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Università degli Studi di Milano,
via Saldini 50, I-20133 Milano (Italy)

and
SMRI, 00058 Santa Marinella (Italy)

(Dated: 24/05/2020– revised & augmented version)

There is increasing evidence that one of the most difficult problems in trying to control the ongoing
COVID-19 epidemic is the presence of a large cohort of asymptomatic infectives. We develop a SIR-
type model taking into account the presence of asymptomatic, or however undetected, infective, and
the substantially long time these spend being infective and not isolated. We discuss how a SIR-
based prediction of the epidemic course based on early data but not taking into account the presence
of a large set of asymptomatic infectives would give wrong estimate of very relevant quantities such
as the need of hospital beds, the time to the epidemic peak, and the number of people which are left
untouched by the first wave and thus in danger in case of a second epidemic wave. In the second
part of the note, we apply our model to the COVID-19 epidemics in Northern Italy. We obtain a
good agreement with epidemiological data; according to the best fit of epidemiological data in terms
of this model, only 10% of infectives in Italy is symptomatic.

I. INTRODUCTION

There is increasing evidence that one of the main dif-
ficulties in trying to control the ongoing COVID-19 epi-
demic is the presence of a large cohort of asymptomatic
infectives [1–16]. This feature was first noted in the anal-
ysis of passengers of evacuation flights from Wuhan, see
e.g. [17], and on the Crown Princess cruise ship [18],
but in these circumstances the asymptomatic cases could
easily be thought to be just cases which had not yet de-
veloped symptoms.

So the first confirmation of this characteristic of
COVID was obtained in the large scale study of one of
the first infection foci in Italy, that of Vò Euganeo near
Padua; here the whole population (about 3,000 people)
of the village were tested twice – at one week distance –
for the virus, and a significant number of asymptomatic
infectives was detected [19].

We stress that it is correct to speak of asymptomatic
infectives and not just carriers. In fact, it is by now
thought that they are as infective as symptomatic ones in
terms of viral charge [1, 13–15] – and of course potentially
even more dangerous as the absence of symptoms leads
to a low level of precautions.

One of the consequences of this fact is that the regis-
tered infectives, those known to the national health sys-
tems and thus isolated and monitored, are only a part of
the total pool of infectives.

The initial estimates were that registered infectives
would be between 1/3 and 1/4 of the actual infectives
[20]; there have been early claims by the British Gov-
ernment scientific advisers [21] that this ratio could be
as little as 1/10. In a recent contribution [22] Li et al.
estimate that only about 1/7 of the infections are de-
tected and can thus be isolated. More recently, other
studies have suggested that the fractions of undetected
infections could be even higher [23, 24].

This is obviously a very relevant matter, both to un-
derstand the epidemic dynamic and to design concrete
actions to counter the epidemic spreading.

The goal of this note is two-fold: on the one hand
we want to develop a simple general model to take into
account the presence of asymptomatic infectives; on the
other hand, we want to apply this to the ongoing COVID-
19 epidemic, in particular considering the situation in
Italy, i.e. in the first European country to be heavily
struck by COVID.

One of the problems faced in this situation is that at
the start of the epidemic due to a new pathogen, one has
to estimate the infectivity of this, and more generally the
parameters in any model used to describe the epidemic.
This will have to be considered in some detail.

The estimate of the fraction of asymptomatic infec-
tives is one of the problems encountered in this sense.
In the case of COVID in Italy, our estimate – based on
a fit of the epidemiological data by the model, see Sec-
tions VII and VIII below – is that only 10% of infec-
tives are symptomatic; this also means that in the early
phase of the epidemic, in particular before the relevance
of asymptomatic transmission was fully understood and
asymptomatic infectives were searched for, only 10% of
the infectives (at best, i.e. assuming that symptoms were
properly related to COVID) were registered by the health
system.

The plan of the paper is as follows. We start by re-
calling some basic facts about the well known SIR model
(Section II), and discuss in more detail how this can be
fitted against the data available in the first phase of an
epidemic (Section II E).

Beside all the obvious limitations of SIR-type models,
the standard SIR – as recalled above – does not take into
account the special features introduced by the presence of
a large set of asymptomatic infectives, i.e. the aspect we
want to focus on in this contribution. We will therefore
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develop a SIR-type model taking into account the pres-
ence of asymptomatic infectives, and the substantially
long time these spend being infective and not isolated;
this is called A-SIR, the A standing indeed for asymp-
tomatic (Section III). We also repeat in this context the
discussion on how the model parameters can be estimated
on the basis of the early stages of the epidemics in that
context, see Sections III C and IIID (we will find that
parameters present in both the two models are fitted in
the same way from available data).
We will then come, in Section IV, to one of the main

points of our study, i.e. comparing the different predic-
tions of the standard SIR and of the new A-SIR model
for a given set of initial-stage epidemiological data (which
are coded by the coefficients of a function fitting them).
This comparison is made by means of numerical simula-
tions for realistic values of the parameters, but with no
reference yet to any concrete case.
One of our main interests is in understanding how rel-

evant it can be to uncover asymptomatic infectives and
promptly isolate them; we then study (numerically) how
the dynamics is affected by a reduction of the removal
time for this class (Section V), as could be obtained by
a contact tracing and testing campaign [19].
The discussion so far considered a generic infection

(providing long-term immunity to recovered patients)
with a large set of asymptomatic infectives. In the second
part of the paper, we apply our model to the COVID-19
epidemics in Italy (Section VI). In order to do this we
first of all have to estimate the model parameters from
data in the initial phase; to this aim we use the data
from the first half of March and determine our best fit of
the epidemiological data through a two-step procedure.
This first determines relations between the parameters,
reducing these to expressions in terms of the the removal
times for symptomatic and asymptomatic patients, i.e.
on parameters β and η (see below), and this is obtained
based on data for the first week; then data for the second
week are used to fit these latter parameters. We do of
course also compare these fits with the data in the initial
phase, see Section VII. The A-SIR model outperforms
the standard SIR model in this respect.
We will naturally also consider the subsequent devel-

opment of the COVID-19 epidemics, but in order to do
this we will have to consider the different sets of measures
taken on March 8 and March 23 by the Italian Govern-
ment and based on social distancing ; these will be taken
into account by means of a reduction of the contact rate
parameter in the model. The amount r of reduction will
be a fitted parameter (Section VIII).
With a suitable choice of r, we get a rather good agree-

ment between the dynamic of our model and epidemio-
logical data up to mid-May (i.e. the time of writing of
this paper), see Figures 9 and 10.
We will end the paper by a discussion of some rele-

vant general points and by conclusions (Section IX); we
anticipate here the main ones:

(i) there is a marked difference between the stan-

dard SIR dynamics and the dynamics of the A-SIR
model, i.e. the one taking into account the presence
of a large class of asymptomatic infectives;

(ii) in the case of the COVID-19 epidemic in Italy, as-
suming a ratio of symptomatic to total infections
of ξ = 1/10 yields a good agreement between the
model and epidemiological data.

We stress that our estimate of the ratio ξ is – as far as
we know – the first one given on the basis of a theoretical
model and not just of statistics. On the other hand, it
agrees with the current estimates given by health agen-
cies and physicians.

It is maybe useful to also anticipate what are our con-
clusions about the consequences of the “marked differ-
ence” mentioned in item (i) above. We find – in Section
IV – that a standard SIR analysis in a situation where
the A-SIR model applies, would make three substantial
errors: (a) The number of (symptomatic) infectives need-
ing Hospital care would be over-estimated; (b) The time
before the epidemic peak so the time available to prepare
the health system to face it would be over-estimated; (c)
The number of people not touched by the epidemic wave,
so still in danger if a second wave arises, would be over-
estimated. It is rather clear that each of these errors
would have substantial practical consequences.

In an Appendix, we will also discuss how the presence
of asymptomatic infectives affects our estimate of the ba-
sic reproduction number (usually denoted as R0); this
might explain why many national health agencies were
caught short by the rapid rise in COVID-19 cases.

Our discussion will include a number of small devia-
tions from the central development; these will be given
in the form of Remarks. The symbol ⊙ will signal the
end of a Remark.

II. THE SIR MODEL

The classical SIR model for the dynamics of an in-
fective epidemic providing permanent immunity to those
who have already been infected and recovered [25–31]
describes a homogeneous and isolated population of N
individuals by partitioning them into three classes: each
individual can be either susceptible (S), infected and in-
fective (I), or removed (R) from the epidemic dynamics
(that is, either recovered, dead, or isolated). We denote
by S(t), I(t) and R(t) the populations of these classes at
time t; by assumption, S(t) + I(t) +R(t) = N for all t.

The model is described by the equations

dS/dt = − αS I

dI/dt = αS I − β I (1)

dR/dt = β I .

In the following, the parameter

γ = β/α (2)



3

will have a special relevance.

This model is well known, but we recall here some of
its features both for the sake of completeness and with
the purpose of comparing these with those for the new
model to be introduced below. Further detail on the SIR
model can be found in textbooks [27–31].

We would like to stress a relevant general point. As
mentioned above, the SIR model (and more generally
SIR type models) assume that we have an isolated pop-
ulation, and that individuals react to the pathogen and
interact socially in a homogeneous way. In physicists’
language, this is a mean field theory, i.e. in common lan-
guage all individuals characteristics are erased, and real
individuals are replaced by an “ideal” type corresponding
to the average over the population. It goes without say-
ing that these assumptions are not only radical, but also
non realistic: individuals in any population differ for age,
health state, and contact network. On the other hand,
when – as in a starting epidemic which is overwhelming
the sanitary system – we have scarce data (and available
data are not organized in the way they should be in a
laboratory experiment) it has the advantage of providing
a qualitative description, whose quantitative predictions
can be compared with experiment also if fed with the
scarce and rough available data.

In other words, we agree that e.g. an epidemic model
on a network [32–34] would be more realistic, but on
the one hand we doubt that the available data allow to
identify the existing network at this stage[53], and on the
other hand we would not like to have predictions which
depend on the (unknown) features of this network. We
will thus be satisfied with working with SIR-type models.

