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Random Spray Retinex: A New Retinex
Implementation to Investigate the Local

Properties of the Model
Edoardo Provenzi, Massimo Fierro, Alessandro Rizzi, Luca De Carli, Davide Gadia, and Daniele Marini

Abstract—In order to investigate the local filtering behavior of
the Retinex model, we propose a new implementation in which
paths are replaced by 2-D pixel sprays, hence the name “random
spray Retinex.” A peculiar feature of this implementation is the
way its parameters can be controlled to perform spatial investiga-
tion. The parameters’ tuning is accomplished by an unsupervised
method based on quantitative measures. This procedure has been
validated via user panel tests. Furthermore, the spray approach
has faster performances than the path-wise one. Tests and results
are presented and discussed.

Index Terms—Locality of color perception, pixel sprays, Retinex.

I. INTRODUCTION

THE human visual system (HVS) does not perceive the
color of an area independently from the visual scene in

which it lies; instead, it is heavily influenced by the chromatic
content of the other areas of the scene. This psychophysio-
logical phenomenon is the locality of color perception. One
of the earliest models able to deal with locality of perception
has been Retinex by Land and McCann [1]. The scientific
community has always been interested in this model and its
various applications, as reported in [2].

In the basic Land and McCann implementation of Retinex,
locality is achieved through paths scanning images.

A great amount of implementations and analysis followed
after this first work. These can be divided into two major groups,
differing from the way they achieve locality: sampling the chro-
matic content around a pixel [3]–[7] or integrating it [8]–[15].

All the sampling implementations that use a path-wise ap-
proach have to deal with the following problems: strong depen-
dency on paths geometry, high computational cost, and sam-
pling noise.

On the basis of a recent mathematical analysis of path-wise
Retinex algorithms [16], we will prove the intrinsic redundancy
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of this approach. Consequently, we will propose an extension
that allows to keep the sampling approach, highly reducing the
problems related to the use of paths.

This alternative technique is constructed replacing paths with
random sprays, i.e., 2-D point distributions across the image, so
the name “random spray Retinex” (RSR). We will show how it
is possible to change the spray density around a pixel and how
this leads to the ability of finding out information about locality
of color perception within the Retinex model.

The structure of the paper is the following. In Section II, we
review the basic information contained in [16] about the mathe-
matical formulation of path-wise Retinex implementations and
its consequences on the intrinsic properties of the model. In Sec-
tion III, we motivate the passage from paths to sprays used in
Section IV to implement RSR and discuss its properties. Finally,
Section V is dedicated to the tuning of RSR parameters.

II. MATHEMATICAL DESCRIPTION OF RETINEX

The starting point of our analysis is the mathematical descrip-
tion of Retinex given in [16] and briefly recalled here. Consider
a RGB digital image and a collection of paths
composed by ordered chains of pixels starting in and ending
in (called target pixel). Let be the number of pixels traveled
by the th path and let be its parameter, i.e.,

, and .
We indicate two subsequent pixels of the path as
and , for . In Retinex,
the computations are performed separately in every chromatic
channel , to avoid a cumbersome notation we
omit its specification. So, we write , to indicate
the intensities of and in the three separated chromatic
channels. We write their ratio as ,
with . For technical reasons, it is useful to normalize
the intensities; to take their values in the real unit interval ,
we omit the zero value because we must perform divisions. The
usual way to do this is to add a small positive constant to all
pixel intensities.

In [16], it has been proved that the intensity of is recomputed
by Retinex to give the (normalized) lightness through the
function that follows:

(1)
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where , , are functions defined
in this way: and, for , see
equation (2), shown at the bottom of the page, being a
fixed threshold.

When the first or the third option are satisfied, acts simply
as the identity function and the formula implements the typical
“chain of ratios” of Retinex [1].

The second option occurs when only a very small change of
intensity is measured between two subsequent pixels. In this
case, so that the product of ratios remains un-
changed with respect to the previous step. This implements in a
mathematical fashion, the so-called threshold mechanism.

