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Abstract 9 

One of the key strategies to alleviate negative impacts of climate change on crop production is the development 10 

of new cultivars better adapted to the conditions expected in the future. Despite the role of legumes as protein 11 

sources, medium- and long-term strategies currently debated mainly focus on agricultural policies and on 12 

improved management practices, whereas ideotyping studies using climate projections are scarcely reported. The 13 

objective of this study was to define pea ideotypes improved for yield and irrigation water productivity targeting 14 

current climate and four future projections centred on 2040, resulting from the combination of two General 15 

Circulation Models (HadGEM2 and GISS-ES) and two Representative Concentration Pathways (RCP4.5 and 16 

RCP8.5). The STICS model was used, with the default pea parameterization refined using data from two years 17 

of dedicated field experiments. Ideotypes were defined by combining STICS and the E-FAST sensitivity analysis 18 

method focusing on model parameters representing traits on which breeding programs are ongoing. Results 19 

showed that climate change is expected to decrease the productivity of current pea cultivars (up to -12.6%), and 20 

that increasing irrigation (to cope with the expected less favourable rainfall distribution) would not avoid yield 21 

losses. The proposed ideotypes, characterized by a shorter vegetative phase and by increased tolerance to high 22 

temperature, performed better than current varieties, providing higher yields (+4.5%) and reduced water 23 

consumption (-20%). For the first time, we demonstrated the suitability of STICS for ideotyping purposes and 24 

used a simulation model to define pea breeding strategies targeting future climate conditions. 25 
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1. Introduction 30 

Climate change is considered one of the major threats to agricultural productions worldwide and its implications 31 

for food security are rising to alarming levels (IPCC 2014). Global food demand in 2050 is projected to increase 32 

by at least 60 percent above 2006 levels because of population and income growth, in a context where 33 

urbanization is exacerbating the competition for soil, water and energy between countryside and cities (FAO 34 

2016). The interaction between warmer temperatures, changes in rainfall distribution and frequency and intensity 35 

of extreme weather events is expected to impact agriculture in different ways, ranging from increase in yields 36 

and arable lands in some regions to the aggravation of food security issues in already vulnerable areas (Parry et 37 

al. 2004). In case of negative impacts, adaptation strategies are needed to reduce the extent of projected yield 38 

losses and, in the medium-long term, one of the most promising one is the development of new varieties better 39 

adapted to the forecasted agro-climatic conditions. 40 

Given their capability to interpret genotype (G) × environment (E) × management (M) interactions, process-based 41 

crop models are increasingly used to support breeding programs via the definition or evaluation of plant types 42 

suited for specific conditions (Martre et al. 2015), including those resulting from future climate projections (e.g., 43 

Tao et al. 2017). Indeed, under the assumption of a close relationship between plant traits and model parameters 44 

(Casadebaig et al. 2016), process-based crop models can be used to define and test new ideotypes (corresponding 45 

to combinations of model parameters) more suited for future conditions (Paleari et al. 2017a), thus reducing costs 46 

and time needed to develop new cultivars. However, some plant traits are represented in the available crop models 47 

in a coarse way (Messina et al. 2018) and plant responses to some abiotic stressors are poorly formalized (Rötter 48 

et al. 2018). While new models are being developed explicitly to support breeding (e.g., Paleari et al. 2017b), the 49 

choice of the crop model to use and of the traits to consider should thus be carried out carefully. In particular, the 50 

analysis should be restricted to the traits actually represented by one or more model parameters (Paleari et al., 51 

2017a). 52 
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While the development of model-aided ideotypes to support breeding programs is gradually becoming more 53 

popular for cereals (e.g., Peng et al. 2008), empirical breeding methodologies such as ‘selection for yield’ (yield-54 

driven selection, without considering functional traits leading to genotype performance) or ‘default elimination’ 55 

(correcting morphophysiological imperfections or quality-related features) (Donald 1968) are still the most 56 

adopted for legumes. Despite being successful in selecting most productive cultivars in current agro-57 

environmental contexts, those methodologies could be not enough to define plant types suited to the climate 58 

conditions expected in the future. Under these conditions, indeed, the improvement of complex traits involved 59 

with phenology or water stress tolerance could be crucial (Bahl 2015). 60 

The interest in legumes, motivated by their health, economic and environmental value, is increasing (FAO 2016). 61 

In EU-28, dry legumes harvested area increased by 64.7% between 2013 and 2015, with field pea playing a key 62 

role, with more than one third (34.2%) of the total grain legumes area (ec.europa.eu/eurostat). To support the 63 

rising interest in legumes, studies on the evaluation of the impacts of climate change over those crops are ongoing 64 

(e.g., Anwar et al. 2015), as well as on the development of new breeding strategies to effectively derive improved 65 

cultivars, especially for resistance/tolerance to biotic and abiotic stressors (Mousavi‐Derazmahalleh et al. 2019). 66 

Among legumes, field pea (Pisum sativum L.) is highly sensitive to climatic conditions during the crop cycle, 67 

with pea yields being markedly influenced by drought and high temperatures during the phase of grain formation 68 

