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Abstract. Any algebraic surface in Pn(C) which is fibered in cubics, such
that the generic fibre is a twisted cubic, gives rise to a curve Γ in a suitable
compactification X of the space of smooth rational cubics of Pn(C). In this
paper the case n = 4 is addressed and the corresponding space X is studied.
We apply our results to complete the classification of smooth, rational, surfaces
in P4(C) ruled in cubics.

1. Introduction

Let S be a smooth, nondgenerate, surface embedded in P4(C). Let us assume
that there exists a morphism π : S → C, where C is a smooth curve, such that the
generic fibre of π is embedded as a smooth twisted cubic and the special ones are
embedded as reducible cubics. Under these assumptions S can be considered as a
curve Γ in a suitable compactification X of the space of smooth rational cubics of
P4(C). On the other hand, a generic projection of S in P2(C) gives rise to a one
dimensional family of plane cubic curves whose general member is a nodal cubic.
The knowledge of the Chow ring of X and the well known enumerative geometry of
nodal plane cubics (see [K-S]) allow us to give some costraints to the number and
the type of singular fibres. In some cases these costraints can be used to exclude
the existence of S.

In this short note we apply the above program to 5 types of surfaces S whose
existence was left as an open problem in [E]. More precisely: in §2 we study the
structure of X and in particular its Chow ring. In §3, by using the results of §2,
we solve the problem, see theorem 3.1. In §4 we consider the problem of classifying
of all P1-bundles in P4(C) when deg(S) ≥ 16, since, by the well known conjecture
about smooth surfaces of non general type in P4(C), when deg(S) ≤ 15 there is
only one possible surface of this type. We reduce the problem to consider only
two possible cases in which all fibres are embedded as smooth rational cubics.
Unfortunately the above program does not work in these cases.
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2. The space of twisted cubics in P4

First of all we want to prove the following

Theorem 2.1. There exists a minimal compactification X of the space of twisted
cubics in P4(C) such that:

i) X is a smooth projective variety of dimension 16
ii) X is a fibered space over P4(C)∗ and every fibre is isomorphic to a suitable

compactification of the space of twisted cubics in P3(C)
iii) A1(X)⊗Q is generated by two elements, say η and τ , where η is the pull-back

of the generator of A1(P4(C)∗) and τ is the complement of the set of twisted cubics
in P4(C).

Note that i) and ii) are in fact proved in [E-S]. However, since the description
of A1(X) ⊗ Q given there does not suit our purpose, we prefer to present a proof
of i) and ii) in order to obtain iii).

In what follows we use the ideas of [E-P-S], where the authors give a compactifi-
cation for the space of twisted cubics in P3(C) by using the fact that every twisted
cubic is the locus in P3(C) where a (2, 3) matrix of linear forms drops rank. Hence
they consider the set of such matrices, suitably identified by the action of some
group. Here we consider (2, 3) matrices of linear forms in P4(C) suitably identified
by the action of an analogous group and by an equivalence relation given by the
restriction to hyperplanes of P4(C). Before giving the proof of theorem 2.1 we need
some background and some lemmas.

Let E and F be two vector spaces over C of dimension 3 and 2 respectively. Let
V be a 5-dimensional vector space over C such that P4(C) = P(V ∗). Let us define
W1 := Hom(F,E⊗ V )× (V \{0}). Any element of W1 is a pair (f,v) and, if we fix
bases in F, E, V, f and v correspond to two matrices A and b. A is a (3, 2) matrix
of linear forms in P4(C), b is a (5, 1) non zero vector of C5.

Let us introduce in W1 the following equivalence relation: (f,v) ∼ (f ′,v) if and
only if < v′ > = < v > and f ′ − f ∈ Hom(F, E⊗ < v >). We define W := W1/ ∼
and, by abuse of notation, we denote the corresponding equivalence class by the
same symbol (f,v).

Let G1 be the group GL(F ) × GL(E) × Hom(F, E) where the product of two
elements is defined by:

(α, β, γ) · (α′, β′, γ′) := (α ◦ α′, β ◦ β′, γ′ + β′−1 ◦ γ ◦ α′).

G1 is a group indeed, whose unity is (idF , idE , 0) and it acts on W in the following
way:

(α, β, γ) · (f,v) := ((β ⊗ idV ) ◦ f ◦ α−1 + (β ◦ γ ◦ α−1)v,v)

where (β ◦ γ ◦ α−1)v(w) := (β ◦ γ ◦ α−1)(w)⊗v for any w∈ F.
Let Γ be the normal subgroup {a · idE , a · idF , γ} a ∈ C∗, γ ∈ Hom(F, E), of G1.

It is easy to see that Γ acts trivially on W, hence the group G := G1/Γ acts on W.
Note that W is a fiber space over P4(C)∗ whose fibration is given by the natural
map p : W → P4(C)∗ such that p(f,v) := < v > . Moreover p is G-invariant.

For any v 6= 0 let πv be the natural projection V → V/<v>. For any (f,v) ∈ W,
(recall that v 6= 0), we define φv(f) := (idE ⊗ πv) ◦ f ∈ Hom(F, E ⊗ V/<v>). If
we fix bases for E, F, V, we can identify φv(f) with a (3, 2) matrix of linear forms
on the hyperplane P((V/<v>)∗) ' P3(C) of P4(C) = P(V ∗). By taking the (2, 2)
minors of this matrix, we get a linear system of quadrics Q(f,v) in P((V/<v>)∗).
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Let U := {(f,v) ∈ W | dim(Q(f,v)) = 3}. Let G be the Grassmannian bundle over
P4(C)∗ = P(V ), whose fibre over v is G(3, S2(V/<v>)), the Grassmannian of 3-
dimensional linear subspace of S2(V/<v>), then we can define a map Φ:U → G
by Φ(f,v) = Q(f,v). Let X be Im(Φ). Note that this definition coincides with the
definition of X given in [E-S], page 12.

