corollary 3.10, we have

sgn

(
σn−1+2k − τ −

∑
0≤`<r

ε`
n+ 2k + `

)
= − sgn

( ∑
0≤`<r

ε`
n+ 2k + `

)
= εr

for all r ∈ (0, 2k). Thus, since we have also (3.10) we must have

(3.11) σn−1+2k+r = σn−1+2k −
∑

0≤`<r

ε`
n+ 2k + `

for all r ∈ [0, 2k].

By (3.8), (3.10) and (3.11) we have

σn−1+r = σn−1 +
∑

0≤`<r

ε`
n+ `

for all r ∈ [0, 2k+1].

This proves that sn+r = εr for r = 0, . . . , 2k+1 − 1. Moreover, the case r = 2k+1 yields

(3.12) σn−1+2k+1 = σn−1 +
∑

0≤`<2k+1

ε`
n+ `

= σn−1 + gk+1(n).

Then we have two possibilities: either σn−1+2k+1 > τ or σn−1+2k+1 ≤ τ . In the first case,
by (3.3) we have (3.4). In the second case, we observe that since τ < σn−1+2k by (3.9), then

comparing (3.8) with r = 2k and (3.12), we get

σn−1+2k − gk(n+ 2k) = σn−1+2k+1 ≤ τ < σn−1+2k ,

so (3.5) holds. �

Corollary 3.12. Let k ≥ 0 and let n ≥ 2k+1(k+1). Suppose that we have (sm)n≤m<n+2k = Bk
or (sn)n≤m<n+2k = −Bk with Bk as in Theorem 1.7. Then there exists a sequence (δi)i≥0 with
δi ∈ {±1} for all i such that

(sm)m≥n = (δ0 ·Bk, δ1 ·Bk, δ2 ·Bk, . . . ).
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Proof. Suppose (sm)n≤m<n+2k = Bk, the other case is proved in a similar way. Notice that it
suffices to show that (sm)n+2k≤m<n+2k+1 = ±Bk, since one can then iterate the same argument.
Since sn = ε0 = 1, we have σn−1 ≤ τ . Moreover, since sn+2k−1 = ε2k−1 = −1, by (2.3) and the
definition of gk−1 (which is positive by Lemma 3.5), we deduce that

σn−1 ≤ τ < σn−1 + gk−1(n) = σn+2k−1−1,

where the second inequality is strict by (2.2). Thus the hypothesis (3.3) in Lemma 3.11 is
satisfied with k − 1 in place of k, whence either (3.4) or (3.5) holds with k in place of k + 1.
In the first case, we have that (3.3) is satisfied; hence, applying Lemma 3.11 once again,
we obtain sn+r = εr for 0 ≤ r < 2k+1, i.e., (sm)n≤m<n+2k+1 = Bk+1 = (Bk,−Bk), and in
particular (sm)n+2k≤m<n+2k+1 = −Bk. In the second case, we notice that (3.5), with k − 1 in

place of k, is actually hypothesis (3.6) with k− 1 in place of k and n+ 2k in place of n. Thus,
applying Lemma 3.11 we obtain (sm)n+2k≤m<n+2k+1 = Bk, as desired. �

We are now in a position to prove Theorem 1.7. First, we define the exceptional sets Xk.
Also we recall that Yk := ∪h≤kXh with Y0 := ∅.

Definition 3.13. For all k ∈ N the set Xk is defined as

(3.13) Xk :=
{
τ ∈ R : ∃N ≥ 0 and 0 ≤ m < 2k s. t. sn = fk(n+m) ∀n ≥ N

}
,

where we recall that fk denotes the 2k-periodic function such that fk(n) = εn for all n ∈ [0, 2k).

Proof of Theorem 1.7. First, we observe that the result is tautological for τ ∈ Xk. Indeed, by
the definition of Xk there exists N such that

(sn)n≥N = (s1, s2, . . . , sN−1, Bk, Bk, Bk, . . . ) = (s1 ·B0, s2 ·B0, . . . , sN−1 ·B0, Bk, Bk, Bk, . . . ).

Thus, let us assume that τ /∈ Y∞.
By Proposition 2.2 (sn)n has infinitely many changes of signs. Equivalently, it contains

infinitely many blocks B1. In particular, we can find N1 such that N1 ≥ 21+1 · (1 + 1) = 8 and
(sm)N1≤m<N1+2 = B1. Thus, by Corollary 3.12 there exists a sequence (δi,1)i≥0 with values in
{±1} such that

(3.14) (sn)n≥N1 = (δ0,1 ·B1, δ1,1 ·B1, δ2,1 ·B1, . . . ).

The sequence (δi,1)i≥0 contains infinitely many changes of signs. Indeed, it cannot be equal
to 1 for all i large enough, since otherwise we would have τ ∈ X1, and for the same reason it
cannot be equal to −1 for all n large, since

(−B1,−B1,−B1, . . . ) = (−B0, B1, B1, B1, . . . ).

Thus, we can find i such that δi = −δi+1 = 1 and such that the corresponding index n on
the left hand side of (3.14) is N2 ≥ 22+1 · (2 + 1) = 24 (and N2 > N1). We then have
(sm)N2≤m<N2+22 = (B1,−B1) = B2 and so by Corollary 3.12 there exists a sequence (δi,2)i≥0
with values in {±1} such that

(sn)n≥N2 = (δ0,2 ·B2, δ1,2 ·B2, δ2,2 ·B2, . . . ).

As before, one sees that (δi,2)i≥0 contains infinitely many changes of signs. We can then keep
iterating this process, whence obtaining sequences (ki)i and (κi)i with the desired properties.

�

4. The exceptional sets Xk

In this section we study the exceptional sets Xk, defined in (3.13).
As observed in the introduction, the elements in Xk can be written as a rational number

plus Uk,m for some m ∈ [0, 2k), where the constant Uk,m is as defined in (1.8). We also recall
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that Uk,m = −Uk,m+2k−1 for all m ∈ [0, 2k−1). The values of Uk,m for k = 1, 2 have been given
in (1.9). For k = 3 we have

U3,0 =
4
√

2 log(2−
√

2)− π − (
√

2 + 1) log 4

8
, U3,1 =

(1− 2
√

2)π + log 4

8
,

U3,3 =
4
√

2 log(2−
√

2) + π − (
√

2 + 1) log 4

8
, U3,2 =

(2
√

2− 1)π + log 4

8
.

We now show that Uk,m can be written as a linear combination of logarithms. Baker’s theorem
will then yield the transcendence of Uk,m.

Proposition 4.1. For every k ≥ 1, m ∈ Z, we have

Uk,m =

2k−1∑
a=1
a odd

c(a)e2πiam/2
k

log
(
1− e2πia/2k

)
, c(a) := ikeπia/2

k
k∏
j=1

sin
(πa

2j

)
.

Proof. We write fk(n) in terms of additive characters:

(4.1) fk(n) =
1

2k

2k−1∑
a=0

(
2k−1∑
`=0

ε` e
−2πi`a/2k

)
e2πian/2

k
.