Remark 1. Note that according to eqs.(1), an infected
individual is immediately infective. For most infections
this is not realistic, of course, but if the delay is substan-
tially smaller that the characteristic removal time β−1,
we get a good approximation and still keep to a very
simple model with all its advantages for qualitative dis-
cussion. The same remark will also apply to the A-SIR
model, to be introduced and discussed in Section III be-
low.

Note also that the SIR equations (1) stipulate that
we have a constant population; in practical terms, this
means we are considering an epidemic developing over a
short enough timespan, i.e. such that one can disregard
deaths and new births. In particular the latter provide
new fuel to the susceptible class and thus if the epidemic
goes on for a long time related terms should be included
in the model; this may led to the presence of an endemic
state [27]. ⊙

A. Epidemic dynamics, epidemic peak and total
number of infections

It is immediately apparent that in the SIR model the
number of infected will grow as long as

S > γ ; (3)

thus γ is also known as the epidemic threshold. The epi-
demic can develop only if the population is above the
epidemic threshold.

The ratio

R0 :=
S0

γ
(4)

is known as the basic reproduction number (BRN), or also
basic reproduction rate, and is an estimate of how many
new infections are originated from a single infective in the
initial phase of the epidemic [35–37]. (In fact, the first
equation in (1) says that there are αSI(δt) new infections
in a time interval δt, and each infective is such for an
average time β−1.)

The parameters α and β describe the contact rate and
the removal rate; they depend both on the characteris-
tics of the pathogen and on social behavior. For example,
a prompt isolation of infected individuals is reflected in
raising β, a reduction of social contacts is reflected in
lowering α, and both these actions raise the epidemic
threshold γ. If this is raised above the level of the total
population N , the epidemic stops (which means the num-
ber of infected individuals starts to decrease, albeit new
individuals will still be infected). The same effect can be
obtained by reducing the population N (keeping α and β
constant), i.e. by partitioning it into non-communicating
compartments, each of them with a population below the
epidemic threshold.

Remark 2. Albeit strictly speaking these predictions
only hold within the SIR model, and surely the exact
value of the threshold refers to this model only, the mech-
anism at play is rather general, and similar behaviors are
indeed predicted by all kind of epidemic models. ⊙

One can easily obtain the relation between I and S by
considering the equations governing their evolution in (1)
and eliminating dt; this provides

dI/dS = − 1 + γ/S . (5)

Upon elementary integration this yields (note we always
write “log” for the natural logarithm)

I = I0 + (S0 − S) + γ log(S/S0) ; (6)

with I0, S0 the initial data for I(t) and S(t); unless there
are naturally immune individuals (which is not the case
for new infections), S0 = N − I0 ≃ N .

As we know (see above) that the maximum I∗ of I will
be reached when S = γ, we obtain from (6) an estimate
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of the level of this maximum; i.e. writing γ = σN (with
σ < 1) this reads

I∗ = [1 − σ − σ log(1/σ)] N . (7)

Note that we do not have an analytical estimate of the
time needed to reach this maximum; see below.
It follows from (7) that increasing γ, even if we do

not manage to take it above the population N , leads to a
reduction of the epidemic peak; if we are sufficiently near
to the epidemic threshold, this reduction can be rather
relevant also for a relatively moderate reduction of α and
thus increase of γ.
The formula (6) also allows to obtain an estimate for

another parameter describing the severity of the epi-
demics, i.e. the total number of individuals R∞ which
are infected over the whole span of the epidemics. In
fact, the epidemic is extinct (at an unknown time t = T0)
when I = 0; the number of susceptibles S∞ at this stage
is provided there by the (lower) root of the equation

I0 + (S0 − S) + γ log(S/S0) = 0 ;

as noted above I0 ≃ 0, S0 ≃ N , and we can simply look
at

(N − S∞) + γ log(S∞/N) = 0 . (8)

This is a transcendental equation, but it is easily solved
numerically if γ is known. The sought for number of
overall infected individuals R∞ is of course provided by

R∞ = N − S∞ . (9)

Remark 3. In the case of a small epidemic, we have
S∞/N ≃ 1, and we can expand the logarithm in a Taylor
series; in this way we get S∞ = (3 − 2N/γ)N . See also
Section IIC below. ⊙

Another key quantity is the speed at which the epi-
demic dynamics develops, and in particular the time t∗
at which I reaches its maximum value I∗, and the time
t∞ needed for I to get to zero (and S(t∞) = S∞, of
course). In this case one can not get an analytical esti-
mate, but it is possible to describe how this depends on
the values of α and β for a given population level N and
initial conditions {S0, I0, R0}. In fact, the equations (1)
are invariant under the scaling

α → λα , β → λβ , t → λ−1 t . (10)

(Note that the inverse scaling of β and t is enforced by
the very physical meaning of β, which is the inverse of
the characteristic time for the removal of infectives.)
The meaning of (10) is that if we manage to reduce α

by a factor λ, even in the case β is also reduced and thus γ
remains unchanged, the speed of the epidemic dynamics
is also reduced by a factor λ. On the other hand, it is
clear from the equation for dS/dt in (1) that reducing α
reduces the speed at which new infective appear; if the
removal rate β is unchanged, this will make that I grows
slower and reaches a lower level. See Figure 1 in this
regard.
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FIG. 1: Effect of changing the parameters α and β with con-
stant γ on the SIR dynamics. Numerical solutions to the
SIR equations with given initial conditions are computed for
different choices of α and β with constant ratio γ = β/α. In
particular we have considered N = S0 = 5∗107, I0 = 102, and
α = α0 = 10−8, β = β0 = 10−1 (solid curve); α1 = (3/4)α0,
β1 = (3/4)β0 (dashed curve); α2 = (1/2)α0, β2 = (1/2)β0

(dotted curve). The vertical scale is in terms of the maxi-
mum I∗ ≈ 2.39 ∗ 107 attained by I(t). This is attained, in
the three runs, at times t0 ≃ 36.70, t1 = (4/3)t0 ≈ 48.94 and
t2 = 2t0 ≈ 73.41 respectively.

B. Early dynamics

The SIR equations are nonlinear, and an analytical so-
lution of them turns out to be impossible; they can of
course be numerically integrated with any desired preci-
sion if the initial conditions and the value of the param-
eters are known.

In the case of well known infective agents (e.g. for the
influenza virus) the parameters are known with good pre-
cision, and indeed Health Agencies are able to forecast
the development of seasonal epidemics with good preci-
sion. Unfortunately this is not the case when we face a
new virus, as for COVID-19.

Moreover, when we first face a new virus we only know,
by definition, the early phase of the dynamics, so param-
eters should be extracted from such data.[54] We will
thus concentrate on this initial phase, with I(t) and R(t)
rather small, and try to obtain approximate analytical
expressions for the dynamics; the purpose will be to esti-
mate the parameters α and β – and thus also the epidemic
threshold γ – in this case.

Remark 4. Albeit we do not expect, for various rea-
sons, the SIR model to provide a good description of the
dynamics when the infection produces a large number
of asymptomatic carriers, having an estimate of these
parameters will be needed to compare the predictions
which one would extract from the standard SIR model in
such circumstances with those obtained by the modified
model we will consider later on, see Section III. As for
the reasons to expect the SIR model to perform poorly
in the presence of a large set of asymptomatic carriers,
these have to do both with the practical implementation
and with intrinsic limitations of the model. As for the
first type, in practice we estimate the model’s parameters
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by epidemiological data based only on registered (thus
mostly symptomatic) infectives; if these are only a small
part of the infectives, the estimates of the parameters
will be grossly different from the true ones. As for the
intrinsic limitations of standard SIR in this setting, we
will come back to this point at the end of Section IIIA,
in Remark 12. ⊙

C. KMK approximate equations and their exact
solution

In the case of “small epidemics” there is a way to ob-
tain an analytical expression for the solutions to the SIR
equations or more precisely to the approximate equa-
tions valid in the limit of small R/γ; this is associated to
the names of Kermack and McKendrick [25], and we will
therefore refer to it as the KMK method. (This is very
classical, and is discussed here for the sake of complete-
ness.)
What matters more here, the expression obtained in

this way is also an analytical expression holding in the
initial phase of any epidemics, small or large, i.e. – as we
will discuss in a moment – until R(t) ≪ γ.
Thus such an analytical expression can be compared to

early epidemiological data and used to estimate the un-
known parameters α and β, and hence the fundamental
parameter γ. Once this is done, the model can be studied
numerically (or, if we are – as has to be hoped – in the
favorable situation where N ≃ γ, one can set predictions
on the basis of the “small SIR epidemic” model) – recall-
ing of course that the SIR model itself is far too simple
to be reliable in a situation where the actions undertaken
have heavy consequences on public health – in order to
have some kind of estimate of the length of the epidemics
and of other relevant outcomes, such as the numbers I∗
and J∞ considered above.
It should be noted that we do not have full knowl-

edge about the number of infective people at each time;
the best we can have is the number of people who are
hospitalized or however registered by the health system.
Assuming that infective people are immediately isolated,
this provides an estimate (actually from below) of R(t).
Thus we should be able to compare the predictions for
the removed class with epidemiological data, and in order
to do this we should focus on R(t). We stress that his
problem was already clear to Kermack and McKendrick
[25], see e.g. the discussion in Murray [27], and that we
will basically follow their idea albeit with a relevant dif-
ference, which will allow for a simpler fit of the data.
Putting together the equations for S and for R in (1),

we have dS/dR = −S/γ, which of course provides

S(R) = S0 e−(R−R0)/γ . (11)

We can proceed similarly with the equations for I and
for R, getting dI/dR = −1 + S/γ, where now S should
be thought of as a function of R through (11). Solving

this equation we get

I(R) = I0 + S0 (1 − exp[−(R−R0)/γ]) − (R − R0) .
(12)

We are however interested in the temporal dynamics of
the model. In order to do this, we can substitute for
I = I(R) using (12) in the equation for dR/dt in (1);
moreover we will look at the variable

P (t) := R(t) − R0 , (13)

which of course satisfies P (0) = 0 and dP/dt = dR/dt.
In this way we have

I(P ) = I0 + S0

(
1 − e−P/γ

)
− P . (14)

Plugging now this into the third equation of (1), we fi-
nally get

dP

dt
= β

[
I0 + S0

(
1 − e−P/γ

)
− P

]
. (15)

This is a transcendental equation and can not be solved
exactly. However, as long as P/γ ≪ 1, i.e. as long as R(t)
is well below the epidemic threshold, we can replace the
exponential by (a suitable truncation of) its Taylor series
expansion.