The group GEPS := GL(F )×GL(E)/[{a · idF , a · idE} a ∈ C∗] acts in a natural
way on Hom(F,E ⊗ V/<v>) as explained in [E-P-S]. Note that G is isomorphic to
GEPS via the natural projection G1 → GEPS whose kernel is Γ. Concerning GEPS

we have the following simple

Lemma 2.2. Two elements (f,v) ∈ W and (f ′,v) ∈ W are G-equivalent if and
only if φv(f) and φv(f ′) are GEPS-equivalent.

Proof. Assume that φv(f) and φv(f ′) are GEPS-equivalent. Then there exist
(α, β) ∈ GL(E)×GL(F ) such that

(idE ⊗ πv) ◦ f ′ = (β ⊗ idV/<v>
) ◦ (idE ⊗ πv) ◦ f ◦ α−1.

But (β ⊗ idV/<v>
) ◦ (idE ⊗ πv) = (idE ⊗ πv) ◦ (β ⊗ idV ), so that we get:

(idE ⊗ πv) ◦ [f ′ − (β ⊗ idV ) ◦ f ◦ α−1] = 0

i.e. f ′ − (β ⊗ idV ) ◦ f ◦ α−1 ∈ Hom(F,E⊗ < v >). Then there exists a suitable
γ ∈ Hom(F,E) such that

f ′ − (β ⊗ idV ) ◦ f ◦ α−1 = (β ◦ γ ◦ α−1)v

i.e. (f,v) ∈ W and (f ′,v) ∈ W are G -equivalent.
The converse is proved in the same way.

It follows from lemma 2.2 that, for any u, u′ ∈ U, Φ(u) = Φ(u′) if and only if
u and u′ are G -equivalent, so X ' U/G as sets. In fact if we fix any v 6= 0, and
u = (f,v) and u′ = (f ′,v) are such that Φ(u) = Φ(u′), then Q(f,v) and Q(f ′,v) are
the same net in P((V/<v>)∗), hence they are GEPS-equivalent and then u and u′

are G-equivalent by lemma 2.2. For the converse we can argue in the same way.
Now we study the fibres of p. For any v 6= 0, the fibre Wv := p−1(< v >) is a

vector space of dimension 24 isomorphic to Hom(F,E ⊗ V )/Hom(F, E⊗ < v >).
As we have already seen, G acts also on Wv and we have the following:

Lemma 2.3. Any (f,v) ∈ Wv is semistable under the action of G if and only if it
is stable under the action of G if and only if it belongs to Uv:= U ∩Wv Moreover
any element (f,v) ∈ U c can be G-equivalent only to an element belonging to U c.

Proof. For technical reasons it is useful to consider P := P(Wv) and the group
S := SL(F )× SL(E), acting on P with the obvious action induced by G. For any
non zero vector w∈ Wv we denote by [w] the corresponding point of P. As any
element of Uv is different from the zero of Wv we can consider [Uv] := P(Uv) ⊂ P
and our goal become to prove that a point of P is semistable under the action of
S if and only if it is stable under the action of S if and only if it belongs to [Uv].
The advantage to work with projective spaces is the possibility to use some useful
criteria of stability. For any v 6= 0 we can define Pv := P[Hom(F, E ⊗ V/<v>)]
and the group S acts on Pv as in [E-P-S]. We can change the proof of lemma 2.2
to get that two points [f,v], [f ′,v] ∈ P are S-equivalent if and only if [φv(f)],
[φv(f ′)] ∈ Pv are S-equivalent. Note that any point in Pv is [φv(f)] for at least
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a point [f,v] ∈ P. Moreover to any point [f,v] ∈ P we can associate a unique
point [φv(f)] ∈ Pv. In fact, ∀a ∈ C∗, [af, av] → [φav(af)] = [(idE ⊗ πav) ◦ af ] =
[(idE ⊗ πv) ◦ af ] = [a(idE ⊗ πv) ◦ f ] = [(idE ⊗ πv) ◦ f ] = [φv(f)].

Fixing bases for F, E, V it is easy to see that the action of S is in fact a linear
action on P23(C). Moreover S is a reductive group so that we have that a point
[f,v] ∈ P is semistable if and only if there exists a S-invariant homogeneous poly-
nomial ψ in C[x0, ..., x23], of positive degree, such that ψ([f,v]) 6= 0 (see [N] pag.
73).

For any ψ as above and any v 6= 0 we can define an induced homogeneous
polynomial ψv, of the same degree, which is a function on Pv in this way:
ψ v([φv(f)]) := ψ([f,v]).

