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Abstract

This paper studies the effect of agri-environmental measures (AEMs) in improving greener 
farming practices. We focus on the quantification of the cost-effectiveness of AEMs implemented 
in the Rural Development Program of the Lombardy Region, during the 2007-2013 programming 
period. Our work attempts to address the well-known potential failures of these kinds of policy 
instruments, such as adverse selection effects, by relying on an innovative matching procedure, the 
coarsened exact matching (CEM). This methodology presents a number of advantages over other 
matching methodologies, by allowing better control for selection bias. Our empirical analysis 
focuses on three AEM schemes, which promote arable crop diversification, grassland maintenance 
and organic farming. From a comparison between CEM and propensity score matching (PSM) 
using our data, CEM proves, first, to exploit more the heterogeneity of farms in the control group. 
Second, CEM presents a lower level of imbalance between treated and control farms. Third, it 
provides, more importantly, lower heterogeneity in the results. Overall, our results suggest that 
AEMs were apparently effective in improving the farms’ environmental performance. However, our 
cost-benefit analysis highlights that the costs of implementing this policy, when compared to the 
results obtained, tend to be quite large.
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1. Introduction

Agri-environmental measures (AEMs) are policy instruments to support environmentally-

friendly farming methods and to improve biodiversity in the rural areas. AEMs provide payments 

for EU farmers who adopt, on a voluntary basis, green farming practices that go beyond the 

mandatory environmental quality standards defined by the European Union (EU) and, in particular, 

by the EU Common Agricultural Policy (CAP). Since 1999, AEMs constitute a relevant part of EU 

Rural Development Policies under the Second Pillar of the CAP. The AEMs absorb about 25% of 

the CAP budget.

The objective of this paper is to empirically assess the cost-effectiveness of the application of 

AEMs by farmers. This was done by giving particular emphasis to the detection of well-known 

potential failures that typically characterize these kind of policy instruments and which, in turn, may 

lead to a decrease in their actual effect (Canton et al., 2009). One of these (negative) undesired 

effects is adverse selection. This represents a recurring problem documented in several studies 

concerning AEMs (e.g. Evans and Morris, 1997; Falconer, 2000; Fraser, 2005; Hart and Latacz-

Lohmann, 2005; Baylis et al., 2008; Canton et al., 2009; Unay-Gailhard and Bojnec, 2015; Gómez-

Limón et al., 2018). Adverse selection may occur when farmers, whose usual farming practices 

already satisfy AEMs’ commitments – or are close to accomplishing them. These farmers are more 

likely to participate in the program than farmers who are far from achieving the AEMs’ 

environmental requirements; although the latter would represent the real target of the policy. As a 

consequence, adverse selection results in a selection bias, as the probability of participation is not 

randomly distributed between participants and non-participants, but differs for some unknown 

farm’s and farmer’s characteristics.

This paper tries to address this issue by empirically estimating the effects of AEMs on green 

farmers’ practices using (Difference-in-Difference-DiD) CEM. This is an innovative matching 

methodology developed by Iacus et al. (2012; 2017). Previous works in the literature dealing with 

similar research questions have tried to address these identification problems by relying on PSM 

(see, e.g., Pufahl and Weiss, 2009; Chabé-Ferret and Subervie, 2013; Arata and Sckokai, 2016). 

Generally speaking, matching methodologies are particularly suitable for these types of analyses. 

The existence of a selection bias issue makes the selection of the counterfactual the crucial step in 

the correct quantification of the average treatment effect. Our choice of using CEM is motivated by 

the fact that this method improves over existing matching approaches in the estimation of causal 

inference, by reducing imbalance in the covariates between the treated and control units. CEM 

incorporates properties of the exact matching procedure, but has a key advantage over other 

matching methods. It allows the choice of the balance between the treated and control groups ex-
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ante, rather than having to discover it ex-post. In short, data are initially temporally coarsened by 

the user. Then an exact matching is run on the coarsened data. Finally, the analysis is run on the un-

coarsened matched data. In addition, CEM is straightforward to use and conceptually easy to 

understand. It requires fewer assumptions and possesses more attractive statistical properties for 

many applications than existing matching methods.

The importance of properly addressing the above-mentioned selection bias stems from the fact 

that a reliable assessment of the effect of this policy should consider adverse selection. In AEMs, 

this may result in two main interconnected effects (Ferraro and Pattanayak, 2006; Mante and 

Gerowitt, 2007; Engel et al., 2008; Chabé-Ferret and Subervie, 2013):

1. the lack of additional effects obtained from the overall participation in the measure, as larger 

effects are expected from farmers with lower environmental quality practices

2. the windfall effects, that arise when farmers are paid for practices that they would have 

implemented irrespective of their participation in the policy programme. 

In brief, in the presence of adverse selection, the policy implementation may lead to the over-

compensation of farmers and limited additional environmental effects (Uthes and Matzdorf, 2013). 

For the reasons discussed above, existing studies often face recurring methodological difficulties in 

directly quantifying the (real) effects of these policies. In our contribution, the use of CEM is 

focused on assessing the effect of the adoption of AEMs on greener farming practices by exploiting 

the properties of this methodology. This allows a more precise matching of the farms participating 

in the AEMs with their counterfactuals. As a consequence, our analysis will provide a more reliable 

quantification of the effects of the policy implementation.

Using CEM we quantify the additional and windfall effects of AEMs implemented in the Rural 

Development Programme (RDP) of the Lombardy Region, during the period 2007-2013. The choice 

of Lombardy as a relevant case study, has several justifications. First, Lombardy is the main Italian 

region in terms of the value of agricultural production and the value added per farm worker. 

Second, Lombardy is characterized by very intensive farming practices, mostly based on livestock 

production (milk and meat) and maize monoculture. These, in turn, may determine a considerable 

environmental pressure. In this framework, AEMs are intended to reduce the environmental effects 

of agriculture by providing an incentive to farmers who implement low-intensity farming practices. 

Finally, and perhaps most importantly, our data cover the universe of farmers in the Lombardy 

Region. Hence, by considering all treated and untreated farms (potentially) involved in AEMs, the 

analysis may provide an important contribution to better understanding the overall effect of this 

policy on the farms’ agri-environmental outcomes. Indeed, most of the previous studies are based 
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on the analysis of small-scale samples. This leads to a general lack of evidence on large-scale 

samples, which, in turn, may benefit a more general assessment of the effectiveness of AEMs.

Our paper delivered three main results. First, from a methodology point of view, our 

assessment of the AEMs through the CEM estimator clearly confirms its interesting properties vis-

à-vis the standard matching estimators used in previous literature, in terms of the reduce imbalance 

and the selection of counterfactual units. Second, the average treatment effect on the treated (ATT) 

estimates showed that, overall, AEMs had an effect on agri-environmental outcomes that goes in a 

direction consistent with the policy expectations. Thus they improve greener farming practices in 

Lombardy. Third, and more importantly, the estimated additional effects are often quite limited 

when compared with the total payments received by farmers adopting AEMs. Thus, our results 

provide support for the existence of significant windfall effects when agri-environmental policy 

schemes are applied by farmers.

The remainder of the paper is organized as follows. Section 2 explains the applied 

methodology. Section 3 describes its implementation in Lombardy and provides an overview on the 

data and variables used in the analysis. Section 4 summarises the results and Section 5 discusses the 

main findings and suggests further developments.

2. Methodology

Matching methods are powerful non-parametric approaches used for causal inference. They are 

very popular and widely used by applied researchers, as they are relatively straightforward to apply 

and conceptually simple to understand. Theories of statistical inference in the literature, on which 

are rooted the application of matching estimators, are based on the axiom of simple random 

sampling. According to this, each individual in the population has the same probability of being 

treated (Abadie and Imbens, 2006). However, this approach is theoretically appropriate only when 

relying on an exact matching, where treated and control units thus have the same values for all the 

pre-treatment covariates or the same propensity score. Unfortunately, this condition is unlikely to be 

met, as applied researchers usually work with continuous variables and finite data. So the use of 

exact matching would lead to the loss of most (or even all) of the available observations. In 

practice, empirical analyses, by employing various typologies of approximate matching estimators 

(e.g. nearest neighbour matching, radius matching, kernel matching, etc.) regularly violate this exact 

matching requirement. Thus they do not satisfy the theoretical axiom on which they are based. In 

particular, this occurs as these matching methodologies operate a simple random sampling by 

stratifying the sample ex-post based on the propensity score. In practice, these methodologies 

approximate matching within each stratum as if it were an exact matching.
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Against this background, Iacus et al. (2012; 2017) propose a theory where they show that by 

replacing simple with stratified sampling in the way they suggest, matching methodologies become 

coherent with the theoretical axiom on which they are based. Specifically, they include an 

assumption about the ex-ante stratification of the data (rather than burring it ex-post). This 

assumption formulates an alternative axiom on the data generating process, which follows a 

stratified sampling framework. All these assumptions that, according to this axiom, are necessary to 

operate a valid causal inference, are then made explicit in the model. According to this theory all 

the strata are defined ex-ante, and thus, working on the original variables, instead of doing that ex-

post on more complicated variables, which are retrieved from the matching procedure, like the 

propensity score or the Mahalanobis distance. As a consequence, the properties of the matching 

estimators based on this theory satisfy the theoretical axiom on which they are based. This theory is 

based on the fact that most of the data used by applied researchers are characterized by continuous 

variables that are featured by natural meaningful breakpoints well known by data analysts.

