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Cover’s function counting theorem is a milestone in the theory of artificial neural networks. It provides an
answer to the fundamental question of determining how many binary assignments (dichotomies) of p points
in n dimensions can be linearly realized. Regrettably, it has proved hard to extend the same approach to more
advanced problems than the classification of points. In particular, an emerging necessity is to find methods to
deal with geometrically structured data, and specifically with non-point-like patterns. A prominent case is that
of invariant recognition, whereby identification of a stimulus is insensitive to irrelevant transformations on the
inputs (such as rotations or changes in perspective in an image). An object is thus represented by an extended
perceptual manifold, consisting of inputs that are classified similarly. Here, we develop a function counting
theory for structured data of this kind, by extending Cover’s combinatorial technique, and we derive analytical
expressions for the average number of dichotomies of generically correlated sets of patterns. As an application,
we obtain a closed formula for the capacity of a binary classifier trained to distinguish general polytopes of any
dimension. These results extend our theoretical understanding of the role of data structure in machine learning,
and provide useful quantitative tools for the analysis of generalization, feature extraction, and invariant object
recognition by neural networks.
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I. INTRODUCTION

Machine learning and deep learning demonstrate astonish-
ing results in applications, sometimes beyond our theoretical
reach. This provides a formidable challenge for theorists who
wish to develop a framework for their understanding [1–8]. A
landmark achievement in learning theory is Cover’s function
counting theorem, which counts the number of binary classi-
fication functions, or “dichotomies,” that can be realized by
given architectures [9]. This foundational result allowed theo-
rists to quantify the complexity of a learning model and the ad-
vantage gained in using nonlinear kernels, provided a bench-
mark for the performance of both artificial and natural neural
networks, and is a handy tool for several applications [10–15].

Other commonly used methods in this area come from sta-
tistical physics (pioneered by Gardner [16] and Gardner and
Derrida [17]; see [18,19] for recent examples). With respect to
these, Cover’s method has the advantage of offering a simple
geometric insight and of being valid at a finite number of
dimensions, while statistical physics methods typically apply
in the “thermodynamic limit” of infinite dimensions. Yet,
despite its benefits and relative simplicity, Cover’s analytical
technique has so far eluded efforts to extend it [11].
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Uncorrelated random patterns are commonly taken as a
simplifying assumption for the theoretical investigation of
artificial neural networks. Yet, it is becoming apparent that
providing a theoretical framework that includes geometrical
structure in the input data is essential. This need is emerging
in different contexts.

(a) The invariant representation of perceptual stimuli by
brains (e.g., the coherent perception of differently rotated and
rescaled objects in vision, or the recognition of the same sound
in different acoustic environments in audition) prompted
the formalization of perceptual manifolds as geometrically
extended patterns [15,20–27]. Perceptual manifolds are the
regions in input space corresponding to all variations of a
stimulus that do not modify the object’s identification.

(b) The discovery of spatial maps in rodent brains [28]
motivated extensions of associative memory models to attrac-
tors that are not pointlike but occupy a region in configuration
space [29].

(c) The problem of local generalization and robustness to
noise, a main theme of machine learning, can be cast as a
problem of non-point-like patterns [30–32].

(d) The description of the input patterns as modular com-
binations of elementary features (a well-studied aspect of
empirical datasets [33,34]) was shown to induce a multilayer
structure in certain network architectures [35].

(e) Various properties of multilayer networks, related both
to learning and to generalization, were observed to be strongly
dependent on data structure [36,37].

Here, we develop a theory that extends Cover’s approach to
non-point-like patterns, by counting only those dichotomies
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FIG. 1. Top: A dichotomy is identified by a hyperplane (in gray),
separating differently labeled data points (e.g., mammals from birds,
mapped, respectively, to 1 and 0). Data are structured in multiplets of
k input variants (here k = 3). Each input variant is a point in Rn, and
each multiplet is characterized by the k(k − 1)/2 overlaps between
its points (here ρ12, ρ23, and ρ13). A dichotomy is admissible only
if it is constant on each multiplet, i.e., if the separating hyperplane
does not intersect any polytope (triangles here). Bottom: Given a
structured dataset (here p = 4 multiplets of k = 3 points in n = 2
dimensions), we count the number C (k)

n,p of admissible dichotomies.

that assign the same label to different variants of the same
input. How variants within the same group are related to each
other defines what we call the geometrical structure of the
data. Our theory (i) enables the exact computation of the (aver-
age) number of dichotomies of structured data; (ii) gives direct
access to quantities at finite size; (iii) naturally disentangles
combinatorial and geometric aspects, thus lending itself to
further generalizations; and (iv) is parametrized in terms of
quantities easily measurable directly from data. These results
are made possible by a hybrid approach, combining Cover’s
rigorous technique with mean-field approximations, inspired
by statistical physics.