The definition is well-posed. In fact, if [f ′,v′] is such that [φv(f)] = [φv′(f ′)]
then there exists a suitable a ∈ C∗ such that φv′(f ′) = aφv(f), i.e. (idE⊗πv)◦f ′ =
a(idE⊗πv)◦f, i.e. (idE⊗πv)◦f ′ = (idE⊗πv)◦(af). But this is possible if and only
if there exist suitable b ∈ C∗ and ϕ ∈ Hom(F,E) such that: f ′ = af +ϕv, v′ = bv.
Hence [f ′,v′] = [af+ϕv, bv] = [a

b f+ 1
b ϕv,v] (recall that [φθv(θf)] = [φv(f)] for any

θ ∈ C∗) and it is easy to see that (f,v) and (a
b f + 1

b ϕv,v) are G -equivalent, hence
[f,v] and [a

b f + 1
b ϕv,v] are S-equivalent and ψ([f,v]) = ψ([a

b f + 1
b ϕv,v]). Note

also that ψv is S-invariant by the above version of lemma 2.2.
If [f,v] ∈ P is a semistable point then there exists an S -invariant homogeneous

polynomial ψ in C[x0, ..., x23], of positive degree, such that ψ([f,v]) 6= 0. Then ψv

is an S-invariant homogeneous polynomial in C[y0, ..., y23], of positive degree, such
that ψv([φv(f)]) 6= 0. Hence [φv(f)] is a semistable point in Pv under the action
of S and therefore dim(Q(f,v)) = 3 and [f,v] ∈ [Uv] by lemma 1 of [E-P-S].

Conversely let [f,v] ∈ [Uv] and let us assume that [f,v] is not semistable under
the action of S. Then there exists a suitable 1-parameter subgroup Σ ⊂ S, acting
on P, such that µ([f,v], Σ) < 0 (see [N], pag 104-105). As S acts on Pv too, we
get a 1-parameter subgroup Σ acting on Pv and µ([φv(f)], Σ) = µ([f,v], Σ) < 0
by the definition of µ, hence [φv(f)] is not semistable in Pv under the action of S.
By lemma 1 of [E-P-S] this is possible only if dim(Q(f,v)) ≤ 2, i.e. if [f,v] /∈ [Uv] :
contradiction.

Now let us prove that a point [f,v] ∈ P is stable under the action of S if and
only if it belongs to [Uv]. Let [f,v] be a stable point in P under the action of
S. Obviously [f,v] is also a semistable point in P under the action of S, hence
it is contained in [Uv] by the previous proof regarding semistable points of P.
Viceversa, let us consider a point [f,v] ∈ [Uv] and let us assume that it is not
stable. Then there exists a suitable 1-parameter subgroup Σ ⊂ S, acting on P, such
that µ([f,v], Σ) ≤ 0 (see [N], pag 104-105). By arguing as before this is possible
only if dim(Q(f,v)) ≤ 2, i.e. if [f,v] /∈ [Uv] : contradiction.

For the last part of the proof we return to Wv. If there were two G-equivalent
elements (f,v) ∈ U c and (f ′,v) ∈ U, then, by lemma 2.2, φv(f) and φv(f ′)
would be GEPS-equivalent. By lemma 2 of [E-P-S] this is possible if and only
if dim[Q(f,v)] = dim[Q(f ′,v)] = 2 : contradiction.

Lemma 2.4. For any (f,v) ∈ U let IQ(f,v) be the ideal generated by the quadrics
of Q(f,v) in P((V/<v>)∗) ' P3(C). Let Z ⊆ U be the set of elements (f,v) ∈ U
such that V (IQ(f,v)) is not a curve. Then any two elements (f,v) and (f ′,v) ∈ Z

are G-equivalent and none of the elements (f,v) ∈ Zccan be G-equivalent to any
(f ′,v) ∈ Z.
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Proof. Let (f,v) and (f ′,v) ∈ Z. By lemma 3 of [E-P-S] we know that φv(f)
and φv(f ′) are GEPS-equivalent, then they are G-equivalent by the lemma 2.2.
Viceversa we can argue as in the second part of the proof of lemma 2.3.

We have the following last:

Lemma 2.5. For any u = (f,v) ∈ U the derivative duΦ at u has rank 16.

Proof. Let us fix an element u = (f,v) ∈ U and let us consider the linear map du

induced by Φ from the tangent space of U at u = (f,v), which is isomorphic to
W1, and the tangent space to X at Φ(u), which is isomorphic to
Hom(Q(f,v), S

2(V/<v>)/Q(f,v)
)⊕ Tv∗P(V ∗).

Let pv : Hom(F, E⊗V ) → Hom(F, E⊗V/< v>) be the natural linear surjective
affine projection.

Let δ : V → V ∗ be a fixed isomorphism between V and V ∗. Then du is the
composition of pv × δ : Hom(F, E ⊗ V )× V → Hom(F, E ⊗ V/<v>)× V ∗ with
ψEPS×PV ∗ :Hom(F, E⊗V/<v>)×V ∗ → Hom(Q(f,v), S

2(V/<v>)/Q(f,v)
)⊕Tv∗P(V ∗)

where ψEPS is the linear map defined in [E-P-S] and PV ∗ is the natural map between
a vector space and its projectivization. By lemma 4 of [E-P-S] we know that the
rank of ψEPS is 12, and the rank of PV ∗ is 4, then we are done.

Now we can prove theorem 2.1.

Proof. (of theorem 2.1) By the above lemmas and G.I.T. (see th.3.14 of [N]) we
can conclude that Uv/G is a smooth projective variety of dimension 12 and by the
identification X ' U/G we have that the same facts are true for the fibres of the
map X → P4(C)∗. I.e. we have i) and ii) of 2.1, but, moreover, we also have that
in every fibre, according to [E-P-S], there is a divisor, say τv, whose complement is
given by the twisted cubics of P[(V/<v>)∗]. In what follows we will show that there
exists a divisor τ in X such that its complement is given by the twisted cubics of
P4(C). In fact the construction of τ is analogous to the construction of τv in [E-P-S]
so that the restriction of τ to any fibre is τv.