In short, our empirical analysis is based on the use of the CEM to assess the causal effect of the 

AEMs on a number of outcome indicators. Unlike other widely used matching estimators that 

regularly violate the theoretical axiom on which they are based (i.e. simple random sampling), the 

properties of CEM allow this methodology to be consistent and coherent with its theoretical 

underling axiom developed by Iacus et al. (2017) on stratified sampling. As a consequence, the use 

of CEM, rather than other matching methodologies, gives further reliability and credibility to our 

empirical analysis.

In our exercise we compare variations in the outcome variables between the treated and the 

selected controls in a pre-treatment and post-treatment period. Thus, as in previous contributions 

(e.g. Pufahl and Weiss, 2005; Chabé-Ferret and Subervie, 2013; and Arata and Sckokai, 2016), we 

work with a DID matching estimator. In what follows, after the introduction of the CEM properties, 

we briefly introduce how this methodology is applied in our context.

2.1 CEM and identification

Assume a sample of n units, which are randomly taken from a population N (with n ≤ N). 

Consider now a unit i, which receives a treatment  (then denoted as Ti,). Ti, = 1 if i receives the 𝑇
treatment, otherwise Ti, = 0. In this setting, the outcome variable of interest   assumes the value of 𝑌
zero ( ) if the unit i does not receive the treatment, while it assumes the value of 1 ( ), if 𝑌𝑖 = 0 𝑌𝑖 = 1
unit i receives the treatment. The final outcome then is given by . The 𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 ‒ 𝑇𝑖)𝑌𝑖(0)
problem is that  cannot be observed if i receives the treatment, and similarly,  cannot be 𝑌𝑖(0) 𝑌𝑖(1)
observed if i does not receive the treatment, i.e. the standard problem of causal inference.
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The matching estimator proposes a solution for this observational data problem, where the 

treated and control groups are not perfectly identical in the pre-treatment period and not the same, 

on average, given the treatment not being randomly assigned. The main idea behind the matching 

approach is to control for pre-treatment individual characteristics in order to address the 

observational data problem highlighted before. Consider a h-dimensional dataset denoted by 

, with  being a vector of observed values for a covariate j before the treatment, 𝐗= (𝑋1,𝑋2,…𝑋ℎ) 𝑋𝑗

for all the n observations in the sample.

The treatment effect (TE) for a given unit i, given by the difference between  and  [𝑌𝑖(1) 𝑌𝑖(0)
] is unobserved. Several causal quantities of interest are given by the average of 𝑇𝐸𝑖 = 𝑌𝑖(1) ‒ 𝑌𝑖(0)

, over different sub-samples of units, and so have to be estimated.𝑇𝐸𝑖

The sample average treatment effect on the treated (SATT) is given by the following relation:

𝑆𝐴𝑇𝑇=
1
𝑛𝑇

∑
𝑖 ∈ 𝑇

𝑇𝐸𝑖

where  is given by  and . According to the matching methodology, 𝑛𝑇 ∑𝑛
𝑖= 1𝑡1 𝑇= {1≤ 𝑖 ≤ 𝑛:𝑇𝑖 = 1}

in order to determine the quantity being estimated, the algorithm can select the control and/or the 

treated units.

In the same vein of the “no omitted variable bias” assumption in standard regression analysis, 

the procedure is based on the standard ignorability assumption (Iacus et al., 2012): conditional on , 𝐗
the treatment variable is not dependent to the potential outcomes: i.e. . The main 𝑇𝑖 ⊥ (𝑌𝑖(0),𝑌𝑖(1))
objective of the matching algorithm is to non-parametrically control for all the potential 

confounding elements in the pre-treatment period, for all the selected control variables in the data. 

The main purpose of the matching is, thus, to make the distributions of the covariates ( ) as much 𝑋
alike as possible between the treated and the control groups. This is achieved by reducing the 

available observations so that the remaining units are better balanced in the two groups. In the case 

of exact matching (i.e. when the treated and control groups are exactly balanced), a simple 

difference of the means would lead to a proper causal estimation of the treatment on the outcome, 

since a further control for  is not necessary given that  is not related to the treatment.𝑋 𝑋
However, exact matching, by requiring the same value for all the control variables in the 

treatment and control groups, leads to an important reduction in observations, thus, often 

undermining the possibility to do valid inference. In order to avoid this important loss in the data, 

other matching methodologies are available, which are not exact matching, but they match treated 

and control units exploiting a certain degree of similarity. Such methodologies include nearest 

neighbour matching, radius matching, kernel matching and stratification matching. An important 

shortcoming of the widely diffuse matching algorithms is that the size is set ex-ante the matching, 
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and the balance is then checked ex-post the matching algorithm that has worked. If the balance is 

not satisfactory, then the entire procedure is run again, until an acceptable balance is reached.

The CEM is part of a class of matching methods called monotonic imbalance bounding, which 

allows bounding the higher level of imbalance in some characteristics of the distribution through an 

ex-ante choice (the coarsening, in the case of CEM). Besides the ex-ante choice of the imbalance, 

the CEM has three main features (see Iacus et al, 2012). First, the congruence principle, according 

to which data and analysis spaces should be the same, is met in the CEM. Meeting this principle 

allows us to have a much higher knowledge of the data, which is essential to obtaining a good 

match. Second, while other approximate matching methodologies need, before the matching, a prior 

step to restrict the data to a region of common empirical support, the CEM algorithm does not 

require this procedure. Indeed, the CEM automatically considers only data within a coarsened 

stratum, where treated and control units are present, while the other observations are dropped. 

Finally, the computational efficiency of CEM, makes it suitable also for use with very large data 

sets.

The CEM overcomes these limitations, by providing an exact matching with a reduced loss of 

observations in the treated and control groups, by choosing the balance between the groups ex-ante 

and not ex-post, as in the other matching methodologies. The basic idea is to temporally coarsen 

each control variable in meaningful groups (which may be either of the same size or not), and then 

to run an exact matching on these values. Afterwards, the original values (un-coarsened) of the 

matched data are retained. In addition, one important advantage of the CEM is that it allows the 

users to choose how to coarsen the variables, in order to preserve meaningful information. In case 

the user decides not to choose to personally coarsen the variable, the CEM algorithm provides its 

own way to temporally coarsen the variables.

The CEM algorithm basically works using the following main steps. First, it makes a copy of 

the set of covariates chosen to make the matching ( ); second, the variables  are then 𝑋 ∗ 𝑋 ∗

coarsened in different strata, either according to user choice, or automatically through the CEM 

algorithm. Thirdly, a unique stratum for each observation of  is created and each observation is 𝑋 ∗

then placed in a stratum. The created strata are reassigned to the original set of data  and any 𝑋
stratum which does not contain at least one treated and one control unit is dropped. The treatment 

effect is, thus, based on the matching provided by the algorithm, since the difference between 

treated and control units is based on the difference of the outcome variable between units belonging 

to the same strata. It is worth noting, that the higher the coarsening (higher number of strata), the 

lower will be the number of matches provided by the CEM, as well as the lower will be the 

imbalance.
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Because there may be systematic differences between treated and untreated outcomes, even 

after conditioning on observables, we follow Heckman et al. (1997) in applying a conditional DID 

CEM procedure. This strategy controls for unobserved heterogeneity and selection bias and thus 

improves the matching procedure. Introducing a time dimension, with  representing a time period 𝑡
after the programme’s starting date (2012) and  a time period before the program (2005), the 𝑡'

conditional DID estimator can be written as:

.𝐸(𝑌𝑖𝑡(1) ‒ 𝑌𝑖𝑡'(0)│𝑇= 1,𝑋) ‒ (𝑌𝑖𝑡(0) ‒ 𝑌𝑖𝑡'(0)│𝑇= 0,𝑋)

This estimator has the key advantage over the standard matching procedure of controlling also for 

unobserved time invariant factors. Clearly, this comes at some costs because in so doing we are 

assuming that the outcome variables of interest of the treated and control units, absent any 

treatment, should display the same growth path, namely the parallel trends assumption of the DID 

method. Thus, in our implementation, DID matching is obtained by applying the CEM procedure to 

the outcome variables differenced with respect to the pre-treatment period. Finally, note that, other 

than the parallel trends assumption, our identification strategy still relies on the hypothesis of no 

spill over effect between treated and control units, i.e. the stable unit treatment value assumption.2

3. Data and variables

AEMs represented the main policy measure of the Rural Development Program in Lombardy 

for the period 2007-2013, accounting for 28.4% of the total public expenditure (around EUR 291 

million). Consider, for instance, the year 2012, more than 200,000 ha of utilized agricultural area 

(UAA) were under agri-environmental commitments. This corresponded to about 20% of regional 

UAA. Also around 8,000 farms (about 16% of Lombardy farms) were involved in at least one agri-

environmental scheme. During the 2007-2013 period, AEMs encompassed a set of 10 different 

schemes. In this paper we focus on the implementation of three of them, that, taken together, 

account for about 60% of the total UAA covered by AEMs and involved about 6,600 farms.