Remark 5. In textbook discussions, it is usually re-
quired to consider a second order Taylor expansion; this
guarantees that counter-terms preventing the exponen-
tial explosion of R(t) (and thus the violation of the con-
dition R(t) ≪ γ) are present, and allows to obtain an
analytical expression for R(t) – solution of the approx-
imate SIR equations for R/γ ≪ 1 – valid at all times.
This is, more precisely, in the form

R(t) =
α2

S0

[
ϕ + k1 tanh

[
k1β

2
t − k2

] ]
, (16)

where we have written ϕ := (S0/γ−1) and k1 and k2 are
explicitly given by

k1 =
√
ϕ2 + 2(S0/γ2)(N − S0); k2 = k−1

1 arctanh(ϕ) .
(17)

As we assume there is no natural immunity, we can take
S0 ≈ N , obtaining k1 ≈ ϕ and hence slightly simpler
complete expressions. ⊙
Remark 6. In particular, in this case the maximum of
R′(t) – and hence of I(t), see (1) – is obtained at time

t∗ =
2 arctanh(ϕ)

β ϕ2
;

as our result holds for the “small epidemics”, ϕ is small
and we can write

t̃∗ ≃ 2

β ϕ
+

2

3

ϕ

β
.

Note that t∗ is therefore rapidly decreasing with ϕ (for
small ϕ). On the other hand, looking back at (7), and
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noticing that in terms of the notation used there σ =
1/(1 + ϕ), we obtain immediately that I∗ grows with ϕ.
⊙

Remark 7. This also means that if one would be able to
tune the parameters α and β (and hence ϕ) there would
be a contrast between trying to have a low I∗ and hence
a small ϕ, and trying not to have the epidemic running
for too long – which can be devastating on social and eco-
nomic grounds. If, on the other way, the priority from
the temporal point of view is on slowing down the epi-
demic, e.g. to have the time to prepare the health system
facing the peak, a small ϕ should be pursued. ⊙

D. Small time solution of the KMK equations

We have seen in Section IIC that a full solution of the
KMK model is equivalent to a full solution of eq. (15),
and if we have a small epidemic then the solution is well
approximated – at all times – by (16).
Here we are less ambitious: when the epidemic is just

starting, we can in any case only fit the initial phase
of the epidemic, which shows an exponential increase of
R(t), and correspondingly we can expand the exponential
in (15) at first order in P/γ. This yields the equation

dP

dt
= β

[
I0 +

(
S0

γ
− 1

)
P

]
, (18)

with initial condition P (0) = 0. This is immediately
solved to give

P (t) = I0
exp[β (S0/γ − 1) t] − 1

(S0/γ − 1)
. (19)

Introducing the parameter, which we stress is now not
assumed to be small,

ϕ :=
S0

γ
− 1 , (20)

the above is more simply written as

P (t) =
I0
ϕ

[
eβ ϕ t − 1

]
, (21)

and finally we get

R(t) = R0 +
I0
ϕ

[
eβ ϕ t − 1

]
. (22)

As expected this – at difference with (16) – is not saturat-
ing but just expanding exponentially, and thus cannot be
valid for all times, but only for t sufficiently small (even
for small ϕ).
The expression (22) can then be expanded in series to

give the small t expression of the solution, which can be
fitted against experimental data thus determining (some
of) the parameters, see Section II E below.

Remark 8. It is relevant for the following of our dis-
cussion to note that the solution (22) can be obtained
also in a different way, i.e. noticing that in the ini-
tial phase of the epidemic the number of susceptibles
vary very little and can thus be considered as constant,
S(t) ≃ S0. Within his approximation, and writing again
ϕ = (S0/γ − 1), the SIR equations reduce to{

dI/dt = β ϕ I
dR/dt = β I ;

(23)

this is a linear system, and it is promptly solved to yield
indeed (22).

Note this approach is actually simpler than the one fol-
lowed above (so the reader may wonder why we have not
taken this immediately), but on the one hand the proce-
dure given above is along the lines of the tradition of SIR
analysis, and on the other hand having seen that deriva-
tion gives us more confidence that a rough approach as
this one provides the same results as a more refined one;
this will be of use dealing with more complex models,
where the Kermack-McKendrick approach can not be fol-
lowed, see Section III C below. ⊙

E. Fitting the SIR parameters

Note that the solution (22) depends on three param-
eters, i.e. β, I0 and ϕ, which in turn depends on the
known number S0 ≃ N and on the unknown parameter
γ. None of the parameters {β, ϕ, I0} is known, but β
can be directly estimated on the basis of medical data
as it corresponds to the inverse of the typical removal
time (for trivial infections, this corresponds to the time
of healing; in the case of COVID it is the time from infec-
tion to isolation), and similarly once we fix a time t = 0
the number I0 can be estimated a posteriori looking at
epidemiological data for the next few days and depending
on our estimate of β.

In order to estimate the parameters on the basis of the
measurements of R, we can work either on R itself, or
on its logarithm. That is, we have two alternative – but
obviously equivalent – ways to proceed.

(a) Working on the time series for R(t).
We fit the time series around t0 by

R(t) = r0 + r1 t +
1

2
r2t

2 ; (24)

Having these coefficients rk, we can compare with the
series expansion for R(t) given by (22), which is just

R(t) = R0 + (β I0) t +
1

2

(
β2 I0 ϕ

)
t2 . (25)

We obtain easily that – using also the definition of ϕ
(20) – our parameters and the associated parameter γ
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are given by

R0 = r0 , I0 =
r1
β

, ϕ =
r2
r1 β

;

γ =
βS0r1

βr1 + r2
. (26)

(b) Working on the time series for log[R(t)].
As R(t) grows – in the early phase – in a substantially
(but not exactly, see above) exponential way, one usually
deals with data in logarithmic form; that is one has a fit
for log[R(t)], say of the form

log[R(t)] = A + B t +
1

2
C t2 . (27)

Comparing with the series expansion of log[R(t)] for R
as in (22), i.e.

log[R(t)] = log(R0) + β
I0
R0

t

− 1

2

(
β I0
R0

)2 (
1− ϕ

R0

I0

)
t2 , (28)

we obtain that the I0, ϕ and γ parameters can be esti-
mated as

R0 = eA , I0 =
B

β
eA , ϕ =

B2 + 2C

β B
;

γ =
βS0B

βB +B2 + 2C
. (29)

We stress again that our estimates for the parameters
depend on our estimate for the leading parameter β.
This concludes our discussion of the standard SIR

model.

III. A MODEL WITH ASYMPTOMATIC
INFECTIVES

It may happen to have an epidemic such that a rather
large fraction of infected people are actually asymp-
tomatic, but still fully infective; this appears to be the
case for COVID-19.[55]
A little reflection shows that the presence of a large

population of asymptomatic infectives, or however of in-
fectives which show only very mild symptoms, easily
thought not to be related with the concerned infective
agent, changes the dynamics in two – contrasting – ways:

• On the one hand, asymptomatic infectives are a
formidable vehicle of contagion, as they have no
reason to take special precautions, and get in con-
tact with a number of people which themselves do
not take the due precautions (which would be taken
in the case of an individual with evident symp-
toms);

• On the other hand, assuming once the infection
is ceased the infected (including of course asymp-
tomatic ones) have acquired permanent immunity,
they contribute to group immunity reached once
the population of susceptibles falls below the epi-
demic threshold.

We are thus going to study how the SIR dynamics is
altered by the presence of a large class of asymptomatic
infectives.

Remark 9. An obvious but important Remark is in
order here. If we find out that known infectives are only
a fraction ξ < 1 of the total infectives, this means that
on the one hand the mortality rate (number of deceased
over number of infected) is actually smaller by the same
factor. On the other hand, the total number of infected
persons is increased by a factor ξ−1, so that it looks more
difficult to stop the spreading of the epidemics, and the
final number of infected will be quite large.

In this respect, one should however remember that the
total number of casualties does not depend only on the
total number of individuals with symptoms but also on
the number of patients needing Intensive Care (for the
COVID epidemic in China this was estimated at 20 %
of hospitalized patients [38, 39]; in Italy this fraction
reached 10% at peak time, albeit in the most affected
regions the number was higher [40–42]) and on the avail-
ability of such care; from this point of view, slowing down
the pace of the epidemics can substantially lower the
death toll even if the total number of affected individ-
uals remains the same. ⊙

A. The A-SIR model

We will formulate a very simplified model of SIR type,
where infective people are either symptomatic or asymp-
tomatic. A more refined subdivision of their state would
be more realistic, but the discussion of this simple case
will suffice to show how to proceed in a more general
setting.[56]

In our model we still assume permanent immunity of
individuals who have been infected and recovered, and
constant population. We also assume that – as in the
classical SIR – infected individuals are immediately infec-
tive (see Remark 1 in this regard). We will have suscepti-
bles S(t) in a unique class, but two classes of infected and
infective people: symptomatic I(t) and asymptomatic
J(t); and similarly two classes of removed people: for-
merly symptomatic removed R(t) and formerly asymp-
tomatic removed (mostly passing unnoticed through the
infection) U(t). Symptomatic infectives are removed by
the epidemic dynamics through isolation (in hospital or
at home) at a removal rate β (thus with typical delay
β−1, while asymptomatic people are removed from the
epidemic dynamics mostly through spontaneous recov-
ery, at a recovery rate η ≪ β, thus after a typical time
η−1 ≫ β−1; detecting asymptomatic infectives leads to
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their isolation before healing, and thus to a reduction in
η−1.
We assume that both classes of infected people are in-

fective in the same way, and that an individual who gets
infected belongs with probability ξ to the class I and
with probability (1− ξ) to the class J .
Our model, which we will call A-SIR (Asymptomatic-

SIR) will then be

dS/dt = −α S (I + J)

dI/dt = α ξ S (I + J) − β I

dJ/dt = α (1− ξ)S (I + J) − η J (30)

dR/dt = β I

dU/dt = η J .