Finally, when the fourth situation is satisfied, i.e., when
, then resets the

chain of product to 1 so that the last pixel traveled becomes the
local white reference. This is the mathematical implementa-
tion of the reset mechanism. The white patch behavior of the
algorithm is determined by this operation.

All the options together realize the well-known ratio-
threshold-reset mechanism of Retinex.

This description of the original Retinex algorithm is exhaus-
tive but not predictive because of the presence of the threshold
mechanism. In [16], we have shown that, for such values of ,
the difference between Retinex with and without threshold has
an upper bound which has negligible effects for the final light-
ness computation. In [16], it has been proved that the really im-
portant mechanism of Retinex is the reset, which determines its
filtering properties. Hence, we are going to study Retinex fixing

until the rest of the paper.
The great advantage to neglecting the threshold mechanism is

that the mathematical formulation undergoes a significant sim-
plification, and it can be proved [16] that the lightness value can
be written with this closed formula

(3)

where is the pixel with highest intensity traveled by the path
, for every .
It is immediate to see that is the average of the single

path contributions ; hence, the only in-
formation that characterizes every contribution is the value of
the pixel with the highest intensity traveled by the path .
This also means that Retinex is a pure local white-patch algo-
rithm, where locality depends on path geometry.

It follows that the problem of finding reduces to the
problem of finding the maximum value assumed by the image
function along , for every . We stress
that this result is independent from paths geometry.

Finally, we remember that the analysis of formula (3)
performed in [16] revealed three intrinsic characteristics of
Retinex. The first is that its filtering properties are strongly
image dependent; the second is that, when path lengths tend
to very big values (compared with the image size), Retinex
loses its local properties and becomes a global white-patch
algorithm. Finally, the third intrinsic property is that Retinex is
not an idempotent operator, i.e., in general, ,
but subsequent iterations of Retinex converge to a fixed image
qualitatively characterizable as follows: Every path travels at
least one pixel with intensity 1 in every fixed chromatic channel.

III. FROM PATHS TO PIXEL SPRAYS

The information given by the mathematical formulation
of Retinex have strong consequences on the structure of

: The set of paths embedded in the image and ending
in the point . After formula (3), on this set, it is natural to
define this equivalence relation: Given ,

(4)

where and are the codomain of the paths, i.e., the collec-
tions of pixels traveled by and , respectively.

Paths belonging to different equivalence classes give different
contributions to the lightness computation, while every path in
a given equivalence class is characterized by the same value of

. It immediately follows that, for the purposes of Retinex,
contains redundant paths and so the really inter-

esting set of paths is the quotient set , whose el-
ements are the equivalence classes of paths with respect to the
equivalence relation defined in (4).

Path-wise Retinex implementations are affected by two kind
of redundances: From one side, many paths must be used to
reduce the sampling noise; from the other side, as just proved,
they can be organized in equivalence classes, so that if one uses
two paths belonging to the same class, they will lead to the same
chromatic information, i.e., they are redundant.

In each equivalence class, one can choose a single represen-
tative path to compute ; in particular, the shortest one is
the two-points path whose codomain is simply . It fol-
lows that the ordering operations needed to generate the paths
are perfectly uninfluential for the final lightness computation.

if
if
if

if

(2)
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Moreover, by a mathematical point of view, paths are topo-
logical manifolds of dimension 1 embedded in the image, which
is a topological manifold of dimension 2, so paths do not really
scan local neighborhoods of a pixel, but rather particular di-
rections in these neighborhoods. This directional extraction of
information can lead to halos or artifacts in the filtered image.

The classical implementations of Retinex try to remedy this
problem using a large number of paths, but this increases the
filtering time and does not really overcome the problem.

We see that there are three reasons for which paths are not
perfectly suitable for the analysis of locality of color perception
within the Retinex model: They are redundant, their ordering is
completely uninfluential, and they have inadequate topological
dimension.