(Guilioni et al. 2003). Despite studies were published on the use of crop models to assist pea varietal selection 69 

for specific growing conditions (e.g., Jeuffroy et al. 2012), analyses involving crop models for defining pea 70 

ideotypes under climate change scenarios are not available. 71 

The objective of this study was to perform a crop model-based analysis to derive field pea ideotypes for both 72 

current climate and future projections. As a case study, the focus was on Northern Italy. The potential benefits 73 

deriving from the adoption of the proposed ideotypes were quantified in terms of changes in productivity and 74 

irrigation water use efficiency compared to current cultivars. 75 

  76 
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2. Materials and methods 77 

2.1. Breeding targets and crop model 78 

The first step of the analysis was to identify the morphological and physiological traits on which breeders are 79 

currently focusing to improve the productive performance of field pea. In this light, selecting a crop model whose 80 

parameters have the most direct link to the plant traits of interest is of primary importance to increase the 81 

feasibility of in silico ideotypes (Paleari et al. 2017a). The model was thus selected according to its capability (i) 82 

to simulate the crop of interest and (ii) to properly take into account key plant traits via parameters representing 83 

as closely as possible the traits. The analysis led to identify the model STICS (Brisson et al. 2002) as the most 84 

suitable for the objective of the study, given its reliability for reproducing field pea growth and development (e.g., 85 

Corre-Hellou et al. 2009) and the close relationships between model parameters and traits of interest. In particular, 86 

six plant traits of potential interest for field pea breeding were selected for the study based on a dedicated literature 87 

search, which correspond to nine STICS parameters (Table 1). 88 

STICS is a generic crop model that simulates on a daily basis crop growth and development, as well as soil and 89 

crop water, carbon and nitrogen budgets. Its flexibility allowed the adoption of the model for a variety of crops 90 

with determinate and indeterminate growth habit, the latter being simulated by accounting for trophic interactions 91 

between different cohorts of fruits. Crop development is derived as a function of thermal time, estimated based 92 

on daily mean crop temperature and the parameters base, optimal and critical temperature, and modulated by 93 

photoperiod sensitivity, vernalisation requirements and drought stress. Leaf area index (LAI, -) is simulated as a 94 

function of crop development and the crop responses to temperature, plant density, nitrogen and water stress. 95 

Radiation interception within the canopy depends on light extinction coefficient and LAI (Beer’s law analogy), 96 

as well as on presence of pods that also contributes to light harvesting. Aboveground biomass accumulation is 97 

estimated using a photosynthesis approach based on radiation use efficiency (RUE), with the maximum radiation 98 

use efficiency modulated by temperature limitation, radiation excess, drought stress, nutrient availability and 99 

atmospheric CO2 concentration (parameter ALPHACO2, in this study set to 1.2 as from model documentation). 100 

Yield is derived via a dynamic harvest index, which increases linearly during grain filling (Brisson et al. 2002). 101 

Further details on model algorithms can be found in the seminal literature (Brisson et al., 1998) and in the model 102 

documentation (Brisson et al., 2009). 103 

 104 
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Trait Relevance for 

breeding 

Parameter Unit

s 

Parameter 

description 

Mean Source 

Cold 

tolerance 

McPhee 2003; 

Shafiq et al., 

2012; Mayer 

and 

Badaruddin, 

2001; Sadras 

et al., 2012 

tgmin °C Minimum temperature 

for germination and 

emergence 

4 This study 

(calibration) 

tdebgel °C Temperature at the 

beginning of frost 

action 

-4 STICS 

documentation 

Heat 

tolerance 

Vocanson and 

Jeuffroy 2008; 

Guilioni et al., 

2003; Sadras 

et al., 2012 

teoptbis °C End of thermal optimal 

plateau for net 

photosynthesis 

25 This study 

(calibration) 

temax °C Maximum temperature 

for net photosynthesis 

32 This study 

(calibration) 

Root 

flooding 

sensitivity 

Vozáry, et al. 

2012 

sensanox - Anoxia sensitivity 0.1 This study 

(calibration) 

Drought 

tolerance 

McPhee 2003 

Sadras et al., 

2012 

sensrsec - Root sensitivity to 

drought 

0.4 STICS 

documentation 

Plant height Tar’an, et al. 

2003 

hautmax m Maximum plant height 0.65 STICS 

documentation 

Early 

development 

and maturity 

Vocanson and 

Jeuffroy 2008; 

Tayeh et al., 

2015; Weller 

and Ortega, 

2015 

stlevamf °C-

days 

Thermal time between 

emergence and end of 

juvenile phase 

300 This study 

(calibration) 

stlevdrp °C-

days 

Thermal time between 

emergence and onset 

of fruit filling 

700 This study 

(calibration) 

Table 1. Traits included in the ideotyping study because of interest for pea breeding and corresponding STICS 105 

parameters. 106 
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2.2. Model parameterization 107 