II. NUMBER OF ADMISSIBLE DICHOTOMIES

The central quantity obtained by Cover’s function counting
method is the number Cn,p of linearly realizable dichotomies
of p points ξ1, . . . , ξp in n dimensions. A dichotomy of this
set is a function φ mapping each point ξi to its {0, 1} binary
label (see Fig. 1). A linearly realizable dichotomy is identified

by a vector w ∈ Rn:

φ(ξi) = θ (ξi · w), (1)

where θ is the Heaviside theta function. The hyperplane
perpendicular to the vector w separates the space into two half
spaces, where the points mapped to 0 and 1 lie, respectively.
There are 2p dichotomies, but only Cn,p of them are linearly
realizable. We focus on linearly realizable dichotomies, and
will therefore omit this specification when it is clear from the
context.

It turns out that Cn,p does not depend on the ξi’s, as long
as they are in general position (meaning that no subset of
n or less points is linearly dependent) [9]. Structure in the
data may thus appear not to affect Cn,p at all. However, in
general we do not wish to admit all possible dichotomies. For
instance, among the hand-written digits in the popular MNIST
(Modified National Institute of Standards and Technology)
database we could choose to admit dichotomies separating
“1” and “I,” but not two similar-looking “0”s. Our definition of
structure is based on such a restriction: a dataset is qualified as
structured whenever only a subset of all possible dichotomies
is considered admissible. Cn,p will then be the number of
admissible dichotomies that can be realized linearly. (Notice
that this definition of geometrical structure is not related to the
data being curated or possessing categorical features [38].)

Here we focus on a rather general definition of admissibil-
ity, inspired by the literature cited above. We consider datasets
of kp points, structured as p multiplets of k points each. A
dichotomy φ is admissible if different points ξ in the same
multiplet are classified coherently, i.e., if φ(ξ ) is constant on
each multiplet. We will restrict the points ξ to lie on the unit
sphere Sn−1, meaning that ξ 2 = 1, but this technical require-
ment can be easily relaxed. (A useful consequence of this is
that setting the overlap between two points determines their
distance.) The ensemble we consider fixes all the overlaps
between the points in a multiplet, equally for all multiplets,
but the relative positions and orientations of the multiplets are
unspecified. The quantities we will compute are averages over
all possible positions and orientations of the multiplets. More
precisely, the (marginal) probability distribution for each point
ξi is the flat distribution on the unit sphere Sn−1; the joint prob-
ability distribution p({ξi}) is the product of the single point
probabilities, conditioned to the constraint C that all overlaps
within a multiplet are fixed [see Eqs. (5) and (22) below]:

p({ξi}) =
∫ kp∏

i=1

Dξi δC (2)

where D is the flat measure on Sn−1 and δC is the Dirac delta
of the constraints.

Because of the convexity of linear separability, separating
the multiplets is equivalent to separating the polytopes the
vertices of which are the points in the multiplets. (These poly-
topes play the role of the perceptual manifolds of [15].) For
instance, k = 2 corresponds to segments, k = 3 corresponds
to triangles, and k = 4 corresponds to tetrahedra.

III. SINGLE POINTS (k = 1)

Let us first outline Cover’s original computation. Imagine
starting with p points and adding the (p + 1)th point ξp+1 to
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{ξ1, . . . , ξp}. For each dichotomy φ of the p points ξ1, . . . ξp

one of two possibilities is satisfied: either (i) φ can be realized
by a hyperplane passing through ξp+1 (equivalently, φ can
be realized by a vector w such that ξp+1 · w = 0) or (ii) it
cannot. If (i) is true, then w can be rotated infinitesimally to
yield both ξp+1 · w ≷ 0; otherwise, the half space where ξp+1

lies is fixed. Therefore, for each dichotomy φ of {ξ1, . . . , ξp}
satisfying (i) there are two different dichotomies φ1 and φ2 of
{ξ1, . . . , ξp, ξp+1} agreeing with φ on the common points [i.e.,
such that φ1,2(ξi ) = φ(ξi ) for i = 1, . . . , p]. If the number
of dichotomies satisfying (i) is M, then the number of those
satisfying (ii) is Cn,p − M, and one can write Cn,p+1 = 2M +
Cn,p − M. The condition (i) is in the form of a single linear
constraint, therefore M is the number of dichotomies of p
points in n − 1 dimensions, M = Cn−1,p. Thus Cn,p satisfies
the recursion

Cn,p+1 = Cn,p + Cn−1,p, (3)

with boundary conditions Cn>0,1 = 2 (a single point can be
classified either way) and C0,p = 0.