The sum in brackets is equal to Pk(e
−2πia/2k), where Pk(x) :=

∑2k−1
`=0 ε`x

`. The uniqueness of

the base-2 expansion gives the factorization Pk(x) =
∏k−1
j=0(1− x2j ), so that

1

2k

2k−1∑
`=0

ε` e
−2πi`a/2k =

1

2k

k−1∏
j=0

(
1− e−2πia/2k−j

)
= ik

( k−1∏
j=0

e−πia2
j/2k

) k∏
j=1

sin
(πa

2j

)

= ike−πia(2
k−1)/2k

k∏
j=1

sin
(πa

2j

)
= −c(a),

where in the last step we used that the product on the second line is 0 unless a is odd.
Inserting (4.1) in the definition (1.8) of Uk,m and exchanging the order of summation of the

two sums, a step which can be easily justified, we obtain

Uk,m = −
2k−1∑
a=1
a odd

c(a)e2πiam/2
k
+∞∑
n=1

e2πian/2
k

n
=

2k−1∑
a=1
a odd

c(a)e2πiam/2
k

log(1− e2πia/2k),

as claimed. �

Proposition 4.2. The number Uk,m is transcendental, for every k ≥ 1 and every m ∈ [0, 2k).

Proof. The formula in Proposition 4.1 shows that Uk,m is a non-zero linear combination with

algebraic coefficients of logarithms of the numbers 1 − ζa, where ζ := exp(2πi/2k) for a =

1, . . . , 2k − 1 odd. For any odd a, let wa := ζ(1−a)/2(1 − ζa)/(1 − ζ), which is well defined
because (1 − a)/2 is an integer. Notice that wa is a positive real number for 1 ≤ a < 2k−1,
and that w2k−a = −wa; also, w1 = 1. It follows that the sum of the log(1− ζa) is also a linear
combination with algebraic coefficients of numbers

(4.2) log(1− ζ), iπ,
(

log(wa)
)2k−1

a=3,odd
.

The formula also shows that at least one of the coefficients is not zero; for example, the

coefficient of log(1− ζ) is
∑2k−1

a=1 c(a)e2πiam/2
k

= −εm. By Baker’s theorem on linear forms in
logarithms, the transcendence of Uk,m then follows if we can prove that the numbers (4.2) are
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Q-linearly independent. Thus suppose we have a linear combination with integer coefficients
producing zero:

(4.3) α log(1− ζ) + βiπ +

2k−1−1∑
a=3
a odd

γa log(wa) = 0.

We need to show that all the coefficients are zero. Exponentiating this identity yields

(4.4) (1− ζ)α(−1)β
2k−1−1∏
a=3
a odd

wγaa = 1.

In the cyclotomic field K := Q[ζ] of 2k roots of unity, the norm of 1− ζ is equal to 2, whereas
the norm of each of the wa is equal to 1. Thus the previous identity implies that α = 0. Taking
the imaginary part of (4.3) then gives β = 0. As a consequence (4.4) becomes

(4.5)
2k−1−1∏
a=3
a odd

wγaa = 1.

It is known that the numbers (wa)
2k−1−1
a=3, a odd are cyclotomic units generating a subgroup having

finite index in the free part of the group of units UK in OK [34, Lemma 8.1]. By Dirichlet’s
theorem the dimension (as Z-module) of UK is 2k−2 − 1, and this is also the number of wa
appearing in (4.5). Hence they are multiplicatively independent and so all the γa have to be
equal to zero, as desired. �

We will now show that Uk,m ∈ Xk for all k,m. First, we need the following lemma.

Lemma 4.3. For k,m ≥ 0 and x > 0, let

gk,m(x) :=
∑

0≤n<2k

fk(n+m)

n+ x
.

Then fk(m)gk,m(x) ≥ gk,0(x) = gk(x) for x > 0. In particular, fk(m)gk,m(x) > 0 for x > 0.

Proof. For k ≤ 1 the result is obvious by definition, so assume that k ≥ 2. Let

Vk,m(r) :=
∑

0≤n≤r
fk(n+m)

and notice that since Vk,m(2k − 1) = 0, one has that Vk,m(r + 2k) = Vk,m(r) for all r ≥ 0.
Moreover, one easily verifies that

Vk,0(r) =

{
fk(r), r even;

0, r odd;

(cf. Proposition 6.1 below). Thus, for all odd m we have

fk(m)Vk,m(r) = fk(m)(Vk,0(r +m)− Vk,0(m− 1)) = fk(m)Vk,0(r +m) + 1

=

{
1, r even;

fk(m)fk(r +m) + 1, r odd;

where in the second step we used that fk(m− 1)fk(m) = −1 for m odd. In particular if m is
odd, then

fk(m)Vk,m(r)− Vk,0(r) ≥ 0.(4.6)
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To conclude, we observe that, if m = 2νm′ < 2k with m′ odd (or if m = m′ = 0, ν < k), then

gk,m(x) =
2k−1∑
n=0

fk(n+m)

n+ x
=

2ν−1∑
`=0

2k−ν−1∑
r=0

fk(`+ 2ν(r +m′))

`+ 2νr + x
=

2k−ν−1∑
r=0

fk−ν(r +m′)gν(2νr + x)

since (2.6) implies that fk(`+ 2νs) = ε(`)fk(2
νs) = ε(`)fk−ν(s) for 0 ≤ ` < 2ν < 2k. Thus, by

Abel’s summation formula,

fk(m)gk,m(x)− gk,0(x) =
∑

0≤r<2k−ν

(
fk−ν(m′)fk−ν(r +m′)− fk−ν(r)

)
gν(2νr + x)

= −2ν
∫ 2k−ν−1

0

(
fk−ν(m′)Vk−ν,m′(y)− Vk−ν,0(y)

)
g′ν(2νy + x) dy

and the result follows by (4.6) and Lemma 3.5. �

Corollary 4.4. For all k ≥ 1 and m ∈ [1, 2k) the identity Uk,m =
∑∞

n=1 fk(n+m)/n gives the
greedy representation for Uk,m, i.e., sn(Uk,m) = fk(n+m) for all n. In particular, Uk,m ∈ Xk.

Proof. By the definition of Uk,m, for all N ≥ 0 we have

Uk,m =
N∑
n=1

fk(n+m)

n
+

+∞∑
n=N+1

fk(n+m)

n
=

N∑
n=1

fk(n+m)

n
+

+∞∑
s=0

gk,m+N+1(N + 1 + s2k).

Lemma 4.3 then shows that

(4.7) fk(m+N + 1)
(
Uk,m −

∑
1≤n≤N

fk(n+m)

n

)
> 0

for every N . This fact gives the claim by induction. Indeed, this inequality with N = 0 shows
that

fk(m+ 1) > 0 ⇐⇒ Uk,m > 0 ⇐⇒ s1(Uk,m) > 0,

proving that fk(m + 1) = s1(Uk,m). Moreover, if the claim holds for all n ≤ N , then∑N
n=1

fk(n+m)
n = σN (Uk,m) and (4.7) gives

fk(m+N + 1)(Uk,m − σN (Uk,m)) ≥ 0,

and so sN+1(Uk,m) = fk(N + 1 +m), as desired. �

We record some properties of the sets Xk in the following proposition.