Data to adapt STICS default parameters to Italian pea cultivars were collected on seven field trials between 2016 108 

and 2017. The experimental fields were distributed in five locations across the Emilia-Romagna region, which 109 

was selected as representative of the conditions explored by the crop in Northern Italy. Sowing dates per site 110 

were 13 March 2017 in Alseno (44.92° N, 9.96° E; soil: clay, USDA texture classification), 2 April 2016 in 111 

Jolanda di Savoia (44.88° N, 11.98° E; soil: clay), 16 April 2016 and 23 March 2017 in San Rocco al Porto 112 

(45.08° N, 9.69° E; soil: silt loam), 13 and 15 April 2016 in San Pietro in Trento (44.32° N, 12.08° E; soil: sandy 113 

loam in one field, sandy clay in the other), and 15 March 2017 in Bagnolo (44.93° N, 9.94° E; soil: clay). Soil 114 

organic matter ranged between 1.6% (Alseno) to 2.2% (San Pietro in Trento). More details on soil properties are 115 

reported in Table S1. All the field experiments were located in the Po river alluvial plain, mostly characterized 116 

by deep soils that – together with heavy textures – guarantee good water reserves. Sowing dates in the 117 

experimental fields reflected standard practices in the region, and they were immediately after the spring rainfall 118 

peak typical of northern Italy. This allowed initializing the simulations with soil water content at field capacity 119 

for model calibration/validation and for the ideotyping experiments. Different weather conditions (source: 120 

Regional Agency for Environmental Protection, ARPAE) characterized the pea season in the different 121 

combinations site × sowing date, especially for precipitations, which ranged between 145 and 285 mm (total 122 

rainfall over the growing season, which lasted on average 75 days). According to the management practices of 123 

the study area, in case of scarce precipitations sprinkle irrigation was applied. Cultivars Waverex (San Pietro in 124 

Trento, sowing date: 13 April 2016) and Wolf (all other experiments) were grown, selected since they are the 125 

most cultivated in the study area and among those suggested by the Regional product specification. Field 126 

management allowed keeping the fields weed-, disease- and pest-free, with optimal water and nutrients supply. 127 

The aim of the study was indeed to analyse the impact of climate variations on productivity and on changes in 128 

water requirements that would be needed to maintain the crop under unlimiting conditions for water, as they 129 

currently are. Parameter calibration was performed using data collected on the crops sown on 15 April 2016 in 130 

San Pietro in Trento, 16 April 2016 and 23 March 2017 in San Rocco al Porto, and 15 March 2017 in Bagnolo, 131 

whereas remaining datasets were used for validation. The number of observations (single measurements) used 132 

for calibration and validation was 56 and 40, respectively. 133 
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Field measurements were carried out at four development stages, as described in the Biologische Bundesanstalt, 134 

bundessortenamt und CHemische industrie (BBCH) scale for pea (Feller et al. 1995): leaf development (BBCH 135 

code 17), flowering (BBCH code 64), development of fruits (BBCH code 73), and fully ripe (BBCH code 89). 136 

To account for in-field variability, data were collected in three random points at each sampling event. For biomass 137 

determination, twenty plants for each point were sampled and divided into stems, leaves, flowers and fruits, and 138 

dried at 105°C until constant weight. For the 2017 experiments, LAI, specific leaf area (SLA, m2 kg-1), canopy 139 

height and the number of branches, leaves, flowers and pods per plant were also determined at each measuring 140 

point and for each measuring date. LAI was estimated by using the PocketLAI smart-app (Confalonieri et al., 141 

2013), whereas SLA was derived by digitalizing sampled leaves and calculating the leaf area to dry mass ratio. 142 

The refinement of STICS parameters for Italian pea cultivars was carried out manually using a trial-and-error 143 

approach, targeting the highest agreement between observed and simulated values of yield, LAI, aboveground 144 

biomass, and biomass of the different organs (stems, leaves and pods). The agreement between measured and 145 

simulated values was quantified using mean absolute error (MAE), relative root mean square error (RRMSE), 146 

Nash and Sutcliffe modelling efficiency (EF), coefficient of residual mass (CRM) (Table 2), and R2. Overall, the 147 

calibration led to modify the values of 33 out of 258 crop parameters. 148 

Agreement metric Equation Range and optimum 

Mean absolute error 

(MAE; Jørgensen et al., 

1986) 

n

XY

MAE

n

1i

ii




  

From 0 (optimum) to +∞ 

Relative root mean 

square error (RRMSE; 

Jørgensen et al., 1986) X

n

n

1i

2)
i

X
i

(Y

100RRMSE






  

From 0 (optimum) to +∞ 

Modelling efficiency 

(EF; Nash and Sutcliffe, 

1970) 













n

1i

2

i

n

1i

2

ii

)X(X

)X(Y

1EF  

From -∞ to 1 (optimum)  
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Coefficient of residual 

mass (CRM; Loague 

and Green, 1991) 







n

1i

n

1i

X

Y

1CRM  

From -∞ to + ∞; optimum: 0. Negative 

values indicate model overestimation, 

positive values underestimation 

Table 2. Agreement metrics used for model evaluation (Y, predicted values; X, observed values; n, number of 149 

observations). 150 

2.3. Definition of ideotypes and evaluation as compared to current cultivars 151 

The analysis of the 1986-2005 weather data in the region suggested to perform the ideotyping study for two sites, 152 

centered in Piacenza (45.05° N, 9.70° E; site A hereafter) and Ravenna (44.42° N, 12.18° E; site B), considered 153 

as representative of the range of the conditions explored by pea in the study area. Site A is drier, with average 154 

temperature during the pea season close to the optimum for the crop, whereas site B is warmer and rainier. 155 