The solution to Eq. (3) can be obtained by observing that
the contribution of the boundary value Cn−i,1 to Cn,p is given
by the number of directed paths {γ j} j=1,...,p, with γ j ∈ N, that
start from γ1 = n − i and end in γp = n, where at each step
γ j+1 can be either γ j or γ j + 1. The number of such paths
is simply the binomial coefficient (p−1

i
). Summing over the

boundary gives

Cn,p = 2
n−1∑
i=0

(
p − 1

i

)
, (4)

where it is assumed that (p−1
i

) = 0 whenever i > p − 1.
Let us consider the fraction cn,p of linearly realizable

dichotomies cn,p = Cn,p/2p. For finite n and p, the capacity αc

can be defined as the ratio p/n at which half of all dichotomies
can be realized: cn,nαc = 1/2. From the explicit expression (4)
one sees that cn,p = 1 if p � n, cn,p → 0 for p → ∞, and
cn,2n = 1/2, which pinpoints the well-known capacity αc = 2.

IV. SEGMENTS (DOUBLETS, k = 2)

The first step towards the general problem is the case
where data are structured as pairs of points. Alongside the
set of points ξ = {ξ1, . . . , ξp}, let us consider another set ξ̄ =
{ξ̄1, . . . , ξ̄p}. The multiplets discussed above are the doublets
{ξi, ξ̄i}. Each doublet is such that the overlap between the two
partners is fixed:

(−1, 1) � ρ = ξi · ξ̄i (5)

for all i. The admissible dichotomies φ are those for which
φ(ξi ) = φ(ξ̄i ) for all i; their total number is 2p.

The recursion step now corresponds to the addition of the
(p + 1)th doublet {ξp+1, ξ̄p+1}. Repeating Cover’s reasoning
for the point ξ̄p+1 alone gives a number of dichotomies equal
to Qn,p = Cn,p + Cn−1,p. This is the number of dichotomies
of the set {ξ1, ξ̄1, ξ2, ξ̄2, . . . , ξp, ξ̄p, ξ̄p+1} that are admissible
on the first p doublets [meaning that φ(ξi ) = φ(ξ̄i) for all i =
1, . . . , p]. A number Rn,p of such dichotomies are realizable
by a hyperplane passing through the point ξp+1. These are all
admissible, thanks to the freedom in the choice of φ(ξp+1)

by an infinitesimal adjustment of the hyperplane. Among the
other Qn,p − Rn,p dichotomies, on average, a fraction 	2 will
happen to assign the same label to ξp+1 and ξ̄p+1. 	2 can be
computed as the fraction of hyperplanes keeping ξp+1 and
ξ̄p+1 in the same half space; the calculation is carried out in
the Appendix. Importantly, 	2 is a function of the overlap ρ

alone:

	2(ρ) = 2

π
arctan

√
1 + ρ

1 − ρ
. (6)

Note that 	2(ρ) = 1 − 	2(−ρ) as expected from its defini-
tion. The foregoing argument brings us to estimate the total
number of admissible dichotomies as

Cn,p+1 = 	2(ρ)(Cn,p + Cn−1,p) + [1 − 	2(ρ)]Rn,p. (7)

In order to compute Rn,p it suffices to repeat Cover’s reasoning
with respect to the point ξ̄p+1, this time in n − 1 dimensions
because of the constraint imposed by the hyperplane passing
through ξp+1, thereby obtaining

Rn,p = Cn−1,p + Cn−2,p. (8)

Finally the recursion for Cn,p reads

Cn,p+1 = 	2(ρ)Cn,p + Cn−1,p + [1 − 	2(ρ)]Cn−2,p. (9)

The boundary conditions are now slightly different than
those for the case k = 1 in Eq. (3). In fact, in n = 1 dimension
the number of admissible dichotomies of a single pair of
points (p = 1) is 2 only when both points lie on the same
half line, otherwise it is zero; on average, it is 2	2(ρ). The
boundary conditions are then

C0,p = 0, Cn>0,1 = 2{1 − [1 − 	2(ρ)]δn,1}. (10)

To find the solution of the recursion (9), similarly to the
single point case, consider all the directed paths {γ j} j=1,...,p

propagating from the boundary to Cn,p, where γ j+1 at each
step can be γ j , γ j + 1, or γ j + 2. Contrary to the one point
case, different paths with the same end points can now give
different contributions to Cn,p, since the three types of steps
correspond to three different factors (	2, 1, and 1 − 	2,
respectively). The contribution Ki,p of a path from γ1 = n − i
to γp = n is

Ki,p =
p−1∑
m=0

(
p − 1

m, i − 2m

)
	2(ρ)p−1−i+m[1 − 	2(ρ)]m, (11)

where the multinomial coefficient is defined as(
n

m1, m2

)
= n!

m1!m2!(n − m1 − m2)!
(12)