Note that the last two equations amount to an integral,
i.e. are solved by

R(t) = R0 + β

∫ t

0

I(τ) dτ ,

U(t) = U0 + η

∫ t

0

J(τ) dτ ; (31)

thus they can be considered as “reconstruction equa-
tions”, and we will focus on the first three equations in
(30). Moreover, the total population N = S + I + J +
R+ U is constant.

Remark 10. The fact that asymptomatic infectives are
as infective as symptomatic ones is not at all obvious. In
the case of COVID-19 it appears we are exactly in this
situation [1, 13–15]; in any case this will be our working
hypothesis. ⊙

Remark 11. An alternative writing for the equations
(30) is also possible, and in some case convenient. We
denote by

K(t) = I(t) + J(t) (32)

the total number of infectives, and by

x(t) = I(t)/K(t) (33)

the fraction of symptomatic infectives; obviously the frac-
tion of asymptomatic ones will be y(t) = J(t)/K(t) =
1− x(t).
By standard algebra the (first three) equations (30) for

the A-SIR dynamics are then rewritten in terms of these
variables as

dS/dt = −αS K

dK/dt = αS K − [β x + η (1− x)] K (34)

dx/dt = αS (ξ − x) − (β − η) (1− x) .

This writing also stresses that albeit ξ is a constant, the
fraction x of symptomatic infectives is a dynamical vari-
able. ⊙

Remark 12. We can now better discuss, in the light
of the previous Remark 11, what are the intrinsic rea-
sons which make that we expect the standard SIR model
to perform poorly in describing an epidemic with a
large number of asymptomatic infectives (see Remark
4 above). As already recalled, one would expect β to
correspond to the inverse of the average removal time
for registered infectives; however, once the presence of
asymptomatic – and in particular undetected – infectives
is ascertained, this could be corrected by accepting as β
a weighted average B of the removal times for symp-
tomatic and asymptomatic (that is, of β and η in the
A-SIR model). But as we have just seen in Remark 11,
the fraction x of symptomatic infectives is a dynamical
variable, hence the parameter B should vary with time
depending on the internal dynamics of the system (which
is described by A-SIR, not by SIR), and hence we would
be outside the proper SIR framework. ⊙

B. A-SIR dynamics

Some general considerations on eqs.(30) can be made
immediately. First of all, we note that I(t) will increase
as far as the condition αξS(I + J) > βI is satisfied; that
is, as far as

S > γ1 :=
1

ξ

β

α

I

I + J
=

x

ξ

β

α
. (35)

Thus the epidemic threshold (for symptomatic patients)
γ1 depends both on the fixed parameters ξ, α, β and on
the variable ratio x(t) of symptomatic infectives over to-
tal infectives, see (33).

Similarly, the number of asymptomatic infectives J(t)
will grow as far as α(1− ξ)S(I + J) > ηJ is satisfied, i.e.
as far as

S > γ2 :=
1

1− ξ

η

α

J

I + J
=

1− x

1− ξ

η

α
. (36)

Again the epidemic threshold (for asymptomatic pa-
tients) γ2 depends both on the fixed parameters ξ, α, η
and on the variable ratio y(t) = 1− x(t) of asymptoma-
tic – and thus “hidden” – infectives over total infectives.

Note that

γ1
γ2

=

(
1− ξ

ξ

) (
β

η

) (
I

J

)
=

(
1− ξ

ξ

) (
β

η

) (
x

1− x

)
.

As we expect on the one hand to have ξ < 1/2 and
β > η, but on the other hand I < J and hence x < 1−x,
we cannot claim there is a definite ordering between γ1
and γ2; this means that we will have situations where I
declines and J is still growing, but the opposite is also
possible.

We expect that in the very first phase –when the dif-
ferent removal times have not yet shown their effects –
we have J ≃ [(1−ξ)/ξ]I and hence (1−x) ≃ [(1−ξ)/ξ]x;
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under this condition, we get

γ1
γ2

≃ β

η
> 1 .

Remark 13. In the case of COVID-19, it is known that
the incubation time is about 5.1 days; assuming that
symptomatic infection is promptly recognized and swiftly
treated, epidemiological and clinical data suggest the ap-
proximate values (note that asymptomatic removal time
η−1 includes both the incubation time and the healing
time) β−1 ≃ 5 − 7, η−1 ≃ 14 − 21 for the removal and
recovery rates; the value of ξ is more controversial, as
mentioned in the Introduction, but it is presently be-
lieved that ξ ≃ 1/10. We will come back to these mat-
ters when dealing specifically with COVID, but wanted
to give immediately an idea of what “realistic” values can
be for the parameters appearing the A-SIR model. ⊙

C. Early dynamics

It is quite clear that we can not go through the
Kermack-McKendrick procedure to obtain approximate
equations valid in the case of “small epidemics”, not
even through the simplified (first rather than second or-
der) procedure we have used above. We can however go
through the even simpler approach mentioned in Remark
8 (and which we have seen there produces the same re-
sults as the KMK procedure).
With S(t) ≃ S0, the equations (30) reduce to a linear

system of four equations with constant coefficients, or
more precisely to a “master” system of two equations

dI

dt
= (α ξ S0 − β) I + (α ξ S0)J (37)

dJ

dt
= [α (1− ξ)S0] I + [α (1− ξ)S0 − η]J (38)

plus the two direct integrations (31).[57]
As for the two equations, (37) and (38), we can get

their solution in explicit form by means of some standard
algebra; they are slightly involved when written in fully
explicit form, and we do not report them here.
With these, we can compute R(t) and U(t); their ex-

plicit expressions are also quite involved, and again we
do not report them here.

Remark 14. As already remarked – and as well known
from textbooks, see e.g. Murray [27] – we can only ac-
cess R(t) from epidemiological data.In our case, this is
the number of symptomatic patients which have been
registered and thus isolated, i.e. in particular removed
from the epidemic dynamic. As for U(t), this time se-
ries is basically unattainable: some of the asymptomatic
infectives will be discovered and registered, but many –
and probably most – of them will go unnoticed. Thus
we should base our considerations only on R(t). Un-
fortunately, the data published by health agencies and
by WHO do not distinguish between symptomatic and
asymptomatic patients. ⊙

D. Fitting the parameters

We can now proceed as in Section II E, i.e. series ex-
pand R(t) in order to fit the parameters. From the ex-
plicit expression of R(t) we get

R(t) ≃ R0 + β I0 t

+
1

2
β [α(I0 + J0)S0ξ − βI0] t2 ; (39)

log[R(t)] ≃ log(R0) + β
I0
R0

t

+
1

2

β[α(I0 + J0)R0S0ξ − βI0(I0 +R0)]

R2
0

t2 .(40)

Comparing these with the generic form[58] of the fits
(24) and (27), we can express the parameters I0 and
γ = β/α. Note that we can not express both γ and
J0 with the same fitting, as both of them only appear in
the coefficient of the quadratic term. Note also that in
this context γ is not any more the epidemic threshold,
as discussed in Section IIIA; the time-varying epidemic
threshold γ1(t) = [x(t)/ξ]γ is however expressed in terms
of γ, so that it still makes sense to fit it.

Actually, since new infected are with probability ξ in
the class I and with probability (1− ξ) in the class J , it
is natural to set as initial condition

J0 =

(
1− ξ

ξ

)
I0 ; (41)

with this assumption, we have

γ1(t0) = γ . (42)

Remark 15. It should be noted that actually if we want
to fit γ we need to have some estimate on J0 (while I0
can be fitted from first order coefficient in the series for
R(t) or log[R(t)]); to this aim we will use consistently
(41). ⊙

In particular, using the fit of R we get (through this
assumption)

R0 = r0 , I0 =
r1
β

, γ =
β r1 S0

(β r1 + r2)
. (43)

Using instead the fit of log[R(t)], and again the as-
sumption (41), we get

R0 = eA , I0 =
B eA

β
;

γ =
β S0 B

β B + B2 + 2C
. (44)

Once the parameters are estimated, the nonlinear
equations (30) can be solved numerically.

It is immediate to check that the expressions (43) and
(44) – which we recall were obtained under the assump-
tion (41) for J0 – are exactly the same as for the SIR
model; see (26) and (29).