Proposition 4.5. For all k ≥ 1 we have Xk ∩ Q = ∅. Moreover, the sets X1, X2, . . . are
non-empty, countable and pairwise disjoint.

Proof. Since Uk,0 ∈ Xk ⊆ Q + {Uk,m : 0 ≤ m < 2k}, the set Xk is non-empty, countable and,

thanks to Proposition 4.2, we have Xk ∩Q = ∅. Now we show that Xk ∩Xh = ∅ for all h 6= k.
Assume that τ ∈ Xk ∩ Xh with h ≤ k. Thus, by definition, there exists m1,m2 such that
sn = fk(n + m1) = fh(n + m2) for all sufficiently large n. In particular, fk(n) is periodic
modulo 2h. Since fk(0) = 1 = −fk(2k−1), one has h ≥ k and so h = k. �

4.1. Verifying whether τ ∈ Xk in a finite number of steps. For each k ≥ 1, the set Xk

is defined as the set of all τ ∈ R whose greedy sequence is eventually periodic with repeating
block Bk. Since there is no effective bound on when the sequence starts being periodic, one
might then expect that there is no algorithm which verifies whether a given number τ is in Bk.
Surprisingly, however, such an algorithm can be constructed. We assume that τ 6∈ Q, since
otherwise we already know τ /∈ Xk for all k. Also, we assume that we know τ to arbitrary
precision and that we can tell whether two real numbers coincide (actually, this is not needed
if we already know that τ = r + Uk,m for some k,m and some r ∈ Q).

The algorithm is rather simple and proceeds as follows.
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(1) Determine whether τ ∈ X1. In order to determine if τ ∈ X1, one starts by
finding the first N1 ≥ 24 such that (sm)N1≤m<N1+21 = B1. By Proposition 2.2 we
know that such N1 exists and by the upper bound for the harmonic sum we also know
that N1 ≤ max(24, e|τ | + 2). Then we claim that one has τ ∈ X1 (and thus τ /∈ Xk for
all k > 1) if and only if

τ = U1,m1 +
∑

1≤n<N1

sn − f1(n+m1)

n

where 0 ≤ m1 < 21, m1 ≡ −N1 (mod 2). In particular, the algorithm stops if this
equality is satisfied and otherwise it moves to the next step. To prove this equivalence,
we first observe that by Corollary 3.12 we have

(sn)n≥N1 = (B1, δ1 ·B1, δ2 ·B1, . . . )

with δi ∈ {±1}. Also, we have τ ∈ X1 if and only if δi = 1 for all i. Indeed, if δi = 1
for all i then by definition τ ∈ X1. Conversely, if δi = −1 for some i then (sn)n≥N1

contains the block (B1,−B1) and so, by Corollary 3.12,

(sn)n≥N ′ = (B2, δ
′
1 ·B2, δ

′
2 ·B2, . . . ).

for some N ′ ≥ N1. In particular, the tail of (sn)n cannot be periodic with repeating
block B1, i.e., τ /∈ X1. Finally, one easily sees that δi = 1 for all i, i.e.,

(sn)n≥N1 = (B1, B1, B1, . . . ),

if and only if

τ =
∑

1≤n<N1

sn
n

+
∑
n≥N1

f1(n+m1)

n
=

∑
1≤n<N1

sn − f1(n+m1)

n
+ U1,m1 .

One then proceeds inductively. Assuming τ /∈ Xk−1 with k ≥ 2, to verify whether τ ∈ Xk

one proceeds as follows.

(2) Determine the first Nk ≥ 2k+2(k + 2) such that (sm)Nk≤m<Nk+2k = Bk. Since
τ /∈ Xk−1 we know that such an Nk exists. We can also provide an explicit bound for
it in terms of τ and (sn)n<Nk−1

; we shall give the details at the end of the algorithm.
(3) Determine whether τ ∈ Xk. In the same way as in step (1), one has that τ ∈ Xk

if and only if

τ = Uk,mk +
∑

1≤n<Nk

sn − fk(n+mk)

n

where 0 ≤ mk < 2k, mk ≡ −Nk (mod 2k).

As anticipated, given τ /∈ Xk and the firstNk−1 ≥ 2k+1(k+1) such that (sm)N2≤m<N2+2k−1 =
Bk−1, one can give an upper bound on Nk. Indeed, since τ /∈ Xk−1 we know that

Gτ,Nk−1
:= τ − Uk−1,mk−1

+
∑

n<Nk−1

fk−1(n+mk−1)− sn
n

6= 0.

Then we have Nk ≤ max
(
Nk−1, 2

k+2(k + 2), 2k + 4/|Gτ,Nk−1
|
)
. To see this, we observe that,

by definition, for any M ≥ Nk−1 we have

Gτ,Nk−1
=

∑
Nk−1≤n<M

sn − fk−1(n+m1)

n
+
∑
n≥M

sn
n
−
∑
n≥M

fk−1(n+mk−1)

n
.

In particular,∑
Nk−1≤n<M

|sn − fk−1(n+mk−1)|
n

> |Gτ,Nk−1
| −
∣∣∣∣ ∑
n≥M

sn
n

∣∣∣∣− ∣∣∣∣ ∑
n≥M

fk−1(n+mk−1)

n

∣∣∣∣.(4.8)
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By Proposition 2.2 and Corollary 4.4 both sums on the right are bounded by 2/M . Thus, (4.8)
implies ∑

Nk−1≤n<M

|sn − fk−1(n+mk−1)|
n

> |Gτ,Nk−1
| − 4

M
.

Taking M to be the largest integer such that M ≡ Nk−1 (mod 2k−1) and M < 2k+4/|Gτ,Nk−1
|,

we have that the right hand side is greater than zero. Thus, with this choice we obtain∑
Nk−1≤n<M

|sn − fk−1(n+mk−1)|
n

> 0

and so sn 6= fk−1(n+mk−1) for some n ∈ [Nk−1,M). Since (sn)n≥Nk−1
can be written in terms

of blocks ±Bk−1 it follows that (sn)Nk−1≤n<M has to contain a block (Bk−1,−Bk−1) = Bk.

Remark 4.6. To give some examples, using the above algorithm we verified that U2,0+r ∈ X2

if r = 1, 2, 3 and U2,0 + r /∈ X2 if r = 4, . . . , 10.

5. Proof of Theorem 1.5

Definition 5.1. For τ /∈ Y∞ and h ≥ 1, let nh be the minimum integer such that |τ −
σnh−1(τ)| < gh−1(nh) and nh ≥ 2hh. Notice that by Corollary 1.8 and (2.3) we know that such
an integer exists.

The following lemma gives some information on the sequence (nh)h and in particular it put
a rather sharp limit for the possible sign patterns in (sn) for nh ≤ n < nh+1.