(with the obvious analytical extension for negative factori-
als). Summation over the nonzero boundary i = 0, . . . , n − 1
yields the number of admissible dichotomies:

Cn,p = 2
n−2∑
i=0

Ki,p + 2	2(ρ)Kn−1,p. (13)

It is easy to see (by the multinomial theorem) that Cn,p =
2p if p � n/2; this locates the usual Vapnik-Chervonenkis
dimension [39], dVC = n, as the total number of points is 2p.
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FIG. 2. Theory (solid lines) vs numerical results for k = 2, ob-
tained by training a linear classifier with the perceptron algorithm.
(a) Fraction of admissible dichotomies (y axis) as a function of
number of doublets (x axis) in dimensions n = 5, 10, 20 for different
values of the overlap ρ = 0.6 (◦), 0.2 (�), −0.2 (�). The theoretical
curves are given by Eq. (13); gray lines are just for comparing the
three values of n on the same graph. (b) The capacity [Eq. (17)] (y
axis) as a function of the overlap ρ (x axis). (c) Finite-size deviation
of the capacity [obtained by solving numerically Cn,αcn = 2αcn−1 at
fixed n with Cn,p given by Eq. (13)] from the large-n prediction
Eq. (17). [Each point in (a) is a fraction over 1000 independent trials;
the capacity in (b) is obtained by linearly interpolating data such as
those in (a).]

An estimate for the capacity, valid for large n, can be
obtained by approximating Eq. (13) as

Cn,p ≈ 2
n−1∑
i=0

Ki,p. (14)

The capacity αc is such that

Cp/αc,p ≈ 2p−1, (15)

i.e., it corresponds to the value of n for which the sum of
Ki,p takes half its maximum value. The quantity Ki,p can be
interpreted as the partition function of an ensemble of di-
rected random walks {γ j} j=1,...,p of p − 1 steps, with the same
boundary conditions as for k = 1, and the following tran-
sition probabilities: P(γ j → γ j ) = 	2/2, P(γ j → γ j + 1) =
1/2, P(γ j → γ j + 2) = (1 − 	2)/2. The normalization fac-
tor 2 at the denominator is the sum of the weights 	2, 1,
and 1 − 	2. The capacity therefore corresponds to the median
of the distribution function of the walk’s end point i. We
approximate the median with the mean

ı̄ = (p − 1)
2∑

l=0

lP(γ j → γ j + l ), (16)

which evaluates to ı̄ = (3/2 − 	2)(p − 1), and finally we
obtain

αc ≈ p − 1

ı̄
= 2

3 − 2	2(ρ)
. (17)

This result, with 	2 given by Eq. (6), was found in Ref. [40]
by means of replica calculations, and appeared more recently
in other contexts in Refs. [26,32]. Our derivation is somewhat
more elementary, and naturally highlights the role of the
geometric quantity 	2(ρ).

Figure 2 compares the analytical formulas (13) and (17)
with numerical results obtained by training a linear classifier
with random doublets at varying dimension n, number of
points p, and overlap ρ. We employ the standard Percep-
tron algorithm, stopping whenever a solution is found or a
fixed maximum number of iterations (here 104) is reached;
this introduces a small systematic underestimation of Cn,p,
which we checked was smaller than the statistical fluctuations.
Equation (13) matches perfectly as expected. Equation (17) is
surprisingly precise even at very small sizes; deviations are
less than 1% already for n = 5.

V. POLYTOPES (MULTIPLETS, GENERIC k)

Let us now move to the general case where the data are
structured in multiplets of k points. We consider dichotomies
of k sets of points ξμ = {ξμ

1 , . . . , ξμ
p }, with μ = 1, . . . , k.

The ith multiplet is the set ξi = {ξ 1
i , . . . , ξ k

i }. A dichotomy
φ is admissible if the images of all k partner points in each
multiplet are equal: φ(ξμ

i ) = φ(ξν
i ) for all μ, ν = 1, . . . , k,

separately for all i = 1, . . . , p. For clarity, we denote the
number of admissible dichotomies by C(k)

n,p, as shown in Fig. 1.
A recursion relation for C(k)

n,p can be obtained by carefully
extending the method used for the doublet case. At the (p +
1)th step, we consider the multiplet ξp+1, composed of the k
points ξ 1

p+1, . . . , ξ
k
p+1. Let us exclude momentarily the point

ξ 1
p+1, and suppose we know how to apply Cover’s method to

the set of k − 1 points:

ξ̄p+1 = {
ξ 2

p+1, . . . , ξ
k
p+1

} ⊂ ξp+1. (18)

This would give an expression; let us call it

Qk−1(C(k)
n,p,C(k)

n−1,p, . . . ,C(k)
n−k+1,p

)
. (19)

The fact that Qk−1 is a function of C(k)
n−l,p with l = 0, . . . , k −

1 will be clear in the following. Intuitively, the case k = 1
involves only l = 0 and 1, the case k = 2 adds l = 2 because
it uses the expression for k = 1 in n − 1 dimensions, and the
same pattern repeats inductively up to k − 1 points.

