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Abstract 51 

 52 

Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, 53 

thromboxanes and lipoxins, involved in several pathophysiological processes relevant to 54 

asthma, allergies and allied diseases. Prostaglandins and leukotrienes are the most studied 55 

eicosanoids and established inducers of airway pathophysiology including bronchoconstriction 56 

and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such 57 

as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently 58 

prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and 59 

allergic diseases. This review, produced by an European Academy of Allergy and Clinical 60 

Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology 61 

and its role in mediating human pathology, with a focus on new findings relevant for clinical 62 

practice, development of novel therapeutics, and future research opportunities. 63 

 64 

 65 

 66 

Abbreviation list 67 

 68 

15-oxo-ETE, 15-oxoeicosatetraenoic acid; AA, arachidonic acid; AD, atopic dermatitis; 69 

ALX/FPR2, LXA4 receptor; ATL, aspirin-triggered lipoxin; BAL, bronchoalveolar lavage; 70 

BLT1-2, LTB4 receptors 1-2; COX, cyclooxygenase, cPLA2  cytosolic phospholipase A2; 71 

CRTH2, chemoattractant receptor-homologous molecule expressed on TH2 cells; CysLT1-2, 72 

cysteinyl leukotrienes receptors 1-2; Cysteinyl-LTs, cysteinyl leukotrienes; DC, dendritic cell; 73 

DHA, docosahexaenoic acid; DHGLA, dihomo-γ-linolenic acid; DP1-2, PGD2 receptors 1-2; 74 

EBC, exhaled breath condensate; EET, epoxyeicosatrienoic acid; ELISA, enzyme-linked 75 

immunosorbent assays; EP1-4, PGE2 receptors 1-4; EPA, eicosapentaenoic acid; FLAP, 5-LO 76 

activating protein; GCs, glucocorticosteroids; GPCRs, G protein-coupled receptors; HETE, 77 

hydroxyeicosatetraenoic acid; HETrE, hydroxyeicosatrienoic acid; HpETE, 78 

hydroperoxyeicosatetraenoic acid; HPLC, high-performance liquid chromatography; ICS, 79 

inhaled corticosteroids; ILC, innate lymphoid cells; IP, PGI2 receptor; LO, LOX, lipoxygenase; 80 

LT, leukotriene; LTC4S, LTC4 synthase; LTRA, leukotriene receptor antagonists; LTSI, 81 

leukotriene synthesis inhibitors; LX, lipoxin; MC, mast cell, MS, mass spectrometry; NAEB, 82 

non-asthmatic eosinophilic bronchitis; NERD, NSAID-exacerbated respiratory disease; 83 

OXGR1, oxoglutarate receptor; P2Y12, purinergic receptor 12; PD1, protectin D1; PG, 84 

prostaglandin; PGDM, PGD2 metabolite; PPAR peroxisome proliferator-activated receptors; 85 

QoL, quality of life; sPLA2, secreted phospholipase A2; TP, TXB4 receptor; TX, thromboxane 86 
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 3 

Introduction 87 

Eicosanoids, docosanoids and related oxygenated derivatives are biologically active lipid 88 

mediators, comprising prostaglandins (PGs), leukotrienes (LTs), thromboxanes (TXs), 89 

hydroxyeicosatetraenoic acids (HETEs), lipoxins (LXs) and other pro-resolving mediators, 90 

involved in several pathophysiological processes relevant to asthma, allergies and related 91 

diseases (1). The biology of this class of mediators differs from other mediators such as 92 

cytokines or preformed proteins as they are produced within minutes upon cell activation, act 93 

locally through specific receptors and are usually quickly metabolised. PGs and LTs are the 94 

most studied eicosanoids and established players in the airway pathophysiology, producing 95 

potent and long-lasting bronchospasm, and airway inflammation mediated by interaction with 96 

receptors on a variety of structural and inflammatory cells as evidenced in several animal and 97 

human studies (2,3). Drugs inhibiting the synthesis of lipid mediators or their effects, such as 98 

LT synthesis inhibitors, leukotriene and PGD2 receptor antagonists (in clinical development) 99 

have been shown to modulate features of asthma and allergic diseases (3,4).  100 

An EAACI Task Force has been formed to provide an update on eicosanoid biology in health 101 

and disease with a focus on asthma and allergic diseases. In this report, current understanding 102 

of eicosanoids in human biology, together with new insights into their mechanisms of action 103 

and identified unmet needs for future research will be evaluated. 104 

 105 

Biosynthesis and receptors  106 

Eicosanoids, docosanoids and related oxygenated derivatives, mainly originate from 107 

arachidonic acid (AA), dihomo-γ-linolenic acid (DHGLA), eicosapentaenoic acid (EPA), and 108 

docosahexaenoic acid (DHA) (5-7). These precursor fatty acids are cleaved from membrane 109 

phospholipids by cytosolic phospholipase A2 (cPLA2 group 4A) and to a lesser extent by 110 

secreted forms of PLA2 (sPLA2) upon various stimuli (8-13). Next, free fatty acids are 111 

metabolized by three main pathways: cyclooxygenases (COXs), lipooxygenases (LOs or 112 

LOXs) or cytochrome P450, giving rise to different families of mediators (14,15) (Figure 1A). 113 

For prostanoids (PGs and TXs) biosynthesis, free fatty acids are substrates for COX-1 and 114 

COX-2 (16). Both enzymes catalyse similar two-step functionally coupled reactions: first  a 115 

cyclooxygenase reaction, forming PGG2, and immediately following a second peroxidase 116 

reaction, forming PGH2. Downstream metabolism of PGH2 depends on five different terminal 117 

synthases (PGD2, PGE2, PGF2, PGI2 and TXA2 synthases), existing in different forms, the 118 

expression of which differs depending on cell types (16) (Figure 1A). Prostanoid receptors are 119 

G protein-coupled receptors (GPCRs), activation of which results in a change (decrease or 120 

increase) in the rate of second messenger generation (cAMP or Ca2+), a change in membrane 121 

potential, and activation of specific protein kinases or arrestins (17). The biological effects of 122 