The group G acts freely on U. In fact, let us assume that there exists an element
(f,v) ∈ U and an element (α, β, γ) ∈ G such that (α, β, γ)(f,v) = (f,v). Then
φv(f) is a fixed element in Hom(F,E ⊗ V/<v>) under the action of the element
(α, β) of GEPS by lemma 2.2. We know that this implies (α, β) ∈ [{a · idF , a · idE}
a ∈ C∗] (see [E-P-S] pag. 89-90) hence we have that (α, β, γ) ∈ Γ. Therefore U is a
principal homogeneous G-bundle (see [F-M], prop. 0.9)

Now we want to determine the 1-codimensional part of the Chow ring of X.
We proceed as in [E-P-S] and we consider the following trivial bundles on U :
EU := E × U and FU := F × U. The group G1 acts on EU in the following way:
(α, β, γ)(e, f,v) = (β(e), (β ⊗ idV ) ◦ f ◦ α−1 + (β ◦ γ ◦ α−1)v,v) for any e ∈ E and
(f,v) ∈ U. The group G1 acts similarly on FU .

If we fix an element λ ∈ Hom(Λ3(E), Λ2(F )) we also get an action of G on
E′

U := EU⊗ < λ > = (E⊗ < λ >) × U in this way: (α, β, γ)(e ⊗ τλ, f,v) =
(β(e)⊗ τ(det(α)

det(β) )λ, (β ⊗ idV ) ◦ f ◦ α−1 + (β ◦ γ ◦ α−1)v ,v) where τ ∈ C. Note that
the action of Γ on E′

U is trivial so we get a true action of G.
Note also that the action of G commutes with the natural projection E′

U → U.
Similarly we have an action of G on F ′U := FU⊗ < λ > = (F⊗ < λ >) × U. It is
necessary to introduce E′

U and F ′U because, in general, G does not act on EU and
FU .
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Now E′
U and F ′U are G-bundles over U and they give rise to two vector bundles

E and F over X as G acts freely on U.
We can argue as in the proof of Proposition 2 of [E-P-S] with the only difference

that here U is not affine. However U is fibered over P4(C)∗ by the restriction of the
natural map p : W → P4(C)∗. By abuse of notation let us call p its restriction to
U. The fibres of p are open subsets of A24(C). Thus, by 1.9.2 of [F], we have that
p∗ : Ak(P4(C)∗) → Ak+24(U) is surjective ∀k ≥ 0. In particular p∗ : A3(P4(C)∗) =
A1(P4(C)∗) := < H > → A27(U) = A1(U) is surjective.

Let us consider the vector bundle E ⊕F over X whose structure group is G2 :=
GL(E) × GL(F ). Let T be the principal G2-homogeneous bundle ϕ : T → X
associated to E ⊕ F . As in [E-P-S] (see also Remarque p.4-35 of [C]) we have
that A(T ) ' A(X)/(ci(E), ci(F)), where (ci(E), ci(F)) is the ideal generated by
the Chern classes of E and F , and c1(E) = c1(F). Let τ be the class of the cycle
c1(E) = c1(F) in A(X). Note that ϕ factors through: T → U → X, because ϕ∗E
and ϕ∗F are trivial, and moreover the map T → U is a C∗-bundle. Hence the
induced map: A1(U) → A1(T ) is surjective and, by recalling the properties of p∗,
we have a surjective map: < H > → A1(T ). Therefore A1(X) = < τ, η >, where η
is the image class of H and we get iii) of 2.1.

Note that the generator τ of A1(X) cuts every fibre Xv along the unique nu-
merical class of divisors of the compactified space of twisted cubics in P3(C). It
suffices to remark that X ⊂ G is fibered on P4(C)∗ in such a way that the fibres
are [E-P-S] compactifications of the spaces of twisted cubics in the hyperplanes of
P4(C). τ cuts every fibre along the single generator of the codimension 1 part of the
Chow ring of these compactificatons. By [E-P-S] we know that the complements of
such generators are exactly the spaces of the twisted cubics in the hyperplanes. It
follows that the complement of τ in X is the space of the twisted cubics in P4(C).
Moreover we also get: τ13 = 0 because the dimension of any fibre Xv is 12.

Now we want to consider another system of generators for A1(X)⊗Q. The cycle
consisting of all cubics in P4 intersecting a given plane in P4 represents a class in
A1(X) ⊗ Q, (see [E-S] p.31) denoted by A. Note that η is the class of the cycle
consisting of all cubics belonging to any of the hyperplanes passing through a fixed
point in P4. Since dim[A1(X)⊗Q] = 2, then A and η are generators of A1(X)⊗Q;
hence τ = xA + yη where x, y ∈ Q. Let us calculate x and y.

Proposition 2.6. With the previous notation, τ = 2A− 3η.

