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A B S T R A C T

Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects.
The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key
events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene ex-
pression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing
the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in
the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested
MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The
common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a
weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal,
capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA
catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two
different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on
the two converging AOPs.

1. Introduction

Craniofacial malformations represent more than one-third of all
congenital birth defects (cleft lip and/or palate alone or associated with
other cranio-facial deformities, 1:700 live births; cranio-facial anoma-
lies other than cleft lip and palate, 1:1600 newborns) (Mossey et al.,
2009).

Craniofacial defects have a multifactorial etiology, involving both
genetic (Twigg and Wilkie, 2015) and environmental risk factors
(Mossey et al., 2009.). Some risk factors inducing cranio-facial defects
have been identified, such as maternal active and passive smoking
(Mossey et al., 2011), (Sabbagh et al., 2015), alcohol consumption
(Burns et al., 1974), Western-type diet (Vujkovic et al., 2007), maternal
diabetes (Spilson et al., 2001), use of medicaments, such as some an-
tiepileptic drugs (Nguyen et al., 2009), (Alsaad et al., 2015) and re-
tinoids (Suuberg, 2019), exposure to certain pesticides (Romitti et al.,

2007) during the first trimester of pregnancy. There are indications that
combined exposure to certain risk factors, such as alcohol and tobacco,
have additive effects (Goncalves Leite and Koifman, 2009).

Craniofacial development entails a complex three-dimensional
morphogenetic process, regulated by the morphogen retinoic acid (RA).
A specific relationship has been described between RA gradient in
different hindbrain areas, Hox gene expression, neural crest cells mi-
gration, pharyngeal arch formation and facial morphogenesis (Osumi-
Yamashita, 1996) (Fig. 1). Pharyngeal arches (branchial arches, BAs)
are symmetrical transient structures common to vertebrates at their
phylotypic stage. The first BA (oral) is organized in an anterior max-
illary process and in a posterior ventral mandibular process; normally
the second BA (hyoid) appears well separated from the first (Fig. 1). A
wide spectrum of craniofacial defects (among them: hemifacial micro-
somia, mandibulofacial dysostosis, branchio-oto-renal syndrome, Pierre
Robin sequence and Nager acrofacial dysostosis) are classified as first
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and second branchial arch syndromes (Senggen et al., 2011). It has been
shown that excessive RA concentrations at the time of facial morpho-
genesis leads to facial malformations (Lammer et al., 1985). RA gra-
dient formation and maintenance are ensured by the correct equili-
brium between RA synthesis and inactivation by CYP26 isoforms
(Oosterveen et al., 2004). The Hox gene regulation machinery includes
the histone deacetylase enzyme (HDAC, mainly the isoform HDAC7),
associated with the co-repressor complex (Minoux and Rijli, 2010)
(Fig. 1).

Making reference to molecular sequences in normal morphogenesis,
it is possible to draw a hypothetical adverse outcome pathway (AOP).
AOP describes a framework of information about the progression of
toxicity events, starting from one or more molecular initiating events
(MIEs), that trigger a sequence of biological events (key events, KEs)
and leading to the final apical adverse outcome (AO). Within this
scheme, different chemicals that switch on the same MIE can trigger the
same KEs cascade and contribute to the same AO; also, switching a
different MIE can trigger the same or partially overlapping cascade of
KEs that leads to the same AO (Bal-Price et al., 2017). Finally, the
scientifically-based description of the proposed AOPs could be also
useful to better understand the pathogenesis of craniofacial defects
related to genetic syndromes as well, contributing also to identify re-
levant gene polymorphisms that might increase the susceptibility to
environmental factors for malformations, that appear to be mostly
multifactorial. Also, understanding the dismorphogenic pathways
would help in the discovery of those environmental factors that may
contribute to the incidence of malformations. Based on a critical match
between known or hypothesized molecular interactions of some che-
micals, that induce facial defects, and relevant KEs for facial morpho-
genesis an AOP is proposed and shown in Fig. 2.

In detail, specific RA-like teratogenic effects at the level of the
branchial structures were correlated to exposure to certain antifungal
azoles, when tested in the post-implantation rat whole embryo cultures
(WEC) (Di Renzo et al., 2019). The suggested hypothetical pathogenic
pathway for azoles, which includes CYP26 inhibition as MIE (Menegola
et al., 2006), was the basis for developing a quantitative AOP for cra-
niofacial malformations (Battistoni et al., 2019).