Lemma 5.2. Assume that τ /∈ (Y∞ ∪Q). The sequence (nh)h is non-decreasing and such that

nh+1 ≡ nh (mod 2h) for all h ≥ 1; also, n1 ≤ 4e|τ |. Moreover, if nh < nh+1 we have

(sn)nh≤n<nh+1
= (η0,h ·Bh, η1,h ·Bh, . . . , ηrh,h ·Bh),

where rh := (nh+1 − nh)/2h − 1 and ηi,h ∈ {±1} is such that ηi,h = snh+1
for all i ∈ [0, rh] if

nh ≥ 2h+1(h+ 1) and for all i ∈ [h+ 2, rh] in any case.

Proof. The fact that nh is non-decreasing follows immediately from Corollary 3.6, whereas the
inequality n1 ≤ max(e|τ | + 1, 4) ≤ 4e|τ | follows from bounding the harmonic sum.

By Lemma 3.11 and Corollary 3.12 we have

(sn)n≥nh = (η0,h ·Bh, η1,h ·Bh, . . . ),

for some (ηi,h)i≥0 with ηi,h ∈ {±1}. By Lemma 3.11 we have (sn)nh+1≤n<nh+1+2h+1 = Bh+1

and so it must be nh+1 = nh + 2hrh for some rh ≥ 0.
We claim that if ηj,h 6= ηj+1,h for some j ∈ [0, rh] (with ηrh+1,h := η0,h+1), then nh + 2hj <

2h+1(h + 1). Indeed, if ηj,h 6= ηj+1,h, then Equation (2.3) implies that |σn′−1 − τ | < gh(n′)

with n′ := nh + 2hj (the inequality is strict since τ /∈ Q). Since n′ < nh+1 it then follows
that it must be n′ = nh + 2hj < 2h+1(h + 1), as claimed. This implies in particular that if
nh ≥ 2h+1(h+ 1) then ηi,h = ηi+1,h for 0 ≤ i ≤ rh or, equivalently, ηi,h = snh+1

for 0 ≤ i ≤ rh
since ηrh+1,h = snh+1

. Similarly, if h+2 ≤ i ≤ rh then nh+2hi ≥ 2hh+(h+2)2h = 2h+1(h+1)
and so one concludes as before. �

Thanks to the above lemma we have a good control on the sequence (nh)h. We now need
two combinatorial lemmas. The first one is a well known upper bound for the number of lattice
point in a simplex [10]. We give a simple proof for completeness.

Lemma 5.3. Let k,m ≥ 1 and b1, . . . , bk ∈ N. Then

S := |{(a1, . . . , ak) ∈ Zk≥0 : b1a1 + b2a2 + · · ·+ bkak = m}| ≤ (m+ b2 + · · ·+ bk)
k−1

(b2 · · · bk)(k − 1)!
.
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Proof. Clearly,

S ≤ |{(a2, . . . , ak) ∈ Zk−1≥0 : b2a2 + · · ·+ bkak ≤ m}|

≤
∫ ∞
0
· · ·
∫ ∞
0

χ[0,1]

( b2x2 + · · ·+ bkxk
m+ b2 + · · ·+ bk

)
dx2 · · · dxk.

By a change of variables this is

(m+ b2 + · · ·+ bk)
k−1

b2 · · · bk

∫ ∞
0
· · ·
∫ ∞
0

χ[0,1](x2 + · · ·+ xk) dx2 · · · dxk =
(m+ b2 + · · ·+ bk)

k−1

(b2 · · · bk)(k − 1)!
,

as desired. �

Lemma 5.4. For k ≥ 3, ` ≥ 0 we have

Z(k, `) :=
∑

a1,...,ak−1≥0

a1+···+2k−2ak−1=`

∏
2≤h≤k

2
hχ

[0,2hh)
(a1+2a2+···+2h−2ah−1) ≤ 2−

k2

2
+5k `k−2

(k − 2)!
+ 2

k2

2
+4kk!.

Proof. First, we observe that Z(k, `) ≤ 4Z ′(k, `/2), where

Z ′(k, `) =
∑

a2,...,ak−1≥0

a2+···+2k−3ak−1≤`

∏
3≤h≤k

2
hχ

[0,2h−1h)
(a2+···+2h−3ah−1).

We shall prove that for all k ≥ 3, ` ≥ 0 one has

(5.1) Z ′(k, `) ≤ 2−
k2

2
+5k−2 `k−2

(k − 2)!
+ 2

k2

2
+4k−2k!,

from which the claimed inequality for Z follows immediately. We prove this by induction
over k. The result is obvious if k = 3. Now assume that the claimed inequality holds for
k − 1 ≥ 3. We split Z ′ into Z ′ = Z ′< + Z ′≥, where Z ′< is the contribution of the terms with

a2 + · · ·+ 2k−3ak−1 < 2k−1k. We have

Z ′<(k, `) ≤ 2k
∑

a2,...,ak−1≥0, ak−1<4k

a2+···+2k−4ak−2<2k−3(4k−ak−1)

∏
3≤h≤k−1

2
hχ

[0,2h−1h)
(a2+···+2h−3ah−1)

= 2k
∑

0≤a<4k

Z ′(k − 1, 2k−3(4k − a)).

Thus, by the inductive hypothesis,

Z ′<(k, `) ≤
∑

0≤a<4k

2
k2+2k+3

2
(4k − a)k−3

(k − 3)!
+ 2

k2+6k−11
2 2k4k(k − 1)!

≤ 2
k2+2k+3

2

(k − 3)!

[ ∫ 4k

0
(4k − x)k−3 dx+ (4k)k−3

]
+ 2

k2+8k−7
2 k!

= 2
k2+6k−9

2
kk−3

(k − 3)!

[ 4k

k − 2
+ 1
]

+ 2
k2+8k−7

2 k!

≤ 2
k2+9k−9

2 + 2
k2+8k−7

2 k!,(5.2)
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since kk−3

(k−3)!
[

4k
k−2 + 1

]
≤ 23k/2 for all k ≥ 4. In order to bound Z ′≥, we first observe we can

assume that ` ≥ 2k−1k, since otherwise Z ′≥ is just the empty sum. Now

Z ′≥(k, `) ≤
∑

0≤ak−1≤`/2k−3

∑
a2,...,ak−2≥0

a2+···+2k−4ak−2≤`−2k−3ak−1

∏
3≤h≤k−1

2
hχ

[0,2h−1h)
(a2+···+2h−3ah−1)

≤
∑

0≤ak−1≤`/2k−3

Z ′(k − 1, `− 2k−3ak−1).

Thus, by the inductive hypothesis we have

Z ′≥(k, `) ≤
∑

0≤a≤`/2k−3

(`− 2k−3a)k−3

(k − 3)!
2−

k2−12k+15
2 + 2

k2+6k−11
2 (`/2k−3 + 1)(k − 1)!

≤ 2−
k2−12k+15

2

(k − 3)!

(∫ `/2k−3

0
(`− 2k−3x)k−3 dx+ `k−3

)
+
(
2
k2+4k−5

2 `+ 2
k2+6k−11

2
)
(k − 1)!

= 2−
k2−10k+15

2
`k−2

(k − 2)!

[
8 +

2k(k − 2)

`

]
+
(
2
k2+4k−5

2 `+ 2
k2+6k−11

2
)
(k − 1)!