Thus, we are lead to use 2-D objects, such as areas, instead
of 1-D paths to analyze locality of color perception. More pre-
cisely, our idea is to implement the investigation about locality
selecting pixels from these areas with a density sample that
changes according to a given function of their distance with re-
spect to the target pixel . Each function generates a different
kind of pixel selection around , leading to different kind of
“sprays,” each of which reveals different local filtering proper-
ties.

Sections IV–VI explain in detail how it is possible to make
these ideas concrete, generating the new implementation of
Retinex that we have denoted with RSR: “Random Sprays
Retinex.”

IV. RSR IMPLEMENTATION

RSR is a new implementation of the original Retinex model
[1] which has been inspired from the results of the mathematical
analysis of Retinex performed in [16]. In RSR, the role of a path

traveling pixels and ending in the target is played by
, a spray composed by pixels and centered in . In

fact, random sprays are selected from a precomputed set (the
symbol now will be used to denote the number of sprays to
put in stronger evidence of the correspondence between paths
and sprays). The typical ratio-reset operation along a path is
substituted by the search of the pixel with highest intensity in
the whole spray. It will be clear from the following discussion
that, once the number of points per spray is chosen, there is no
need to vary it with ; hence, from now on, we will write
instead of to denote the number of pixels per spray.

The functional expression of the formula (3) to compute the
lightness remains exactly the same in both algorithms, so they
share the same intrinsic properties recalled at the end of Sec-
tion II. This is the reason why the results about locality of color
perception that we will get thanks to the RSR implementation
can be referred to the Retinex model.

Notice that the only operations performed by RSR in each
spray are comparisons (needed to find out the pixel with
highest intensity) and one division. So, RSR is significatively
faster than the previous path-wise Retinex implementations.

Let us now show how to construct . With a random
point generator, we can get a uniform random distribution of
values in the real unit interval . Then, by multiplication,
we can extend this distribution to any real interval; in particular,
we are interested to the intervals and , where

Fig. 1. Computation of the mean areolar density in function of the spray radius.

is a given positive real number that will represent the radius
of the spray. We denote, respectively, with and

the corresponding uniform random distributions.
Now, if are the coordinates of , we can define the

polar coordinates of a generic pixel belonging to
; in this way

(5)

where , .
These are the coordinates of pixels that have an isotropic an-

gular distribution in a circle of radius centered on the pixel .
Notice, however, that the radial density is not isotropic; in

fact, because of the rotation, the spray results are more dense
near the target pixel than far away. To compute , the mean
areolar density variation in the function of , consider, as in
Fig. 1, a circle of arbitrary radius , , cen-

tered on . The area of is , so , more-
over, since we are dealing with uniform random distributions,

the mean number of points inside is . Com-
puting the derivative of with respect to , we get the rate of
change of the average areolar density, in fact

but , so

(6)

Thus, the mean radial density of spray pixels decreases as the
inverse radius.

Fig. 2 shows an example of such a spray with 400 pixels and
radius .

The angular isotropy is a natural requirement that must be
satisfied by the spray, since the presence of privileged directions
generates artifacts and haloes in the filtered image.

Now, the local properties of Retinex can be analyzed in a very
simple way applying a function on the coordinate to change
the radial density of the spray pixels around . Precisely, given
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Fig. 2. Example of “naturally localized” spray.

Fig. 3. Spray with f(�) = (log(1 + �)= log(2)).

Fig. 4. Spray with f(�) = (sinh(�)= sinh(1)).

Fig. 5. Spray with f(�) = � .

any function , we can consider the modified spray
whose pixels have polar coordinates defined by

(7)

where, again, and . It
is useful to distinguish the special case in which , the
identity function restricted on nonnegative real numbers, calling
the corresponding spray “naturally localized.”

Figs. 3–10 show some examples of sprays with ,
, obtained with different functions .

It can be seen that the normalized logarithmic and hyperbolic
sinus functions keep the spray density quite similar to the one

Fig. 6. Spray with f(�) = � .