Ideotypes were defined for both current climate (1986-2005 baseline; derived from the European Centre for 156 

Medium-Range Weather Forecasts; ECMWF) and future scenarios. To handle the uncertainty in future climate 157 

projections, four 20-year timeframes centred on 2040 were derived for each site by considering (i) two 158 

Representative Concentration Pathways (RCPs) – RCP4.5 and RCP8.5 (IPCC’s Fifth Assessment Report AR5, 159 

IPCC 2014) – which represent potential pathways of greenhouse gas (GHG) emissions and atmospheric 160 

concentration for the 21th century, and (ii) two General Circulation Models (GCMs) – HadGEM2, (Hadley 161 

Centre, UK, Collins et al., 2011) and GISS-ES (NASA, Schmidt et al., 2006) – which provide climate projections 162 

at global scale accounting for variations in GHGs concentrations. RCP4.5 is considered an optimistic scenario, 163 

with CO2-equivalent stabilized at about 650 ppm in 2100, whereas RCP8.5 derives from the hypothesis of no 164 

specific climate mitigation targets, with about 1370 ppm CO2-equivalent in 2100 (IPCC 2014). Downscaling for 165 

both baseline and future climate projections was carried out with the stochastic weather generator LarsWG5 166 

(Semenov and Barrow 1997). After comparing the four forecasted climatic scenarios (resulting from the 167 

combination of two GCMs × two RCPs) in terms of temperatures and rainfall amount and distribution, we 168 

selected for the ideotyping study the two combinations RCP × GCM characterized by the largest differences in 169 

the thermal and pluviometric regimes: RCP4.5-GISS-ES and RCP8.5-HadGEM2 (Figure 1). 170 
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 171 

Figure 1. Comparison between the daily mean temperature (a, b) and the monthly cumulative precipitation (c, 172 

d) of the baseline scenario (yellow) and of the two 2040 climate scenarios used in the study: RCP4.5-GISS-ES 173 

(red) and RCP8.5-HadGEM2 (blue). For temperatures, solid lines refer to the 20-year average (1986-2005 for 174 

the baseline, 20 years centered in 2040 for future projections); thin lines refer to the lowest and the highest value 175 

of the series. For precipitations, the bars represent the 20-year mean of monthly cumulative precipitation. Panel 176 

(a, c): Piacenza (site A), panel (b, d): Ravenna (site B). The arrows provide information on the main growing 177 

season for the crop in the study area. 178 

 179 

Parameter hyperspace was explored to identify key traits for field pea improvement using global sensitivity 180 

analysis techniques (Martre et al. 2015) and the parameter distributions reported in Table 1. Given available 181 

parameter values retrieved from literature and from the field experiments carried out during this study did not 182 

allow to define robust distributions, we assumed all distributions being normal, with standard deviation equal to 183 
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the 5% of the mean of available values (Table 1) according to Richter et al. (2010). Although this approach could 184 

underestimate the variability available in current pea cultivars for some traits, it reduces the risk of proposing 185 

ideotypes that cannot be realized in vivo. 186 

The variance-based global sensitivity analysis method Extended Fourier Amplitude Sensitivity Test (E-FAST; 187 

Saltelli et al. 1999) was used. For each parameter, E-FAST allows the estimation of first- and total-order effects, 188 

the latter including the amount of output variance explained by the interactions of the parameter with all the 189 

others. For each combination site × climate scenario, the sample size for the sensitivity analysis was set to 2600, 190 

calculated as the product of the number of factors (10), the number of repetitions of the sampling scheme (4), and 191 

the sample size for each repetition (65). The number of factors was the number of parameters analysed plus a 192 

dummy factor used to quantify method default-error threshold. In fact, given that the dummy factor cannot affect 193 

the model output – because it is not used in the simulations – the value of its SA metric represents the basal error 194 

of the SA method. Model parameters with sensitivity indices below this threshold were considered as not relevant 195 

and thus not included in the ideotype design. This sample size was considered the minimum one to guarantee an 196 

adequate exploration of the parameter hyperspace while avoiding inefficiencies caused by the symmetry 197 

properties of trigonometric functions used by the method (Saltelli et al. 1999). The total number of 1-season 198 

simulations was 312000. To account for both productivity and yield stability across years, sensitivity indices 199 