The quantity Qk−1 represents the number of dichotomies
of the set ξ1 ∪ ξ2 ∪ · · · ∪ ξp ∪ ξ̄p+1 that are admissible on
the first p multiplets [meaning that φ(ξμ

i ) = φ(ξν
i ) for all

μ, ν = 1, . . . , k and all i = 1, . . . , p] and admissible on the
k − 1 points in ξ̄p+1 [meaning that φ(ξμ

p+1) = φ(ξν
p+1) for

all μ, ν = 2, . . . , k]. A number Rk−1
n,p of these dichotomies

are realizable by a hyperplane passing through the excluded
point ξ 1

p+1, and are therefore all admissible. Of the remaining
Qk−1(. . .) − Rk−1

n,p ones, a fraction 	̃k assign the same value to
ξ 1

p+1 and to the points in ξ̄p+1, and are therefore admissible on
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the whole multiplet ξp+1. Therefore,

C(k)
n,p+1 = 	̃k

[
Qk−1(. . .) − Rk−1

n,p

] + Rk−1
n,p . (20)

While 	2 was a probability (over all possible hyperplanes),
	̃k is a conditional probability, namely, the probability that
a uniform vector w on the sphere Sn−1 does not separate
the multiplet ξp+1, conditioned on the event that w does not
separate the set ξ̄p+1:

	̃k =
∫

Sn−1 dw
∏k

μ,ν=1 θ
(
w · ξ

μ
p+1w · ξν

p+1

)
∫

Sn−1 dw
∏k

μ,ν=2 θ
(
w · ξ

μ
p+1w · ξν

p+1

) . (21)

The dependence of 	̃k on the relative positions of the points
is discussed in the Appendix, where it is shown that (i) the
calculation of 	̃k can be reduced from n-dimensional to k-
dimensional integrals and (ii) 	̃k depends on n only through
the k(k − 1)/2 overlaps ρμν between the points in a multiplet,
which we fix for all multiplets:

ρμν = ξ
μ
i · ξν

i , i = 1, . . . , p; μ, ν = 1, . . . , k. (22)

This property allows us to treat 	̃k as a constant in the
recursions, thus simplifying the computations. Note that, since
it is a conditional probability, 	̃ can be written as a ratio of
probabilities:

	̃k ({ρμν}μ,ν=1,...,k ) = 	k ({ρμν}μ,ν=1,...,k )

	k−1({ρμν}μ,ν=2,...,k )
, (23)

where 	k depends on k(k − 1)/2 overlaps between k points,
and denotes the fraction of hyperplanes not separating the
k points. This definition, together with the identity 	1 = 1,
implies that the geometric quantity computed above for k = 2
is 	2(ρ) = 	̃2(ρ).

The number Rk−1
n,p can be obtained by applying again

Cover’s method with respect to the set ξ̄p+1 this time in n − 1
dimensions because the hyperplane is constrained to pass
through ξ 1

p+1. Hence,

Rk−1
n,p = Qk−1

(
C(k)

n−1,p,C(k)
n−2,p, . . . ,C(k)

n−k,p

)
. (24)

Finally, from Eqs. (20) and (24), the recursion for C(k)
n,p is

C(k)
n,p+1 = Qk

(
C(k)

n,p,C(k)
n−1,p, . . . ,C(k)

n−k,p

)
, (25)

where the functions Qk (having k + 1 arguments) satisfy the
recursive functional relation

Qk (xn, . . . , xn−k ) = 	̃kQk−1(xn, . . . , xn−k+1)

+ (1 − 	̃k )Qk−1(xn−1, . . . , xn−k ), (26)

with the boundary Q1(xn, xn−1) = xn + xn−1 given by the form
of Eq. (3) for a single point.