Antiepileptic drugs, including valproic acid (VPA), are correlated to
multiple malformations (neural tube, cardiac, craniofacial, skeletal and
limb defects) classified as Fetal Valproate Syndrome (Ornoy, 2009;

Weston et al., 2016). As far as axial skeletal defects are concerned, a
direct relationship with HDAC inhibition was previously suggested
(Menegola et al., 2005b), while no MIEs have been identified for other
VPA-related teratogenic outcomes, including facial defects.

The aims of the present work are to: 1) investigate, in more detail,
the suggested AOP outlined in Fig. 2; 2) to rank the relative potencies of
some chemicals, associated with craniofacial defects in humans, using
the WEC in vitro method; 3) investigate the suggested MIEs, matching
the in vitro results with in silico approaches. Clarifying an AOP and
defining quantitative KE relationships will be helpful in devising ex-
perimental studies with appropriate end-point measurements, e.g. to
assess the combined effects of exposure to chemicals triggering different
MIEs but leading to the same AO. In particular, these experiments are
needed to assess to what extent and in which conditions dose-additivity
for such compounds does apply. In fact, while it is biologically plausible
that, once activated the common KE, co-exposure will add on the effect,
the question would be whether at environmentally relevant exposures
i.e. at doses not triggering the AOP cascade the addition will or will not
occur.

The molecules selected for the in silico and in vitro experiments are
three azole pesticides (triadimefon, FON, cyproconazole, CYPRO, and
flusilazole, FLUSI), the histone deacetylases inhibitor valproic acid
(VPA), and RA (as reference molecule). Among those previously char-
acterized (Di Renzo et al., 2019), the selected azoles are known to in-
duce both branchial defects in vitro (Menegola et al., 2000, 2001; Di
Renzo et al., 2011). Moreover in regulatory studies on developmental
toxicity, assessed in the frame of EU registration, cyproconazole and
flusilazole showed facial defects, in particular cleft palate in rats, after
in utero exposure (EFSA, 2010; JMPR, 2010; JMPR, 2007). Additionally,
administration of FON to pregnant animals, showed increased fetal
incidence of cleft palate in rats and rabbits (JMPR, 2004) and mice
(Menegola et al., 2005a). RA and VPA are related to dysmorphogenic
effects, including branchial defects in vitro (Gofflot et al., 1996; Di
Renzo et al., 2019) and to facial dysmorphology in humans (Lammer
et al., 1985; DiLiberti et al., 1984).

Fig. 1. Morphogenetic events involved in craniofacial development. The morphogenic pathway leads to the formation of specified NCCs migrating at the level of
fronto-nasal process and into distinct branchial arches. In particular, the first branchial arch is crucial for facial skeletal organization and is subdivided into a
maxillary process (white) also responsible for secondary palate organization and into a mandibular process (black). Dotted the fronto-nasal elements.
RA = retinoic acid; RDH = retinol dehydrogenase; RALDH = retinaldehyde dehydrogenase; RAR/RXR = retinoic acid nuclear receptors; HDAC = histone dea-
cetylase; HAT = histone acetyltransferase; NCCs = neural crest cells.
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2. Materials and methods

2.1. WEC

2.1.1. Materials and compound preparation
The medium used for the extraction of embryos from the uteri was

sterilized Tyrode solution (Sigma); the medium used for the post-
implantation whole embryo culture was undiluted heat inactivated rat
serum added with antibiotics (penicillin 100 IU/mL culture medium
and streptomycin 100 μg/mL culture medium, Sigma). All the tested
compounds were purchased by Sigma, Italy (PESTANAL®, analytic
grade). Azoles (FON, CYPRO, FLUSI, dissolved in ethanol in order to
reach the final ethanol concentration in the medium equal to
17.35 mM), RA (dissolved in DMSO), VPA (Sodium Valproate, dissolved
in Tyrode) were added to the culture medium in order to reach the final
concentration of the different experimental groups (Fig. 3). For each
dose-response experiment, a group exposed to the relevant solvent

(dose 0) was prepared.