Proof. Let Σ be the cubic surface in P4 which is a rational ruled surface F1 embed-
ded by avery ample line bundle numerically equivalent to C0 + 2f (see [H], V.2)
and let us consider a generic pencil of hyperplanes in P4. The hyperplanes of the
pencil give rise to a rational curve Γ1 in X such that Γ1τ = 3, because there are
exactly 3 points on Γ1 corresponding to curves that are not twisted cubics: they
are the curves that are sections with tangent hyperplanes, and they are 3 as the
class of Σ is 3 (see [F], Ex. 14.4.5). Moreover: Γ1A = 3, because any generic plane
in P4 cuts Σ at 3 = deg(Σ) distinct points and there is only one curve of the family
passing through anyone of these points, and Γ1η = 1, because for any generic point
in P4 there passes only one hyperplane of the pencil.

Hence we have: 3 = 3x + y.
Now let Xv be a generic fibre of X and let us restrict τ , A, η to it. Denote by τ ′

and A′ the restrictions of τ and A to Xv, (clearly Xvη = 0). We have τ ′ = xA′ and
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we can consider τ ′ as the class of the cycle of the degenerate cubic curves in a fixed
projective 3-space P and A′ as the class of the cycle of twisted cubics intersecting
a given line in P (see [E-S] pag. 31). To calculate x we use a suitable curve Γ2 in
Xv. Let a, h, c, d, e, f six generic linear forms in P. The following quadrics:

ah + cd = 0, λeh + µfd = 0, λec− µfa = 0,
depending on two projective parameters (λ : µ), give rise to a rational family of

cubic curves, all lying on the quadric ah + cd = 0, i.e. to a rational cubic curve Γ2

in Xv, such that: Γ2τ
′ = 4.

In fact Γ2τ
′ is the number of reducible cubic curves (conic+line) belonging to

the family and such curves are necessarily composed by a line lying on the smooth
quadric ah+ cd = 0; it is easy to see that there are only 4 such cubics, two of them
for (1 : 0) and (0 : 1).

Moreover Γ2A
′ = 2, because a generic line in P cuts the first quadric on two

points and there is only one cubic of the family passing through each one of these
two points.

Hence x = 2 and therefore y = −3.

Now let us consider a surface S as it was defined in §1. Let Γ be the corresponding
curve in X. From Proposition 2.6 it follows that Γτ = Γ(2A − 3η) = 2ΓA − 3Γη.
hence the number of singular fibre of S can be calculated by ΓA and Γη. Moreover
we have that ΓA = deg(S) because any generic plane in P4 cuts S at deg(S) points
and there is only one cubic of the ruling passing through each of these points.
On the other hand, Γη is the number of cubics of Γ belonging to the hyperplanes
passing through a fixed generic point of P4; i.e. the number of plane nodal cubics
occurring in a generic projection of S into P3; i.e. the degree of the curve in P4∗

corresponding to the hyperplanes spanned by the cubics.

Remark 2.1. Using the ideas developed in this section it is also possible to show
that there exists a minimal compactification X ′ of the space of twisted cubics in
Pr(C), r ≥ 4, such that

i) X ′ is a smooth projective variety of dimension 12 + 4(r − 3).
ii) X ′ is a fibered space over G(3, r), and every fibre is isomorphic to a suitable

compactification of the space of twisted cubics in P3(C).
iii) A1(X ′) ⊗ Q is generated by two elements, say η and τ , in such a way that

η is the pull-back of the generator of A1(G(3, r)) and the complement of τ in X ′ is
the space of the twisted cubics in Pr(C).

3. Some rational ruled surfaces

In [E] the author considers smooth, rational, non degenerate, surfaces S in P4

ruled in cubics or quartics (i.e. possessing a base point free pencil of rational curves
of degree 3 or 4 in P4) and he shows that deg(S) ≤ 12. Let d be the degree of S and
let g be its sectional genus. In particular, when S is ruled in cubics, in prop. 5 of [E],
it is proved that the only possibilities for (d, g) are: (5, 2), (6, 3), (7, 5), (8, 8), (9, 12).

In this section S is always a surface of the previous type.
Let Fe = P(OP1 ⊕ OP1(−e)) be the rational ruled surface of invariant e ≥ 0.

Num(Fe) = < C0, f >, where f is the numerical class of any fibre of Fe and C0 is
the numerical class of the fundamental section. Clearly every previously considered
surface S is the blow up, at some 0-dimensional subscheme, of some Fe, embedded
by a very ample divisor L ≡ σ∗(3C0 + bf) − E , where σ : S → Fe is the blow up,
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E is the effective exceptional divisor and ≡ means numerical equivalence. In this
section we will prove the following.

Theorem 3.1. Let S be a surface as above. If d ≥ 7, S does not exist. If d = 6,

S is F1 embedded by L ≡ σ∗(3C0 + 4f) −
9∑

i=1

Ei (blow up at 9 points in general

position). If d = 5, S is F1 embedded by L ≡ σ∗(3C0 + 4f)−
6∑

i=1

Ei− 2E7 (blow up

at 7 points in general position).

First of all we need the following lemma.

Lemma 3.2. Let Fe be the rational ruled surface of invariant e ≥ 0. Let σ : Σ → Fe

be a blow up of Fe at some 0-dimensional subscheme. Let L be a very ample divisor
on Σ. Let us assume that L embeds Σ in such a way that the fibres of Fe are mapped
into the elements of a base point free pencil of rational curves of degree 3, hence L
≡ σ∗(3C0 + bf) − E for some suitable integer b and for some effective exceptional
divisor E. Then:

i) the above effective exceptional divisor E is of the following type:

E =
h∑

i=1

Ei +
k∑

j=1

2Ej +
l∑

p=1
(E ′p + E ′′p ) +

m∑
q=1

(2E ′q + E ′′q ) (1)

where all effective divisors E∗ are disjoint and with selfintersection −1;
ii) the fibres not embedded as twisted cubics are embedded as: smooth conics and

a line intersecting transversally the conic at one point; or: singular conics, having
only one singular point, and a line intersecting tranversally the conic at a smooth
point.