10

IV. COMPARING SIR AND A-SIR DYNAMICS

Summarizing our discussion so far, we have considered
both the standard SIR model and a variant of it, the A-
SIR model, taking into account the presence of large set
of asymptomatic infectives. We have discussed in partic-
ular how the parameters for the models can be estimated
on the basis of the time series for R(t) in the early stage
of the epidemic.
We want now to discuss how the prediction extracted

from a given time series for R(t) in the beginning of an
epidemic differ if these are analyzed using the SIR or the
A-SIR models.
As discussed above, we are able to extract only limited

analytical information from the nonlinear SIR equations
(1), and no relevant analytical predictions at all from the
nonlinear A-SIR equations (30). Thus the only way to
compare the predictions of the latter model with those
of a standard SIR model (or variations on it, such as the
SEIR model [27]), and hence see how the presence of a
large class of asymptomatic infectives affects the dynam-
ics within a SIR-type framework, is at present by running
numerical simulations, i.e. numerically integrate the SIR
and the A-SIR equations for coherent sets of parameters.
Here by “coherent” we will mean “extracted from the

same time series for R(t) in the early phase of the epi-
demics”.
In practice, in view of the discussion above and de-

pending on our choice to use the (43) or the (44) fit, this
means “with given {r0, r1, r2;β} or given {A,B,C;β} co-
efficients”.
In the following, we will analyze the concrete epidemi-

ological data for the COVID-19 epidemics in Italy, but
here we would like to compare the SIR and the A-SIR
predictions in a less concrete case, so that one can focus
on general features rather than having a concrete case
(with all the intricacies of real cases, see below) in mind.
We will thus choose an arbitrary (but realistic) set

of parameters, which should be thought of as being ex-
tracted from the time series for the early phase of the epi-
demic. We consider a total population N = 107, S0 = N ,
and parameters

A = 5 , B = 0.1 , C = −0.002 ;

β =
1

10
, η =

1

20
; ξ =

1

10
. (45)

Moreover, we will assume that asymptomatic infectives
(in the A-SIR modeling) are totally undetected; that is,
we compare predictions which would be made by a math-
ematician using the SIR model and totally unaware of the
existence of asymptomatic infectives with those made by
a mathematician using the A-SIR model and aware of
the relevance of asymptomatic infectives.
In Fig.2 we compare the predictions issued by the SIR

and the A-SIR models for the cumulative number of (de-
tected) removed, i.e. for R(t), and for the number of
(detected, hence symptomatic) infectives I(t).
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FIG. 2: The predictions for the cumulative number of re-
moved R(t) and for the (detected) infectives I(t) provided by
the SIR model (blue curves) and by the A-SIR model (red
curves) for a total population N = 107 and the parameters
given in eq.(45).
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FIG. 3: The predictions for the cumulative number of re-
moved R(t) and for the (detected) infectives I(t) provided by
the SIR model (blue curves) and those by the A-SIR model
(red curves) together with the predictions for R(t)+U(t) and
for I(t) + J(t) provided by the A-SIR model (orange curves)
for a total population N = 107 and the parameters given in
eq.(45).

Note that not only the SIR predicts a higher infective
peak, but it also expects it to occur at a later time; more-
over for the initial phase, in particular after the A-SIR
peak, the prediction of the number of infectives issued
by the SIR model are lower than those issued by the A-
SIR model. Note also that the SIR model expects a much
greater part of the population to go through symptomatic
infection, as seen from the R(t) plot.

These discrepancies are reduced, and somehow re-
versed, if in the A-SIR modeling we consider both symp-
tomatic and asymptomatic infected. These graphs are
plotted in Fig.3.

In a realistic situation one should expect that at least
apart of the asymptomatic infectives are anyway detected
(e.g. being tested due to contacts with known infectives).
We have thus plotted the equivalent of Fig.3 in Fig.4, sup-
posing that a fraction (1/5) of asymptomatic infectives
is detected. Note that in this case the height of the epi-
demic peak is about the same as for the SIR model, but
it occurs at an earlier time, while the number of detected
removed when the epidemic is over is still substantially
lower (about half) of the one predicted by the SIR model.

In other words, a modeler issuing his/her advice based
on a SIR analysis in a situation where the A-SIR model
applies, would make three substantial errors:

• The number of (symptomatic) infectives needing
Hospital care would be over-estimated;

• The time before the epidemic peak – so the time
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FIG. 4: The predictions for the cumulative number of re-
moved R(t) and for the (detected) infectives I(t) provided
by the SIR model (blue curves) and those by the A-SIR
model (red curves) together with the predictions for detected
removed R(t) + σU(t) and detected infectives I(t) + σJ(t)
provided by the A-SIR model (orange curves) if a fraction
σ = 1/5 of asymptomatic infectives is detected, for a total
population N = 107 and the parameters given in eq.(45).

available to prepare the health system to face it –
would be over-estimated;

• The number of people not touched by the epidemic
wave, so still in danger if a second wave arises,
would be over-estimated.

It is rather clear that all of these errors would have sub-
stantial consequences. We stress that one could naively
think that the presence of asymptomatic infections is es-
sentially of help, in that a large part of the population
getting in contact with the virus will not need any med-
ical help. This is true, but on the other hand we have
seen that it will also make that the curve raises more
sharply than it would be expected on the basis of the
SIR model (see also the discussion in Appendix A), and
that in all the first phase of the epidemic – until the true
epidemic peak and also for a period after this – the num-
ber of symptomatic infectives is higher than what would
be foreseen in the basis of the SIR model.
We conclude that it is absolutely essential to take into

account the presence of asymptomatic infectives.

V. TRACING, TESTING, TREATING

In the previous Section IV we have seen how the pres-
ence of asymptomatic infectives changes the predictions
which would be done on the basis of the standard SIR
model. In the present Section we want to consider a
problem which naturally arises when consider an infec-
tion with a large number of asymptomatic infectives; that
is, how the epidemiological dynamics is changed by an
extensive campaign of testing (maybe tracing contacts of
known infectives), followed of curse by treating – which in
the case of asymptomatic means essentially just isolating
the infectives so they they do not spread the infection.[59]
To this aim, we will consider again – obviously just in

the context of the A-SIR model – the situation seen in the
previous Section, but will take into account the effects of
such a “triple T” action by a reduction of the average
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FIG. 5: The predictions for the number of symptomatic
infectives I(t) and for the total number of removed (and thus
in the end immune) patients R(t) + U(t) provided by the A-
SIR model for a total population N = 107 and the parameters
given in eq.(45), with η = 1/20 (red curves), η = 1/15 (green
curves) and η = 1/10 = β (blue curves).

removal time τ = η−1 for asymptomatic infectives. (A
more detailed study is given in our related paper [44].)

We will thus run numerical simulations with the same
parameters (except for η), total population and initial
conditions as in Section IV above, and choose three dif-
ferent values for η ≤ β, i.e. β = 1/20, 1/15, 1/10. The
result of these simulations is displayed in Fig.5.

We see from these that a “Tracing, Testing, Treating”
campaign can reduce substantially the epidemic peak[60];
on the other hand this leads to a slowing down of the
epidemics, and to a smaller number of total infected in-
dividuals, i.e. to a smaller immune population at the end
of the epidemic wave – and hence smaller resistance in
the case of a second wave.

This concludes our general discussion. In the follow-
ing, we will apply our formalism to the analysis of the
COVID-19 epidemics in Italy.

VI. THE COVID-19 EPIDEMICS IN ITALY

In the previous Sections, we have conducted our anal-
ysis in general terms. This referred to a generic infection
with a large number of asymptomatic infectives, but of
course the motivation for it was provided by the ongoing
COVID-19 pandemic.

We will study in particular the situation in Italy; as
well known, this was the first European country heavily
struck by COVID, and data for it are widely available.
Moreover, when COVID landed in Europe there was al-
ready an alert, so that transient phenomena due to late
recognition of the problem – which were unavoidable in
Eastern Asia – were of a much smaller size. Last but not
least, in this case we are confident to have all the relevant
information.

A. Epidemiological data

The data for the cumulative number of registered in-
fected communicated by the Italian Health System [41]
– and also available through the WHO reports [40] – are
given in Table I. There we give data for February 21 to
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May 15, albeit we will for the moment only use those for
the first half of March; later data will be of use in the
following. (We prefer not to use the data for the first few
days, as too many spurious effects an affect these.)
One should note, in this respect, that the first cases in

Italy (apart from sporadic and promptly isolated cases
of tourists) were discovered on February 21. The public
awareness campaign started immediately – and actually
the public was already alert, e.g. it was impossible to find
face masks since some weeks – and the first local mild re-
strictive measures were taken a few days later (February
24), and more restrictive measures involving the most af-
fected areas[61] were taken on March 1. A more stringent
set of measures went into effect for the whole nation on
March 8, and still more strict measures on March 22.
Thus the epidemics developed with varying parame-

ters. Moreover, as the incubation time for COVID ranges
from 2 to 10 days, with a mean time of 5.1 days [20], there
is a notable delay in the effect of any measure. Note that
most countries have a quarantine length of 14 days; thus
we expect that any measure will show their effect with a
delay of one to two weeks.

B. Fit of the data

For our fitting in the early phase, we will consider the
data of the period March 1 through March 10, denoted in
the following as ti and tf respectively; this leaves us some
later days to compare the functions obtained through the
fit with subsequent evolution, before the effect of the first
set of measure can show up (March 15).
The best direct fit of R(t) through a quadratic func-

tion, see (24), is obtained with the constants

r0 = 3862.32 , r1 = 966.54 , r2 = 80.35 . (46)

The fit is reasonably good in the considered time interval
(ti, tf ), but fails completely for t < ti (see Figure 6, where
we use data from February 24 on) and is rather poor for
t > tf . This is not surprising, as we know that R(t) is,
in this early phase, growing through a slightly corrected
exponential law, see (22).[62]
Let us then look at the fit of log[R(t)] as in (27). In

this case the best fit is obtained with the constants

A = 8.26648 , B = 0.221083 , C = −0.00430354 .
(47)

In this case the fit is very good not only within (ti, tf )
but also outside it, at least for the period until March 15.
We will thus work only with this (exponential) fit.
We will consider these values for the coefficients

{r0, r1, r2} or for the coefficients {A,B,C} as experimen-
tal measurements.
We can now use the formulas obtained before, both for

the SIR and the A-SIR model, to estimate the parame-
ters of these models in terms of these fits following the
discussion in Sections II E and IIID.