≤ 10 · 2−
k2−10k+15

2
`k−2

(k − 2)!
+
(
2
k2+4k−5

2 `+ 2
k2+6k−11

2
)
(k − 1)!,(5.3)

since ` ≥ 2k−1k. Now if ` ≥ 22k−1k then

2
k2+4k−5

2 `(k − 1)! ≤ 2
k2+4k−5

2 `k−2
2−2k(k−3)k!

kk−3
≤ 6`k−22−

k2−10k+5
2 2−k

2+3k ≤ 2−
k2−10k+5

2
`k−2

(k − 2)!

since k! ≤ 6kk−3 and 6(k − 2)! ≤ 2k
2−3k for k ≥ 4. Thus, in any case

2
k2+4k−5

2 `(k − 1)! ≤ 2−
k2−10k+5

2
`k−2

(k − 2)!
+ 2

k2+8k−7
2 k!

and so (5.1) follows from (5.2) and (5.3) since 2
k2+9k−9

2 + 2
k2+6k−11

2 (k − 1)! ≤ 2
k2+8k−8

2 k!. �

The following two propositions give the crucial steps in proving Theorem 1.5. The first one
essentially shows that, for almost all τ , the size of nk is about 2kk for infinitely many k. The
second one shows that for almost all τ there are no n � 2k with |τ − σn−1(τ)| much smaller
than gk(n).

Proposition 5.5. Let f : R>0 → R>0 be a function such that f(x)→∞ as x→∞ and let

Xf :=

{
τ ∈ R :

there are at most finitely many k such that
|τ − σn−1(τ)| < gk(n) for some n ∈ [2kk, f(k)2kk]

}
.

Then meas(Xf ) = 0.

Proof. Let X ′f := Xf ∩ R′ where R′ := R \ (Y∞ ∪ Q). By Proposition 4.5 we have that

meas(Xf ) = meas(X ′f ). Then we observe that

X ′f ⊆
⋃
m∈N

{
τ ∈ R′ : |τ − σn−1(τ)| > gk(n) for all k ∈ N and for all n ∈ [2kk, f(k)2kk/m]

}
=
⋃
m∈N

⋃
q∈N

⋂
k∈N
Xm,q,k,

where

Xm,q,k :=

{
τ ∈ R′ ∩ [−q, q] : |τ − σn−1(τ)| > gh(n) for all h ∈ [1, k]

and for all n ∈ [2hh, f(h)2hh/m]

}
.

In particular, in order to prove that meas(Xf ) = 0 it is sufficient to show that meas(Xm,q,k)→ 0
as k →∞.



22 S. BETTIN, G. MOLTENI, AND C. SANNA

Let τ ∈ Xm,q,k and let n1, n2, . . . as in Lemma 5.2; in particular, n1 ≤ 4eq. Also, let
C be such that f(x) ≥ 4m for x ≥ C so that if h ≥ C then, by the definition of Xm,q,k,
nh ≥ 2h+1(h+ 1).

We split Xm,q,k depending on the value of nk:

Xm,q,k =
⋃

`≥f(k)2kk/m

V`,m,q,k, V`,m,q,k := {τ ∈ Xm,q,k : nk = `}.

If τ ∈ V`,m,q,k, then, by definition, |τ − σ`−1(τ)| < gk−1(`) and so τ has distance less than
gk−1(`) from one of the elements of the set

R`,m,q,k := {σ`−1(τ) : τ ∈ V`,m,q,k}.
This set has cardinality bounded by the number of possible choices of signs (sn)n<`. By
Lemma 5.2, if h ≥ C then the signs in (sn)nh≤n<nh+1

are completely determined (depending
on the sign of snh+1

and thus eventually on snk = s`), whereas for each h < C the first
h + 2 ≤ C + 1 signs in (sn)nh≤n<nh+1

are free and the other ones are determined. Also,

there are at most 2n1 ≤ 24e
q

possibilities for (sn)n<n1 and 2 for s`. Finally, we recall that
n1 ≤ n2 ≤ · · · ≤ nk = ` and that nh+1 ≡ nh (mod 2h) for all h ≥ 1. We then obtain that

|R`,m,q,k| is bounded by 2C(C+1)+4eq+1 times

|{(m1, . . . ,mk−1) : m1 ≤ · · · ≤ mk := `, m1 ≤ 4eq, mh+1 ≡ mh (mod 2h) for 1 ≤ h < k}|

= |{(a0, . . . , ak−1) ∈ Z≥0 : a0 + 2a1 + 22a2 + · · ·+ 2k−1ak−1 = `, a0 ≤ 4eq}|

≤ 4eq
(`+ 22 + · · ·+ 2k−1)k−2

(22 · · · 2k−1)(k − 2)!
≤ 4eq2

(`+ 2k)k−2

2(k2)(k − 2)!
� eq

`k−2

2(k2)(k − 2)!
,

by Lemma 5.3, where in the last inequality we used that ` = nk ≥ 2kk. It follows that

meas(Xm,q,k) ≤ 2
∑

`≥f(k)2kk/m

|R`,m,q,k|gk−1(`)�q,m

∑
`≥f(k)2kk/m

`k−2

2(k2)(k − 2)!
· 2(k−1

2 )(k − 1)!

`k

=
∑

`≥f(k)2kk/m

k − 1

2k−1`2
�q,m

1

22kf(k)
,

by Lemma 3.5 (and for k ≥ C). Thus, meas(Xm,q,k)→ 0 as k →∞, as desired. �

Proposition 5.6. Let f : R≥0 → R>0 be a function such that f(x)� 25xxx for x large enough
and let

Yf :=

{
τ ∈ R :

there exist infinitely many k such that
|τ − σn−1(τ)| < gk(n)/f(k) for some n ∈ [2k−1(k − 1), 2kk)

}
.

Then meas(Yf ) = 0.

Proof. Let Y ′f := Yf ∩ R′, with R′ := R \ (Y∞ ∪Q), so that meas(Y ′f ) = meas(Yf ). We have

Y ′f =
⋃
q∈N

⋂
K∈N

⋃
k≥K

⋃
2k−1(k−1)≤`<2kk

Yq,k,`,

where
Yq,k,` := {τ ∈ R′ ∩ [−q, q] : |τ − σ`−1(τ)| < gk(`)/f(k)}.

It suffices to show that

meas

( ⋃
k≥K

⋃
2k−1(k−1)≤`<2kk

Yq,k,`
)
→ 0

as K →∞. Also, we can assume f(x) ≥ 1 for x ≥ K.
Let τ ∈ Yq,k,` and let n1, n2, . . . be as in Lemma 5.2. By Corollary 3.6 we have nk−1 ≤ ` < nk.