PGD2 are mediated by DP1 and DP2 (or chemoattractant receptor-homologous molecule 123 

expressed on TH2 cells (CRTH2)) and at higher concentrations by a thromboxane receptor, TP 124 

(18,19) (Figure 2A). DP1 is expressed on platelets, endothelial cells, eosinophils, basophils, T 125 

cells and different subsets of macrophages (17,20). DP2/CRTH2 is expressed on eosinophils, 126 

basophils, Th2 cells, Th2A cells, type 2 innate lymphoid cells (ILC2) and alveolar 127 

macrophages (20,21). There are four receptors for PGE2 called EP1-EP4, with contrasting 128 

functions in response to PGE2 (17,22). These receptors are expressed very broadly on many 129 
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 4 

cell types in different configurations, thus the final pro- or anti-inflammatory effect of PGE2 130 

depends on the dominance of expression of certain receptors (23) (Figure 2B). PGF2 acts on 131 

an FP receptor, mostly expressed in the uterus and in the eye (17). PGI2 (also called 132 

prostacyclin) acts on IP expressed on dendritic cells (DCs) and ILC2 (24,25). Specific 133 

metabolites of prostanoids (PGA and PGJ series) interact with the nuclear receptors: 134 

peroxisome proliferator-activated receptors (PPAR ,  and ) (26,27). They are ligand-135 

activated transcription factors which regulate expression of genes involved in immune 136 

response, lipid metabolism, adipogenesis and glucose homeostasis (26,27). 137 

  138 

Five-lipoxygenase (5-LO or 5-LOX) is the first enzyme in the LT biosynthesis (28) (Figure 139 

1A). With the help of 5-LO activating protein (FLAP), it converts AA, through intermediary 140 

hydroperoxyeicosatetraenoic acids (HpETE), into the unstable leukotriene A4 (LTA4) (29). In 141 

neutrophils and many other human cells, LTA4 is a substrate of LTA4 hydrolase (LTA4H) and 142 

is converted to LTB4, a very potent chemoattractant. In mast cells (MCs), eosinophils, 143 

monocytes (30), platelets (31) and epithelial cells, LTA4 is rapidly converted by LTC4 synthase 144 

(LTC4S) into LTC4 (Figure 1B). Following active export out of a cell, LTC4 is metabolized by 145 

a γ-glutamyl-transpeptidase to LTD4, which is further converted by a dipeptidase to LTE4 (29). 146 

There are two receptors identified for LTB4, BLT1 and BLT2, belonging to the chemokine 147 

receptor family (32). Cysteinyl leukotrienes (cysteinyl-LTs, i.e. LTC4, D4 and E4) act in human 148 

cells mainly through two recognized GPCRs: CysLT1 and CysLT2. LTD4 is a more potent 149 

agonist than LTC4 and LTE4 at the CysLT1, whereas CysLT2 is equally activated by LTD4 and 150 

LTC4 (Figure 2C). 151 

LXs, which are derivatives of AA, belong functionally to the family of pro-resolving and anti-152 

inflammatory mediators (specialized pro-resolving mediators; SPMs), together with resolvins, 153 

marensins, protectins, metabolites of DHA and EPA (33-36) (Figure 1). However, structurally 154 

and by partially utilizing the same biosynthesis enzymes (mainly 5- and 15-LOX), they are 155 

related to LTs (37). LXA4 and its epimer 15-epi-LXA4, the so-called aspirin-triggered lipoxin 156 

(ATLs), are involved in the resolution of inflammation acting on ALX/FPR2 receptor (38) 157 

(Figure 2D). 158 

Cytochrome P450 oxidases can produce various hydroxyeicosatrienoic (HETrE) and 159 

epoxyeicosatrienoic (EET) acids, performing a variety of functions within the human body (39) 160 

(Figure 1A). Detailed information about eicosanoid biosynthesis and their receptors with 161 

relation to allergy and asthma can be found in the Online Supplementary Material (link). 162 

 163 

Eicosanoids in asthma and allergy 164 

 165 

Asthma 166 

Cysteinyl-LTs. Asthma is a heterogeneous disease characterised by variable airway obstruction, 167 

airway hyperresponsiveness, chronic airway inflammation and structural changes within the 168 

airways (i.e. airway remodelling). There is ample evidence of the pivotal  role of cysteinyl-LTs 169 

in asthma pathophysiology. They induce several features of asthma including  170 

bronchoconstriction, airway inflammation, hyperresponsiveness and airway remodelling (40) 171 

(Figure 3). Cysteinyl-LTs are the most potent bronchoconstrictors in humans, a thousand times 172 
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 5 

more potent than histamine (41), inducing contraction of the airways acting through CysLT1 173 

receptor (42). Airway obstruction induced by inhaled allergen challenge in sensitised asthmatic 174 

subjects correlates with the release of cysteinyl-LTs, detected in exhaled breath condensate 175 

(EBC), bronchoalveolar lavage (BAL) and urine samples, and is effectively inhibited by 176 

pretreatment with leukotriene inhibitors or leukotriene receptor antagonists (LTRA), 177 

confirming the important role of the cysteinyl-LTs/CysLT1 pathway in allergic airway 178 

responses (43-48). Cysteinyl-LTs levels are also directly associated with asthma severity and 179 

increased in patients during asthma exacerbations (49,50). Cysteinyl-LTs have also been 180 

shown to induce mucosal oedema by increased vascular leakage, mucus hypersecretion and 181 

decreased mucociliary clearance (51-53). Recruitment and activation of many inflammatory 182 

cells critical for driving asthmatic inflammation such as eosinophils, Th2 cells, ILC2, 183 

monocytes, DCs and MCs have been shown to be significantly affected by cysteinyl-LTs, 184 

confirming that they can amplify inflammation in type 2 immunity by acting on both the innate 185 

and adaptive immune responses (2). Although cysteinyl-LTs may also play a role in airway 186 

remodelling (54,55), it is unknown whether LTRA can prevent or modify airway remodelling 187 

in patients with asthma. LTRAs have a well-established role in asthma treatment as a controller 188 

medication, showing superiority over placebo for multiple clinical outcomes such as quality of 189 

life (QoL), symptoms, lung function,  agonist use, and frequency of asthma exacerbations 190 