The first AEM considered is related to crops diversification, a scheme introduced for the first 

time in the 2007-2013 programming period. The second AEM is on grassland maintenance, while 

the third is on organic farming.3 Note that, the last two schemes have their own equivalent in the 

2 More precisely, the SUTVA assumption has two components (see Rubin, 1974): i) units do not interfere with each 
other, meaning that treatment applied to one unit does not affect the outcome for another unit and ii) there is only a 
single version of each treatment level (potential outcomes must be well defined).
3 With reference to the Lombardy RDP the above mentioned AEMs are identified as: 214_a – crops diversification - 
2014_c – grassland maintenance – and 214_e – organic farming.
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previous AEMs programming periods.4 It is worth noting that participation in organic farming was 

not compatible with participation in the other schemes. Detailed information about the objectives, 

characteristics, requirements, eligibility criteria and payments of the three AEMs analysed in the 

present study are reported in Table 1.

In order to estimate the additional effect of the farms’ participation in the AEMs, we used data 

extracted from the SIARL dataset. SIARL is the electronic system by which Lombardy Region 

manages farm demands for all CAP subsidies (first and second pillars). In particular, using the 

SIARL data it is possible to identify, for each year of the 2007-2013 period and for each scheme, 

those farms participating in AEMs, their UAA under agri-environmental contracts and the agri-

environmental payments received. In addition, SIARL contains information at the farm level about 

the farm structure, farmers’ characteristics and the farms’ crops and livestock production. SIARL 

data were used to define, at farm level, dummy variables related to the farms’ participation in each 

of the AEMs, farm environmental performance indicators (used as outcome variables) and a set of 

control variables to define a correct matching of treated and non-treated farms.

3.1 Participation variables

To identify farms participating in each of the AEM schemes considered, we chose a reference 

year during the 2007-2013 period. Since the implementation of AEMs in Lombardy began in 2008, 

with the first farms adopting this policy, and AEMs commitments are plurennial (5-year contracts),5 

we decided to select 2012 as the reference year to distinguish between participants and non-

participants in the 2007-2013 period. This choice sought to capture the highest number of farms 

participating in the AEMs, including farms which began their commitments in 2008 and those 

enrolled in the following years. Moreover, 2012 was the last year in the 2007-2013 period in which 

new entrants could take part in that policy programme. Hence, 2012 has been selected to be the 

most representative year to depict farm participation, because it shows the peak of participation 

during the 2007-2013 period. However, as shown in Table 2, most of 2012 participants enrolled in 

AEMs scheme in the first years of the 2007-2013 programming period. Hence, we may argue that 

by the end of the programming period (i.e. 2012), most of the farms had already consolidated the 

farming practices as required by each scheme.

Based on the farms’ participation in 2012, we built three participatory binary variables 

(part1_2012, part2_2012, and part3_2012). These variables take the value 1 when the farm 

participated in an agri-environmental scheme and a value of 0 when the farm was potentially 

4 Specifically, the 1992-1999 period was governed by the 2078/92 EC Regulation and the 2000-2006 period was 
governed by the 1257/99 EC Regulation.
5 Only the organic farming scheme started in 2007 with a 7-year contract for farms entering it in 2007, a 6-year contract 
for farms entering in 2008 and a 5-year contract for entry from 2009.
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eligible for the measure, but did not participate. The potential eligibility was evaluated for each 

farm and for each scheme based on the presence of admissible crops and an altimetry criterion. As a 

consequence, the number of eligible farms was different, depending on the scheme (from about 

24,000 potentially eligible farms for the crops diversification measure to about 30.000 for organic 

farming). Furthermore, we built an additional variable, part_others_2012, to capture a farms’ 

participation in at least one of the other schemes of the Lombardy AEMs. As explained below, this 

variable will be used to estimated cross-over effects between measures.

3.2 Outcome variables

In order to estimate the additional effect of the participation in AEMs we have identified a set 

of potential outcome variables, based on the stated objectives of each scheme. The selected outcome 

variables quantified the environmental effect of the farm’s participation in a specific AEM. To 

estimate the treatment effect of participation, outcome variables were calculated for each farm. 

Each outcome variable was the difference between the value of the outcome in the year 2012 

(designated as the reference year for treatment) and the value of the outcome for the farms in 2005 

(i.e. pre-treatment status), prior to the considered programming period starting. As the three selected 

AEMs, and particularly the crops diversification and grassland maintenance schemes, pay farmers 

depending on the cultivated crops, the main part of the outcome variables is focused on farmland 

use. In this regard SIARL provides complete information on the use of each of the 2 million 

agricultural land parcels of the Lombardy Region (259 different uses) and the farms they belong to. 

Starting from these data we were able to calculate a set of outcome variables for each farm 

potentially eligible for AEMs.

We are aware that farmland use represents only the outcomes of the analysed AEMs and not 

their (actual) environmental effect. That, instead, would be captured by indicators related, for 

instance, to water quality, nitrogen losses, soil depletion, greenhouse emissions, energy 

consumption or biodiversity (see Peerlings and Polman, 2008; Wrbka et al., 2008; Pacini et al., 

2015; Galler et al., 2015). However, these environmental indicators are generally not available for 

large samples and at a detailed parcel or farm level (Primdahl et al., 2003). In contrast, information 

on land use, in our case, is available for the entire universe of farms within the Lombardy Region. 

Our strategy is supported by the fact that, according to the RDP managing authority, the three 

AEMs considered in our analysis are meant to reach their environmental achievements by providing 

incentives for preserving some crops/land uses and by introducing rotations instead of monoculture. 

In addition, the change in land use by the participating farmers is the most direct outcome of the 

AEM itself. If we had considered an environmental achievement, this could be also the results of 

other (simultaneous) shocks attributable for, example, to weather conditions and their respective 
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interaction with land characteristics, all elements quite difficult to control in our exercise.6 Hence, 

as the objective of this paper is to estimate the effect of participation in AEMs of a large sample of 

farms, variables on farm land use represent a valuable proxy for capturing the (potential) 

environmental effects of the selected schemes.

Table 3 summarises the selected outcome variables for each of the investigated AEMs. For 

instance, since the AEM on crops diversification had as its main objectives to increase biodiversity, 

to preserve soil structure and organic substance, and to reduce nitrogen losses, by diversifying 

arable crops, its outcome variables are related to the quantification of crop variety on the farm. In 

particular, for each farm, we computed the area covered by the main arable crop and the share of the 

main arable crop on total farm arable crop area, the number of arable crops and their heterogeneity. 

Furthermore, we calculated the share of nitrogen-fixing crops and non soil-depleting crops on farms 

arable crop area. For farms engaged in crops diversification, the presence in the 5-year rotation of a 

crop belonging to these two last categories was mandatory, given their positive agronomic and 

environmental properties. Nitrogen-fixing crops encompass 22 different crops, while non soil-

depleting ones include 135 crops. This latter count includes, besides nitrogen-fixing crops, other 

cereals (maize, sorghum), vegetable crops and other crops useful for their beneficial effects on soil 

structure. Also set aside land, was included in this last wide category, that basically excluded only 

winter cereals. It is worth mentioning that rice and temporary grassland have been not used in 

calculating the outcome variables for the crops diversification scheme, because the regulations for 

these two crops were different from those of the other crops, making a comparison among farms 

difficult. Moreover, we have not considered other minor land uses, such as flowers, plant nurseries 

and kitchen gardens. Overall, we accounted for 147 potential arable crop land uses.

For the grassland maintenance AEM scheme, we computed two outcome variables quantifying 

the grassland area in absolute terms and as a share of the farm’s UAA (excluding mountain pasture 

– as the scheme was not applicable in the mountains – and other minor land uses). Finally, for the 

organic farming AEM, we considered as outcome variables the total farms’ UAA converted to 

organic farming and that under conversion.

3.3 Control variables

To estimate the treatment effect for farms participating in the AEMs, we built the 

counterfactual scenario by using farms not participating in them. For farms belonging to these two 

groups we observed the differences in all outcome variables between 2005 (pre-treatment scenario) 

and 2012 (treatment scenario). However, a simple comparison of the selected outcome variables 

6 Note in addition, that the selected outcome variables are in line with those used in previous studies evaluating, at the 
territorial or farm level, the environmental effects of the different CAP payments (see for instance Arata and Sckokai, 
2016; Paracchini et al., 2015; Desjeux et al., 2014; Chabé-Ferret and Subervie, 2013; Beltrán-Esteve et al., 2012).
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between participants and non-participants could be misleading. In fact, the probability of the farms’ 

participation in the measures is not likely to be randomly assigned among farms.