The recursion in k can be solved, thus yielding again a
recursion for C(k)

n,p+1 in n and p only. Let us call θk (l ) the
coefficients in the solved recursion:

C(k)
n,p+1 =

k∑
l=0

θk (l )C(k)
n−l,p. (27)

Equation (26) then becomes

θk (l ) = 	̃kθk−1(l ) + (1 − 	̃k )θk−1(l − 1), (28)
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FIG. 3. Theory (solid lines) vs numerical results (symbols) for
k = 3. (a) Fraction of admissible dichotomies as a function of the
number of triplets p for triplets with overlaps {ρ, ρ, ρ} (bottom),
{ρ, ρ/2, ρ/2} (middle), {ρ,−ρ/2, 0} (top). Circles, triangles, and
rotated squares correspond to three different values of ρ. The the-
oretical curves are obtained by solving numerically the recursion,
Eq. (29). (b) Capacity as a function of ρ [Eq. (33)] for the same three
geometries (the range of ρ is restricted by the spherical constraint).

with boundaries θ1(0) = θ1(1) = 1 and θk (−1) = θk (k +
1) = 0. For instance, setting k = 2 in Eqs. (27) and (28)
recovers the recursion for doublets, Eq. (9), as expected. For
k = 3 one obtains

C(3)
n,p+1 = 	̃3	2C

(3)
n,p + [	̃3 + 	2(1 − 	̃3)]C(3)

n−1,p

+ [	̃3(1 − 	2) + (1 − 	̃3)]C(3)
n−2,p

+ (1 − 	̃3)(1 − 	2)C(3)
n−3,p. (29)

In the process of deriving the foregoing recursion relations
we considered the points ξ

μ
p+1 in a particular order, therefore

explicitly breaking invariance under permutations within the
multiplets. We restore the invariance a posteriori, by pre-
scribing that all 	̃l (with l � k) be symmetrized with respect
to all k(k − 1)/2 overlaps. For instance, when k = 3, the
	2 = 	̃2 appearing in Eq. (29) is to be intended as [	2(ρ12) +
	2(ρ13) + 	2(ρ23)]/3. The goodness of this prescription is
substantiated by the numerical results shown in Fig. 3; see
also the limit case (ii) below.

The solution for Cn,p (with the appropriate boundary condi-
tions) can be obtained, for instance, via generating functions,
but we do not give it here. Instead, we focus on the capacity,
which can be computed by the same approximate method used
for k = 2 [Eqs. (16) and (17)]:

αc =
∑k

l=0 θk (l )∑k
l=0 lθk (l )

= λ0(k)

λ1(k)
, (30)
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where we have defined the moments

λm(k) =
k∑

l=0

lmθk (l ). (31)

Summing Eq. (28) over l shows that λ0(k) = λ0(k − 1) and
therefore λ0(k) = λ0(1) = 2. By multiplying Eq. (28) by l
and summing over l , one obtains λ1(k) = λ1(k − 1) + (1 −
	̃k )λ0(k − 1). The boundary condition λ1(1) = 1 then fixes
the solution

λ1(k) = 2k − 1 − 2
k∑

l=2

	̃l . (32)

Finally, substituting λ0(k) and λ1(k) into Eq. (30) yields a
remarkably simple formula for the capacity:

αc =
(

k − 1

2
−

k∑
l=2

	̃l

)−1

. (33)

Figure 3 compares our theory with numerical computations
in the case of triplets (k = 3), for triangles with three, two,
and no sides of the same length. The agreement is excellent.
The function 	̃3 is a double integral (given in the Appendix),
which we evaluate numerically.

We mention three simple limit cases of Eq. (33).
(i) If all the points in each multiplet coincide, then 	̃l = 1

for all l = 2, . . . , k and we recover the single point classic
result αc = 2.

(ii) When k = 3 and two points of a triplet coincide
the overlaps are {ρ, ρ, 1}. Symmetrizing 	̃3(ρ, ρ, 1) gives
	3(ρ, ρ, 1)[2/	2(ρ) + 1/	2(1)]/3 where 	3(ρ, ρ, 1) is the
fraction of hyperplanes not separating the three points. Clearly
	3(ρ, ρ, 1) = 	2(ρ), and one recovers Eq. (17) for k = 2 as
expected.

(iii) If 	̃l = 0 for all l = 2, . . . , k Eq. (33) gives αc =
2/(2k − 1). This prediction matches that obtained in Ref. [15]
for (k − 1)-dimensional linear manifolds. However, this turns
out to be an unphysical limit in our framework, since 	̃l

cannot be all vanishing. For instance, for k = 3, equilateral
triplets with overlaps {ρ, ρ, ρ} lie on a linear manifold passing
through the origin when ρ takes its minimum value ρ� =
−1/2. The same happens for isosceles triplets {ρ, ρ/2, ρ/2}
at ρ = −√

3. Interestingly, the capacity evaluated at the re-
spective minimum ρ is αc ≈ 0.46154 for both geometries, to
be compared to the value αc = 2/5 found for two-dimensional
linear manifolds.

Another interesting, albeit less elementary, limit case
would be k → ∞, taken in such a way that the points generate
a sphere of radius κ . Then Eq. (33) should be related to the
well-known capacity with margin κ [16], which has never
been obtained by combinatorial methods [11,15] (the relation
to spherical perceptual manifolds was explored in Ref. [26]).