Fig. 7. Spray with f(�) = (e � 1=e� 1).

Fig. 8. Spray with f(�) = (e � 1=e � 1).

Fig. 9. Spray with f(�) =
p
�.

Fig. 10. Spray with f(�) =
p
�.

of the naturally localized spray. Instead, powers of with ex-
ponents greater than 1 and the normalized exponential function
tend to increase the density around the center. Finally, powers of

with exponents in and the normalized inverse exponen-
tial applied on tend to delocalize the spray. The multiplication
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of by a constant coefficient simply changes the radial ex-
tension of the naturally localized spray, expanding the radius,
when , or contracting it, when .

To perform the analysis of locality in RSR, we must tune
and the other parameters of the algorithm. Before showing the
results about tuning, we briefly summarize all these parameters
and discuss their meaning in Section IV-A.

A. RSR Parameters and Their Meaning

RSR depends on four parameters: (the radius of the sprays),
(the radial density function) (the number of sprays), and

(the number of pixels per spray).
The radius of the spray defines the extension of the circular

area analyzed around the pixel . This area must be tuned to get
enough information about the color distribution around .

As already stated, the function changes the radial density
of the spray pixels. It must be tuned to find out what is the spray
pixel distribution that better fits the computational reproduction
of color perception performed by the HVS.

For each , there is a non zero probability to find the
pixel with highest intensity in an isolated pixel not related
to the context. This, of course, would produce chromatic noise
in the filtered image. Since the spray pixels are generated by
a random point generator, all the sprays are different, and
so, statistically speaking, the influence of isolated pixels on the
global computation of decreases when we average many
sprays contributions . Hence, the higher the number of
sprays, the lower the chromatic noise in the filtered image. This
is confirmed by the tests performed (as will be discussed later),
which also shown that, to avoid pattern replication all across
the image, the sprays must be taken by a precomputed set of, at
least, a thousand sprays.

Finally, the number of pixels per spray determines how
much information is extracted from the spray area. If we use
very large values of , we cover the whole spray area, losing the
locality of the spray distribution; instead, if we use small values
of , we cannot get enough information to correctly compute

.

V. TUNING RSR PARAMETERS

We performed our tests on a set of over 100 very different
pictures given by real-world images, portraits, landscapes, and
geometric images.

A. Tuning the Spray Radius

The easiest parameter to tune has proved to be the radius: For
all images and independently from the other parameter of RSR,
our tests showed that the optimal value for is DIAG, the value
of the diagonal of the image.

The reason is easily comprehensible: If one uses a smaller
radius, then two pixels that lie near the extreme points of the
diagonals can never be compared. The effect of using a smaller
radius than DIAG can be clearly seen comparing Figs. 11 and 12,
which have been filtered with and ,

Fig. 11. Image filtered with spray radius R = DIAG=2.

Fig. 12. Same image as in Fig. 11 filtered with spray radius R = DIAG.

Fig. 13. Original “Gallery” image.

respectively, keeping all the other parameters constant: as ra-
dial coordinate, , .

Furthermore, it is not useful to use a radius larger than DIAG,
since the spray loses part of its density around the target pixel
and many spray points lie outside the image area.

B. Tuning the Radial Density Function

The radial density of the spray is responsible for the local
property of RSR because the probability to find out the pixel
with highest intensity in the spray is greater in the image areas
where the spray is denser than in the image regions where the
spray has only few points.

It is well known that tests about human color perception show
that the chromatic influence between two pixels decreases with
their distance (e.g., [17]–[20]). This fact is implemented in every
color perception model: path-wise algorithms (e.g., [6]) sample
the image content with paths that are denser in the immediate
neighborhood of the target pixel than far away, while integra-
tive algorithms (e.g., [10]) use a center/surround technique that
weights the surround of the target pixel with monotonically de-
creasing functions.