To overcome the selection bias and to build a correct counterfactual scenario, we compared 

treated and untreated outcomes of similar farms using the CEM, by matching farms with similar 

characteristics on the basis of a set of control variables. The choice of the control variables to be 

used to match treated and control farms was based on a consideration of both the relevant previous 

literature dealing with AEMs and the availability of data in our sample. Previous works in the 

literature highlighted that the probability of a farm being engaged in AEMs mostly depends on 

factors related to the farms’ profitability (e.g. income per hectare), the farms’ labour structure (hired 

versus family labour), the farms’ typology, farmers’ characteristics (e.g. age, education), the farms’ 

location and the incidence of subsidies on the farms’ income (see for instance Vanslembrouck et al., 

2002; Defrancesco et al., 2008; Pufahl and Weiss, 2009; Hynes and Garvey, 2009; Bertoni et al., 

2011; Chabé-Ferret and Subervie, 2013; Arata and Sckokai, 2016). The use of the SIARL database 

allows us to consider some of this list of indicators. The database does not contain any information 

on economic or financial indicators (except for subsidies and an economic dimension expressed in 

economic standard units - ESU) and labour structure. However, SIARL provides very detailed 

information on the universe of farms in the Lombardy Region concerning their structure, some 

farmers’ characteristics, the farms’ typologies, and their participation in AEMs.

Based on data availability, we selected the counterfactual using the following farm level 

characteristics in 2005:

• farm size, expressed as the UAA; 

• farm location (i.e. mountain, hills or plain); 

• type of farming (15 categories)

• the share of the most important crops on the UAA

• livestock density

• farmer’s age

• previous participation in AEMs during the 2000-2006 programming period.7

We are aware of the existence of a recurring and ongoing discussion about the number of 

variables it would be better to include when estimating the probability of participating in a 

treatment when using matching methodologies (in particular PSM). While some authors argue that 

the use of a small and relevant set of variables is preferable (see Bryson et al., 2002; Person and 

7 Arata and Sckokai (2016), working with five EU member states, estimated the probability of participation in AEMs 
also using macroeconomic indicators (i.e. gross domestic product per capita and the share of agricultural value added 
over the total value added of the region) at NUTS1 or NUTS2 levels (NUTS – nomenclature of territorial units for 
statistics). As we work with only one NUTS2 region, we did not consider macroeconomic indicators as potential 
variables of interest to estimate the probability of participation in AEMs. 
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Tabellini, 2003), others hold the opposite view (Rubin and Thomas, 2003). Our choice is limited by 

data constraints to a set of variables that we really think can allow us to match similar farms. In 

addition, it is worth noting that, as the level of imbalance in CEM is chosen ex-ante, rather than 

discovered ex-post, as in PSM, CEM does not require, as a first step, estimation of the probability of 

the farm participating in the policy. This, then, exempts the selection of only those variables that 

significantly affect the policy adoption.

3.4 Sample description

Descriptive statistics of the selected outcome variables for the three considered schemes are 

reported in Appendix A (see Tables A.1, A.2 and A.3). Figures were calculated for both the full 

sample and sub-samples of participants and non-participants in each AEM, reporting the values of 

the outcome variables before the treatment (in 2005). Farms for which we do not have data for 2005 

have been excluded from the analysis, as it was not possible to quantify their pre-treatment status. 

Hence, the sample for the crops diversification scheme, consists of about 26,000 farms. Of these, 

1,113 participated in the AEM in 2012 and represent the treated units. For other schemes, these 

numbers are, respectively, 29,478 with 1,668 treated farms for grassland maintenance, and 33,789 

with 272 treated farms for organic farming. The sample related to AEM_others is the same as that 

for the organic farming, but the number of participants was much higher (3,141 treated farms).8

For crops diversification, the value of the outcome variable ‘main arable crop (ha)’ was 

initially higher in farms that would have successively participated in the scheme, but this depended 

mainly on the average farm size. This was 55% higher among participants (38.6 ha versus 24.8 ha 

for non-participants). However, the share of the main arable crop, the number of arable crops and 

the heterogeneity of the arable crops were already higher among future participants. This clearly 

confirms the presence of adverse selection among the farmers.

The same considerations are valid for the other two AEM schemes. Indeed, the average area 

covered by grassland and the share of grassland on the farm’s UAA, and the organic UAA, were 

found to be significantly higher among participants versus non-participants, again suggesting a huge 

adverse selection effect.

4. Results

As discussed above, in our empirical analysis we employed an innovative methodology, the 

CEM. This, to the best of our knowledge, has never before been used in this kind of study and that 

8 The main parts of other AEMs have eligibility criteria similar to those for the organic farming scheme
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may provide several advantages over the use of other matching methodologies. In what follows, we 

first test the properties of the CEM in comparison with the PSM. Then, we show, in detail, the 

results of our empirical analysis, where we assess the effect of participation in AEMs in affecting 

green farming practices.

4.1 CEM versus PSM: A comparative analysis

In order to test the properties of the CEM, we conducted a direct comparison with the PSM. 

This, so far, has been one of the most widely used methodologies by other researchers to evaluate 

the effect of AEMs. As an illustrative example, we considered the analysis of the effect of a farm’s 

participation in the crops diversification measure on one of the selected outcome variables – the 

number of hectares dedicated to the main arable crop. Specifically, we compare CEM (based on the 

same specification as used in the empirical analysis) with the nearest neighbour PSM.9 10

Our first test looks at the construction of the counterfactual without considering the outcome of 

the analysis. This will be considered in the second test. In particular, we look at the extent to which 

the sample of control farms is involved in building the counterfactual of the treatment units. To do 

that, we look at the distribution of weights that are assigned by CEM and PSM to the control units 

constituting the counterfactual. For this purpose, we use the Lorenz curve, a graph that is usually 

employed to represent income inequality or wealth distribution. The Lorenz curve, developed by the 

American economist Max Lorenz in 1905, plots quantiles of the population on the abscissa axis 

according to income or wealth. It plots cumulative income or the wealth function on the ordinate 

axis, so that, for instance, an abscissa value of 0.34 and an ordinate value of 0.025 would suggest 

that the bottom 34% of the population controls 2.5% of the total income or wealth. We use this 

representation to plot the weight inequality among the control group in the PSM and in the CEM 

cases. Accordingly, our Lorenz curves plot quantiles of the control group on the abscissa axis 

according to increasing weight. On the ordinate axis, the corresponding cumulative function for the 

weights of the control group is calculated, so that an abscissa value, for instance, of 0.34 and an 

ordinate value of 0.025 would mean that 34% of the control group will have only 2.5% of the total 

weights in the matching.

The results presented in Figure 1, show a remarkable difference between the two 

methodologies. Considering CEM in the left panel of the figure, we observe that about 90% of the 

9 Note that in all the comparative analyses shown in this section, both CEM and PSM are carried out using the same set 
of control variables.
10 Among the various matching estimators our choice fell on the use of a nearest neighbour matching with one 
neighbour, with replacement. Our choice is motivated by the fact that, given that CEM is based on exact matching, we 
argue that this propensity score matching estimator allows the most reliable comparison with CEM, as it matches any 
treated farm with the closest one, based on the estimated propensity score.
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control units accounts for about 20% of the weights assigned by the algorithm to farms representing 

the counterfactuals of treated farms. The remaining 10%, having more weights in building the 

counterfactuals of treated farms, accounts for about 80% of the overall weight distribution. In 

contrast, the Lorenz curve for PSM, right panel of Figure 1, suggests that the whole weights are 

absorbed by only 10% of the control unit sample.

We also estimate in the two cases the Gini coefficient, which is used in our analysis to measure 

the level of inequality represented in the figure. The Gini coefficient can range from 0 (or 0%) to 1 

(or 100%). Complete equality, in which every unit of the control group has the exact same weight 

as the match, corresponds to a Gini coefficient of 0. A Gini coefficient of 1 means that only one unit 

of the control group has been matched. The lower the Gini coefficient, the greater the number of 

control groups that have to be considered in its diversity. In our analysis the Gini coefficient proved 

to be lower for CEM than for PSM. Overall, the results of this test suggest that CEM allows a 

higher exploitation of the data in the sample and thus it considers the greater the heterogeneity of 

the farms in the counterfactual sample.

We next present our second test, that compares the level of imbalance obtained through the use 

of CEM and PSM, together with the estimated ATT. For this purpose, we rely again on the estimate 

of the effect of the farms’ participation in the crops diversification measure on the number of 

hectares dedicated to the main arable crop. In particular, we follow Iacus et al. (2017), by analysing 

our demonstrative example through a simulation of 500 CEM and 500 PSM. We then compare the 

results obtained in terms of their level of imbalance and ATT.11 For the CEM, this simulation is 

carried out by creating 500 random stratifications of the control variable space, and, in particular, by 

breaking-down the support of each covariate into a random number of strata.12 The simulation for 

the PSM in based on 500 matching solutions obtained through a nearest neighbour PSM, where the 

results are obtained through a random selection of propensity score models and their respective 

calipers.