day Feb 21 Feb 22 Feb 23 Feb 24 Feb 25

R 20 77 146 229 322

day Feb 26 Feb 27 Feb 28 Feb 29 Mar 1

R 400 650 888 1128 1694

day Mar 2 Mar 3 Mar 4 Mar 5 Mar 6

R 1835 2502 3089 3858 4636

day Mar 7 Mar 8 Mar 9 Mar 10 Mar 11

R 5883 7375 9172 10149 12462

day Mar 12 Mar 13 Mar 14 Mar 15 Mar 16

R 15113 17660 21157 24747 27980

day Mar 17 Mar 18 Mar 19 Mar 20 Mar 21

R 31506 35713 41035 47021 53578

day Mar 22 Mar 23 Mar 24 Mar 25 Mar 26

R 59138 63927 69176 74386 80539

day Mar 27 Mar 28 Mar 29 Mar 30 Mar 31

R 86498 92472 97689 101739 105792

day Apr 1 Apr 2 Apr 3 Apr 4 Apr 5

R 110574 115242 119827 124632 128948

day Apr 6 Apr 7 Apr 8 Apr 9 Apr 10

R 132547 135586 139422 143626 147577

day Apr 11 Apr 12 Apr 13 Apr 14 Apr 15

R 152271 156363 159516 162488 165155

day Apr 16 Apr 17 Apr 18 Apr 19 Apr 20

R 168941 172434 175925 178972 181228

day Apr 21 Apr 22 Apr 23 Apr 24 Apr 25

R 183957 187327 189973 192994 195351

day Apr 26 Apr 27 Apr 28 Apr 29 Apr 30

R 197675 199414 201505 203591 205463

day May 1 May 2 May 3 May 4 May 5

R 207428 209328 210717 211938 213013

day May 6 May 7 May 8 May 9 May 10

R 214457 215858 217185 218268 219070

day May 11 May 12 May 13 May 14 May 15

R 219814 221216 222104 223096 223885

TABLE I: Cumulative number R(t) of COVID-19 registered
infect in Italy [41, 42]. In our fits for the early phase of the
epidemic, t = t0 corresponds to March 5 and (ti, tf ) to the
period March 1 through March 10.
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FIG. 6: Data for R(t) in the COVID epidemics in Northern
Italy from February 24 to March 13, with fits obtained using
data for March 1 through March 10. Time is measured in
days, with day zero being February 20. Left: polynomial
(quadratic) fit (24); Right: corrected exponential fit (27).
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QF β 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

I0 2900 3866 4833 5799 6766 7732 8699 9665

ϕ 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83

S0/γ 1.25 1.33 1.42 1.50 1.58 1.67 1.75 1.83

EF β 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

I0 2581 3441 4301 5162 6022 6882 7743 8602

ϕ 0.55 0.73 0.91 1.09 1.28 1.46 1.64 1.82

S0/γ 1.55 1.73 1.91 2.09 2.28 2.46 2.64 2.82

TABLE II: Upper part (quadratic fit – QF): Parameters
for the SIR and A-SIR models obtained through the SIR
quadratic local fit of R(t); see (26), (43). Lower part (expo-
nential fit – EF): Parameters for the SIR and A-SIR models
obtained through the SIR modified exponential local fit of
R(t); see (29), (44).

C. Estimate of SIR and A-SIR parameters

We have remarked in Section IIID that the SIR and
A-SIR models (in the latter case, under the assumption
(41) for J0) yield exactly the same values for the I0 and
γ parameters. Now we want to estimate these values for
the data given in Section VIB; this amounts to a direct
application of formulas (43) and (44) – or equivalently
(26) and (29), as already remarked.

As already remarked, these formulas depend on the
estimated value of the parameter β. The values obtained
using the direct fit of R are tabulated for different values
of β in the upper part of Table II.

We can also proceed by using the fit of log[R(t)]; the
values obtained in this way are tabulated for different
values of β in the lower part of Table II.

We remind that the delay time δ from infection to arise
of symptoms is estimated to be around δ ≃ 5.2 [20]; thus
albeit we have tabulated several options for β, values
greater than 1/5 are not realistic, at least in the absence
of an aggressive contact tracing and tracking campaign.

On the other hand, albeit we expect β−1 to be around
one week for symptomatic patients, it should be recalled
that in the standard SIR framework this parameter refers
to the average removal time for all patients, symptomatic
and asymptomatic. Thus the presence of asymptomatic
ones could make β−1 to be substantially larger. We will
leave this remark aside for the time being; see the dis-
cussion in the Appendix, in particular Remark A1.

In all cases, S0/γ is quite far from one and ϕ from zero,
so one can not rely on the “small epidemic” formulas [27]
discussed in Section IIC. We will thus resort to numerical
integration, see next Section.

This concludes our estimation of the SIR or A-SIR
parameters from the epidemiological data referring to the
early phase of the epidemic.

VII. NUMERICAL SIMULATIONS.
TIMESCALE OF THE EPIDEMIC

We have now determined the parameters for both the
SIR and the A-SIR model in the very early phase of
the epidemic; this determination depends actually on the
value of β, so from now on we will consider β as the only
parameter to be fitted.

We can now run numerical simulations with the SIR
and the A-SIR equations; we can vary β (and thus implic-
itly also the other parameters, maintaining the relation
between these and β) and fit β according to the agree-
ment between the outcome of the numerical simulations
and the epidemiological data.

In all of our simulations, day one is February 21, so the
fitting period (ti, tf ) corresponding to the first decade of
March used to determine the relation between β and the
other parameters is centered around day 14; but this does
not determine β itself. We will now examine the fit of
data in the first period outside this window in order to
determine β.

A. General study

Note that while the discussion of the previous Section
VI is complete for what concerns the SIR parameters, in
the A-SIR equation we also need to introduce the removal
rate for asymptomatic individuals, i.e. η; this is related
to the time length δ = η−1 of their infective period, which
is equal to the incubation time plus the spontaneous heal-
ing time[63]. While the former is around δ ≃ 5, the latter
is generally considered to be around 14 days, albeit we
know that for hospitalized patients (which however are
by definition symptomatic) this may be longer. Thus, on
these medical grounds, we expect η−1 to be between 14
and 21 days.

1. Determining β

We ran a number of simulations, both for the SIR and
the A-SIR dynamics, with varying β and – for the A-SIR
model – with varying η; the parameter β was varied in
the range (1/10−1/5), while η in the range (1/25, 1/10).

The best results in terms of agreement with epidemi-
ological data for the period March 1 through March 15
were obtained for

β =
1

7
, η =

1

21
.

The plot for these values of the parameters are displayed
in Figs.7 and 8; note that for the SIR case the fit is rather
poor.

In fact, it should be stressed that the situation is quite
different in the cases of SIR and of A-SIR dynamics. In
particular, the SIR dynamics does not fit the data for the
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FIG. 7: Upper row: numerical solution of the SIR equations
for β = 1/7 and total population S0 = 2 ∗ 107 (left) and
S0 = 6 ∗ 107 (right), corresponding to the overall population
of the three Northern Italy regions most affected by COVID
and to the population of all of Italy respectively, using for the
parameters I0 and γ the fit of eqs. (43), (44) on the basis of
the data for March 1 through March 10, see Table I. The plots
of I(t) – where t is measured in days – are shown for: r = 1
(solid curve), r = 0.85 (dotted curve) and r = 0.75 (dashed
curve). Lower row: plot of the data for the COVID epidemics
in Italy for March 1 through March 17 (hence outside the
fitting region) versus the numerical integration of the SIR
model (with r = 1). The SIR model is not properly describing
the dynamics.

week after the fitting window, while the A-SIR dynamics
fits these quite well.

We stress that the fit β ≃ 1/7 is coherent with med-
ical data: in fact, as already recalled, the average delay
from infection to the first symptoms is about 5 days, and
there should be some further delay for recognizing these
symptoms – which in the first phase can be rather trivial,
such as cold, cough, or light fever – as due to COVID and
leading to hospitalization or anyway to isolation.[64]

Remark 16. A relevant point should be made here. In
the first phase of the epidemic, and in particular in the
period covered by Figs.7 and 8, the COVID diffusion was
essentially limited to Northern Italy, and in particular
to the three regions of Lombardia, Veneto and Emilia-
Romagna; the total population of Italy is about 60 mil-
lions, while that of the three mentioned regions totals
about 20 millions. This is why simulations with both
S0 = 2 ∗ 107 and S0 = 6 ∗ 107 are shown in these Fig-
ures. Actually, the comparison with the epidemiological
data in the early stage should be better done with the
simulation with S0 = 2∗107 (we are giving the other one
for the SIR model only to show that even considering the
overall population we do not get a reasonable fit). ⊙

50 100 150 200 250 300

100000

200000

300000

400000

5 10 15 20 25 30

10000

20000

30000

40000

50000

60000

FIG. 8: Numerical solution of the A-SIR equations for S0 =
2∗107, β = 1/7, η = 1/21, ξ = 1/10, using for the parameters
I0 and γ the fit of eqs. (43), (44) on the basis of the data of
Table I for the period 1-10 March. Left: plots of I(t) – where
t is measured in days – are shown for: r = 1, r = 0.8, r = 0.6
and r = 0.4 (the curves for higher r are those with higher
peak). Right: Plot of the data for the COVID epidemics
in Italy versus the numerical integration of the A-SIR model
(with r = 1); plotted data go until March 17.

2. Timescale of the epidemic

In Section IV above we have discussed the different
timescale of an epidemic with given initial time series
predicted by the SIR and by the A-SIR models. It is
natural to wonder how long the COVID epidemic will
last according to these.

This is not a well posed question, because there are re-
strictive measures being taken (or relaxed at a later stage,
when the situation improves) which reduce the contact
rate and thus the spread of the epidemic.

So, these simulations can at their best show what
would be the behavior (of the system described by the
SIR or A-SIR equations, which do not necessarily de-
scribe correctly the COVID epidemics) with constant co-
efficients. On the other hand, they can give an idea of
what should be expected in case of no action.

More generally, and in line with our general discussion
of Sections IV and V, they show how the dynamics pre-
dicted by the SIR and the A-SIR models with coherent
sets of parameters differ from each other in general (al-
beit using the concrete COVID parameters to fix ideas).

It should be stressed in this context that the contain-
ment measures based on social distancing do not act on
β, but on α; albeit in general α = β/γ, in studying the
effect of restrictive measures it is more convenient to con-
sider the reduction factor r. That is, if the fit of the ini-
tial phase of the epidemic yields α0 = β0/γ0 (where γ0
is determined through the formulas of Sections II E and
IIID), we consider in later phases a contact rate

α = r α0 , 0 < r < 1 . (48)

We will see that after the first set of measures in Italy
we got r ≃ 0.5 (compared with the initial period of the
epidemic [45]), and after the second set of measures this
went to r ≃ 0.2, and to r ≃ 0.08 at a still later stage.