Proof. It is well known that the elements of the very ample linear system which
embeds Σ are in one to one correspondence with the elements of some linear system
|D| on Fe passing through the 0-dimensional subscheme ∆ we blow up to get Σ,
where D is an effective divisor on Fe. Moreover D ≡ 3C0 + bf because every fibre
has to be sent into a cubic curve.

Let us fix a fibre f of Fe and let us consider all possible components of ∆
belonging to it. We proceed in 5 steps.

1) Let us suppose that there is only one simple point P of ∆ on f. Let σ1 :
Σ1 → Fe be the blow up of Fe at P. We get an exceptional divisor E1 and the
fibre corresponding to f is given by two components: σ∗1f −E1 and E1 intersecting
tranversally at one point. We have (σ∗1D−E1)(σ∗1f−E1) = 2 and (σ∗1D−E1)E1 = 1.
If the exceptional divisor Ei corresponding to E1, appears with coefficient −1 in the
numerical class of L, the component σ∗1f − E1 is embedded as a conic and E1 is
embedded as a line. If the exceptional divisor Ej corresponding to E1 appears with
coefficient −2 in the numerical class of L, the component σ∗1f −E1 is embedded as
a line and E1 is embedded as a conic. Note that the coefficient can not be ≤ −3,
otherwise every element of |L| = |σ∗D − E| passing through any generic point of
f would contain f and therefore σ∗D − E could not be very ample. If we assume
that there are h points of the first type and k points of the second type we get the
first part of (1).

2) Now let us suppose that there are only two single simple points P ′ and P ′′

of ∆ on f. Let σ1 : Σ1 → Fe be the blow up of Fe at P ′ and P ′′. We get two
exceptional divisor E′

1 and E′′
1 and the fibre corresponding to f is given by three
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components: σ∗1f − E′
1− E′′

1 , E′
1 and E′′

1 intersecting piarwise tranversally at one
point. We have (σ∗1D − E′

1 − E′′
1 )(σ∗1f − E′

1 − E′′
1 ) = 1, (σ∗1D − E′

1 − E′′
1 )E′

1 = 1,
(σ∗1D − E′

1 − E′′
1 )E′′

1 = 1. The exceptional divisors E ′p and E ′′p corresponding to E′
1

and E′′
1 appear with coefficient −1 in the numerical class of L and every component

is embedded as a line. Note that the coefficents can not be ≤ −2 for the same
argument as above. If we assume that there are l pairs of points of this type we get
the third summand of (1).

3) As every fibre f of Fe is tranformed by the blow up into a curve which has to be
embedded as a cubic by |L|, it can not have more than 3 irreducible components, so
that on f can not be more than two distinct simple points of ∆. Now let us consider
non reduced points of ∆. Let us assume that there is only one double point of ∆ on
f. We can consider it as a couple (P, v) where v ∈ TP (Fe) the analytic tangent space
of Fe at P. Firstly let us assume that v /∈ TP (f). In this case let σ1 : Σ1 → Fe be the
blow up of Fe at P . We get one exceptional divisor E1 and the fibre corresponding
to f is given by two components: σ∗1f −E1 and E1 intersecting tranversally at one
point. Let σ2 : Σ2 → Σ1 be the blow up of Σ1 at the point of E1 corresponding to
v. We get another exceptional divisor E2 and the fibre corresponding to f is given
by three components: σ∗2(σ

∗
1f − E1), σ∗2E1 − E2 and E2, two by two intersecting

transversally at one point only. We have:
[σ∗2(σ

∗
1D)− σ∗2E1 − E2][σ∗2(σ

∗
1f − E1)] = (σ∗1D − E1)(σ∗1f − E1) = 2

[σ∗2(σ
∗
1D)− σ∗2E1 − E2](σ∗2E1 − E2) = (σ∗1D − E1)E1 − 1 = 0

[σ∗2(σ
∗
1D)− σ∗2E1 − E2]E2 = 1.

It is easy to see that the only possibility to have L very ample is that the
exceptional divisors E ′q corresponding to σ∗2E1 appears with coefficient −2 in the
numerical class of L while the exceptional divisors E ′′q corresponding to E2 appears
with coefficient −1; in this case every component is embedded as a line. If there
are m points of this type we get the last part of (1).

4) Now let us assume that there is only one double point of ∆ on f such that it can
be considered as a couple (P, v) with v ∈ TP (f). In this case let σ1 : Σ1 → Fe be the
blow up of Fe at P . We get one exceptional divisor E1 and the fibre corresponding
to f is given by two components: σ∗1f − E1 and E1 intersecting tranversally at
one point Q. Let σ2 : Σ2 → Σ1 be the blow up of Σ1, necessarily at Q. We
get another exceptional divisor E2 and now the fibre corresponding to f is given
by these three components: σ∗2(σ

∗
1f − E1) − E2, σ∗2E1 − E2 and E2, two by two

intersecting transversally at one point only. We have:
[σ∗2(σ

∗
1D)− σ∗2E1 − E2][σ∗2(σ

∗
1f − E1)− E2] = (σ∗1D − E1)(σ∗1f − E1)− 1 = 1

[σ∗2(σ
∗
1D)− σ∗2E1 − E2](σ∗2E1 − E2) = (σ∗1D − E1)E1 − 1 = 0

[σ∗2(σ
∗
1D)− σ∗2E1 − E2]E2 = 1.