Figure 2 plots the results of this test, where on the ordinate axis we show the ATT obtained 

with our 500 CEM and PSM simulations, while on the abscissa axis we have their respective 

measures of imbalance (as measured by the L1 distance).13 The imbalance represents a measure of 

the difference between the multivariate empirical distribution of the pre-treatment covariates for the 

treated group and the matched control group. We use here the ‘multivariate imbalance measure’ as 

11 This analysis has been carried out using the spacegraph command, available in the software R. Note that within this 
command, nearest neighbour matching can be implemented considering one neighbour only.
12 The simulation chooses uniformly-based intervals for an integer that varies from 1 to 15.
13 The Minkowski or L1 distance represents a comprehensive measure of global imbalance that basically measures the 
difference between the multivariate histogram in the treated group with the multivariate histogram in the control group. 
For more details on the computation of the L1 distance see Iacus et al. (2008).
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defined by Iacus et al. (2011). Matching methods are designed to find the best balance between the 

distribution of covariates in the treatment and control samples. From this perspective, the lower the 

measured imbalance, the lower is the bias in the matching of the treated and their respective control 

units. By comparing the results of our simulations plotted in Figure 2, some important differences 

between the two methodologies emerge. Estimations obtained with CEM (black crosses) present 

higher heterogeneity in terms of imbalance with respect to the PSM estimations (red circles). 

However, about half of the CEM estimations show a level of imbalance that is lower than that 

obtained with PSM. These are more concentrated around the values of 0.4-0.5. From this 

perspective, our results suggest that, on average, CEM can perform better than PSM in finding a 

match in the distribution of covariates between the treated and control groups, and thus lead to a 

lower bias in the estimation. However, the most striking results emerging from this analysis concern 

the ATT estimations. The variability of the results obtained with our randomised CEM (included in 

the black circle) is much lower than that obtained with the PSM (included in the red circle). From 

this perspective, this finding suggests that, in this specific case, the high variability of the results 

obtained with the PSM may lead the ATT estimation, relative to the effect of the farm’s 

participation in the crops diversification measure on the number of hectares dedicated to the main 

crop, to be either positive or negative, depending on how the PSM is specified. In contrast, the 

CEM provides results that are very close to each other. In this case it suggests a uniquely negative 

ATT, no matter how the model is specified. Clearly, the last one, is the key advantage of the CEM 

versus the PSM estimator.

To summarise the findings emerging from our two tests, we argue that CEM has shown some 

relevant characteristics that should be worth considering. First, CEM proved to better exploit the 

heterogeneity of farms included in the control groups than PSM. Second, CEM shows the capability 

of obtaining a lower biased matching between the distributions of covariates in the treated and 

control groups. Third, and perhaps, more importantly, the results obtained with CEM show a much 

lower heterogeneity than those obtained with PSM, thus limiting the discretionary use of the results 

because of the model specification. Since the ultimate objective of our empirical analysis is a policy 

evaluation, we cannot overlook this important property of CEM.

Despite our tests highlighting some important characteristics of CEM, we are not arguing that 

the use of CEM is preferable to other matching methodologies in absolute terms. The same 

comparisons presented in this section when used in a different case study may provide the opposite 

results. What emerges from our analysis is that, when considering the use of matching 

methodologies for empirical analysis, it is worth doing a preliminary assessment in order to get 

more information on which methodology enables the most reliable results to be obtained.
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4.2 Assessing the effectiveness of AEMs through DID CEM

Table 4 provides information concerning the number of matched and unmatched farms in the 

treated and control groups using CEM. Two sets of estimates are considered, one with the full set of 

covariates and one where participation in the AEMs in the previous programming period is 

excluded from the set of covariates. Looking at the CEM results obtained using the full set of 

covariates, the share of matched, non-treated farms is around 40-50% for all the considered AEMs, 

except for organic farming. In this instance the share of matched non-treated farms is only 14.5%. 

Considering the treated farms, the share of those matched is much higher than those non-treated, 

varying from around 70% to 75%. Again the exception is for organic farming, where only 30.9% of 

the farms have been matched. When excluding previous participation in AEMs, and thus using a 

less-restrictive matching criteria, the number of matched farms, both in the treated and untreated 

samples grows considerably, in particular when considering organic farming. As shown by the 

figures reported in Table 4, both sets of estimates present a number of matched non-treated farms 

considerably higher than the treated farms, and so ensures a good representativeness for the non-

treated (counterfactual) sample.

Tables 5, 6, 7 and 8 present the results of estimating the ATT of the different AEMs considered 

on a set of outcome variables by using the (DID) CEM. Figures in the tables show the average 

variation for each outcome variable over the period 2005-2012, for both samples of treated and non-

treated farms matched with CEM. This information can be useful in interpreting the results, as they 

suggest the average trends in the two groups over the period 2005-2012. The ATT is then obtained 

by subtracting the average variation in each outcome variable for the sample of non-treated matched 

farms from that relative to the sample of treated matched farms.

The estimated (positive or negative) ATT may arise from the difference in variations of the 

same sign, or of a different sign. In the first case, the treatment strengthens (or limits) a trend that is 

common between treated and non-treated farms. In the second case, it inverts the trend that would 

have occurred without treatment. In the latter event the observation of the absolute values of the 

estimated differences shows whether the net effect of the measure on treated farms prevails, or not, 

on the attenuation of an opposite trend among non-treated farms. Notably, for each of the AEMs 

considered, the mean differences among groups and the related ATT have been computed. This has 

been done not only for the outcome variables that are supposed to be the target of the relative 

measure (figures in bold), but also for the other outcome variables that should be considered as the 

target of other AEMs. This makes it possible to assess the potential existence of cross-over effects 

(figures in italic).
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All Tables 5-8 present in the first three columns the results for the mean differences between 

treated and non-treated farms, and the ATT estimated with CEM, including a full set of control 

variables, as discussed in Section 2.3. As a robustness check, we present in the last three columns 

the previous results obtained excluding from the set of control variables referring to farms with 

previous participation in AEMs.14

At first sight, it emerges that qualitatively the estimated ATT are robust to the use of the two 

sets of control variables. For the sake of simplicity, as we consider the estimations obtained using 

the full set of control variables (columns 1) more reliable, in what follows we focus the discussion 

on these results.

Table 5 presents the results concerning the crops diversification measure. Farms participating 

in this measure show a reduction in the main arable crop area in terms of the number of hectares 

with respect to non-treated farms (ATT = – 0.46 ha), although the difference is not statistically 

significant. However, when the same outcome is expressed as a percentage, instead of number of 

hectares, the ATT is significant at the 1% statistical level. Specifically, farms participating in the 

measure show a reduction in the share of the main arable crop area of 11.35% with respect to the 

counterfactual, thus not an irrelevant effect. Nevertheless, in this case the measure slightly 

counterbalances a general trend that sees a strong percentage increase in the share of the main 

arable crop for non-treated farms (10.38%). The treated farms actually reduced their share of the 

main arable crop area by just 1% between 2005 and 2012. Treated farms show a significant increase 

in the number of arable crops (ATT = 0.68) and a sizable increase in the arable crop heterogeneity 

index (ATT = 12.9). For the former outcome, the ATT is the result of a difference computed 

between an average arable crop reduction of 0.835 among the non-treated farm sample and one of 

0.158 in the treated farm sample, over the period 2005-2012. In this case, the measure attenuates the 

broad trend, which, however, still persists among the treated farms. With reference to the latter 

outcome, treated farms slightly increased their arable crop heterogeneity, compared to an evident 

decrease of the outcome in the non-treated group. The proportion of nitrogen-fixing crops slightly 

decreases on treated farms (1.08%) and to a lesser extent on non-treated farms (3.03%). The ATT is 

estimated with less precision (p-value < 0.1). Farms participating in this measure also reduced 

significantly more the share of non soil-depleting crops (ATT = 3.5%). Finally, concerning 

potential cross-over effects, treated farms show also an increase in the number of hectares of 

grassland (ATT = 0.56 ha) and their share of the farmland (ATT = 1.44%).

14 Note that we also run the same estimations presented in Tables 5 to 8, using both local linear PSM and nearest 
neighbour propensity score matching. Overall, the results prove to be consistent with those shown in these tables. 
However, as in a previous section, we proved that, in our case, CEM performs better than PSM, and we believe it is 
more coherent to present the results obtained with CEM only.
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Table 6 considers the ATT estimates for grassland maintenance. Farms participating in this 

scheme show a positive effect in the grassland area, both expressed as number of hectares (ATT = 

2.3 ha) and as the proportion over UAA (ATT = 5.8%); both significant at the 1% statistical level. 

Quantitatively, these are relevant effects, even if they derive mainly from the counterbalancing of a 

dominant trend of decreasing values in permanent grassland rather than a net increasing effect in 

treated farms. As regards potential cross-over effects, participation in such a scheme seems to lead 

farmers to reduce somewhat the organic area and to weakly increase the number of hectares of the 

main arable crop.

Table 7 presents the results concerning the organic farming measure. Not surprisingly the 

results are stark. Indeed, treated farms show a statistically significant increase in organic farming 

expressed both as the number of hectares (ATT = 5.8 ha) and as the number of hectares under 

conversion (ATT = 4.4 ha). In this case, the increasing effect of the organic farming area among 

treated farms predominates over the decreasing trend detected for non-treated farms. Cross-over 

effects for this AEM are generally not significantly different from zero, except for the number of 

hectares of the main arable crop. This latter shows an increasing trend on farms participating in this 

AEM.