were calculated on the composite output shown in Eq. 1: 200 

𝑌𝑖𝑛𝑑𝑒𝑥 = [(
𝑌𝑖

𝑌𝑀𝐴𝑋
) ∙ 0.7] + [(1 −

𝐶𝑉𝑖

𝐶𝑉𝑀𝐴𝑋
) ∙ 0.3]        Eq. 1 201 

where Yi and CVi are the mean and the coefficient of variation of the yield values simulated with the combination 202 

of parameters i for the 20 season of each climate scenario; YMAX and CVMAX are mean and coefficient of variation 203 

corresponding to the combination of parameters that achieved the maximum values for the metrics. Yindex was 204 

also used to rank the combinations of parameters and – for each combination site × RCP × GCM – to define the 205 

ideotype as represented by the means of parameter values of the best 1% combinations. The efficient exploration 206 

of the parameter hyperspace achieved with the SA sampling design can indeed be used to derive context-specific-207 

ideotype (Paleari et al. 2017a), specifying the extent and the direction of the improvement suggested for each 208 

trait. By considering the mean of multiple top-ranked combinations, this approach has also the advantage of 209 

reducing the effect of potential local minima in the parameters space on the in vivo realizability of ideotypes. 210 
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The potential benefits deriving from the adoption of the designed ideotypes as compared to current pea cultivars 211 

were evaluated, for both current climate and climate change projections, in terms of percentage variation of yield, 212 

irrigation water requirements, and irrigation water-productivity. Aboveground biomass (AGB, t ha-1), yield 213 

stability, and cycle length (days) were also evaluated. 214 

The agreement between parameter rankings (the first parameter being the one with the highest total order effect) 215 

obtained for different environmental conditions was evaluated using the Top-Down Concordance Coefficient 216 

(TDCC, Iman and Conover 1987; Eq. 2), where TDCC values equal to 1 indicate perfect agreement. 217 

𝑇𝐷𝐶𝐶 =
∑ [∑ 𝑠𝑠(𝑆𝑀𝑖𝑗

𝑛𝑆𝐴
𝑗=1 )]

2
−𝑛𝑆𝐴2 ∙𝑘𝑘

𝑖=1

𝑛𝑆𝐴2[𝑘−∑
1

𝑖
𝑘
𝑖=1  ]

         Eq. 2 218 

where nSA is the number of sensitivity analysis replicates; 𝑆𝑀𝑖𝑗 the sensitivity measure of the parameter Xi and 219 

the replicate Rj; 𝑠𝑠(𝑆𝑀𝑖𝑗) =  ∑ 1/𝑖𝑘
𝑖=𝑟(𝑆𝑀𝑖𝑗)  is the Savage score (Savage, 1956) calculated for all parameters Xi 220 

and replicates Rj, and 𝑟(𝑆𝑀𝑖𝑗) the rank assigned to the sensitivity measure of the replicate Rj. 221 

In particular, TDCC was calculated within climate scenarios (thus comparing rankings obtained for the two sites) 222 

and within site (comparing rankings obtained for different climate scenarios). TDCC was finally used to estimate 223 

the plasticity of the STICS model (Confalonieri et al. 2012), quantifying the model aptitude to change the 224 

sensitivity to parameters while changing the conditions explored (Eq. 3): 225 

𝐿 = 𝑇𝐷𝐶𝐶 ∙ 𝑒(𝜎𝑆𝐴𝑀−1)           Eq. 3 226 

where σSAM is the normalized difference between cumulated rainfall and reference evapotranspiration during the 227 

crop season. L varies from 0 to about 1.51, with highest plasticity at 0. 228 

The sensitivity analysis (i.e., sampling the parameters hyperspace and estimating SA metrics) was conducted 229 

using the software SIMLAB (Tarantola and Becker, 2016), whereas a dedicated VBA software was developed 230 

for generating the configuration files (.usms) and the plant files (one for each combination of parameters) required 231 

to run STICS in batch. SIMLAB is freely available at https://ec.europa.eu/jrc/en/samo/simlab; the VBA code is 232 

available for the Authors upon request. 233 
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3. Results 234 

3.1. Model parameterization 235 

The parameterization allowed obtaining a good agreement between observed and simulated values for all state 236 

variables (Fig. 2, Table 3). For the calibration datasets, EF (modelling efficiency; min: -∞, max and optimum: 1) 237 

was largely positive for both LAI and biomass-related state variables (mean EF equal to 0.75). The satisfactory 238 

behavior of the model was confirmed by the other agreement metrics, with R2 always higher than 0.70, mean 239 

RRMSE equal to 40.2, and CRM equal to 0.14 on average. 240 

The good agreement between measured and simulated values was confirmed during validation, with mean 241 

RRMSE equal to 30.4, R2 equal to 0.75 on average (higher than 0.70 for four out of five biomass-related 242 

variables), and mean EF equal to 0.62. Similarly to what observed for the calibration datasets, model over- and 243 

under-estimation were limited, with average CRM values equal to +0.06. 244 

 245 
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 246 

Figure 2. Agreement between measured and simulated biomass values for different plant organs for the 247 

calibration (a, b) and validation (c, d) datasets. Dotted lines refer to perfect agreement. For yield (b and d panel), 248 

only one sampling point (harvest) was available for each dataset. 249 

  250 
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Activity Variable MAE RRMSE 