It is easy to see that it is not possible that there exist exceptional divisors E ′s,
corresponding to σ∗2E1, and E ′′s , corresponding to E2, in the numerical class of L in
such a way that every component of the fibre corresponding to f is embedded as a
line. Hence this case can not be possible if L is very ample.

5) It is not possible that on f there are two or more double points of ∆, otherwise
the corresponding fibre would have more than 3 irreducible components and this is
not possible as it must be embedded as a cubic curve. For the same reason it is not
possible that on f there are one or more multiple points of ∆. Hence our analysis
is complete and we have proved i). Moreover, along the way, we have also proved
ii).
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Now let us reconsider a surface S. We have the following lemmas.

Lemma 3.3. Let S ⊂ P4 be a surface as above. We know that S is the blow up of
some Fe at some 0-dimensional scheme and it is embedded in P4 by a very ample
divisor L ≡ σ∗(3C0 + bf) − E as in lemma 3.2. Then, according to the possible
degrees of S : 5, 6, 7, 8, 9, the sum h + k + 2m + 2l is: 7, 9, 15, 25, 39, respectively.
Moreover 2d ≥ h + k + m + l.

Proof. By lemma 3.2 we know that

KS ≡ σ∗(−2C0 − (e + 2)f) +
h∑

i=1

Ei +
k∑

j=1

Ej +
l∑

p=1
(E′

p + E′′
p ) +

m∑
q=1

(E′
q + E′′

q )

hence K2
S = 8 − (h + k + 2l + 2m). On the other hand, as S is embedded as a

smooth (non degenerated) surface in P4, we have the well known condition (see [H]
pag. 434, the following version is concerning rational ruled surfaces):

d(d− 5)− 10(g − 1) = 2K2
S − 12

implying: h + k + 2l + 2m = −d(d−5)
2 + 5(g − 1) + 2.

For the 5 types of surfaces S under consideration we have:
(5, 2); h + k + 2l + 2m = 7
(6, 3); h + k + 2l + 2m = 9
(7, 5); h + k + 2l + 2m = 15
(8, 8); h + k + 2l + 2m = 25
(9, 12); h + k + 2l + 2m = 39.
Now, as in §1, we can consider the curve Γ in X arising from the surface S.
Obviously we have Γτ ≥ h + k + l + m (equality holds when the intersection is

transverse) and, by using lemma 2.6, we have that:

0 ≤ 3Γη = Γ(2A− τ) = 2d− Γτ . (ˆ)

From (ˆ) we conclude our proof.

Lemma 3.4. Let S ⊂ P4 be a surface as above, having (d, g) = (5, 2), (6, 3), (7, 5),
(8, 8), (9, 12). Then: h + k + m + l = 3g + 6− d.

Proof. Let us project S into some generic plane Π ' P2 by a generic line λ in P4.
We get a one dimensional family C of nodal plane curves whose generic member is a
plane cubic with only one node. In C there are exactly h+k elements reducible into
a smooth conic and a trasverse secant line and exactly l+m elements reducible into
3 distinct, non collinear, lines. Note that every reduced cubic of these types has
only one distinguished double point coming from the projection, while the others
come from singular points on the curves in P4.

For any family as C, such that any member is a nodal cubic with the exception
of a finite number of cuspidal cubics and a finite number ψ of cubics reducible into
a smooth conic and a secant line, in [K-S] it is proved the following relation (due
to Zeuthen):

3µ′ = 2ψ + 2µ (2)

where µ is the number of elements of C passing through a generic point of P2

and µ′ is the number of elements of C tangent to a generic line in P2.
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In fact, in our case, C has also a finite number of cubics reducible into 3 distinct
non collinear lines, however (2) can be applied because it follows from a correspond-
ing relation among numerical classes of divisors in the space N of the nodal plane
cubics (see [K-S], theorem 4.9) which are cut by C. The stratification of N, under
the action of PGL(2,C), tell us that the set of the cubics reducible into 3 distinct
non collinear lines with a distiguished singular point (as in our case) is a suborbit
of the one-codimensional orbit of cubics reducible into a smooth conic and a secant
line (with a distiguished singular point, as in our case) (see [M-X]). So that, in our
case, simply C intersects the orbit of cubics reducible into a smooth conic and a
secant line at some points belonging to that suborbit.

Let us consider µ and µ′. It is easy to see that, for a generic line λ, µ is equal to
the degree d of S. On the other hand, for any generic line in Π, let us consider the
hyperplane Λ of P4 spanned by this line and λ and the smooth, genus g, hyperplane
section Λ ∩ S. There is a natural (3 : 1) covering π|Λ∩S : Λ ∩ S → C ' P1 induced
by the restriction of π and µ′ is exactly the order of the branching divisor of this
covering, i.e. µ′ = 2g + 4. By using (2) we have: h + k + l + m = 3g + 6− d.

Now we can put all thing together.