Finally, Table 8 presents the results concerning the ATT of the participation in at least one of 

the other schemes of AEMs on the set of outcome variables considered as targets for the other three 

AEMs. The main results suggest that, first, treated farms show a slight increase in the number of 

arable crops. This occurs in both arable crops heterogeneity and in the percentage of non soil-

depleting crops, while the share of leguminous crops decreases by 1.4%. Second, treated farms 

show a reduction in the percentage of grassland area. Finally, the participation in other AEMs leads 

farms to a higher increase in the organic farming area, both expressed as number of hectares and 

under conversion.

When estimating the ATT using CEM the results are still robust and qualitatively similar to the 

ones discussed above. And this without considering previous participation in AEMs as control 

variables, thus using less-restrictive criteria to match treated and untreated farms. Focusing on the 

outcome variables that we consider as the main targets of the different schemes, the only result that 

changes significantly is the ATT of crops diversification with reference to the percentage of non-

soil-depleting crops. In this case the estimated effect is no longer significant. In general, estimations 

that do not control for previous participation, show results similar to those previously discussed 

from a qualitative point of view, but less so from a quantitative one. The ATT is always lower in 

magnitude, but still significant. From this perspective, we may argue that the higher effect detected 

by CEM, considering previous participation in AEMs within the set of controls, is because the 
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estimated additional effect is likely to be higher when treated farms not participating in previous 

AEMs are matched with non-treated farms that did not participate in previous AEMs as well. 

Indeed, if previous participation is not considered in the set of controls, the outcomes related to 

treated farms not participating in previous AEMs may be compared with those of farms that 

actually participated, and, thus, lead to a likely underestimation of the additional effects.

5. Additional effects or windfall effects: money for nothing?

When assessing the effectiveness of a policy that foresees a payment to the beneficiaries, in 

addition to the estimation of the actual effect (in our case expressed as ATT), it is important to 

associate the results obtained with their cost of implementation. In what follows, starting from the 

estimations presented above, we have performed a straightforward cost-benefit analysis. This 

allows for a better understanding of the extent to which the moneys spent for the implementation of 

the policy have produced the results obtained.

From a theoretical point of view, the social welfare effect of each AEM should be measured 

accounting for its effect on changes in the consumer surplus (CS), producer surplus (PS) and 

taxpayer cost (TX). Because our analysis does not quantify the AEMs effect on PS, as we do not 

have information on the AEM effects on farm profit or job creation/maintenance. Following Chabé-

Ferret and Subervie (2013), we adopt a taxpayer’s view, by computing the variation in CS net of 

taxpayer’s cost.15 In practice, variation in CS is related to the magnitude of the AEMs’ additional 

effects, i.e. our estimated ATT, while the taxpayers’ costs are related to the amount of the AEM 

payments spent to get them.

Our cost-benefit analysis consists of two main steps. First, we estimate the windfall effect, by 

quantifying what would have been the value of the outcome variables in event of the farms not 

having participated in the policy. This is done, by subtracting from the outcome mean of the treated 

farms, the estimated ATT. The windfall effect, thus, gives a flavour of the effectiveness of the 

policy. Second, we assess the effectiveness of the policy in the light of its implementation costs. For 

this purpose, we consider the average farm cost for policy implementation, relating it to the 

estimated additional effects.

Table 9 presents the results of our cost-benefit analysis. In column (a) we report for treated 

matched farms the average value of each outcome variable after the treatment (in 2012). Following 

Chabé-Ferret and Subervie (2013), we compute windfall effects (column d) as the difference 

between the post-treatment observed level of the outcome variables in treated matched farms 

(column a) and the estimated ATTs (column c). In a second step, we considered for each scheme 

15 For additional details on the approach, see equations 21 and 22 of Chabé-Ferret and Subervie (2013, p. 23-24).
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the average annual farm payment received by treated matched farms (column e) and their average 

area under agri-environmental commitments in 2012 (column d). Using these values, we compute 

the average payment per hectare under the constraints (column f) and the average payment per unit 

of additional effect (column g).

As the outcome variables are expressed in different units of measurement and the direction of 

the effect could be both negative or positive, the interpretation of windfall effects and their 

comparison with additional effects may not be straightforward. The easier case is represented by 

outcome indicators directly tied to the financed practice (e.g. area of grassland or organic farming). 

For example, with reference to grassland maintenance we observe that the average grassland area 

in treated farms after the treatment is 13.25 ha, while the ATT is 2.32 ha. As a consequence, treated 

farms, under the hypothesis of no-treatment, would have kept 10.93 ha of grassland anyway 

irrespective of the payment. That is the windfall effect. From an economic point of view, it follows 

that the grassland maintenance annual average farm payment (EUR 3,021 per farm), generated by 

voluntary uptake of the measure on 13.25 ha, in reality has contributed to obtain an additional effect 

of only 2.32 ha, with a payment for additional units of ATT of EUR 1,303/ha, against a payment of 

EUR 228/ha under the constraint.

Similarly, considering the case of the organic farming scheme the interpretation of windfall 

and additional effects is quite immediate. Given an ex-post average farmland area under organic 

farming among treated matched farms of about 17 ha, the ATT has been quantified as 5.78 ha, with 

a resulting windfall effects of 11.31 ha. This result determines that the average payment per unit of 

additional effect rises to EUR 770/ha against an average payment per area under constraint of 

EUR 260/ha. Interestingly, payments for conversion to organic farming in practice determine only 

the additional effects.

In summary, from this stylised cost-benefit analysis the main conclusion that can be drawn is 

that, the investigated AEMs prove to exert a significant effect in a direction consistent with public 

policy. However, at the same time the burden of the taxpayer costs for reaching these effects 

appears to be, by far, extraordinarily large. Hence, the economic rationale of this policy could only 

be defended if other relevant hidden benefits or spill over effects, such as job creation effects (not 

considered in the present analysis), result from the policy’s implementation. Current empirical 

evidence on the economic effects of the Pillar II policy, however, gives only weak support to this 

compensating effect (see Olper et al., 2014; Garrone et al., 2018). Indeed, the impact on job creation 

of agri-environmental measures, though often positive, is not enough to reverse our cost-benefit 

analysis conclusion.
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6. Conclusions 

This paper provides an ex-post evaluation of the direct and cross-over effects of three AEMs 

implemented in the 2007-2013 RDP program in the Lombardy Region of northern Italy. In order to 

assess whether these policy measures determine additional environmental effects or not, we 

exploited data from a big dataset of about 50,000 farms, representing the universe of farms in the 

Lombardy Region. Starting from this dataset we built for each scheme a sample of farms potentially 

eligible for these policy instruments, calculating for each of them a set of environmental outcome 

indicators before and after the period of policy implementation. The empirical analysis was based 

on the use of an innovative matching procedure called CEM. To the best of our knowledge this is 

the first time such a matching procedure has been implemented in the assessment of an agri-

environmental related policy. This methodology allows the causal effect of AEMs to be assessed for 

the selected outcome indicators. Additionally, it leads to better controls for selection bias with 

respect to other matching procedures. Finally, we observed for each measure whether additional or 

windfall effects prevail through a stylized cost-benefit analysis that considers the amount of public 

funds spent for policy implementation.

From a methodological perspective, our analysis highlights some important properties of CEM, 

which should make it worthy of consideration when deciding how to empirically deal with a policy 

evaluation, such as the implementation of AEMs. In our exercise, when comparing CEM with PSM, 

the former proved to exploit more deeply the heterogeneity of farms in the sample. And, perhaps 

more importantly, allows for having, on average, a lower level of imbalance and more stable results.

As regards the effect of AEMs on green farming practices, our results provide evidence that the 

considered AEMs were apparently effective in improving the environmental performance on farms 

participating in these policy schemes. Most of the selected outcome variables proved to be affected 

by the implementation of the policies in a direction consistent with the policy-makers’ expectations. 

However, the results are more nuanced when cross-over effects are considered. Yet the magnitude 

of the estimated effects are quite limited, with the notable exception of the organic farming scheme. 

Furthermore, the effects found for the crops diversification and permanent grassland maintenance 

schemes arise mainly from an attenuation, or a slight counterbalancing, of general farming 

intensification trends rather than to a net effect observed among the treated farms during the 

observation period. Consequently, the cost-benefit analysis highlights that the cost of the 

implementation of this policy, if compared to the results obtained, appears to be extraordinarily 

large.

This paper provides interesting insights both from the methodological and policy implication 

points of view. Our results suggest that CEM may represent a suitable instrument to assess CAP 
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payment effects. The future CAP framework, that will be based, most likely, on national/local 

flexibility and which will probably attach high relevance to the achievement of environmental 

goals, will make policy-evaluation analysis increasingly relevant.