(56). However, LTRAs are generally less effective than inhaled corticosteroids (ICS), 191 

depending on the study population (57,58). Nevertheless, adherence to  a once-daily oral 192 

medication such as montelukast, is superior to ICS (59), while combining both drugs showed 193 

additive or synergistic benefits (60). 194 

The cysteinyl-LTs pathway plays a central role in NSAID-exacerbated respiratory disease 195 

(NERD) (61). Increased urinary LTE4 levels have been detected at baseline and during acute 196 

reaction to NSAIDs (62), while enhanced responses to inhaled LTE4 (63,64) are characteristic 197 

features of this asthmatic endotype, in which the beneficial effect of LTRA treatment further 198 

confirms a significant role of cysteinyl-LTs in pathogenesis of NERD (65). However, there are 199 

also studies showing that LTRA are equally effective in patients with NERD and patients 200 

tolerating aspirin (66).  201 

  202 

LTB4. Although increased levels of LTB4 are detected in sputum, BAL fluid and EBC from 203 

asthmatic patients (44-46), the role of LTB4 in asthma in humans is still unclear. LTB4 is strong 204 

chemoattractant for neutrophils. High numbers of those cells are usually present in the airways 205 

of asthmatic patients who suffer from exacerbations or die from asthma-related sudden death 206 

(67,68). Nevertheless, BLT receptor antagonist LY293111 failed to improve lung function or 207 

airway reactivity after allergen challenge, despite a significant reduction in the number of 208 

neutrophils in the BAL (69). It has been also hypothesized that LTB4 may have a role in 209 

neutrophilic variant asthma and COPD, which is resistant to conventional GC therapy, but the 210 

FLAP inhibitor GSK2190915 did not affect sputum neutrophils, while significantly reducing 211 

LTB4 levels (70,71). 212 

  213 

PGD2. PGD2 plays an important role in regulation of allergic inflammation in asthma. PGD2 214 

acting through DP2 (CRTH2) receptor is involved in promotion of type-2 inflammation by 215 

recruitment and activation of Th2 cells, ILC2, eosinophils, and basophils and induction of IL-216 
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 6 

4, IL-5, and IL-13 production. Increased PGD2 levels and numbers of cells expressing DP2 217 

were observed in BAL fluid from patients with severe asthma as compared to those with milder 218 

disease (72). Furthermore, upregulation of the PGD2 pathway was reported in patients with 219 

uncontrolled, severe type-2 asthma (72). Several studies of DP2 antagonists showed promising 220 

results reducing the late but not early asthmatic response following allergen challenge in atopic 221 

asthmatics and improvement in lung function, QoL, and asthma symptoms but in other trials 222 

these findings were not confirmed (3,73). There is also evidence that PGD2 may play a role in 223 

MCs mediated bronchoconstriction through activation of TP receptor (74). 224 

  225 

PGE2. PGE2 is one of the most abundant eicosanoids produced by airway epithelium and shows 226 

bronchoprotective and anti-inflammatory activity in the lungs. While PGE2 inhalation can 227 

reduce early and late phase reaction, MC activation (e.g. cysteinyl-LTs and PGD2 production) 228 

and eosinophil recruitment after allergen challenge and inhibits methacholine reactivity in 229 

asthmatics (75,76), some studies (77,78) with an oral analogue of PGE1 (PGE2 is very unstable) 230 

did not show significant improvement in pulmonary function, airway responses or symptoms 231 

suggesting a complex PGE2 interactions depending on the relative contribution of the particular 232 

receptors activated in a tissue- or cell-specific context (79). PGE2 plays a particularly important 233 

role in NERD where both decreased production of PGE2 and reduced EP2 expression were 234 

observed (80), and where a further decrease of PGE2 by COX1 inhibitors leads to MC 235 

activation and bronchoconstriction (81). Inhalation of PGE2 before aspirin challenge prevented 236 

reduction in pulmonary function and mast cell activation measured by urinary LTE4 (82). 237 

 238 

Allergic rhinitis 239 

Cysteinyl-LTs. Allergic rhinitis (AR) is defined by an IgE-mediated response in the nasal 240 

mucosa upon exposure to allergens in sensitized individuals. During the early phase of the 241 

allergic response, MCs and basophils are the primary source of eicosanoids (cysteinyl-LTs), 242 

which stimulate the production, recruitment, and activation of additional inflammatory cells, 243 

predominantly eosinophils, but also Th2 cells, ILC2, monocytes/macrophages and DCs. They 244 

are also the main source of cysteinyl-LTs during the late-phase reaction (83-85) (Figure 3). 245 

Cysteinyl-LTs produced following allergen exposure have been shown to contribute to relevant 246 

pathophysiologic processes, stimulating stimulating mucous production, increasing vascular 247 

permeability and blood flow (causing oedema), and thus, produce rhinorrhea and nasal 248 

obstruction. Increased cysteinyl-LTs levels in a nose have been found in patients with allergic 249 

rhinitis, correlating with clinical symptoms (86,87). All of the known pro-inflammatory effects 250 

of cysteinyl-LTs, including mucous hypersecretion, tissue oedema, and eosinophil recruitment, 251 

appear to be mediated through CysLT1, while the role of CysLT2 in allergic inflammation is 252 

currently unclear. The important role of CysLT1 in allergic rhinitis has been validated by 253 

numerous clinical studies with specific CysLT1 antagonists showing significant improvement 254 

in QoL and symptoms such as nasal congestion, sneezing and rhinorrhea (128). When 255 

intranasal steroids where compared with LTRAs in AR patients both treatments improved 256 

daytime and night-time symptoms with LTRAs having similar or greater effects than steroids 257 

(88-91). In some studies, additive benefits were achieved by combining an antihistamine with 258 

an LTRA or by adding LTRA to the already administered combination of intranasal steroids 259 

and antihistamine (90,92,93).  260 
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 7 