2.1.2. Embryo culture
All animal use protocols were approved by the Ministry of Health -

Department for Veterinary Public Health, Nutrition and Food Safety
committee. In compliance with EU Directive 2010/63/EU, animals
were treated humanely and with regard for alleviation of suffering.
Virgin female CD:Crl rats (Charles River, Calco, Italy), housed in a
thermostatically maintained room (T = 22 ± 2 °C; relative humidity
55 ± 5%) with a 12 h light cycle (light from 6.00 a.m. to 6.00 p.m.),
free access to food (Italiana Mangimi, Settimo Milanese, Italy) and tap
water, were caged overnight with males of proven fertility. Embryos
were explanted from untreated pregnant rats at E9.5 (early neurula
stage, 1–3 somites; day of positive vaginal smear = 0) and cultured
according to the New's method (New, 1978) in 20 ml glass bottles (5
embryos/bottle), containing 5 mL culture medium and test molecules at
different concentrations. The bottles, inserted in a thermostatic

Fig. 2. Hypothetical adverse outcome pathways (AOPs) confluent to the same adverse outcome (AO, facial defects). The tested azoles (FON, CYPRO, FLUSI)
and valproic acid (VPA), causing different molecular initiating events (MIEs, black), hypothetically trigger key events (KEs, grey) leading to the common adverse
outcome (AO, dark grey).

Fig. 3. Single dose-response curves. CYPRO, FON, FLUSI, VPA and RA were modelled in terms of benchmark dose (BMD) using PROAST software.
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(37.8 °C) roller (30 rpm) apparatus, were periodically gas equilibrated
according to Giavini et al. (1992) (Giavini et al., 1992). After 48 h of
culture, embryos were morphologically examined under a dissecting
microscope in order to evaluate any branchial or extra-branchial ab-
normality. At least a triplicate was performed for each group.

2.1.3. Data analysis
Statistical evaluation was applied on frequencies (chi-square test for

multiple comparison), setting the level of significance at p < 0.05.
PROAST analysis (65.5 version) was applied on branchial outcomes,

because this apparatus was the common target for all the tested sub-
stances and the target of the present study. Data were modelled to
obtain the single dose-response curves (from these curves, the bench-
mark doses at 50% - BMR50) and the relative potency factors (RPFs, RA
being the reference compound).

2.2. Molecular modeling

The primary structures of the selected rat enzymes were down-
loaded from the UniProt Protein Knowledgebase database (“UniProt,”).
After a protein BLAST search of the RCSB Protein Data Bank (PDB)
database (“RCSB PDB: Homepage,”) for homologues to the selected
enzymes, the crystallographic structures reported in Table 1 were set as
templates, downloaded from the PDB and structure-prepared using the
Structure Preparation program of the MOE 2019.01 suite (Chemical
Computing Group), in order to address any crystallographic issues and
to add missing atoms/residues. All the alignments were produced
through the Clustal Omega software (“Clustal Omega < Multiple Se-
quence Alignment < EMBL-EBI,”) and manually checked. All the
comparative models were produced by the MOE Homology Model
program of the Protein module with default settings, also importing
both the ligand and the cofactor co-crystallized with the template en-
zymes. The quality of the final models was carefully checked with the
MOE Protein Geometry program.

The catalytic sites of the selected enzymes were identified through
the MOE Site Finder program, which uses a geometric approach to list
putative binding sites in a protein, starting from its three-dimensional
structure. The correspondence with the co-modelled ligand was then
carefully checked.

Selected chemicals were downloaded from the PubChem database
(“PubChem,”). Each entry was converted into a three-dimensional
structure, and energy minimized, with the MOE Energy Minimize pro-
gram, down to a RMS gradient of 0.05 kcal/mol/Å2. Stereochemistry of
each structure was carefully checked. Molecular docking was carried
out through the MOE Dock program. The Triangle Matcher placement
algorithm was used for exploring only the enzyme catalytic site, and the
London dG empirical scoring function was applied for sorting the poses.
The 30 top-scoring poses were refined through molecular mechanics,
considering each receptor as a rigid body, and the refined complexes
were scored through the GBVI/WSA dG empirical scoring function,
selecting the five top-scoring poses. All the co-modelled ligands were
used for validating the molecular docking procedure on 3-D models,

obtaining docking poses that are compliant with the original structures.

3. Results

3.1. WEC

All tested molecules induced concentration-related branchial de-
fects (BA fused, Table 2); RA and VPA induced multiple district
anomalies including extra-branchial abnormalities (neural tube defects,
somite abnormalities, hook-shaped tail).