Some limitations of this approach are worth mentioning. For the AEMs analysed in this paper, 

the implementation of CEM, and of other matching estimators, strictly needs data for both treated 

and non-treated farms – better if for a wide sample. However, not all the CAP measures have this 

property, especially when considering those schemes paying for farming practices. For instance, 

sod-seeding or minimum tillage measures present outcomes that are available only for treated 

farms, as data for non-compliant farms are not collected. Moreover, the assessment of a precise 

treatment effect would necessarily need primary data gathered from field experiments on restricted 

samples of farms. Clearly, in this case CEM cannot be considered an option for a policy-evaluation 

analysis.
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Figures

Figure 1: Lorenz curve for cumulative distribution of weights in CEM and PSM estimations
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Figure 2: ATT and imbalance on 500 simulated CEM and PSM

Note: The figure plots ATT and the level of imbalance (L1 distance) for 500 simulations of CEM and PSM. CEM 

results are identified with black crosses, while red circles show the results for PSM. CEM results are included in 

the black ellipse, while PSM results are shown within the red ellipse. 
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Tables

Table 1 – Description of Lombardy agri-environmental schemes

Measure Requirements Eligibility criteria Payments

Crops 

diversification

a) to cultivate at least 3 arable crops in a 5-years rotation on the same parcel;

b) at least one crop in the 5-year rotation has to be a nitrogen-fixing crop or another 

arable crop (excepted for winter cereals and rice) or a 1-year set-aside;

c) an arable crop cannot be cultivated on the same field for two years consecutively; 

d) it is not permitted to grow any winter cereals on the same field for two years 

consecutively; 

e) to adopt a balanced fertilization plan (with soil analysis)

a) at least 2 hectares of arable crops 

in the plain;

b) at least 1 hectare of arable crops 

in the mountains and in the hills

169 EUR/ha

Grassland 

maintenance

To maintain grassland on the same area for 5 years (not applicable for mountain 

pastures)

a) at least 1 hectare of grassland in 

the plain;

b) at least 0.5 hectares of grassland 

in the hills;

c) not available in the mountain 

area

270 EUR/ha

Organic 

farming

a) To respect the provision of EU Regulation 834/2007, on the entire farm UAA for 5 

years;

b) to convert all the farm UAA to the organic farming within 5 years since the entry in 

the scheme

a) at least 1 hectare of UAA in the 

plain; b) at least 0.5 hectares of 

UAA in the mountains and the hills

160-570 EUR/ha for 

maintenance (depending on 

the crop);

174-620 EUR/ha for 

conversion (depending on the 

crop)

Notes: Other agri-environmental schemes were 214_b (low input production), 214_f (landscape conservation), 214_i (biodiversity in paddy fields), 214_l (biodiversity in 

mountain pastures), 214_m (sod seeding and minimum tillage), 214_h (livestock biodiversity).
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Table 2 – AEMs implementation in Lombardy in 2012

Measure Crops diversification Grassland maintenance Organic farming Other AEMs

Farm participants in 2012 (n.) 1,433 1,926 371 4,962

- of which entered in 2007 112

- of which entered in 2008 571 1,000 107 1,210

- of which entered in 2009 342 544 75 748

- of which entered in 2010 256 201 27 367

- of which entered in 2011 212 137 38 2,011

- of which entered in 2012 52 44 12 626

Area enrolled in 2012 (hectares) 45,846 20,410 8,528 147,247

Payments 2012 (EUR) 7,804,933 5,510,735 2,149,083 31,415,703

Source: Authors calculation based on SIARL (See text).

Table 3 – Description of outcome variables

Measure Outcome variable Definition Unit of measurement

Main arable crop (ha) The area covered by the main arable crop in the farm Number of hectares 

Main arable crop (%) The share of the main arable crop on total farm arable crop area %

Number of arable crops The number of arable crops in the farm Number

Arable crops heterogeneity Th Gini index of heterogeneity of arable crops in the farm Number

Nitrogen-fixing crops The share of nitrogen-fixing crops on total farm arable crop area %

Non soil-depleting crops The share of nitrogen fixing crops, other arable crops different from 

winter cereals and set-aside on total farm arable crop area

%

Grassland (ha) The area covered by grassland in the farm Number of hectares 

Grassland (%) The share of grassland on total farm UAA %

Organic farming (ha) The UAA under organic farming in farm Number of hectares 

Organic farming - under conversion (ha) The UAA in conversion to organic farming in the farm Number of hectares 

Crops diversification

Grassland maintenance

Organic farming
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Table 4 - Number of matched and unmatched farms in the treated and control groups with CEM

Non Treated Treated Total Non Treated Treated Total

All 24,960 1,113 26,073 24,960 1,113 26,073

Matched 10,557 796 11,353 15,078 1,010 16,088

Unmatched 14,403 317 14,720 9,882 103 9,985

Share matched 42.3% 71.5% 43.5% 60.4% 90.7% 61.7%

All 27,810 1,668 29,478 27,810 1,668 29,478

Matched 11,016 1,208 12,224 16,905 1,545 18,450

Unmatched 16,794 460 17,254 10,905 123 11,028

Share matched 39.6% 72.4% 41.5% 60.8% 92.6% 62.6%

All 33,517 272 33,789 33,517 272 33,789

Matched 4,861 84 4,945 11,615 225 11,840

Unmatched 28,656 188 28,844 21,902 47 21,949

Share matched 14.5% 30.9% 14.6% 34.7% 82.7% 35.0%

All 30,648 3,141 33,789 30,648 3,141 33,789

Matched 14,547 2,381 16,928 17,298 2,803 20,101

Unmatched 16,101 760 16,861 13,350 338 13,688

Share matched 47.5% 75.8% 50.1% 56.4% 89.2% 59.5%

Other AEMs

Full Set of Covariates Excluding Previous Participation

Crops 

diversification

Grassland 

maintenance

Organic farming

Source: Authors calculation based on data describe in the text.
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Table 5 – Estimated additional effects for crops diversification measure

Mean 
Difference in 

Treated 
Farms

Mean 
Difference in 
non-Treated 

Farms

ATT

Mean 
Difference in 

Treated 
Farms

Mean 
Difference in 
non-Treated 

Farms

ATT

Main arable crop(ha) 1.522 1.985 -0.462 1.318 1.292 0.0255
(0.499) (0.472)

Main arable crop(%) -0.964 10.384 -11.35*** -0.487 5.565 -6.052***
(0.839) (0.696)

Number of arable crops -0.158 -0.835 0.677*** -0.152 -0.504 0.352***
(0.0571) (0.0492)

Arable crops heterogeneity 0.690 -12.205 12.90*** 0.248 -7.204 7.453***
(0.929) (0.793)

Leguminous crops(%) -1.077 -3.033 1.956* -0.852 -0.550 -0.302
(1.124) (0.879)

Non soil-depleting crops(%) -2.414 1.075 -3.490*** -1.615 -1.253 -0.362
(1.013) (0.942)

Grassland(ha) 0.307 -0.252 0.558*** 0.305 -0.193 0.498***
(0.103) (0.111)

Grassland(%) 1.078 -0.358 1.436*** 1.026 -0.152 1.178***
(0.278) (0.264)

Organic farming(ha) 0.019 0.421 -0.402* -0.370 0.040 -0.410**
(0.243) (0.181)

Organic farming - under conversion(ha) 0.023 -0.016 0.0396 -0.056 -0.014 -0.0425
(0.118) (0.0618)

CEM with previous participation CEM without previous participation

Crops diversification measure

Notes: Figures in the tables show for each of the considered outcome variable the mean difference over the period 2005-2012 in both 

the samples of treated and non-treated matched farms, as well as the resulting ATT. In bold are reported direct estimated effects, in 

thin cross-over effects. Estimations are based on d-i-d CEM implemented in STATA13 (command cem). Standard errors are in 

parentheses.  ***, **, or  * denote statistical significance at 1%, 5% and 10% level, respectively.   
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Table 6 – Estimated additional effects for grassland maintenance measure

Mean 
Difference in 

Treated 
Farms

Mean 
Difference in 
non-Treated 

Farms

ATT

Mean 
Difference in 

Treated 
Farms

Mean 
Difference in 
non-Treated 

Farms

ATT

Grassland(ha) 0.582 -1.737 2.319*** 0.473 -0.221 0.694***
(0.185) (0.118)

Grassland(%) 1.863 -3.941 5.804*** 1.633 0.269 1.364***
(0.540) (0.393)

Main arable crop(ha) 1.837 1.384 0.453 1.843 1.592 0.251
(0.367) (0.379)

Main arable crop(%) -2.127 -1.452 -0.676 -1.457 1.386 -2.843***
(0.832) (0.696)

Number of arable crops -0.131 -0.251 0.120*** -0.129 -0.325 0.196***
(0.0368) (0.0339)

Arable crops heterogeneity -0.482 -1.538 1.056 -0.927 -4.120 3.193***
(0.650) (0.563)

Leguminous crops(%) 1.673 1.927 -0.254 1.655 0.483 1.172**
(0.589) (0.545)

Non soil-depleting crops(%) -1.214 -2.745 1.531 -0.837 -1.981 1.144
(0.931) (0.779)

Organic farming(ha) -0.140 0.077 -0.217*** -0.517 0.133 -0.650***
(0.0802) (0.187)

Organic farming - under conversion(ha) 0.000 0.011 -0.0106 0.035 0.032 0.00308
(0.0474) (0.0522)