(%) 

EF CRM R2 p-value 

Calibration Yield (t ha-1) 0.12 9.67 0.61 0.04 0.70 n.s 

 LAI (-) 0.56 33.44 0.85 0.28 0.99 ** 

 AGB (t ha-1) 0.79 45.75 0.77 0.12 0.82 *** 

 Leaf biomass (t ha-1) 0.24 29.71 0.75 0.08 0.78 *** 

 Stem biomass (t ha-1) 0.34 33.1 0.81 0.08 0.84 *** 

 Pod biomass (t ha-1) 0.45 89.59 0.72 0.24 0.83 *** 

Validation Yield (t ha-1) 0.06 4.26 0.49 0.01 0.77 n.s. 

 AGB (t ha-1) 0.85 24.7 0.88 0.07 0.89 *** 

 Leaf biomass (t ha-1) 0.39 44.73 0.11 0.03 0.37 n.s. 

 Stem biomass (t ha-1) 0.31 28.83 0.77 0.02 0.77 ** 

 Pod biomass (t ha-1) 0.47 49.42 0.85 0.16 0.94 *** 

Table 3. Agreement between observed and simulated values for the calibration and validation datasets. MAE: 251 

mean absolute error; RRMSE: relative root mean square error; EF: modelling efficiency; CRM: coefficient of 252 

residual mass; R2: coefficient of determination of the regression between measured and simulated values. See 253 

Table 2 for a detailed description of these metrics. All biomass-related variables refer to dry weight. **: p-value 254 

<0.01; ***: p-value <0.001; n.s.: not significant. P-values (F-test) represent the significance of the linear 255 

regression between observed and simulated values to which the R2 refer to. 256 

 257 

3.2. Ideotypes improved for productivity and irrigation water use efficiency 258 

The ideotypes are presented and discussed in terms of percentage variation of parameter values as compared to 259 

the parameter values characterizing the current cultivars (Fig. 3). The absolute values of the nine parameters 260 

defining the ideotypes are reported in Table S2. 261 

Sensitivity analysis results (Fig. 3a, b) revealed the relevance of all the parameters presented in Table 1, being 262 

their total effects always higher than the one calculated for the dummy factor. 263 
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   264 

Figure 3. Sensitivity analysis results (a and b) and ideotype profiles (c and d) for the two sites (a and c refers to 265 

site A; b and d to site B) and the three climate scenarios analyzed (yellow refers to the baseline; red to RCP4.5-266 

GISS-ES; blue to RCP8.5-HadGEM2). Sensitivity analysis results are presented as E-FAST total order effects. 267 

Ideotype profiles are represented as percentage variation of parameter values with respect to the parameter 268 

values for current genotypes (for which the reference is the dotted line). Hautmax: maximum plant height; tgmin: 269 

minimum temperature for germination and emergence; tdebgel: threshold temperature for frost damage; teoptbis 270 

and temax: optimum and maximum temperature for growth; sensanox: root sensitivity to anoxia; sensrsec: root 271 

sensitivity to drought; stlevamf: thermal time to end the vegetative phase; stlevdrp: thermal time to start fruit 272 

filling. Details on parameter description are available in Table 1. 273 

 274 

For the baseline scenario, the ideotype presented minor differences compared to existing cultivars both in terms 275 

of variation in parameter values and productive performances (e.g., for yield, less than 2.5% in site A, less than 276 

4.0% in the site B), indicating that available genotypes are well suited for the climatic conditions they are 277 

currently exploring. However, for site A (yellow series in Fig. 3c), the longer juvenile phase of the ideotype 278 

(stlevamf: +4.8%) allowed an overall increase in photosynthetic area and, consequently, higher photosynthetic 279 
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rates and yields. The ideotype defined for the same scenario (baseline) in site B (Fig. 3d), instead, was 280 

characterized by a shorter cycle compared to existing cultivars (stlevamf: -2.7%; stlevdrp: -4.4%) and by a higher 281 

tolerance to high temperatures (teoptbis: +1%; temax: + 2.7%). 282 

Similar results were obtained for the two sites for the RCP4.5-GISS-ES scenario (red series in Figs. 3c, 3d), with 283 

ideotypes characterized by wider optimal temperature range (teoptbis: +1.5% and teoptbis: +2.1% for site A and 284 

B, respectively) and by higher tolerance to abiotic stressors as compared to current cultivars. The main feature of 285 

the two ideotypes defined by targeting the RCP4.5-GISS-ES scenario is nevertheless a reduction of the thermal 286 

time needed to complete the vegetative phase (stlevdrp: -6.3% and -3.4% for site A and B, respectively), allowing 287 

an earlier flowering with respect to current cultivars. Also the ideotypes defined for the RCP8.5-HadGEM2 288 

scenario (blue series in Figs. 3c, 3d) were characterized by shorter vegetative phases (stlevdrp: -10.17% and -289 