VI. DISCUSSION

The statistical mechanics of neural networks relies rou-
tinely on the simplifying assumption that inputs are chosen
randomly and independently. However empirical datasets are
not assembled by tossing random independent variables. For
instance, data points with the same label tend to be more

similar to each other. Equivalently, one could picture a dataset
as a collection of extended objects, each object composed
of all points having the same label. How to incorporate this
geometric structure into existing theories of machine learning
(both in statistical mechanics and in computer science) is
an open problem. In particular, a relevant question is how
to predict if a given dataset is linearly separable, i.e., if all
possible dichotomies of its classes are linearly realizable.
Function counting is a way to quantify the linear separability
of a dataset, via the number of binary classifications that can
be realized by a linear separator. This number is a measure
of the expressivity of the classifier on that particular dataset.
Current theories estimate this number only with worst-case
estimates, or in the unrealistic case of random uncorrelated
data. The theory we have developed is a first step towards
the goal of predicting the typical-case linear separability of a
dataset by taking into account explicitly its structure. In partic-
ular, it allows the estimation of the capacity and expressivity
of a linear classifier on a specific dataset, knowing only the
overlaps between equally labeled inputs (we give an example
of such an application below).

Our extension of Cover’s combinatorial technique to struc-
tured data allows us to obtain closed expressions of C(k)

n,p
at finite n and p, for any k [we have written explicitly the
result for k = 2 in Eq. (13)]. Beside this, our main result is
Eq. (33), which expresses the capacity as a simple function
of the quantities 	̃l . Regarding these quantities, the merit of
our method is twofold: first, the 	̃l ’s are revealed to be the
only relevant parameters characterizing the linear separability
of the multiplets; second, they have a very simple geomet-
ric interpretation in terms of probabilities. We used here a
particular parametrization of the geometric structure within
the multiplets, namely, the overlaps between the different
input variants. However, the theory naturally gives rise to
a separation between the combinatorial aspects, encoded in
the recursive relations, and the description of the geometric
structure, which appears only through 	̃l . Such modularity
suggests that other metrics of data structure, possibly more
adapted to empirical data in particular domains, could be
conveniently incorporated into the framework.

Although the theory is generic in k, we have concentrated
here on small multiplets. Besides the easier tractability, this
small-k regime may be the relevant one empirically; in fact, it
is well known that empirical data most often lie on manifolds
the intrinsic dimension of which is much lower than that of
the embedding space [41,42]. This property even appears to
underpin some peculiar properties of the learning process in
multilayer networks [36].

It is important to point out two limitations of our computa-
tions. First, in the spirit of mean-field calculations in statistical
physics, the results should not be considered exact in the
mathematical sense, in contrast with Cover’s original work.
Still, the excellent agreement with numerical computations
suggests that at least some of the results concerning C(k)

n,p may
be stated in theorem form and proved rigorously, provided
the appropriate conditions can be identified. One condition
likely deserving more scrutiny is the general position of the
inputs. Both the mean-field theory that we have developed
and the simulations reported in the figures assume that Cn,p is
averaged over the statistical ensemble. Notice that we made
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FIG. 4. Multiplets with widely different overlaps yield curves in
agreement with the theoretical predictions obtained by using solely
the mean overlaps. The EMNIST dataset was sampled to obtain
three random images from each of its 47 categories. To grant access
to the nontrivial part of the curves (where C (k)

n,p < 1), images were
downscaled bilinearly from 282 to 52 pixels. Low-intensity white
noise was added to ensure the inputs were in general position. (a) For
each value of p, we counted the fraction of times (out of 1000) that
a perceptron was able to learn a random admissible dichotomy of
k = 3 images (respectively, k = 2, 1) in p randomly chosen different
categories. Open symbols are the numerical results; lines are the
theoretical predictions for the mean overlaps [red vertical lines
in (b)]. Crosses were obtained by including both admissible and
nonadmissible dichotomies (at k = 2), equivalent to a reshuffling of
the labels. Reshuffling removes the data structure, thus recovering
the unstructured k = 1 result. Note that the x axis is the total number
of points kp. (b) The empirical probability distribution functions of
ρ12, ρ23, ρ13, the overlaps between the three different images in each
category.

another approximation in deriving the capacity, Eqs. (17)
and (33), by substituting the mean of P(γ j → γ j + l ) for
its median [see the brief discussion above Eq. (16)]. This
approximation is expected to be irrelevant in the large-n limit,
as is supported by the numerical results in Fig. 2(c).