  261 

LTB4. The role of LTB4 in the pathophysiology of AR has not been well understood. Although 262 

allergen challenge induces a significant increase in numbers of neutrophils and LTB4 levels in 263 

nasal lavage fluid from patients with AR (94,95), and peripheral blood neutrophils from AR 264 

patients generate more LTB4 after calcium ionophore stimulation than those from healthy 265 

subjects, there is currently no convincing evidence for an important role of LTB4 in mediating 266 

AR symptoms (96). Interestingly, LTB4 levels in nasal lavage are not changed after topical 267 

corticosteroid treatment even with marked reduction in nasal symptoms and levels of other 268 

inflammatory mediators (97). 269 

  270 

PGD2. PGD2 levels in nasal mucosa increase after allergen challenge (98-100), and nasal 271 

obstruction and rhinorrhea are induced by intranasal administration of PGD2 (101,102). The 272 

DP2 receptor is involved in migration and activation of Th2 lymphocytes, ILC2, eosinophils, 273 

and basophils, up-regulation of adhesion molecules, and promotion of pro-inflammatory type-274 

2 cytokines (IL-4, 5, 13), whereas the DP1 receptor is associated with relaxation of smooth 275 

muscles, vasodilation, inhibition of cell migration, and apoptosis of eosinophils (18). Although 276 

several PGD2 receptors antagonists have been evaluated in treatment of patients with AR 277 

showing significant reduction of eosinophils, nasal mucosal swelling, and clinical symptoms 278 

of AR, no drugs are yet approved for clinical use.  279 

 280 

 281 

Atopic dermatitis 282 

Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by 283 

eczematous lesions with lichenification of the skin. It is commonly associated with elevated 284 

levels of IgE and a family history of atopic disorders which include bronchial asthma and AR. 285 

Several observations reveal that both LTs and PGs may be crucial for the pathogenesis of AD 286 

(103) and impairment of the skin barrier (104). Increased levels of cysteinyl-LTs were detected 287 

in sera, urine and in skin extracts of AD patients which are associated with severity of the 288 

disease and exacerbations (105-107). Several studies evaluated effect of LTRA (montelukast) 289 

treatment in moderate to severe AD showing some improvements in symptoms, similar to 290 

topical steroids and oral antihistamines (108). Similarly, increased levels of LTB4 in skin 291 

lesions of patients with AD (109) as well as increased activity of LTA4H in peripheral blood 292 

cells of AD patients parallel disease severity (110). A pilot study of oral zileuton (5-LOX 293 

inhibitor) therapy in AD demonstrated promising results, supporting a functional role of LTs 294 

in AD (111). PGD2-DP2 signaling has been shown to be crucial for chemotaxis of ILC2 (112), 295 

but  a recent phase 2 clinical trial studying the effect of timapiprant (DP2 antagonist) in 296 

moderate-to-severe AD (NCT02002208) did not demonstrate any significant improvement 297 

compared with placebo.  298 

 299 

Anaphylaxis 300 

Anaphylaxis is a severe systemic hypersensitivity reaction that is rapid in onset, characterized 301 

by life-threatening breathing, and/or circulatory problems and usually associated with skin and 302 

mucosal involvement. Activation of MCs and basophils leading to release of histamine, various 303 

proteases together with de novo synthesis of cysteinyl-LTs is considered as the main 304 
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mechanism inducing anaphylactic symptoms but very limited data on immunologic 305 

mechanisms of anaphylaxis from human subjects are available because of the life-threatening 306 

nature of the disease and ethical concerns. Increased production of cysteinyl-LTs and PGD2 307 

have been reported during human anaphylaxis (113,114) and single case reports described the 308 

use of LTRA in preventive treatment of exercise induced anaphylaxis (115,116) but any in-309 

depth analysis of the role of eicosanoids in human anaphylaxis is lacking. In addition, it has 310 

been shown in in vitro and in animal studies that human and mouse mast cells produce also the 311 

omega-3 fatty acid epoxides which can promote IgE-mediated activation of mast cells and 312 

contribute to anaphylaxis (117).  313 

 314 

Food allergy 315 

Food allergy is an abnormal, sometimes life-threatening immune response that occurs 316 

reproducibly on exposure to certain foods. MC and basophil produced mediators, including 317 

leukotrienes and PGD2 are important in the effector phase of allergic response to food. Urinary 318 

tetranor-PGDM (PGD2 metabolite) has been suggested as a useful diagnostic marker of food 319 

allergy (118,119).  A recent study suggested that measurement of urinary PGDM enables 320 

objectification of positive food challenge tests helping to reduce observer bias and false-321 

positive diagnosis in food allergic patients (120). Thus, levels of specific eicosanoids might 322 

reflect disease severity of food allergy. Eicosanoids might additionally contribute to food 323 

allergy development, even if derived from parasites. Tick salivary PGE2 was suggested to 324 

contribute to α-gal-induced meat allergy via induction of antibody class switching in mature 325 

B-cells (121). NSAID use can be an important co-factor associated with food-induced 326 

anaphylaxis and while the underlying mechanisms are unknown, the modification of 327 

prostaglandin synthesis may play a role (122). Structural analogues that bind prostaglandin 328 

receptors can be secreted by the gut microbiome, however their role in food allergy has not 329 

been determined (123). Taken together, further studies are needed to define the contribution of 330 

eicosanoid metabolites to food allergy. 331 

 332 

Areas of special focus, unmet needs and future perspectives in current eicosanoid clinical 333 

and basic research 334 

 335 

Specialized pro-resolving mediators (SPM) 336 

While a debate is still evolving about the identification and characterization of their target 337 

receptors (ALX/FPR2, ChemR23/ERV1, GPR32/DRV1, GPR18/DRV2, GPR37/NPD1) (124-338 

126) SPMs are emerging as crucial signals for the resolution of tissue inflammation (36), as 339 

their levels or their signaling molecules are defective in chronic inflammatory diseases such as 340 

asthma. It suggests that the pathogenesis of this disease might be related to the defective 341 

mechanisms of the inflammation resolution (125,127). In particular, in lung tissue the cellular 342 

sources of SPMs include bronchial and alveolar epithelial cells and macrophages, all of which 343 

possess at least part of the enzymatic machinery to synthesize SPMs (109). 344 

The AA-derived lipoxins are decreased in induced sputum, BAL fluid, and exhaled breath 345 