10.6% for site A and B, respectively), which allowed earlier flowering and limited the exposure to the combined 290 

effect of heat and drought in the last part of the season. Indeed, the pronounced earliness required for the ideotypes 291 

turns into just minor changes in the optimal temperature (teoptbis: +0.78% and +2.4% for site A and B, 292 

respectively), and no variation for traits involved with tolerance to water stress. 293 

The profile of the ideotypes described above refers to the mean of the 1% top-ranked parameter combinations 294 

(see Materials and methods). The varibility observed around those values was limited, with an average coefficient 295 

of variation equal to 3%. 296 

 297 

3.3. Potential benefits from the adoption of the ideotypes under climate change scenarios 298 

Simulation results showed that climate change will have a negative impact on current field pea cultivars, since 299 

average projected yield variations compared to the baseline were around -6% in both sites for the RCP4.5-GISS-300 

ES scenario, and equal to -12.6% and -8.3% for site A and B, respectively, for RCP8.5-HadGEM2 (Fig 4a). The 301 

simulated average dry yield over the 20-year baseline was equal to 1.58 t DM ha-1 for site A and 1.40 t DM ha-1 302 

for site B (corresponding to about 6.3 t ha-1 and 5.6 t ha-1 of fresh weight). Water requirements are also expected 303 

to increase (from 5% to 22%, Fig 4b) leading the overall productivity of irrigation water to decline of more than 304 

20% (Fig 4c). Compared to the productivity simulated for current cultivars under the different climate change 305 

projections, ideotypes would assure – under the same conditions – yield increases ranging from +5.4% to +7.2% 306 

for site A and from +2.0% to +3.4% for site B (Fig. 4d), whereas the reduction in water requirements would vary 307 
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between -11.0% and -35.5% in site A, and between -2.2% and -31.0% in site B (Fig. 4e). This led to water-308 

productivity values that range from 5.8% (site B, RCP4.5-GISS-ES) to 66% (site A, RCP8.5-HadGEM2) higher 309 

than the values simulated for current genotypes and climatic conditions (Fig. 4f). 310 

 311 

 312 

Figure 4. Climate change impacts on field pea in Northern Italy: a, b and c refer to the impacts simulated for 313 

current cultivars (percentage variation as compared to the baseline); d, e and f to the performances (percentage 314 

variation) of the defined ideotypes in comparison to the current cultivars simulated in each forecasted climate 315 

scenarios (4.5-GISS-ES: RCP4.5 generated with the general circulation model GISS-ES; 8.5-HadGEM2: 316 

RCP8.5 generated with the general circulation model HadGEM2). Light and dark bars refer to site A and B, 317 

respectively. 318 
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4. Discussion 319 

The results obtained for the calibration and validation datasets are consistent with what reported by Coucheney 320 

et al. (2015), who evaluated the performance of the STICS model using a dataset covering different crops and a 321 

variety of environmental and management conditions, in turn confirming the reliability of the parameterization 322 

developed in this study. 323 

Sensitivity analysis results showed large variability, especially when different climate scenarios were considered 324 

(Figs. 3a, 3b). TDCC values (Top-Down Concordance Coefficient, indicating agreement between rankings) 325 

revealed significant differences (p-value>0.05) between parameter rankings resulting from sensitivity analysis 326 

experiments run using baseline climate and future projections, in turn confirming the importance of considering 327 

climate change scenarios for model-based ideotyping analysis. Moreover, this demonstrated the STICS suitability 328 

for the identification of climate-zone-specific ideotypes – i.e., optimal combination of parameter values 329 

(representing simple traits) for target conditions (Tao et al. 2017) – because of its capability of changing the 330 

sensitivity to parameters while changing the conditions of application. Indeed, despite the overall variability in 331 

the conditions explored was not large (coefficient of variation of SAM across the six combinations site × climate 332 

scenario was equal to 0.04), STICS showed a value of plasticity (L = 0.30), similar to that estimated for the 333 

WOFOST model in a comparative study, where the model was regarded as the most plastic (Confalonieri et al. 334 

2012). 335 

Concerning the differences between the ideotypes defined for different agro-climatic contexts (Fig. 3), in the 336 

baseline scenario the ideotype defined targeting site B was characterized by a shorter cycle and higher tolerance 337 

to heat as compared to that identified in site A. This is due to higher daily mean temperature in the first site, with 338 

maximum temperature frequently exceeding the optimal threshold for field pea, especially in the last part of the 339 

growing season. In this context, reducing the length of the cycle would allow to avoid heat stress and related 340 

yield losses (Guilioni et al. 2003). Moreover, the ideotypes were characterized by an improved adaptation to low 341 

temperatures during germination and emergence, which allows a faster establishment of the crop (parameter 342 

tgmin). Together with an improved adaptation to high temperatures during grain filling, this allowed the ideotype 343 

to achieve higher growth rates over the entire season, thus counterbalancing the negative trade-offs of a shorter 344 

cycle. This is in line with the results of Sadras et al. (2012), who highlighted that an enhanced growth rate during 345 

the early crop stages and the capability of maintaining high photosynthetic rates during pod setting and filling 346 
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are key traits for field pea breeding in case of environments characterized by terminal heat and drought stress. 347 