CEM with previous participation CEM without previous participation

Grassland maintenance measure

Notes: Figures in the tables show for each of the considered outcome variable the mean difference over the period 2005-2012 in both 

the samples of treated and non-treated matched farms, as well as the resulting ATT. In bold are reported direct estimated effects, in 

thin cross-over effects. Estimations are based on d-i-d CEM implemented in STATA13 (command cem). Standard errors are in 

parentheses.  ***, **, or  * denote statistical significance at 1%, 5% and 10% level, respectively.   
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Table 7 – Estimated additional effects for organic farming measure

Mean 
Difference in 

Treated 
Farms

Mean 
Difference in 
non-Treated 

Farms

ATT

Mean 
Difference in 

Treated 
Farms

Mean 
Difference in 
non-Treated 

Farms

ATT

Organic farming(ha) 4.715 -1.065 5.780*** 1.17 0.032 1.138***

(1.180) (0.389)

Organic farming - under conversion(ha) 3.198 -1.245 4.443*** 2.275 -0.012 2.289***

(0.631) (0.134)

Main arable crop(ha) 2.943 1.170 1.772 1.505 -0.15 1.656**

(1.246) (0.728)

Main arable crop(%) 0.499 -2.306 2.805 5.799 2.769 3.030

(4.458) (2.597)

Number of arable crops -0.167 -0.255 0.0887 -0.12 -0.196 0.0769

(0.153) (0.0884)

Arable crops heterogeneity -6.654 -4.587 -2.067 -4.978 -3.059 -1.919

(2.672) (1.553)

Leguminous crops(%) -1.058 -2.363 1.305 -1.119 -0.612 -0.507

(4.266) (1.911)

Non soil-depleting crops(%) -4.588 -7.101 2.514 2.763 1.702 1.061

(5.085) (2.880)

Grassland(ha) -0.029 -0.041 0.0119 0.39 -0.169 0.560***

(0.236) (0.174)

Grassland(%) 0.905 1.433 -0.528 1.454 0.588 0.866

(1.454) (0.837)

CEM with previous participation CEM without previous participation

Organic farming measure

Notes: Figures in the tables show for each of the considered outcome variable the mean difference over the period 2005-2012 in both 

the samples of treated and non-treated matched farms, as well as the resulting ATT. In bold are reported direct estimated effects, in 

thin cross-over effects. Estimations are based on d-i-d CEM implemented in STATA13 (command cem). Standard errors are in 

parentheses.  ***, **, or  * denote statistical significance at 1%, 5% and 10% level, respectively.   
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Table 8 – Estimated additional effects for other AEMs  

Mean 
Difference 
in Treated 

Farms

Mean 
Difference 

in non-
Treated 

ATT

Mean 
Difference 
in Treated 

Farms

Mean 
Difference 

in non-
Treated 

ATT

Main arable crop(ha) 0.813 1.024 -0.211 0.818 0.899 -0.0802
(0.414) (0.361)

Main arable crop(%) 4.798 4.175 0.622 4.698 6.367 -1.669**
(0.930) (0.790)

Number of arable crops -0.137 -0.393 0.256*** -0.129 -0.275 0.147***
(0.0286) (0.0264)

Arable crops heterogeneity -2.643 -5.852 3.209*** -2.570 -4.663 2.093***
(0.450) (0.417)

Leguminous crops(%) -0.831 0.577 -1.408*** -1.621 0.700 -2.321***
(0.546) (0.495)

Non soil-depleting crops(%) 3.167 0.754 2.413** 3.244 3.710 -0.467
(1.006) (0.862)

Grassland(ha) 0.022 -0.034 0.0561 0.010 -0.062 0.0720
(0.0709) (0.0672)

Grassland(%) -0.046 0.754 -0.800*** -0.057 0.687 -0.743***
(0.226) (0.228)

Organic farming(ha) 0.545 0.070 0.474*** 0.167 0.268 -0.100
(0.105) (0.129)

Organic farming - under conversion(ha) 0.146 -0.009 0.155*** 0.142 0.008 0.134***
(0.0390) (0.0429)

CEM with previous participation CEM without previous participation

Other AEMs

Notes: Figures in the tables show for each of the considered outcome variable the mean difference over the period 2005-2012 in both 

the samples of treated and non-treated matched farms, as well as the resulting ATT. In bold are reported direct estimated effects, in 

thin cross-over effects. Estimations are based on d-i-d CEM implemented in STATA13 (command cem). Standard errors are in 

parentheses.  ***, **, or  * denote statistical significance at 1%, 5% and 10% level, respectively.   
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Table 9 - Cost-benefit analysis for treated matched farms after the treatment (2012)

Variable
Outcome 

variables means 
for treated farms

 Average 
farmland under 
costraints (ha) 

 ATT 
 Windfall 

effects  

 Average AEM 
payment per 

farm  (€) 

 AEM payments 
per hectare under 
costraints (€/ha) 

 AEM 
payments per 

unit of ATT (€) 

(a) (b)  (c)  (d=a-c)  (e)  (f=e/b)  (g=e/c) 
Main arable crop(ha) 19.148 -0.462 19.609 13,881
Main arable crop(%) 58.741 -11.35*** 70.090 565
Number of arable crops 3.687 0.677*** 3.010 9,472
Arable crops heterogeneity 51.351 12.90*** 38.451 497
Nitrogen-fixing crops(%) 42.052 1.956* 40.096 3,278
Non soil-depleting crops(%) 75.293 -3.490*** 78.782 1,837
Grassland(ha) 13.246 2.319*** 10.927 1,302
Grassland(%) 49.579 5.804*** 43.775 520
Organic farming(ha) 17.091 17.09 5.780*** 11.310 4,448 260 769
Organic farming - under conversion(ha) 4.057 4.06 4.443*** -0.386 1,255 309 282

166

228

38.56 6,413

13.25 3,021
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Appendix A

Table A.1: Outcome variables in the pre-treatment scenario (2005) – Crops diversification 

Crops diversification
Not 

participants
Participants Difference

Number of farms 24,960 1,113

Mean Min Max Mean Mean t-test 

Main arable crop (ha) 12.70 0.00 453.88 12.52 16.59 -7.57***

Main arable crop (%) 78.67 18.71 100.00 79.47 60.81 26.81***

Arable crops heterogeneity 28.18 0.00 87.65 27.24 49.42 -29.58***

Number of arable crops 2.37 1.00 15.00 2.31 3.75 -25.05***

Nitrogen-fixing crops (%) 13.76 0.00 100.00 12.33 45.80 -33.67***

Non soil-depleting crops (%) 82.36 0.00 100.00 82.55 78.21 6.64***

Grassland (ha) 1.67 0.00 268.77 1.72 0.71 4.52***

Grassland (%) 6.65 0.00 100.00 6.89 1.31 24.48***

Organic farming (ha) 0.35 0.00 569.14 0.35 0.47 -0.58

Organic farming - under conversion (ha) 0.02 0.00 114.73 0.02 0.07 -0.92

All farms

26,073

Table A.2: Outcome variables in the pre-treatment scenario (2005) – Grassland maintenance 

Grassland maintenance
Not 

participants
Participants Difference

Number of farms 27,810 1,668

Mean Min Max Mean Mean t-test

Main arable crop (ha) 11.20 0.00 453.88 10.98 14.95 -7.37***

Main arable crop (%) 68.52 0.00 100.00 68.50 68.82 -0.37

Arable crops heterogeneity 24.66 0.00 87.65 24.87 21.23 6.14***

Number of arable crops 2.07 0.00 15.00 2.08 1.99 2.29**

Nitrogen-fixing crops (%) 11.10 0.00 100.00 11.49 4.71 18.47***

Non soil-depleting crops (%) 71.31 0.00 100.00 71.19 73.39 -2.25**

Grassland (ha) 1.78 0.00 393.09 1.14 12.41 -39.6***

Grassland (%) 10.88 0.00 100.00 8.47 50.98 -56.77***

Organic farming (ha) 0.31 0.00 569.14 0.29 0.61 -1.15

Organic farming - under conversion (ha) 0.02 0.00 114.73 0.02 0.03 -0.37

All farms

29,478
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Table A.3: Outcome variables in the pre-treatment scenario (2005): Organic farming

Organic farming
Not 

participants
Participants Difference

Number of farms 33,517 272

Mean Min Max Mean Mean t-test 

Main arable crop (ha) 9.96 0.00 453.88 9.98 7.85 1.60

Main arable crop (%) 63.89 0.00 100.00 63.99 50.98 5.93***

Arable crops heterogeneity 22.15 0.00 87.65 22.08 30.54 -4.67***

Number of arable crops 1.88 0.00 15.00 1.88 2.35 -3.40***

Nitrogen-fixing crops (%) 11.19 0.00 100.00 11.07 26.30 -7.67***

Non soil-depleting crops (%) 66.46 0.00 100.00 66.51 61.08 2.19**

Grassland (ha) 1.55 0.00 393.09 1.53 4.00 -2.09**

Grassland (%) 9.52 0.00 100.00 9.53 8.73 0.63

Organic farming (ha) 0.29 0.00 569.14 0.15 17.54 -5.39***

Organic farming - under conversion (ha) 0.02 0.00 114.73 0.01 1.09 -3.10***

All farms

33,789

Source: Authors calculation based on data describe in the text.