condensates (EBC) in patients with severe asthma compared with healthy controls, and their 346 

levels inversely correlate with a worsening of airflow obstruction in severe asthma (128). In a 347 

small trial in asthmatic subjects, LXA4 inhalation significantly reduced bronchial reactivity to  348 
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LTC4 challenge (129). Similarly, also DHA-derived protectin D1 (PD1) (NPD1 when of 349 

neuronal origin) and its immediate precursor 17 hydroxy-DHA, have been identified in EBC 350 

from healthy subjects, and significantly lower concentrations were detected in EBC from 351 

patients during asthma exacerbation. PD1 treatment before aerosol challenge reduces airway 352 

hyperresponsiveness and inflammation by blocking the upregulation of IL-13, cysteinyl-LTs, 353 

and PGD2, as well as lymphocyte and eosinophils recruitment, providing evidence for 354 

endogenous PD1 as a potential counter-regulatory signal in airway inflammation (130). 355 

Intriguingly, in a small in vivo study in cystic fibrosis subjects 6 weeks of DHA 356 

supplementation caused a decrease in the concentrations of pro-inflammatory mediators 15-357 

HETE and LTB4 and a significant decrease in the 15-HETE/17OH-DHA ratio, suggesting that 358 

DHA supplementation may in part correct the imbalance in fatty acid metabolism and pointing 359 

to possible new therapeutic strategies to modulate inflammation in the lung (131). 360 

 361 

PGE2 in allergic inflammation 362 

While negative effects of  PGD2 signalling especially through its DP2 receptor on a variety of 363 

cells in the context of allergy and asthma seem to be rather clear and have led to the ongoing 364 

developments of DP2 antagonists (21,132-134), PGE2 signalling and its involvement in type 2 365 

inflammation remain incompletely understood (2,132,135). PGE2 is produced by and acts on a 366 

variety of cells in human airways, including epithelial cells, smooth muscle cells, fibroblasts, 367 

macrophages, MCs, eosinophils, T cells and ILCs. PGE2 acts in either a pro- or an anti-368 

inflammatory manner, depending on which receptors are involved (132,136). Several reports 369 

confirmed that PGE2 administered to allergic asthmatic patients before allergen challenge 370 

reduced bronchoconstriction and eosinophil infiltration, acting probably through EP2 and/or 371 

EP4-mediated mechanism on MCs, smooth muscle cells and eosinophils among others by 372 

reducing PGD2 and cysteinyl-LTs (74-76,137,138). In contrast, studies using misoprostol (a 373 

stable PGE1 analogue), did not confirm these results, but this might be related to the lower 374 

potency of misoprostol in activating cAMP-dependent pathways (77,139). Bronchoprotective 375 

and anti-eosinophilic PGE2 activity has been clearly demonstrated in patients with NERD and 376 

in patients with exercise induced bronchoconstriction (140-146). Likewise, in patients with 377 

non-asthmatic eosinophilic bronchitis (NAEB), characterized by sputum eosinophilia but 378 

without AHR, increased sputum PGE2 protects against smooth muscle proliferation (147,148) 379 

and MCs migration (149,150). In terms of allergic inflammation, some in vitro and in vivo 380 

animal studies suggest that PGE2 might drive type 2 and type 17 inflammation, especially 381 

during sensitisation phase, acting directly on DCs, naïve T cells, ILC3, IL-33-producing 382 

macrophages or MCs (151-157). In contrast, others showed that PGE2 inhibits IL-5 production 383 

by activated human T cells, suppresses expression of GATA3 and production of IL-5 and IL13 384 

by activated human ILC2, inhibits eosinophil trafficking and inhibits MC activation 385 

(74,135,158,159). Similarly, PGE2 inhibits NLRP3 inflammasome activation and mature IL-386 

1 release in human and mouse macrophages via EP4 receptor and cAMP-related pathways, 387 

when acting after the first step in NLRP3 inflammasome activation cascade (called priming) 388 

(23,160). However, PGE2 while acting before priming can also increase the production of pro- 389 

IL-1 (161). Both phenomena might have implications in some endotypes of severe asthma 390 

with significant involvement of inflammasome pathway (162-164).  In summary, effects of 391 
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PGE2 observed in vitro or in vivo in humans and animals vary depending on i) the dominant 392 

EP receptor expression, ii) timing of PGE2 stimulation, iii) PGE2 dose and iv) surrounding lipid 393 

and cytokine milieu. Further in vivo studies with the cell-specific and tissue-specific EP 394 

receptor knock-out animals, as well as studies in humans with highly selective EP1-4 analogues 395 

are needed to understand complex PGE2 biology (165,166). 396 

 397 

15-HETE and 15-oxo-eicotetraenoic acid 398 

15-hydroxyeicosatetraenoic acid (15-HETE) and 15-oxoeicosatetraenoic acid (15-oxo-ETE) 399 

are 15-lipoxygenase 1 (15-LO-1)-derived AA products. In humans, 15-LO-1 is highly 400 

expressed in eosinophils and epithelial cells, and oxidizes AA to 15-HpETE, which is reduced 401 

to 15-HETE by peroxidase. A second 15-lipoxygenase (15-LO-2) has been identified in 402 

prostate, lung, hair roots and cornea. The oxidation of 15-HETE by 15-hydroxyprostaglandin 403 

dehydrogenase (15-PGDH) generates 15-oxo-ETE (167).  Higher levels of 15-HETE were 404 

observed in the BAL fluid from patients with severe eosinophilic asthma,  compared to patients 405 

without airway eosinophilia (168). Furthermore, activated eosinophils from severe and aspirin-406 

intolerant asthmatic patients released increased levels of 15-HETE, which was not only 407 

attributed to the increased number of eosinophils but also to enhanced eosinophil function 408 

(169). Interestingly, it has also been shown that aspirin induces 15-HETE release from polyp 409 

tissue of patients with NERD, but not from aspirin-tolerant patients, without activation of 410 

eosinophils or mast cells (170). Mouse studies reported that allergen-induced airway 411 

inflammation was attenuated in 15-LO knockout mice (171,172). Lack of 15-LO is also 412 

associated with less IgE production after allergen challenge, supporting an important role of 413 