Coherently with this, even RSR revealed that delocalized
sprays are inadequate to correctly simulate color perception by
the HVS. For example, Fig. 14 shows the result of filtering the
image in Fig. 13 using as radial coordinate.
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Fig. 14. Effects of a spray with radial coordinate
p
�.

Fig. 15. Quality test for different radial density functions.

Fig. 16. Noise induced by a spray with radial coordinate � .

As a consequence, the only interesting radial density func-
tions are those that correspond to monotonically decreasing ra-
dial densities. Only such functions will be considered in the next
discussion.

We conducted the tuning using both subjective quality match
tests and quantitative tests about color constancy.

The first kind of tests has been developed as follows: We fil-
tered our test set of images fixing and and varying the ra-
dial density function. We have displayed the images on a middle
gray background of a calibrated monitor in a dark room. Then
we asked a collection of users to indicate in a scale between 1
(poor) and 5 (excellent), the degree of naturalness (color plausi-
bility in relation to the personal experience), absence of noise,
and detail visibility of the filtered images. The results of our
tests, averaged on the three questions and on the test set images,
are shown in Fig. 15.

The images filtered with the naturally localized spray have al-
ways received the best judgement by the users. Starting from ,
the sprays results too localized and the corresponding filtered
images show an increasing amount of noise, as can be seen in
Fig. 16, that has been filtered with as radial coordinate and
with , (to be compared with Fig. 12, which
has been filtered with the same values of and , but with as
radial coordinate).

Fig. 17. Image of the database YACCD for color constancy tests.

Fig. 18. Color constancy test for different radial density functions.

Regarding color constancy tests, we considered the pictures
of the database described in [21], consisting in a series of pho-
tographs taken under different color casts. We filtered each se-
ries of pictures with different radial density functions. Then, we
computed the CIELab differences between the images filtered
with every given radial density function to have a measure of
the corresponding algorithm ability to reduce color cast. This
methodology is motivated by the fact that RSR always preserves
the image content and does not collapses the dynamic range.

For more readability, we report only the results of our tests on
the picture in Fig. 17 taken under three different casts: Cast 1
PHILIPS Neon Neutral Daylight 6500K (TLD965), Cast 2
PHILIPS Neon Fluotone 4100K (TLD840), Cast 3 PHILIPS
Neon Daylight 5000K (TLD950). Tests with the other casts
shown analogous results. We choose the database in [21] since it
has been devised to test color correction algorithms without fa-
cilitating any of them. In fact, instead of choosing a white, gray
or black background, we used two white noise backgrounds with
different spatial frequencies.

The values visualized in the graphics of Fig. 18 correspond
to the parameters and , when these parameters
are varied the numerical values of the differences change, but
the relationship between the different radial density functions
does not change.

It can be seen that the density function that minimizes the
CIELab difference between the filtered images is the identity
function. Tests on the other images exhibit analogous results.

The consequence of our subjective and quantitative tests is
that the naturally localized spray is the most suitable to repro-
duce the behavior of the HVS within the RSR implementation
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of the Retinex model. From now on, RSR will be considered
only with as radial coordinate.

We recall from (6) that the mean areolar density of the natu-
rally localized spray decreases as the inverse distance from the
center. It follows that, in RSR, a fixed pixel , every other pixel of
the image, considered as a single entity, has a “mean chromatic
influences” on that decreases as the inverse distance from .
This fact implies that, statistically speaking, the chromatic in-
fluence of pixels close to is comparable only with that of entire
areas of pixels far from , the wideness of which must increase,
according to (6). This seems to be a good motivation to study
multilevel extensions of RSR.

Finally, we notice that the result of this section corresponds
to what found in the tuning experiments of another color per-
ception model: automatic color equalization (ACE) [22], [24].
In that algorithm, the target pixel is compared with the other
image pixels, each of which is weighted with a coefficient. In
[22], it has been shown that good weight coefficients are the in-
verse distances from the target.