Remark 17. It should be noted however that the studies
suggesting the presence of a very large fraction of unde-
tected infections [23] are also implicitly suggesting that
the reduction in the epidemic growth could be due not
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only – or not so much – to the containment measures,
but rather to the intrinsic dynamics of the system, and
on the rapid depletion of the susceptibles reservoir. This
point should be carefully considered. We find that in the
case of COVID-19 in Italy our model suggests ξ = 0.1,
and discuss this point in view of that estimate. In or-
der to fully explain the decrease of the contact rate by
this mechanism – thus essentially to the often mentioned
“herd immunity” – however, one would need ξ ≃ 0.01,
which appears to be non realistic (on the other hand, the
suggestion ξ = 0.02 [24] is still very low but cannot be
discarded apriori) . ⊙
Remark 18. The effect of different types of measures,
let us say those acting on social distance and hence on α
on the one hand, and those acting on early isolation and
hence on β (and on η for the A-SIR model) on the other
hand, on the epidemic timescale is specially relevant in
view of the economic and social costs of a generalized
lockdown as the one adopted in many European coun-
tries. This is discussed in detail in related publications
[46–48], both for the SIR and the A-SIR models. ⊙

However, the real concrete interest of this study is in
a different point. That is, there is considerable debate
on the most appropriate way to use laboratory exams,
and in particular if there should be a generalized COVID
testing, at least of those having had contacts with known
infects, or if only clinically suspect cases should be tested.
We are of course aware that the real obstacle to a gener-
alized testing – which should however be repeated over
and over to be sure the individual has not been infected
since the last test – is of practical nature, as testing a
population of several tens of million people (not to say
about China or India) is unfeasible, so that this alterna-
tive is a concrete one only in small communities; these
could be isolated areas or also e.g. the community of
people working in a Hospital.[65]
On the other hand, a strategy aiming at generalized

testing of those who have been in contact with known in-
fectives is more feasible; actually this strategy was con-
ducted with remarkable success in at least one Italian
region, i.e. Veneto.
In any case, we want to study what the impact of re-

ducing τ = η−1, thus raising η, would be on the develop-
ment of the A-SIR dynamics. This is illustrated in Tables
III and IV below.

B. More detailed study with selected parameters

As mentioned above, our numerical simulations sug-
gest that the epidemic in Northern Italy is – or more
precisely, was before the restrictive measures of March 8
went into operation – better described, in terms of our
model, by the situation with

β = 1/7 , η = 1/21 ; ξ = 1/10 . (49)

We will thus devote further analysis to this setting.[66]

When discussing if and how we can change these pa-
rameters, it is essential to state clearly what the two
classes I and J (and hence also R and U) represent when
we act on the system.

What we mean here is that in the “natural” situations
J represents the class of asymptomatic and hence unde-
tected infectives[67]; on the other hand, when we start
chasing for asymptomatic infectives these two character-
istics are not equivalent.

Here we will understand that J represents asymp-
tomatic infectives, detected or undetected as they are.

It should be stressed that – at least in this framework,
see below – these parameters cannot be altered: indeed,
ξ depends on the interaction of the virus with human
bodies and is thus fixed by Nature, while the removal
time β−1 ≃ 7 can hardly be compressed considering that
typically the first symptoms arise after 5 days, but these
are usually weak and thus receive attention (especially in
a difficult situation like the present one) only after some
time.

Remark 19. We said above that the parameters β and
ξ can not be altered “in this framework”; this requires
a brief explanation. As for ξ this statement is rather
clear[68], and is connected to considering J as the class
of asymptomatic infectives, while if they were meant to
be the class of registered infectives, ξ could be altered
by a large scale campaign of tests on asymptomatic pop-
ulation. On the other hand, for what concerns β the
impossibility of compressing the time from infection to
isolation is “in this framework” in the sense that in it
isolation depends on the display of symptoms (plus some
unavoidable reaction delay). The time δ = β−1 could
instead be compressed by a campaign of tracing contacts
of known (symptomatic or asymptomatic) infectives, as
done in the field at Vò Euganeo [19]. These points will
not be discussed here, but will be considered in a related
paper [44]. ⊙

On the other hand, it is conceivable that τ = η−1

could somehow be compressed if a general screening was
conducted. At the same time, the contact rate α can
be reduced by a more or less rigorous lockdown; in our
discussion, this reduction is encoded in the reduction pa-
rameter r, which yields the ratio of the achieved contact
rate over the “natural” one – i.e. the one measured at
the beginning of the epidemic.

We have thus ran several numerical simulations for
these values of β and ξ, both for a total population of
N = 2∗107 (the total population of the initially most af-
fected regions) and for N = 6 ∗ 107 (the total population
of Italy).

These give of course very similar results – if referred to
the total population – as our estimates for the parame-
ters, and in particular for the one leading the dynamics,
i.e. γ, depend themselves on S0.

Moreover, the questions discussed in this subsection do
not concern the early phase of the epidemics (which was
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r I∗ t∗ R∞/S0 U∞/S0 S∞/S0

ξ = 1/10 1.0 1.3 ∗ 106 57 0.10 0.89 0.01

η = 1/21 0.8 1.0 ∗ 106 70 0.10 0.87 0.03

0.6 6.5 ∗ 105 95 0.09 0.82 0.09

0.4 2.5 ∗ 105 167 0.07 0.65 0.28

TABLE III: Simulations for the A-SIR model on a population
of S0 = 6 ∗ 107, with β = 1/7 and for the fitted initial condi-
tions discussed in Section VIB, for ξ = 1/10 and η = 1/21, for
various values of the reduction factor r. We report the max-
imum of the (registered) infectives I∗, the time t∗ at which
this maximum is reached, and the fraction of the initial pop-
ulation which passed through the infection being registered
(R∞/S0) or unknowingly (U∞/S0); the remaining fraction of
population S∞/S0 remains not covered by immunity.

then limited to Northern Italy), but its future develop-
ment. We will thus present the results directly for the
case N = S0 = 6 ∗ 107.
We have investigated two questions:

(A) How a reduction in the removal time for asymp-
tomatic infectives, i.e. in τ = η−1, would affect
– according to the A-SIR model – the dynamics
and the basic epidemiological outcomes of it in the
regime where the epidemic is taking place;

(B) In the case r is small enough to make the popula-
tion below the epidemic threshold, what are the
basic epidemiological outcomes predicted by the
model, again depending on various parameters in-
cluding η.

The results of these numerical investigations are sum-
marized in Table III and Table IV respectively. We have
also studied, for comparison, question (B) in the frame-
work of the standard SIR model (question (A) can not
be set in this framework). The outcomes of this study
are summarized in Table V.
These Tables show that a reduction of τ = η−1 can

have a significant impact – more or less relevant de-
pending on the r parameter – in the main epidemiologi-
cal parameters, such as the infection peak, the epidemic
time-span, and the fraction of the population which goes
through infection with or without symptoms. (These re-
sults should be seen as preliminary, see the companion
paper [44] for a more detailed study.)
The point we want to stress here is that even in this

concrete case the predictions of the A-SIR model, taking
into account the presence of a large set of asymptomatic
infectives, differ from those of the standard SIR model ;
this difference is in some cases quite significant.

Remark 20. As mentioned above, these results are not
a forecast of the development of the COVID epidemics,
as they are obtained under the hypothesis of constant
parameters, while political action will drive modification
of the effective parameters in one way or the other. ⊙

r te R∞/S0 U∞/S0

ξ = 1/10 0.2 539 1.02 ∗ 10−4 9.17 ∗ 10−3

η = 1/21 0.1 107 2.67 ∗ 10−4 2.40 ∗ 10−3

0.05 66 2.09 ∗ 10−4 1.88 ∗ 10−3

0.02 50 1.88 ∗ 10−4 1.69 ∗ 10−3

0.01 46 1.82 ∗ 10−4 1.64 ∗ 10−3

TABLE IV: Simulations for the A-SIR model on a population
of S0 = 6 ∗ 107, with β = 1/7 and for the fitted initial condi-
tions discussed in Section VIB, for ξ = 1/10 and η = 1/21,
for various values of the reduction factor r such that the pop-
ulation is below the epidemic threshold. We report the time
te at which there are less than 100 known infectives, and the
fraction of the initial population which passed through the
infection being registered (R∞/S0) or unknowingly (U∞/S0).

r te R∞/S0 r te R∞/S0

0.20 57 2.29 ∗ 10−4 0.20 41 1.77 ∗ 10−4

0.10 49 1.98 ∗ 10−4 0.10 37 1.58 ∗ 10−4

0.05 46 1.87 ∗ 10−4 0.05 35 1.51 ∗ 10−4

0.02 44 1.81 ∗ 10−4 0.02 34 1.47 ∗ 10−4

0.01 44 1.79 ∗ 10−4 0.01 34 1.46 ∗ 10−4

TABLE V: Simulations for the standard SIR model on a
population of S0 = 6 ∗ 107, with β = 1/7 (left hand side) and
– for comparison – also for β = 1/5 (right hand side), and
for the fitted initial conditions discussed in Section VIB, for
various values of the reduction factor r such that the popu-
lation is below the epidemic threshold. We report the time
te at which there are less than 100 known infectives, and the
fraction of the initial population which passed through the
infection (R∞/S0).

VIII. COVID-19 IN ITALY AND MITIGATION
MEASURES

Our study in the previous Sections went until March
17 (see Figs.7 and 8); this is the time interval in which
it makes sense to consider constant parameters, as the
first set of governmental measures did not show its effect
yet, and we got a good fit of epidemiological data by our
A-SIR model.