15-LO in the pathogenesis of allergen-induced inflammation within the lungs (173). However, 414 

other studies reported that 15-HETE is a PPAR agonist that might well be involved in anti-415 

inflammatory responses (174,175). In summary, pharmacologic inhibitors of 15-LO may 416 

represent an attractive therapeutic strategy in allergic airway diseases such as asthma, allergic 417 

rhinitis as well as in chronic obstructive pulmonary diseases. 418 

 419 

Novel leukotriene receptors 420 

Over the years, some additional receptors for cysteinyl-LTs have been postulated, but none of 421 

these putative receptors have yet received definitive confirmation in humans (124). In 422 

particular LTE4, the most stable of cysteinyl-LTs, has been thought to activate a distinct 423 

receptor (176), partly because both CysLT1 and CysLT2 poorly respond to it in vitro (177-179) 424 

and in vivo at least in control subjects (180), whereas asthmatics or patients with NERD seem 425 

to be selectively hyperresponsive to LTE4 (181). P2Y12, an ADP receptor expressed in human 426 

platelets, was one of the first candidates for a novel LTE4 receptor. Interestingly, some old 427 

reports postulated that cysteinyl-LTs may potentiate human platelet aggregation (182-184), 428 

while more recent data indicated that LTE4 could be a surrogate ligand for P2Y12 receptors 429 

(185-187). It has been shown that P2Y12 is required for lung pro-inflammatory actions of LTE4 430 

in mice lacking both CysLT1 and CysLT2 (186). Although some observations seem to support 431 

a cysteinyl-LTs effect on human platelets (Rovati, unpublished observations), P2Y12 activation 432 

by LTE4 has not been confirmed in recombinant models and in human platelets (188), 433 

suggesting that this elusive pharmacology might depend upon different experimental 434 

conditions that, in turn, might affect possible heterodimer formation and/or presence of biased 435 
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agonism. More recently, GPR99, another orphan GPCR with homology to the P2Y nucleotide 436 

receptor subfamily (189) and eventually named as the oxoglutarate receptor (OXGR1) (190), 437 

has also been postulated to represent the highly pursued LTE4 receptor, at least in mice 438 

(191,192). However, no independent confirmation of these data in human tissue is yet 439 

available, and transfection of GPR99 in a recombinant model failed to elicit any response to 440 

LTE4 while showing response to its recognized ligand, -ketoglutarate (Woszczek and Rovati, 441 

unpublished observations). Indeed, recently LTE4-induced airway obstruction and MC 442 

activation and subsequent release of PGs has been demonstrated to be completely montelukast-443 

sensitive and, therefore, CysLT1 dependent (193). Potent LTE4 mediated activation of CysLT1 444 

has also been confirmed in a human MC model, suggesting that LTE4 induced responses in 445 

vivo might be in fact mediated by CysLT1 rather than by a distinct LTE4 receptor (194). 446 

Another orphan GPCR, namely GPR17, phylogenetically located at an intermediate position 447 

between P2Y and Cysteinyl-LT receptors, has also been hypothesized to be activated by 448 

cysteinyl-LTs, antagonized by montelukast and to represent the third Cysteinyl-LT receptor 449 

(195). Although some observations corroborated these lipid mediators as agonists of GPR17 450 

(196-198), two distinct studies suggested GPR17 as a negative regulator of CysLT1 (199,200), 451 

while, in addition, three independent groups failed to demonstrate cysteinyl-LTs as cognate 452 

ligands of this receptor (200-202). 453 

 454 

Effects of glucocorticosteroids on eicosanoids  455 

Glucocorticosteroids (GCs) are presently the most effective drugs available for the treatment 456 

of asthma and allergic diseases (203). GCs potently regulate the expression of pro-457 

inflammatory and anti-inflammatory mediators, inhibit the recruitment and activation of 458 

inflammatory cells and inhibit permeability of blood vessel thus reducing oedema. The effects 459 

of GCs on eicosanoid synthesis and expression of eicosanoids pathway enzymes or receptors 460 

are exceedingly complex. Different outcomes can be observed, depending on the cell type and 461 

whether GCs are administered in vivo or in vitro (204). GCs can inhibit leukotriene-related 462 

inflammatory pathways by affecting recruitment and activation of cells responsible for 463 

leukotriene production (eosinophils, basophils, monocytes). GCs can also inhibit COX2 464 

leading to PGE2 decrease, and because PGE2 inhibits leukotriene synthesis, GCs may indirectly 465 

amplify leukotriene synthesis by removing this prostanoid break on leukotriene generation. It 466 

has been shown that short term (1-2 weeks) inhaled and oral GCs treatment did not affect levels 467 

of eicosanoids (especially cysteinyl-LTs) in asthmatics patients (205,206) suggesting only 468 

modest effects of GCs on eicosanoid production. This notion is further supported by findings 469 

of weak inhibitory activity of GCs on human MCs (207,208). These observations support the 470 

current view that at least one important component of allergic inflammation, the cysteinyl-LT 471 

pathway, remains insufficiently controlled by GCs treatment in many patients and may require 472 

specific targeting for better control of allergic disease (209). 473 

 474 

Single versus combination therapy  475 

Given their important role in the pathophysiology of asthma, several approaches to block the 476 

activity of lipid mediators (especially: cysteinyl-LTs, LTB4 and PGD2) have been explored in 477 

the past decades (3). To counteract the effects of leukotrienes, two types of compounds have 478 

been developed: i.e., leukotriene synthesis inhibitors (LTSI), blocking leukotrienes synthesis 479 
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at the site of 5-LO or its activating protein (FLAP), and LTRA, inhibiting effects of the 480 

respective leukotrienes (i.e., LTB4 or cysteinyl-LTs, respectively) at the site of their receptors. 481 

While LTRA, e.g. montelukast, have been shown to deplete eosinophils in blood and airway 482 

samples (210-212) showing effectiveness in (allergic, type-2) asthma, the added value of 483 

synthesis inhibitors may consist of their potential to reduce both eosinophils and neutrophils 484 