Second, the statistical ensemble we considered is some-
what restrictive, in that it assumes that the multiplets are
monodisperse, meaning that they all have the same fixed set of
overlaps {ρμν}. This assumption would seem to undercut the
empirical applicability of the framework, considering that em-
pirical data are always polydisperse. To address this weakness,
we have performed a comparison using the Extended MNIST
(EMNIST) dataset [43], an extension of the MNIST dataset
containing also lowercase and uppercase letters. This dataset
has the advantage of comprising 47 different categories, there-
fore allowing for values of p in a wider range. The results
are reported in Fig. 4 (details are in the caption). Despite
the broad variability of the overlaps across the categories, the
mean overlaps are predictive of the full curve quantifying the
fraction of admissible dichotomies that are realizable by a
perceptron.

The check on EMNIST is encouraging, and suggests that
polydispersity of the overlaps within each object manifold
has marginal effect on the number of dichotomies. However,
another assumption of our mean-field theory requires that the
marginal one point probabilities be uniform on the sphere,
Eq. (2). Deviations from this assumption may be relevant for
more complex datasets.

Other applications and extensions of the theory appear pos-
sible. The capacity is written in Eq. (30) as a combination of
the zeroth and first moments, but higher-order moments can be
computed similarly and give access to other useful quantities.
For instance, the second moment is related to the width of
the crossover region separating the regimes where cn,p ≈ 1, 0,
respectively. Furthermore, it would be interesting to express
our results for general (nonlinear) separating surfaces, in the
same spirit of Cover’s original work, and in view of useful
applications.
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APPENDIX: COMPUTATION OF �k

1. Computation of �2(ρ)

The fraction of hyperplanes assigning the same value to
two points ξ and ξ̄ is given by

	2 = 2

N

∫
dnx δ(x2 − 1)θ (x · ξ )θ (x · ξ̄ ). (A1)

The normalization factor is

N =
∫

dnx δ(x2 − 1) = �n/2, (A2)

where �n is the solid angle in n dimensions. Gram-Schmidt
(GS) orthonormalization of ξ and ξ̄ yields

e1 = ξ, e2 = ξ̄ − ρ ξ√
1 − ρ2

, (A3)

where ρ = ξ · ξ̄ is the overlap between the two points. Invert-
ing Eq. (A3) gives

ξ = e1, ξ̄ = ρ e1 +
√

1 − ρ2 e2. (A4)

Having orthonormalized the points allows us to safely exploit
the (n − 2)-dimensional spherical symmetry of the integral in
the space orthogonal to ξ1 and ξ2, and to reduce it to an integral
over the two-dimensional solid angle:

	2 =
∫

d�2

π
θ (cos φ)θ (ρ cos φ +

√
1 − ρ2 sin φ)

= 2

π
arctan

(√
1 + ρ

1 − ρ

)
, (A5)
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which evaluates to the result in Eq. (6), and shows that 	2 =
	2(ρ).

2. Computation of �3(ρ12, ρ13, ρ23)

Equation (23) expresses the conditional probability 	̃k in
terms of the probabilities 	k . 	k is defined as the fraction
of hyperplanes assigning the same value to the k points
ξ1, ξ2, . . . , ξk :

	k = 2

N

∫
dnx δ(x2 − 1)

k∏
μ=1

θ (x · ξμ), (A6)

with N given by Eq. (A2). For k = 3, the Gram-Schmidt
procedure gives

e1 = ξ 1, e2 = ξ 2 − ρ12ξ
1√

1 − ρ2
12

, e3 = ξ 3 − ρ13e1 − ge2√
1 − ρ2

13 − g2
,

where ρμν = ξμ · ξν are the overlaps, and g = (ρ23 −
ρ12ρ13)/

√
1 − ρ2

12. Again, thanks to the spherical symmetry
in the space orthogonal to the ξμ’s the result is an integral

over the three-dimensional solid angle:

	3 = �
(

3
2

)
π

3
2

∫
d�3 θ

(
ρ12x1 +

√
1 − ρ2

12x2
)
θ (x1)

× θ
(
ρ13x1 + gx2 +

√
1 − ρ2

13 − g2x3
)
, (A7)

where the measure d�3 can be expressed via the angles
φ1 and φ2, and x1 = sin φ1 cos φ2, x2 = sin φ1 sin φ2, and
x3 = cos φ1. As above, this computation shows that 	3 =
	3(ρ12, ρ13, ρ23). The results presented in Fig. 3 have been
obtained by integrating numerically Eq. (A7).

The procedure for k = 2, 3 can be extended to k > 3. The
final result has the following structure:

	k ({ρμν}) = �
(

k
2

)
π

k
2

∫
d�k (φ1, φ2, . . . , φk )

k∏
α=1

θ [vα (φ)],

where the functions vα appearing in the θ ’s can be systemat-
ically derived in a similar way from the GS procedure. This
shows that 	̃k , related to 	k by Eq. (23), depends in general
on the ξμ’s only through the overlaps ρμν , and it can be written
in terms of k-dimensional integrals.
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