PROAST analysis on branchial outcomes was first performed in
order to compare the fit to the single dataset (Fig. 3) with the fit to the
combined dataset (Fig. 4), using in both cases exponential model family
tests. As the log-likelihood ratio test did not reject the equal steepness
assumption (p = 0.88 with log-likelihood of separate fits = −180.61,
log-likelihood of the overall fit = −182.12, degrees of freedom = 7)
(Table 3), the benchmark doses (BMDs) for benchmark response (BMR)
at 50% and relative potency factors (RPFs) were estimated using the
combined model fit (Figs. 4 and 5). The evaluation of CIs of RPFs
suggests potency ranking as follow: RA > FLUSI > CYPRO/FON >
VPA (Fig. 6). Even if FLUSI resulted at least one order of magnitude less
potent than RA, it resulted nearly one order of magnitude more potent
than the other tested azoles. VPA was the less potent of all, at least four
orders of magnitude less potent than RA.

3.2. Docking

Table 4 shows the binding free energies of the chemicals docked
into the selected enzymes. As expected, RA (the natural CYP26 sub-
strate) is the best CYP26 isoenzymes ligand, since it shows the best ΔG
with respect to the other tested chemicals, and, according to its binding
free energy (ΔG) values, it is possible to classify RA as a strong binder of
the three CYP26 isoenzymes. Azoles, with a comparable ΔG value for
each CYP26 isoenzyme, can be classified as good ligands, while VPA,
with the least negative ΔG values for the three CYP26 isoenzymes, can
be classified as a weak ligand.

All the binding poses were carefully checked, pointing out that in
each CYP26 isoenzyme all the selected chemicals are located near the
heme Fe2+ ion. In particular, all the RA binding poses are comparable
with the placement of the co-modelled RA (Fig. 7A), while all the azoles
show the azolic ring exposed to the heme group, in agreement with
Pautus and colleagues (Pautus et al., 2009). VPA can accommodate
itself in the CYP26 isoenzyme binding sites in two different modes: in
the first, observed for CYP26A1 and CYP26C1, VPA is close to the heme
group, while in the second, observed for CYP26B1, VPA is far from the
catalytic site (Fig. 7B), suggesting that VPA is not a ligand for this
isoenzyme.

On the contrary, VPA may be classified as ligand of HDAC iso-
enzymes, whereas RA could be only hypothesized as a putative weak
interactor. In fact, VPA binds a very deep region of the catalytic site,
near the Zn2+ ion. According to Sixto-López et al., (2014) (Sixto-López

Table 1
Reference structures for homology modelling the selected proteins involved in MOAs craniofacial malformations.

Protein UniProtKB code Template RCSB PDB code Identity percent Reference

CYP26A1_RAT G3V861 CP120_SYNY3 2VE3 34.8% 39

CYP26B1_RAT G3V7X8 CP120_SYNY3 2VE3 35.1% 39

CYP26C1_RAT D4AAL3 CP120_SYNY3 2VE3 33.5% 39

HDAC1_RAT Q4QQW4 HDAC1_HUMAN 4BKX 99.2% 40

HDAC2_RAT B1WBY8 HDAC2_HUMAN 4LY1 99.0% 41

HDAC3_RAT Q6P6W3 HDAC3_HUMAN 4A69 99.8% 42

HDAC4_RAT Q99P99 HDAC4_HUMAN 2VQM 93.4% 43

HDAC7_RAT A0A0G2K6B1 HDAC7_HUMAN 3C10 92.4% 44

HDAC8_RAT B1WC68 HDAC8_HUMAN 5DC5 96.3% 45

HDAC10_RAT E5RQ38 HDAC5_HUMAN 5TD7 57.5% 46
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et al., 2014) the carboxylic group of VPA establishes metal/ion inter-
action with Zn2+ in all the HDAC isoenzymes; moreover, the computed
affinity (ΔG) of VPA for HDAC8 agrees with other in silico data
(Bermúdez-Lugo et al., 2012). Differently, for each tested HDAC iso-
enzyme, the RA carboxylic group cannot interact with the Zn2+ ion,
while the carbocyclic ring is not buried in the binding site, but partially
exposed to the solvent. Differently, all the investigated azoles do not
bind the catalytic site of tested HDACs. No azole establishes interaction
with Zn2+ ion. For this reason, azoles cannot be classified as HDACs
ligands.

4. Discussion

The aim of the present work was to rank the relative potencies of
selected chemicals associated with craniofacial defects in humans and

Table 2
Percentage of embryos with malformations at the branchial arches (BA).
Grey columns indicate concentration levels at witch extra-branchial defects were also observed.