C. Tuning the Number of Sprays and Pixels Per Spray

One of the consequences of the mathematical analysis per-
formed in [16] is that, as the paths length of a path-wise Retinex
implementation grows to great values, the algorithm loses its
local properties showing a global white patch behavior. The
tuning of paths length or number is still an open problem for
path-wise Retinex implementations.

We are now going to show that, with the RSR implementa-
tion, it is possible to perform an unsupervised tuning of the pa-
rameters and in a self-consistent way, highly reducing the
range of their optimal values.

These two parameters are strictly related because the light-
ness is computed averaging the contributions of the sprays,
each of which depends on how many points are used to find out
the pixel with highest intensity.

We carried out the tuning as follows. We filtered the images
of our test set increasing from 5 to 60 with a constant step
of five sprays and increasing from 250 to 900 with a constant
step of 50 points. Then, we calculated and ,
the CIELab differences between the images filtered with a fixed
value of and two consecutive values of , and vice versa,
with playing the role of . We observed that both
and decrease monotonically for all images.

Now, since two images are considered chromatically indis-
tinguishable if , it is natural to tune and , taking
the smallest values of these parameters for which this inequality
holds true. In other words, this procedure is a natural compro-
mise between the minimization of filtering time and the maxi-
mization of filtering quality.

To have a quantitative example to discuss, let us consider the
tests performed on the image in Fig. 19.

The interpolation graphic of , viewed as a function of
and , and its intersection with the hyperplane , is
visualized in Fig. 20.

Figs. 21 and 22 represent the interpolation graphics of the
functions and , which are the level curves of
the surface in Fig. 20. Indicated in the horizontal axis are the
two consecutive values of or corresponding to the CIELab

Fig. 19. Image for the tuning of the parameters n and N .

Fig. 20. Surface of �E(n;N) intersecting the hyperplane �E � 1.

Fig. 21. Graphics of �E (n) for different values of N .

Fig. 22. Graphics of �E (N) for different values of n.

difference values displayed in the graphic. Only the significant
part of the curves are visualized.

Since the parameters and control two different charac-
teristics of the filtered image, it is not sensed to take high values
of and little values of , or vice versa, because the corre-
sponding image would have good chromatic quality, but high
chromatic noise, or vice versa, respectively. Instead, the optimal
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Fig. 23. Quality test for the parameters n and N with respect to Fig. 19.

Fig. 24. “Gallery” filtered with tuned parameters: N = 25, n = 800.

couple must be chosen as the “minimal” couple of in-
termediate values of and such that the surface
lies under the hyperplane , where, with “minimal, ”
we mean the couple that minimizes the product . For ex-
ample, it can be seen from Figs. 21 and 22 that both the couples

and correspond to
intermediate values of and such that the surface lies under

, but , so that the
optimal choice is , because it corresponds
to 750 operations per pixels less than the other couple.

We combined the procedure just described with subjective
matches analogous to those performed for the tuning of the ra-
dial density function, but now changing the values of and

every time. The results of the tests performed on the image
shown in Fig. 19 are presented in Fig. 23. The surface is ob-
tained interpolating the values at the nodes , the value at
each node is calculated averaging the degree of naturalness, ab-
sence of noise and detail visibility indicated by the users.

It can be seen from the graphic in Fig. 23 that the surface re-
veals a wide constant area after the couple of parameters
overcomes (20 400), as predicted by the quantitative procedure
described above. It is evident that there is no reason to incre-
ment the filtering time taking greater values for and . All the
other tests performed has revealed agreement between the un-
supervised procedure described above and the subjective tests
involving users.

Now that we described the tuning procedure, we show in
Figs. 24–28 some output results of RSR with tuned parameters.

As can be seen from the different values of optimal values of
and for the various images, the tuning of and strongly

depends on the different image content. The problem to find out
a formula to precisely determine the variation of the parameters

and in relation with the image content still remains open.

Fig. 25. Original “Books” image.

Fig. 26. “Books” filtered with tuned parameters: N = 25, n = 750.

Fig. 27. Original “Flowers” image.