Notice also that Lemma 5.2 implies that ` ≡ nk−1 (mod 2k−1).
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The number τ belongs to Yq,k,`, so it has distance less than gk(`)
f(k) from one of the elements

of the set

Rq,k,` := {σ`−1(τ) : τ ∈ Yq,k,`}.
This set has cardinality bounded by the number of possible choices of signs (sn)n<`. By
Lemma 5.2, for each h ∈ [1, k − 1] we have only one choice for the signs in (sn)nh≤n<nh+1

if

nh ≥ 2h+1(h + 1) and at most 2h+2 in any case. Also, we have at most 24e
q

for the signs in
(sn)n<n1 . Thus, writing ` = nk−1 + 2k−1ak−1, nh = nh−1 + 2h−1ah−1 for 2 ≤ h ≤ k − 1 and
n1 = a0 for some a0, . . . ak ∈ Z≥0, we see that

|Rq,k,`| �q

∑
a0,a1,...,ak−1≥0

a0+2a1+22a2+···+2k−1ak−1=`

∏
2≤h<k

2
(h+2)χ

[0,2h+1(h+1))
(a0+2a1+22a2+···+2h−1ah−1)

�q 2k
∑

b1,...,bk≥0

b1+2b2+···+2k−1bk=`

∏
3≤h≤k

2
hχ

[0,2hh)
(b1+2b2+···+2h−2bh−1).

Applying Lemma 5.4 we then obtain

|Rq,k,`| �q 2−
k2

2
+5k `k−1

(k − 1)!
+ 2

k2

2
+5k(k + 1)! ≤ 2

k2

2
+4k k

k

k!
+ 2

k2

2
+6k(k + 1)!� 2

k2

2
+5kkk+1

for ` ≤ 2kk and k ≥ 3 since k!� kk2−k. In particular, for K ≥ 3 we have

meas

( ⋃
k≥K

⋃
2k−1(k−1)≤`<2kk

Yq,k,`
)
≤
∑
k≥K

∑
2k−1(k−1)≤`<k2k

|Rq,k,`|
gk(`)

f(k)

�q

∑
k≥K

∑
2k−1(k−1)≤`<k2k

2
k2

2
+5kkk+1 2(k2)k!

f(k)`k+1

�
∑
k≥K

211k/2
k! kk

(k − 1)kf(k)
�
∑
k≥K

29k/2kk

f(k)
,

by Lemma 3.5. The sum goes to zero if f(x)� 25xxx and so the proof is complete. �

The following lemmas put a lower and an upper limit to how small |τ − σm−1(τ)| can be
when τ is in R \ Yf and R \ Xf respectively.

Lemma 5.7. Let f : R≥0 → R>0 be an increasing function with log(f(x)) ≤ x log x+O(x) as
x→∞. Then for all τ /∈ Yf we have

|τ − σm−1(τ)| ≥ e−
(logm)2

log 4
+Oτ (logm)

as m→∞.

Proof. If τ /∈ Yf then there exists a sufficiently small δ > 0 such that |τ −σn−1(τ)| > δ gk(n)f(k) for

all k ≥ 1 and all n ∈ [2k−1(k − 1), 2k). Now take any m ≥ 2 and let k ∈ N be such that m ∈
[2kk, 2k+1(k+1)). Clearly such a k exists and satisfies k+log2 k ≤ log2m ≤ (k+1)+log2(k+1);
in particular it follows that

k = log2m− log2 log2m+O(1) =
logm− log logm

log 2
+O(1)

as m→∞. The result then follows, since by Lemma 3.5 we have

|τ − σm−1(τ)| > δ
gk(m)

f(k)
>

δ k! 2(k2)

f(k)(2k+1(k + 1))k+1
=
e−

log 2
2
k2+Oτ (k)

f(k)
> e
− (logm)2

log 4
+Oτ (logm)

.

�
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Lemma 5.8. Let f : R>0 → R>0 be an increasing function with f(x) ≥ 3 for x large enough.
Then for all τ /∈ Xf there exist arbitrary large n such that

|τ − σm−1(τ)| ≤ e−
(logm)2−2 logm log logm

log 4
+Oτ (logm log(f(logn)))

as m→∞.

Proof. Let τ /∈ Xf . Then there exists arbitrarily large k, n ∈ N such that |τ −σn−1(τ)| < gk(n)

and 2kk ≤ n ≤ f(k)2kk. In particular, k ≤ log n and we have

k =
log n− log logn

log 2
+O(log(f(log n))).

One then concludes as for Lemma 5.7. �

Proof of Theorem 1.5. Let Y := R \ (Xf ∪ Yg) with f(x) = log x and g(x) = 25xxx. By
Propositions 5.5 and 5.6 we have meas(Xf ∪Yg) = 0, whereas from Lemma 5.7 and Lemma 5.8
we deduce that, for all τ ∈ Y,

0 ≤ lim inf
m→∞

log |τ − σm−1(τ)|+ 1
log 4(logm)2

logm log logm
≤ 1

log 2
,

which is Theorem 1.5 in a stronger form. �

We conclude the section with the following proposition, which implies, in particular, that
the conclusion of Theorem 1.5 does not hold for all τ ∈ R.

Proposition 5.9. Given f : N→ R>0 we can construct τf ∈ R such that |τf − σn(τf )| ≤ f(n)
for infinitely many n. Moreover, the set of τ having this property is dense in R.

Proof. For simplicity we will only prove that there exists a τf with the required property.
Along the same lines one can show that the set of τ with this property is dense in R.

We first observe that we can assume f(n+1) < 1
4f(n) for all n ≥ 1 and that f(1) < 1. Next

we observe that it suffices to construct a sequence of irrational numbers (τi)i and an increasing
sequence of integers (mi)i such that, for all i ≥ 1,

(5.4) σn(τi+1) = σn(τi) ∀n ≤ mi, |σmi(τi)− τi| < 1
2f(mi), |τi+1 − τi| < 1

4f(mi).

Indeed, this implies that for all j > i

|τj − τi| < 1
4(f(mi) + · · ·+ f(mj−1)) <

1
2f(mi)

and thus

|τj − σmi(τi)| ≤ |τi − σmi(τi)|+ |τj − τi| < f(mi)

for all i ≤ j. It follows that the limit τf := limi→∞ τi exists and satisfies |τf −σmi(τf )| ≤ f(mi)
for all i, as desired.

We thus just have to see that such sequences exist. To construct the two sequences one
proceed as follows. For τ1 one takes m1 = 1 and any irrational τ1 in (1 − 1

2f(1), 1 + 1
2f(1)).

Clearly, one has |τ1 − σ1(τ1)| < f(1). Now assume that we have two sequences (τr)r≤i and
(mr)r≤i satisfying (5.4); we need to construct τi+1 and mi+1. For any τ ∈ R and m ∈ N the
set

Im(τ) := {α ∈ R : σn(α) = σn(τ), ∀n ≤ m}
is an interval of non-zero measure containing τ . Since σm(τi) → τi as m → ∞ we can find
q > mi such that σq(τi) is in the interior of Imi(τi), |σq(τi) − τi| < 1

8f(mi) and such that
|σq(τi)− τi| < |σn(τi)− τi| for all n < q (notice that σn(τi) 6= τi for all n since τi /∈ Q). Notice
that this last inequality implies that σq(τi) ∈ Iq(τi). It follows that Imi(τi)∩Iq(τi) is an interval
of non-zero measure containing σq(τi), and so we can find an irrational τi+1 ∈ Imi(τi) ∩ Iq(τi)
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with |τi+1 − σq(τi)| < 1
2f(q). Then, defining mi+1 := q, we have that τi+1 and mi+1 have the

required properties since one has τi+1, τi ∈ Imi(τi) and

|τi+1 − σmi+1(τi+1)| = |τi+1 − σmi+1(τi)| < 1
2f(mi+1)

|τi+1 − τi| ≤ |σq(τi)− τi|+ |σq(τi)− τi+1| < 1
8f(mi) + 1

2f(mi+1) ≤ 1
4f(mi),

where the equality on the first line follows since τi+1 ∈ Imi+1(τi). �

6. The Thue–Morse constant

Let the family of sequences Ek := (Ek(n))n≥0 be defined recursively by

E0(n) := εn and Ek+1(n) :=
∑
m≤n
Ek(m) for k, n ≥ 0,

so that the k-th sequence is the sequence of partial sums of the (k − 1)-th sequence, the first
one being the Thue–Morse sequence. The next lemma gives a description of the sequences Ek.