(213,214). Therefore, LTSI could theoretically be beneficial for the treatment of a broader 485 

number of disease subsets, including eosinophilic, mixed and neutrophilic asthma and COPD, 486 

which requires further investigation. Regarding anti-PGD2 treatment, so far DP2/CRTH2 487 

antagonists yielded modest protection against allergen-induced airway responses (215,216), 488 

while several phase II studies showed promising effects in patients with both allergic and non-489 

allergic type-2 asthma across all severities, improving symptoms, QoL and lung function, 490 

reducing rescue medication use, exacerbation rates and airway inflammation (133,217,218). 491 

Currently, several phase III studies in more severe asthma are ongoing. Given the expression 492 

of both CysLT1 and DP2 receptors on both Th2 and ILC2 cells (219,220), the combination of 493 

LTRA and DP2 antagonists may yield synergistic efficacy in type-2 asthma (and related 494 

disorders) and is worth investigating. More recent evidence showed potentially disease-495 

modifying effects by the DP2 antagonist fevipiprant by reducing both airway eosinophils and 496 

airway smooth muscle mass (221). 497 

 498 

Measuring eicosanoids in different biological fluids, technical issues, recommendations  499 

The concentration of bioactive eicosanoids in biological fluids is low, picomolar or within a 500 

range of picograms to nanograms per millilitre. Measurements of these compounds can be done 501 

by immunochemical methods or mass spectrometry. Currently, enzyme-linked immunosorbent 502 

assays (ELISAs) are in use, being fast and relatively inexpensive. The principle of the assay 503 

remains similar in all available ELISAs (Table 1). A standard or tracer competes with the 504 

measured eicosanoid in binding to a specific antibody. Available kits vary in sensitivity, but 505 

limits of quantification are generally around several picograms per millilitre. Frequently, 506 

antibodies used have some cross-reactivity between the measured eicosanoids and other 507 

molecules and manufacturer’s specificity tests are not inclusive, so the results need to be 508 

interpreted with caution. Mass spectrometry (MS) of eicosanoids is based on their 509 

chromatographic separation and ionization in well reproducible conditions. More robust but 510 

less sensitive is high-performance liquid chromatography (HPLC). Tandem mass spectrometry 511 

enables monitoring of characteristic fragmentation of eicosanoid molecules. A good signal-to-512 

noise ratio can be achieved in complex biological matrices, such as plasma/serum or urine. 513 

Preparation of biological samples involves extraction and chemical derivatisation. This is 514 

conversion of free chemical carboxy-, keto- or hydroxyl groups into esters, ethers or oximes. 515 

It enhances resolution of stereochemic isomers and these compounds which have overlapping 516 

retention time or molecular masses. Gas chromatography offers faster separation but 517 

preparation of samples is more laborious. The concentration of an eicosanoid is calculated from 518 

a calibration curve. It can be compensated for a variable extraction methodology by the prior 519 

addition of chemically identical deuterated internal standards, which are distinguished by mass 520 

spectrometry. The usual concentration ranges of selected eicosanoids in different clinical 521 

samples are presented in Table 1. Many eicosanoid measurements in blood serum are biased 522 

due to biosynthesis of these mediators by blood cells during clotting. Urine samples are 523 

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



 13 

convenient for measurements of eicosanoids due to much higher levels than in blood plasma, 524 

saliva, bronchoalveolar lavage fluid or exhaled breath condensate. However, a rapid 525 

inactivation metabolism and accumulation of microsomal metabolic breakdown products 526 

interfere with the results, usually reflecting systemic production. Moreover, eicosanoid levels 527 

ought to be recalculated for variable urine concentration (e.g. per milligram of urinary 528 

creatinine) if no 24-hour collection is available. 529 

  530 

Conclusions and follow up 531 

Eicosanoids form a very complex network of potent inflammatory lipid mediators, involved in 532 

immune and structural cells metabolism and signalling. Although there is no doubt that 533 

imbalance within the eicosanoid system is strongly linked with the pathogenesis of asthma and 534 

allergic diseases, many unresolved aspects of eicosanoid biology such as characterisation of 535 

specific receptors and their ligands, the functional relevance of particular enzymatic pathways, 536 

and the complex nature of eicosanoid biosynthesis and metabolism, still significantly limit our 537 

understanding of this field. Eicosanoids have been already targeted for treatment in asthma and 538 

allergy and several novel therapeutics (in clinical trials) as well as a potential for combined 539 

blockades of different eicosanoid pathways are emphasising its importance. The presentation 540 

of consensus perspective on eicosanoids in this review and our identification of the main 541 

challenges, areas of current interest and unmet needs in modern eicosanoid research should 542 

provide a platform that will inform further basic and clinical research. Other topics of special 543 

importance as determined by the Task Force, including drug allergy, NERD, novel mechanisms 544 

of action of LTRAs, cross-pathway reactions, cannabinoids and systems biology approach in 545 

eicosanoid research, will be discussed in the following part II of this consensus report. 546 

 547 
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Table 1: Eicosanoids levels in biological fluids 571 

 572 
Eicosanoid BALF Induced 

sputum& 
Exhaled 
breath 

condensate 

Plasma Urine ELISA assay 
range 

Mass 
spectrometry 

lowest level of 
quantification 

PGE2 0.32 – 
0.81 

34-55 0,9 – 3.1 16 – 32 produced 
by kidneys 

2 - 500 (39 – 
2 500) 

2.9 

PGF2α 1.2 – 
8.0 

 0.42 – 1.39 < 50 produced 
by kidneys 

2 – 1 000 1.2 

PGD2 0.88 – 
3.1 

8-24 0.82 – 3.36 10-74 produced 
by kidneys 

19.5 – 2 500 2.1 

cysLTs 18,6 – 
27,2* 

11-52 1.9 – 5.9 37 - 108 only LTE4 
is present 

8.6 – 2 500 3.2 

LTE4 < 3 4-24 1.4 – 4.1 1 – 24 15 - 135 7.8 – 1 000 3.2 
LTB4 100 - 

168 
15-250 11.1 – 25.2 < 10 600 – 1 900 10.3 – 2 500 3.0 

PGEM n.a. 16-32 36.5 - 220 250 – 5 
000 

210 – 15 
720 

0.4-50 1.5 

PGDM n.a. 4-11 no data  380 - 2 250 6.4-400 1.6 
5-HETE < 0.3 250-750 3.2 – 7.6 250 - 450  160 – 10 000 0.9 
15-HETE 5.5 – 