Thermal conditions were instead within the optimal range for the crop (18-25 °C) in site A, which led to an 348 

ideotype with slightly increased duration of the vegetative phase to take advantage of higher photosynthetic area, 349 

in line with experimental results reported by Tagliapietra et al. (2018) for soybean (Glycine max L. Merr). 350 

While differences between the ideotypes defined for the two sites were marked for the baseline scenario, the site 351 

effect was less clear when future climate projections were considered (Figs. 3c, 3d). Indeed, regardless of the 352 

site, the results obtained for future climatic scenarios agreed in defining ideotypes characterized by an increased 353 

tolerance to high temperature and by a shorter cycle, mainly to limit the possible negative impacts of unfavorable 354 

rainfall distribution and thermal extremes during the pod set and filling phase. As already discussed for the 355 

ideotypes defined for the baseline condition, the improved adaptation to warmer conditions and to sub-optimal 356 

temperatures during germination and emergence allowed the ideotypes to reach higher growth rates, thus 357 

improving yield performance even with a shorter cycle. Moreover, the earliness of the ideotypes allows them to 358 

better take advantage of spring precipitations (Fig. 1). This turns into lower irrigation requirements, despite 359 

comparable values of cumulative evapotranspiration and higher yields than current cultivar under the same 360 

conditions (Table S3). 361 

Overall, ideotyping results are coherent with what reported by Mousavi‐Derazmahalleh et al. (2019) in their 362 

review about available genomic resources to adapt legumes to climate change, in turn supporting the usefulness 363 

and the feasibility of the breeding targets we are proposing. These authors indeed identified phenology and heat 364 

tolerance as important target traits for future legumes breeding, showing how several tools and methods, as well 365 

as genetic resources, are available to successfully pursue these objectives. 366 

The hypothesis of a low suitability of current field pea genotypes for the conditions expected in the mid-term in 367 

Northern Italy is confirmed by the evaluation of climate change impacts on current cultivars in the study area, 368 

which showed a marked reduction in productivity and an increase in irrigation requirements (Figs 4a and 4b). In 369 

agreement with what reported by Bénézit et al. (2017), our results suggest that, for field pea, the advantages given 370 

by the increased CO2 availability are more than counterbalanced by the negative effects caused by raising 371 

temperatures and drought stress. Yield losses observed under future climate projections for the current genotypes 372 

were mainly related with the marked temperature increase in the second half of the cycle, which coincides with 373 

the pod set and filling phase (Fig. 1). High temperatures are known to be detrimental for pea yield, by negatively 374 
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affecting both seed formation and plant growth rate (e.g., Lecoeur and Guilioni, 2010; Guilioni et al., 2003). The 375 

projected thermal anomalies are particularly evident for the RCP8.5-HadGEM2 scenario, in which pea showed 376 

indeed the worst yield performance (Fig. 4a). 377 

The adoption of the ideotypes defined in this study would markedly increase the system productivity under 378 

climate change scenarios, by reducing both yield losses (Fig. 4d) and water requirements (Fig. 4e). In a context 379 

characterized by the exacerbation of the conflicts for water use between countryside and urban areas, the 380 

forecasted raise in irrigation requirements (Figs. 4b and 4e) highlights the importance of increasing water use 381 

efficiency, either by improving irrigation techniques or by developing new genotypes with reduced water 382 

demand. 383 

5. Conclusions 384 

This study confirmed the suitability of the generic crop model STICS to successfully reproduce field pea growth 385 

and development under different climatic and management conditions. Moreover, we demonstrated for the first 386 

time that STICS, combined with global sensitivity analysis techniques, can be successfully used for ideotyping 387 

purposes, identifying critical traits for improving productivity and water use efficiency under current conditions 388 

and future climate projections. This is partly due to the high plasticity of the model, which allows its use for the 389 

definition of climate-zone-specific ideotypes (Tao et al. 2017; Paleari et al. 2017a). 390 

Regardless of the scenario considered, our results showed how climate change is expected to have a negative 391 

impact on field pea productions in Northern Italy, thus confirming the relevance of breeding programs targeting 392 

the adaptation of field pea features to the conditions forecasted in the medium-term. In particular, our analysis 393 

led to identify crop earliness as the most important trait for increasing yield and irrigation water productivity, 394 

given it allows to partly escape the unfavorable conditions otherwise experienced by the crop in the last part of 395 

the cycle. To a smaller extent, also traits involved with heat tolerance resulted important for defining the 396 

ideotypes. 397 

Further studies will focus on extending the analysis to other traits, for instance those related to resistance to 398 

diseases, given that biotic stressors are also of primary concern within legumes breeding programs. This will 399 

require to couple the STICS model to a plant disease one (Caubel et al. 2017). Another factor that could reduce 400 

the uncertainty of this kind of analysis is the use of parameter distributions tailored on the germplasm involved 401 
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in specific breeding programs instead of generic distribution for the species, in order to fully exploit the potential 402 

of the available genetic resources. 403 
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