Fig. 4. Evaluation of the benchmark doses (BMDs) for benchmark re-
sponse at 50% of CYPRO, FON, FLUSI, VPA in respect to RA. From left to
right: RA-FLUSI-CYPRO-FON-VPA.

Table 3
Parameters obtained by PROAST analysis, fitting separate dataset for each
compound and combined dataset for all. BMD = benchmark dose;
BMR = benchmark response.

BMD for BMR 50% (μM) log-likelihood

RA 0.16 −57.69
CYPRO 18.1 −26.71
FON 22.15 −16.67
FLUSI 3.7 −17.18
VPA 403.8 −62.36

COMBINED (RA as index) 0.125 −182.12

Fig. 5. Evaluation of the relative potency factors (RPFs) of the effects of
CYPRO, FON, FLUSI, VPA in respect to RA. From left to right: RA-FLUSI-
CYPRO-FON-VPA.
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to investigate the suggested AOP shown in Fig. 2. Data obtained by in
vitro exposure (WEC) to the different chemicals and modelled by
PROAST analysis allowed potency ranking with RA more active, as
expected. Azoles were less effective than RA (with the following
ranking: FLUSI > CYPRO/FON) and VPA was even less active. The
match between the in vitro results and in silico data showed a complex
picture and unexpected results. In contrast to the initial hypothesis of
different MIEs (CYP26 inhibition for azoles, HDAC inhibition for VPA)
involved in inducing a similar adverse outcome (branchial defects, as
observed after embryo evaluation), the in silico approach pointed out a
more complex interaction network.

Literature data describe the time course of CYP 26 isozyme ex-
pression in rodent embryos. CYP 26A1 is initially expressed in the
anterior neural plate during gastrulation (Kudoh et al., 2002) and later
has a key role in the developing hindbrain to precisely restrict the field
of endogenous RA signalling (White and Schilling, 2008). In contrast to
CYP26A1, CYP26B1 expression appears later and is associated with a
more dynamic pattern in the hindbrain. CYP26C1 initially appears in
the head mesenchyme (Uehara et al., 2007), and is then expressed after
gastrulation in specific hindbrain regions. Using Cyp26a1−/
−Cyp26c1−/− mice, Uehara et al. (2007) suggested that the activity
of CYP26A1 and CYP26C1 is required for correct neural antero-pos-
terior patterning and production of migratory cranial neural crest cells
colonizing craniofacial regions. Consistent with the hypothesis, that
Cyp26a1−/−Cyp26c1−/− phenotype showed branchial abnormal-
ities actually similar to those observed in our in vitro experiment.

Even if with an affinity lower than the natural substrate (RA), all the
tested azoles can bind CYP26 isoenzymes with a significant predicted
binding free energy, showing a well conserved binding mode, already
described in literature (Pautus et al., 2009), in which the azolic ring is
arranged close to the heme Fe2+ ion. Since no azole metabolites oxi-
dized in the azolic ring have been reported, and since our binding poses
do not satisfy geometrical restrain reported in Pautus and colleagues
(Pautus et al., 2009) and mandatory for the enzymatic reaction, our

data suggest that for CYP26 isoenzymes azoles are not substrates but
competitive inhibitors. In contrast, as expected, RA is the only chemical
that can establish a specific interaction with the heme group in all the
three CYP26 isoenzymes.

Contrary to the earlier assumption regarding the ubiquitous ex-
pression of HDACs (Weichert, 2009), recent studies clearly demon-
strated that also HDACs are expressed in space- and time-specific
manner during development (Tab 5). As far as the craniofacial mor-
phogenesis is concerned, a strong expression is described for HDAC1
and HDAC2 at the branchial arch level in mouse E10 embryos (Murko
et al., 2010). As shown by Milstone et al. (2017) HDAC1 and HDAC2
are expressed in NCCs and their derivatives (including branchial ar-
ches) in mouse embryos and regulate branchial arch formation. HDAC1
and HDAC2 have already been supposed to be implicated in congenital
craniofacial defects seen in humans (Hudson et al., 2014; De Souza
et al., 2015; Matsumoto et al., 2015) In addition, HDAC8 seems to
regulate skull morphogenesis only during late gestation, confirming a
unique role of HDAC1 and HDAC2 within early craniofacial embry-
ogenesis (Haberland et al., 2009). Furthermore, expression in multiple
extra cranio-facial districts (including the developing brain) was de-
scribed for a number of HDACs (HDAC1, HDAC2, HDAC3, HDAC8) in
E10 mouse embryos (Murko et al., 2010), whereas, consistent with
HDAC7 null mice phenotype, HDAC7 expression in E9.5 mouse em-
bryos was limited to the developing vascular endothelium (Tab 65)
(Chang et al., 2006).