Fig. 28. “Flowers” filtered with tuned parameters: N = 20, n = 450.

D. Filtering the Same Image With Different Sizes

If we consider a given image at different sizes, then we need
a formula to extend the optimal values of and for a certain
size to the other sizes of the same image. Our tests have shown
that the optimal value of remains constant, but, as expected,
the optimal value of changes. In fact, determines the amount
of information needed to compute the lightness and obviously
this amount must increase or decrease in relation with the image
size.
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We can formalize the problem in this way: Suppose we have
the same image at the sizes and , and sup-
pose that , the optimal value of for the image
of width and height , is known. The easiest way to find
out , the optimal value of for the image of width

and height , is to impose this mathematical proportion

(8)

i.e., to impose the fraction of spray pixels per unit of image area
to remain constant.

Applying the unsupervised tuning procedure previously de-
scribed, all the images of our test set shown that, once the op-
timal value of is found for a given image size, formula (8)
enables to correctly compute the changes of the optimal value
of in function of the new image sizes.

VI. COMPARISON BETWEEN RETINEX ALGORITHMS:
AN OPEN PROBLEM

The present work is the sequel of a [16] in which the intrinsic
mechanisms of the original Retinex algorithm of Land and Mc-
Cann [1] have been mathematically described and analyzed. In
this sequel we have proved that if the path-wise structure is sub-
stituted with the random spray structure, then interesting infor-
mation about local Retinex properties arise naturally. This is,
of course, just a first step toward the full comprehension of the
spatial properties of the Retinex model.

There is a big interest in the comparison among spatial prop-
erties of all the different Retinex implementations available in
literature. We believe that this is a very challenging task, and
it should still be considered an open problem. In fact, the be-
havior and consequent performances of such algorithms affect,
and are affected by, several image characteristics: not only do
algorithm parameters modify the final result, but image features
also change the parameter choice. This regards several visual as-
pects, among them contrast, frequency content, saturation, and
noise.

To judge the pleasantness and quality of the output images, a
perceptual analysis is necessary, but this is particularly difficult
since there is not yet a universally accepted perceptual measure
to compare image quality.

Moreover, if we consider the ability to remove color cast, a
judging criterion for the algorithm efficiency, it has to be con-
sider that, differently from machine (or perfect) color constancy,
the human color constancy property is never complete, and it
depends on several factors, such as temporal transients or illu-
sive visual configurations. So, a comparison between algorithms
based on this property would be insidious to implement.

Another great difficulty for a complete comparison is the fact
that every Retinex implementation depends highly on its own
parameters, whose tuning, in the few cases in which it has been
performed [23], is based on very different criteria and image test
sets.

Finally, a mathematical description of all the algorithms con-
sidered would create the basis for a common background where
performing comparisons about the intrinsic properties of each
implementation.

All the open problems briefly described above make the im-
portant issue of a proper and exhaustive comparison still a dif-
ficult task that we deem interesting for future research.

VII. CONCLUSION

We presented a new implementation of the Retinex model in
which the chromatic information in the image is scanned by
2-D pixel sprays instead of 1-D paths, hence the name RSR
for “random spray Retinex.” The passage from paths to pixel
sprays is based on a recent mathematical characterization [16]
of path-wise Retinex implementations.

While RSR shares the same intrinsic properties of every path-
wise Retinex implementation, it has proved to be faster and more
suitable to analyze the local Retinex properties, its parameters
being easily handled in order to perform spatial investigation.

We have analyzed, both quantitatively and qualitatively, the
RSR performances. The analysis regards two groups of param-
eters, one related to the spatial exploration and the other to the
amount of chromatic information considered. To tune these
parameters, we proposed an unsupervised method, validated
through user panel tests.

Concerning spatiality, the results have shown that the mean
chromatic influence between pixels decreases as the inverse
of their distance, while the amount of information (number
of sprays and pixels per sprays) required for optimal results
strongly depends on the image content.
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