Proposition 6.1. For every k ≥ 0 there exists a finite sequence Wk := (wk(n))2
k−1
n=0 , with

wk(n) ∈ Z≥0, such that:

(6.1) Ek = (ε0 ·Wk, ε1 ·Wk, ε2 ·Wk, . . . ).

Moreover, one has:

(i)
∑2k−1

n=0 wk(n) = 2(k2);

(ii) wk(2
k − 1) = · · · = wk(2

k − k) = 0;

(iii) wk(2
k − k − 1− n) = wk(n) for all n, with 0 ≤ n ≤ 2k − k − 1.

(iv) wk(n) ≤ 2(k−1
2 ) for all n ∈ [0, 2k) and the equality holds if and only if 2k−1− k− 1 ≤ n ≤

2k−1 − 1.

Proof. We give a proof using generating functions. Given a sequence of integers (an)n≥0 with
generating function F (x), the generating function of

(∑
m≤n an

)
n≥0 is equal to F (x)/(1− x).

Now, letting Ek(x) denote the generating function of Ek for k ≥ 0, we have

E0(x) :=
∞∑
n=0

εnx
n =

∞∏
j=0

(1− x2j )

and thus

(6.2) Ek(x) =
E0(x)

(1− x)k
=

k−1∏
j=0

1− x2j

1− x

∞∏
j=k

(1− x2j ) = Qk(x)E0(x
2k),

where

(6.3) Qk(x) :=
k−1∏
j=0

(1 + x+ x2 + · · ·+ x2
j−1) =

2k−1∑
n=0

wk(n)xn,

for some sequence of integers (wk(n))2
k−1
n=0 with

(6.4) wk(n) := #{(a0, . . . , ak−1) ∈ Zk≥0 : a0 + · · ·+ ak−1 = n, aj ≤ 2j − 1 ∀j}.

At this point, (6.1) follows immediately from (6.2). Also, Qk(1) = 2(k2) implies (i), and

degQk = 2k − k − 1 implies (ii). Furthermore, we have Qk(x) = Qk(1/x)x2
k−k−1 and so (iii)

follows. Finally, if n satisfies

k−2∑
j=0

(2j − 1) = 2k−1 − k − 1 ≤ n ≤ 2k−1 − 1,
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then for any a0, . . . , ak−2 as in (6.4) there exists a unique ak−1 such that a0 + · · ·+ ak−1 = n.

Thus, for all such n one has wk(n) =
∏k−2
j=0 2j = 2(k−1

2 ) and the same reasoning gives wk(n) <

2(k−1
2 ) for all the other possible values of n, so that (iv) follows. �

Corollary 6.2. For n ≥ 1 let n = 2µn′ with n′ odd. Then E1(n − 1) = E2(n − 1) = · · · =

Eµ(n− 1) = 0 and Eµ+1(n− 1) = −2(µ2)εn.

Proof. By (6.1) we have |Ek(n− 1)| = |Ek(m− 1)| if m ≡ n (mod 2k). In particular, if µ ≤ k,
then |Ek(n− 1)| = |Ek(2k − 1)| = 0 by Proposition 6.1, (ii). Moreover writing n′ = 2n′′ + 1 we
have n− 1 = 2µ+1n′′+ 2µ− 1. Thus, by (6.1) and Proposition 6.1, (iv), we have Eµ+1(n− 1) =

2(µ2)εn′′ = −2(µ2)εn′ = −2(µ2)εn (because the multiplication by 2 does not modify the number
of non-zero digits in the binary representation). �

The first few sequences Wk are as follows:

W0 = (1), W1 = (1, 0), W2 = (1, 1, 0, 0),

W3 = (1, 2, 2, 2, 1, 0, 0, 0), W4 = (1, 3, 5, 7, 8, 8, 8, 8, 7, 5, 3, 1, 0, 0, 0, 0),

W5 = (1, 4, 9, 16, 24, 32, 40, 48, 55, 60, 63, 64, 64, 64, 64, 64, 63, . . . , 1, 0, . . . , 0).

Remark 6.3. The sequence arising from the Wk also appeared and was studied in the recent
work [33, Section 5]. In this paper Vignat and Wakhare defined the numbers αNm such that

21−1∑
m1=0

· · ·
2N−1∑
mN=0

g(m1 + · · ·+mN ) =
2N−N−1∑
m=0

αNmg(m).

for any function g. It is not difficult to see (cf. (6.3) and [33, (5.1)]) that the two sequences
coincide, i.e., wk−1(n) = αkn for k ≥ 1, 0 ≤ n < 2k.

Remark 6.4. The vectors Wk are related to the Fabius function. This can be defined as the
unique solution F : [0, 1]→ R of the following functional differential equation problem

F (0) = 0;

F (1− x) = 1− F (x), x ∈ [0, 1];

F ′(x) = 2F (2x), x ∈ [0, 1/2].

It can also be defined as the cumulative distribution function of
∑∞

n=1Xn/2
n, where X1, X2, . . .

are independent and uniformly distributed random variables on the unit interval [0, 1]. It is
an example of an infinitely differentiable function that is nowhere analytic [17, 20]. Setting

F ′k(n/2
k) := 2(3k−k

2)/2wk(n), for all integers k ≥ 0 and n ∈ [0, 2k), we have the identities

1

2k

2k−1∑
n=0

F ′k(n/2
k) = 1;

F ′k

(
1− n+ k + 1

2k

)
= F ′k

( n
2k

)
, n ∈ [0, ..., 2k − k − 1];

F ′k

( n
2k

)
= 2 · 1

2k−1

∑
m≤n

F ′k−1

( m

2k−1

)
, n ∈ [0, ..., 2k−1 − 1];

which are discrete versions of∫ 1

0
F ′(x) dx = 1;

F ′(1− x) = F ′(x), x ∈ [0, 1];

F ′(x) = 2

∫ 2x

0
F ′(t) dt, x ∈ [0, 1/2].
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Indeed, F ′k(x) approximates F ′(x) = 2F (2x) as k → +∞ (see Figure 3). See [8, 9, 22] for more
information about the values of the Fabius function at dyadic fractions.

 0
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Figure 3. The graphs of the derivative of the Fabius function (solid lines) and
of the vectors W6 (left, dotted) and W9 (right, dotted). The vectors are scaled
to fit in [0, 2].