VPA is described as a weak HDAC inhibitor (Eckschlager et al.,
2017) and this seems an interesting feature for repositioning this anti-
epileptic drug as anticancer (Eckschlager et al., 2017; Krauze et al.,
2015; Suraweera et al., 2018). Its HDAC inhibitory capability was
previously demonstrated also in mouse embryos nuclear extracts, sug-
gesting a specific inhibitory activity on nuclear HDACs expressed
during embryo development (Di Renzo et al., 2007).

In silico results on VPA-HDACs docking (Table 5) confirm a weak
general inhibitory activity of VPA on the tested HDACs, including, but
not exclusively, HDAC1 and 2. This activity on HDAC1 and 2 could be
considered supportive for the corroboration as a MIE in VPA terato-
genic effects.

Unexpectedly, VPA shows, in addition, a weak, but not marginal,
capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, sug-
gesting a possible role of VPA in decreasing RA catabolism, but with a
difference of approximatively two orders of magnitude in comparison
with azoles. Approximated Kis, obtained from the binding free energy
values, could be compatible with the tested active concentrations, and
this could be considered at the basis of an additional MIE. Conversely,
the binding free energy of RA suggests only a marginal role of this
morphogen on HDAC activity that, if demonstrated, would become
appreciable only at definitively higher concentrations than those tested
and resulted teratogenic. These complex interactions could be related to
the documented multilevel modulation of different RA-dependent gene
activators. Together with the varying expression of the target enzymes
in space and time, this could explain the malformations induced by VPA
as well as by azoles.

Our findings thus suggest a new picture related to the evaluated AO
including similar (azoles) and partially dissimilar (azoles-VPA)

Fig. 6. Plot of relative potency factors (RPFs) with confidence intervals
(CIs) considering RA potency = 1.

Table 4
Binding free energy values of tested molecules. Values are express in kcal/mol.

Chemical CYP
26A1

CYP
26B1

CYP
26C1

HDAC1 HDAC2 HDAC3 HDAC4 HDAC7 HDAC8 HDAC10

FLUSI −7.3 −7.0 −7.7 a a a a a a a

FON −7.4 −7.5 −7.5 a a a a a a a

CYPRO −7.2 −7.0 −7.5 a a a a a a a

RA −8.9 −8.9 −10.2 −6.1 −5.7 −5.7 −5.4 −5.2 −6.1 −6.0
VPA −5.6 a −6.0 −4.9 −4.9 −3.1 −4.1 −4.1 −5.0 −4.4

a These ligands bind far from the catalytic site (more details in the text).
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molecular targets. Consequently two different AOPs, confluent on the
same AO, can be described. While azoles seem to be involved in a linear
pathway, VPA MIEs (HDAC and CYP26 inhibition) impinge on the two
converging AOPs affecting craniofacial structures (Fig. 8).

5. Conclusions

The present tiered approach (in silico docking in order to evaluate
hypothetical MIEs; in vitro WEC approach in order to obtain robust data
to model) resulted adequate to improve the hypothetical AOP for cra-
niofacial defects.

Interestingly, this approach confirmed the supposed MIEs but also
suggested that at least an additional MIE can be considered to explain
VPA-related craniofacial defects.

Future experiments on mixtures could be aimed in order to deep
evaluate the effects of binary mixtures of azoles and VPA.

The present work assumes also a particular interest considering that
RA pathways are currently an emerging issue in toxicology, and che-
micals able to interfere with RA pathway have recently received more
and more attention (Wu et al., 2014; Chen and Reese, 2016).
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Table 5
Summary of HDAC expression during mouse E10 embryogenesis (corresponding to the rat stage at the end of the culture period).
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Murko et al.
(2010)
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(FON, CYPRO, FLUSI) and valproic acid (VPA), even if with different affinity, are involved in CYP26 inhibition. VPA is also involved in HDAC inhibition. MIEs trigger
different key events (KEs, grey) leading to a common KE (abnormal Hox gene expression) and, finally to the common adverse outcome (AO, dark grey).
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