13.8 
190-600 2.9 – 7.5 950 – 1 

660 
11 – 33 78 – 10 000 2.2 

11-dehydro-
TXB2 

0.69 – 
3.5 

2.6-8.8 8.0 – 12.9 2 - 60 1 290 – 16 
600 

9.8-10 000 0.73 

LXA4 122 – 
188* 

1.2 – 3.3 0.44 – 1.9 2 - 35 46 - 66 20 – 20 000 1.1 

 573 

Interquartile range in pg/mL except urine which is pg/mg creatinine 574 

n.a. – no data available 575 

& – induced sputum supernatant concentrations correspond to sputum plugs diluted 1:5 576 

* data available for non-severe asthmatics only 577 

References (222-227) 578 

  579 
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Figure legend 580 

 581 

Figure 1. Eicosanoid biosynthesis. a) Eicosanoids, docosanoids and related oxygenated 582 

derivatives, originate mainly from arachidonic acid (AA) and from dihomo-γ-linolenic acid 583 

(DHGLA), eicosapentaenoic (EPA), and docosahexaenoic acid (DHA). Various stimuli lead 584 

to the release of AA from the cellular membranes, which is further subjected to enzymatic 585 

oxidation by cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450) 586 

enzymes, or non-enzymatic transformation dependent on reactive oxygen species. Intrinsic and 587 

extrinsic conditions shape the composition of the synthetized eicosanoids. b) Expression of 588 

certain biosynthesis pathway enzymes is limited to specific cell types. Intercellular transfer and 589 

metabolism of intermediate eicosanoid substrates allows for the generation of more complex 590 

eicosanoids. This process, called transcellular biosynthesis occurs in particular in inflammatory 591 

conditions, as a consequence of accumulation of multiple cell types in the affected tissue. 592 

 593 

Figure 2. Eicosanoid signaling. Eicosanoids exert their biological function via various G 594 

protein-coupled receptors (GPCRs), expressed differentially in different tissues and cell types. 595 

Depending on the tissue location, the concentration of the eicosanoid and targeted receptor, 596 

single mediator can induce strikingly different biological effects. a) Prostaglandin D2 (PGD2) 597 

signaling. PGD2 binds specifically to its two main receptors, known as PGD2 receptor 1 (DP1) 598 

and the prostaglandin D2 receptor 2 (DP2). These receptors are expressed abundantly in innate 599 

and adaptive immune cells. In addition, PGD2 can also act on the thromboxane A2 receptor 600 

(TP).  b) Prostaglandin E2 (PGE2) signaling. PGE2 binds specifically to its four main 601 

receptors, known as PGE2 receptor 1-4 (EP1-EP4). These receptors are expressed abundantly 602 

in innate and adaptive immune cells and each cell can respond to PGE2 in the opposite manner, 603 

depending on the dominant EP receptor expression, timing of PGE2 stimulation, PGE2 dose 604 

and surrounding lipid and cytokine milieu. c) Leukotriene signaling. Leukotrienes are locally 605 

potent mediators acting in auto- and paracrine way via 4 main receptors. Leukotriene B4 606 

receptor 1 (BLT1) is expressed in leukocytes and mediates chemotaxis and cell activation. 607 

BLT2 is expressed by a variety of immune cells, but its exact role in allergic inflammation 608 

remains to be elucidated. Leukotrienes C4, D4 and E4 (LTC4, LTD4, LTE4) target cysteinyl 609 

leukotriene receptors 1 and 2 (CysLT1 and CysLT2), expressed in smooth muscle cells, 610 

endothelial cells, as well as granulocytes, Th2 and type 2 innate lymphoid cells (ILC2). CysLT1 611 

mediates immune cell infiltration into tissues and cytokine production, and is further 612 

upregulated in inflammatory milieu. CysLT2 signaling results in an increase in vascular 613 

permeability in the airways. d) Lipoxin and resolvin signaling. Lipoxins and resolvins are 614 

driving the resolution of inflammation. In inflammatory conditions and during the class 615 

switching of eicosanoid production, the two main resolvin receptors become upregulated. 616 

Formyl peptide receptor 2 (FPR2), also known as ALX, is expressed on human neutrophils, 617 

eosinophils, macrophages, T cells and epithelial cells of the intestinal and the respiratory tract. 618 

The receptor binds a variety of lipid mediators, which results in a ligand-dependent activation 619 

of different phospholipases. FPR2 signaling leads to restoration of epithelial barrier function 620 

and resolution of allergic inflammation. Resolvin D1 receptor GPR32 (DRV1) is expressed by 621 

macrophages, neutrophils and T cells. Its activation results in increase in phagocytic activity 622 
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of macrophages, clearance of immune complexes and reduction in proinflammatory cytokine 623 

production.  624 

 625 

Figure 3. Eicosanoids in allergic airway inflammation. Balance between proinflammatory 626 

and pro-resolution lipid mediators is crucial in maintaining homeostasis. In physiological 627 

conditions, airway epithelium responds to damage by producing a.o. prostaglandin E2. In 628 

allergic disease however, the release of pro-resolution lipids is decreased and airway epithelial 629 

cells abundantly produce proinflammatory lipids, cytokines and chemokines. They further 630 

mediate chemotaxis of immune cells into the subepithelial compartment. Infiltrating immune 631 

cell become subsequently a source of other eicosanoids and cytokines, further driving the shift 632 

toward type-2 inflammation, degranulation of mast cells and neutrophils, production of 633 

allergen-specific IgE. Lipid mediators are the axis of the self-propelled inflammation. Due to 634 

the disturbed resolution, inflammation becomes chronic and results in distant complications 635 

such as smooth muscle cell hypertrophy and hyperplasia, epithelial barrier dysfunction, loss of 636 

plasticity, mucus overproduction and finally airway remodeling. 637 

  638 
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