Proposition 6.1 shows that the sequence of partial sums E1 is bounded. In particular, by
partial summation the series

(6.5) τ0 :=

+∞∑
n=1

εn−1
n

=

+∞∑
n=1

E1(n− 1)

(
1

n
− 1

n+ 1

)
converges. Applying partial summation repeatedly, one also obtains the identity

(6.6) τ0 −
n∑

m=1

εm−1
m

=
∑
m>n

εm−1
m

= −
k∑
`=1

E`(n− 1)G`−1(n+ 1) +
∑
m>n

Ek(m− 1)Gk(m),

for all k ≥ 0 and n ≥ 1, where Gk is defined by the recurrence relation

G0(x) :=
1

x
, and Gk+1(x) := Gk(x)−Gk(x+ 1) for k ≥ 1.

Notice that the definition is similar to the one of gk, but the shift in the second argument is
different. The following lemma shows that Gk can be written also as a simple rational function.

Lemma 6.5. For every k we have

Gk(x) =
k!∏k

`=0(x+ `)
.

In particular, 0 < Gk(x) ≤ k!/xk+1 when x > 0 and Gk(x)xk+1 = k!(1 +O(1/x)) as x→∞.

Proof. We proceed by induction on k. The formula is trivial for k = 0. Using the recursive
definition of Gk and the inductive hypothesis we get:

Gk+1(x) = Gk(x)−Gk(x+ 1) =
k!∏k

`=0(x+ `)
− k!∏k

`=0(x+ `+ 1)

=
k!∏k

`=0(x+ `)
− k!∏k+1

`=1 (x+ `)
=

(k + 1)!∏k+1
`=0 (x+ `)

. �

We now give the following lemma which implies that the series defining τ0 gives its greedy
representation.

Lemma 6.6. We have τ0 > 0. Moreover, for n ≥ 1 let n = 2µn′ with n′ odd. Then

(6.7) εn

∞∑
m>n

εm−1
m

> 2(µ2)Gµ+1(n+ 2µ+1) > 0.
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Proof. Since |E1(n)| ≤ 1 for all n and E1(0) = 1, E1(1) = 0, by (6.5) we have

τ0 ≥
1

2
−

+∞∑
n=3

(
1

n
− 1

n+ 1

)
=

1

6
.

In particular τ0 > 0.

Applying (6.6) with k = µ+ 1 gives

(6.8)
∑
m>n

εm−1
m

= −Eµ+1(n− 1)Gµ(n+ 1) +
∑
m>n

Eµ+1(m− 1)Gµ+1(m),

since by Corollary 6.2 one has E`(n − 1) = 0 for all ` ≤ µ. By Proposition 6.1, (iv), and

the periodicity of (|Eµ+1(n)|)n, we have |Eµ+1(m)| ≤ 2(µ2) and Eµ+1(c − 1) = 0 where c is the
smallest multiple of 2µ+1 such that c > n; in particular, c < n+ 2µ+1. Thus,∣∣∣ ∑
m>n

Eµ+1(m− 1)Gµ+1(m)
∣∣∣ ≤ 2(µ2)

( ∑
m>n

Gµ+1(m)−Gµ+1(c)
)

= 2(µ2)
(
Gµ(n+ 1)−Gµ+1(c)

)
,

where in the last two steps we have used the positivity and the telescoping property of Gµ+1.

Also, by Corollary 6.2 we have Eµ+1(n− 1) = −εn 2(µ2). Thus, (6.8) gives

2(µ2)Gµ(n+ 1)− εn
∑
m>n

εm−1
m

<
∣∣∣ ∑
m>n

Eµ+1(m− 1)Gk(m)
∣∣∣ < 2(µ2)

(
Gµ(n+ 1)−Gµ+1(c)

)
and the claimed inequality follows since Gµ+1(c) ≥ Gµ+1(n+ 2µ+1). �

We are now in position to prove the claims in Theorem 1.9.

Proof of Theorem 1.9. The fact that sn = sn(τ0) = εn−1 for all n ≥ 1 follows from Lemma 6.6,
by proceeding as in the proof of Corollary 4.4.

Let k ≥ 1 and let n = 2kn′ with n′ odd. Corollary 6.2 shows that E1(n − 1) = · · · =

Ek(n− 1) = 0. Also, Proposition 6.1 gives that |Ek(m)| ≤ 2(k−1
2 ) for all m. Hence, (6.6) gives

|τ0 − σn| =
∣∣∣ ∑
m>n

Ek(m− 1)Gk(m)
∣∣∣ ≤ 2(k−1

2 )
∑
m>n

Gk(m),

since Gk(m) is positive. Recalling the telescoping definition of Gk and the bound for Gk−1
given in Lemma 6.5, we get

(6.9) |τ0 − σn| ≤ 2(k−1
2 )Gk−1(n+ 1) ≤ 2(k−1

2 )(k − 1)!/nk,

which is the first claim, since 2(k−1
2 )(k − 1)! = ck−1. Moreover, applying (6.6) with k + 2 in

place of k, gives

τ0 − σn = −Ek+1(n− 1)Gk(n+ 1)− Ek+2(n− 1)Gk+1(n+ 1) +
∑
m>n

Ek+2(m− 1)Gk+2(m).

Corollary 6.2 shows that Ek+1(n− 1) = −2(k2)εn, whereas, telescoping, again, we have∣∣∣ ∑
m>n

Ek+2(m− 1)Gk+2(m)
∣∣∣ < 2(k+1

2 )Gk+1(n+ 1) = Ok(n
−k−2)

Thus,

τ0 − σn =
εnck
nk+1

(1 +Ok(1/n)) ∼k
εnck
nk+1

.

Finally, by (6.7) we have

|τ0 − σn| > 2(k2)Gk+1(n+ 2k+1) > 2(k2)Gk+1(3n) > 2(k2)−2k−2
(k + 1)!

nk+2
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since n ≥ 2k ≥ (k + 1). Thus, after a quick computation with Stirling’s formula one obtains

log |τ0 − σn| > min
k∈R

( log 2

2
(k2 − 5k) + log(k!)− 2− k log n

)
= −(log n− log log n)2

log 4
+O(log n).

Equation (1.10) then follows since (6.9) with n = 2k gives

|τ0 − σn| ≤ 2−
k2+3k

2
+1(k − 1)! = e

− (logn−log logn)2

log 4
+O(logn)

. �
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Italy

Email address: carlo.sanna.dev@gmail.com

https://doi.org/10.1007/s11139-018-0065-0

	1. Introduction
	Notation

	2. Preliminary considerations and the proof of Theorem 1.1
	2.1. Sequence of signs and the corresponding inequalities

	3. Thue–Morse sums and the proof of Theorem 1.7
	3.1. The function gk(x) and other Thue–Morse sums
	3.2. Inequalities for gk(x)
	3.3. Proof of Theorem 1.7

	4. The exceptional sets Xk
	4.1. Verifying whether Xk in a finite number of steps

	5. Proof of Theorem 1.5
	6. The Thue–Morse constant
	References