Proof. (of theorem 3.1). Let us examine our 5 cases.
Case (9, 12). By lemma 3.4 we have: h + k + l + m = 33, but this is not possible

by (ˆ), so that the surface does not exist.
Case (8, 8). By lemma 3.4 we have: h + k + l + m = 22, but this is not possible

by (ˆ), so that the surface does not exist.
Case (7, 5). By lemma 3.3 we have: h + k + 2l + 2m = 15 and by lemma 3.4

we have: h + k + l + m = 14, so that l + m = 1 and h + k = 13; (ˆ) does not
give contradictions but if we calculate L2 = −9e + 6b− 3k − 3m− 15 = d = 7, i.e.
3(−3e + 2b − k −m − 5) = 7 we see that this is not possible, so that the surface
does not exist.

Case (6, 3). By lemma 3.3 we have: h+k+2l+2m = 9 and by lemma 3.4 we have:
h+k+ l+m = 9, so that l = m = 0 and h+k = 9; (ˆ) does not give contradictions.
S is not necessarily a linearly normal surface, but, in any case, it is the smooth
projection of a linearly normal surface of degree 6 and genus 3, so that we can look
at the list of such surfaces contained in [I]. It is very easy to see that there is only
one possibility: the blow up of P2 at 10 points in general position embedded by the
pull back of the linear systems of quartics passing through these points (Bordiga
surface). As F1 is the blow up of P2 at one point, we have that in this case S do
exist, it is linearly normal, it is the blow up of F1 at 9 points in general position

and the very ample line bundle embedding S in P4 is L ≡ σ∗(3C0 + 4f) −
9∑

i=1

Ei

(h = 9, k = 0).
Case (5, 2). By lemma 3.3 we have: h+k+2l+2m = 7 and by lemma 3.4 we have:

h+k+ l+m = 7, so that l = m = 0 and h+k = 7; (ˆ) does not give contradictions.
By arguing as in the previous case we get that S do exist, it is linearly normal, it
is the blow up of F1 at 7 points in general position and the very ample line bundle

embedding S in P4 is L ≡ σ∗(3C0 + 4f)−
6∑

i=1

Ei − 2E7 (h = 6, k = 1).
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4. The case of P1-bundles.

Let S be a smooth, nondegenerate, projective surface in P4(C). Let d be the
degree of S. Let us assume that S = P(E), where E is a normalized rank 2 vector
bundle, of invariant e := − deg[c1(E)], over a smooth curve C of genus g (see [H]).
Let L be the very ample divisor OS(1). It is well known that L ≡ aC0+bf, (notation
as in §3).

What are the effective values of a and b for which such a surface S do exists
? Up to now we have no answer for this simple question. In this paragraph we
summarize the state of the art, after Holme and Roberts (see [H-R]). Note that
a, necessarily a positive integer as L is very ample, is the degree of rational curves
corresponding to fibres of the embedding.

Let us start by considering the case a = 1. It is well known that the only surface
scrolls contained in P4 are the rational cubic scroll (a = 1, b = 2, e = 1, g = 0, d = 3)
and the elliptic quintic scroll (a = 1, b = 2, e = −1, g = 1, d = 5 ) (see [A2] and [L]).
Obviously the quadric surface is not considered here because it is degenerate. In
the case a = 2, it is known that there are no P1-bundles in P4 that are conic bundles
over a curve, see [E-Sa] and [B-R], see also [A-D-S] for the complete classification
of all conic bundles in P4. So we can assume a ≥ 3.

Now let us consider the possible values of g. It is easy to see that, for g = 0, the
unique existing surface S is the cubic scroll (recall that the quadric surface is not
considered). For g = 1 we have only the quintic scroll, see [L-P] th. 3.1. Hence we
can assume g ≥ 2. Moreover we can also assume that e < 0 by proposition 8.4 of
[H-R]. In this case we have that y := 2b− ae > 0 as L is very ample (see [H]) and
th. 8.9 of [H-R] tells us that a, y, g must satisfy the following relation:

a2y2 − (10a− 5)y − (10a− 4)(g − 1) = 0 (3).

By looking at the proof of th. 8.9 of [H-R] we see that there are no surfaces S
when g ≥ 2 and y = 1. By combining corollary 8.10 and lemma 8.11 of [H-R] we
also have that there are no surfaces S when g ≥ 2 and y = 2, 3, 4, 5, 6 with only one
possible exception S1 with: a = 7, b = −6, e = −2, g = 2, d = 14.

To consider the remaining cases: a ≥ 3, g ≥ 2, y ≥ 7 we can compute all the
possible solutions of (3), keeping in mind that d = ay ≤ 52 because S is a surface
of non-general type. This fact follows from [D-S]; actually, in this paper, the proof
of this bound contains a little gap, however the gap was fixed by Amasaki in [A1]
(for a fuller account of the whole story see the introduction of [A-T]).

Now, a straightforward calculation shows that there are only two possible sur-
faces S2 and S3, of degree respectively 30 (g = 26) and 39 (g = 47), both with
a = 3. This means that every fibre of these surfaces is embedded in P4 as a twisted
cubic, hence every surface gives rise to a curve Γ in X such that τΓ = 0. By the
results proved in §1 we can say that 0 = Γ(2A− 3η) = 2d− 3Γη i.e. 3Γη = 2d. For
S2 we have Γη = 20 and for S3 we have Γη = 26. Unfortunately we have no other
way to compute these numbers. Moreover, if we construct a generic projection of
the two surfaces in some P2, as in §3, to get two families of nodal plane curves and
we consider the known (to us) relations about the charachteristic numbers of these
two families (see [K-S]), we do not find any contradiction. So we think that a new
approach is needed to solve this problem.
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