A. Mitigation measures and reduction factors

After (or shortly before) this date, the first set of re-
strictive measures, taken on March 8 and gradually en-
forced, should have shown their effect; thus – in terms
of the model – the parameter α = α0 changed to a dif-
ferent value α = α1 = r1α0. Similarly, more restrictive
measures took effect on March 23 (this time in a sharper
way), and this should have shown their effect about one
week later, thus changing again the parameter α, say
taking it to be α = α2 = r2α0. It should be mentioned
that albeit no official change took place, it was generally
remarked that a different attitude in enforcing the mea-
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sures appeared after Easter (April 11); at about the same
time individual protective device became easily available.
These changes are somehow reflected in our fitting, see
below, by the introduction of a different reduction pa-
rameter r3 after April 25.
Thus in considering if our model can describe the ac-

tual development of the epidemic in Italy, one should
take into account these changes of parameters, i.e. fit
also the constants r1, r2 and r3 introduced above. It
should be stressed that we do not have an analytical for-
mula involving some parameters which can then be fitted
against experimental data; we are instead studying nu-
merical solution of the A-SIR dynamical system (30) and
checking how this fits the data. On the other hand, we
are assuming that nothing changes for the β, η and ξ
parameters.
Data until May 15 are given in Table I. We found a

good agreement keeping the value ξ = 1/10, and setting

r1 = 0.50 , r2 = 0.20 , r3 = 0.08 . (50)

In other words, we have set (recall time is measured in
days, day 1 being February 21)

α = α(t) =


1.00 ∗ α0 t ≤ 25 ,
0.50 ∗ α0 25 < t ≤ 35 ,
0.20 ∗ α0 35 < t ≤ 63 ,
0.08 ∗ α0 63 < t .

(51)

Remark 21. Not that here we are considering the full
Italian population, i.e. S0 = 6 ∗ 107; this introduces a
factor 3 compared with the setting used in Sections VI
and VII to fit α0 on the basis of the early data which
concerned essentially three regions with a total popula-
tion of about 2 ∗ 107; we have correspondingly to divide
the α0 determined in there by a factor three, thus getting
the value

α0 = 3.77 ∗ 10−9 ; (52)

this is to be used in (51) above. ⊙

Proceeding in this way, we obtain the curve plotted in
Fig.9 against the epidemiological data; this curve shows
a good agreement with the data. See also Fig.10 for a
different representation in terms of the infectives I(t) (in
one of the panels we have adopted a smoothing procedure
consisting in mobile average over five days).
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FIG. 9: Solution of the A-SIR equation, taking into account
the changes in the contact rate α determined by governmental
measures, against epidemiological data for Italy. See text.
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FIG. 10: Data for I(t) as obtained from the model equation,
i.e. as βI(t) = R′(t), against data for the R(t) increment over
one day. Left: raw data; Right: data smoothed by averag-
ing over five days, centered at plotted day. We are actually
plotting daily increments of R, i.e. the A-SIR estimate for
βI(t).

B. COVID-19, Italy, and mitigation measures: a
brief discussion

We give here a brief discussion of several aspects of
the application of our theory to the specific situation of
the COVID-19 epidemics in Italy, and of the results ob-
tained above. This also involve non-mathematical mat-
ters. Moreover, the points touched upon here are not
applying to the general theory, so we have preferred to
keep this discussion separate from the short general one
given in the next Section IX.

First of all, we note that the model allows to give an
estimate also for the lockdown duration (assuming no
further measures or relaxation of measures is adopted in
the meanwhile, which is of course improbable in practi-
cal terms). E.g., if the lockdown should go on until the
level of registered infectives present when the first mea-
sures were adopted on day 17, i.e. I(t) ≃ 7, 000, then
according to the model and disregarding the third reduc-
tion, it should have gone on until day 129, i.e. the end of
June. Taking into account also the third reduction in α,
it should have gone until day 79, so May 19, in quite good
agreement with the actual choice of the Italian Govern-
ment to reduce limitations starting on May 18. We stress
that according to our model and more generally to SIR-
type models, a strategy based also on tracing contacts
and early detection is much more effective (also in stop-
ping the epidemic, as shown in the field by the Padua
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team [19], besides in keeping restrictions within an af-
fordable time), as discussed in a companion paper [44];
see also [46–48].
Estimating the number of asymptomatic infectives is

of course relevant in choosing measures to counteract the
COVID-19 epidemics; as far as we know this is the first
estimate based on a theoretical model and not just on sta-
tistical considerations. It follows from our model that the
fraction x of symptomatic infectives – and the fraction
y = 1 − x of asymptomatic ones – are dynamical vari-
ables, and change with time depending on other features
of the system, in particular its total population. Thus
a purely statistical evaluation appears to be necessarily
misleading. See also Fig.11 in this regard.
The previous observation is specially significant when

we look at the tail of the epidemic. In fact, while in this
limit the ratio of removed infectives U(t)/R(t) goes to
the natural limit (1 − ξ)/ξ, the ratio of active infectives
J(t)/I(t) goes to a much larger number, see Fig.11. This
means that when restrictions are removed, it is absolutely
essential to be able to track asymptomatic infectives, to
avoid these can spark new fires of infection.
It should also be mentioned that our analysis suggests

that the restrictive measures adopted in Italy were quite
successful in reducing the contact rate α. This is in a
way surprising, given their mild nature if compared to
those adopted in China. A couple of facts should be
recalled in this respect: (a) on the one hand a large part
(possibly larger than in other European countries with a
similar demographic profile) of infections and casualties
is related to hospitals or senior citizens residences, so
that once these were put under control the transmission
rate was substantially lowered; the latter are much more
common in the Northern regions; (b) a reduction on α
has an impact on the (only) quadratic term in the SIR
or A-SIR equations; thus a reduction in mobility by a
factor µ could result in a reduction by a factor µ2 for the
contact rate α.[69] ⊙
Finally, we note that while the first two steps in the

α reduction are temporally correlated to the restric-
tive measures adopted by the Government and are thus
thought to be due to these, the third step cannot be
explained in such a way; several tentative explanations
can be put forward (but with available data not scientif-
ically tested) for this. These include relaxation of “stay
at home” campaign (home is second only to senior cit-
izens residence for frequency of contagion), availability
and thus generalized use of individual protection device,
increased solar UV radiation, and reduction of ambient
viral load [50]. No final word on this matter can of course
be said in terms of mathematical models alone.

IX. CONCLUSIONS

Motivated by the peculiar features of the COVID epi-
demics, we have considered a SIR-type model, called A-
SIR model, taking into account the presence of a large
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FIG. 11: The balance between symptomatic and asymp-
tomatic infectives. Left: the ratio J(t)/I(t) (solid) and I(t)
(dashed, different scale) on the numerical solution to A-SIR
equations. Right: the ratio x(t) = I(t)/[I(t) + J(t)] (solid)
and I(t) (dashed, different scale) on the numerical solution to
A-SIR equations.

set of asymptomatic infectives.
We have shown that the dynamics of the SIR and the

A-SIR models, for parameters fitted from the same set
of data available in the early phase of an epidemic, differ
significantly; this is not surprising, but is in itself a sig-
nificant conclusion when we have to deal with a concrete
epidemics with this characteristic. This is our first result.

We have analyzed the available data for the COVID-19
epidemics in Northern Italy in terms of the SIR and of the
A-SIR models; in particular we have fitted the model pa-
rameters based on the period 1-10 March, and considered
how these models with such parameters are performing
in predicting the evolution for the subsequent week, 11-
17 March. As shown by Figure 7 on the one hand, and
by Figure 8 on the other hand, it appears that the A-SIR
model is much better in predicting such (admittedly short
time) evolution. In particular, this is the case with the
estimate ξ = 1/10 for the ratio of clearly symptomatic
versus total infections (this is slightly smaller that the
Li et al. [22] estimate ξ = 1/7); and with the reason-
able estimates β−1 = 7 days for the time from infection
to isolation for symptomatic infectives, and η−1 = 21
for the time from infection to healing of asymptomatic
infectives.

We have studied in more detail the case which best
fits the epidemiological data outside the period used to
fix the model parameters. This study was conducted in
two directions.

(A) On the one hand, we have considered what would
be the effect of a reduction of the time spent by asymp-
tomatic being infective and non-isolated. In this frame-
work, two cases are possible: either the restrictive mea-
sures are only mitigating the epidemic, or they are capa-
ble of stopping it by raising the epidemic threshold above
the population level. In the first case, a reduction of η−1

from 21 to 14 days produce a substantial lowering of the
epidemic peak and also substantially postpones its occur-
rence; in the second case, the effect of such a reduction
may be quite relevant if the population remains just un-
der the threshold (see the case with r = 0.2 in Tables IV),
or not so relevant if the reduction of the contact rate is
taking the epidemic threshold well above the population
level (see the cases with lower r in Table IV).

In all cases, there is a marked difference with the behav-
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ior of a standard SIR model with equivalent parameters.

(B) On the other hand, we have then considered how
our model can describe the COVID-19 epidemic dynamic
in Italy outside the time window used to fit the param-
eters. In this context, restrictive measures adopted in
different stages have reduced the epidemic development,
hence also altered the parameters – in particular, as the
measures were essentially based on social distancing, the
contact rate α. We have seen that assuming the measures
showed their effect after one week (in line with our esti-
mate β−1 ≃ 7) there is an estimate of their effect on the
contact rate α which produces a good agreement between
the model and the data.
This agreement depends on the chosen value for ξ, i.e.

the ratio between symptomatic infections and total infec-
tions, and is quite good for ξ ≃ 1/10 (confirming the early
estimate by Vallance and Whitty [21]). It was stressed
that this estimate of ξ is not of statistical nature, but
follows instead from a theoretical model; this is specially
relevant in that the same model shows that albeit the
probability of symptomatic infection ξ is a constant, the
different times for which symptomatic and asymptomatic
infectives do take part in the epidemic dynamic makes
that the fraction x of symptomatic over total infectives
is a dynamical variable, and changes – even substantially
– with time.[70]

We trust that our work shows convincingly the need to
take into account the presence of asymptomatic infectives
– and the longer time they spend before going out of the
infective dynamics – when they are a substantial number;
see also the Appendix and [51].
The ongoing COVID-19 epidemic taught us that there

can be relevant epidemics with a large number of asymp-
tomatic infectives; more detailed models can surely be
cast, but the very simple model presented here is already
sufficient to show that the standard SIR model is not a
good guide in this case, as it leads to overestimate certain
very relevant parameters and underestimate others.
A more detailed study of how different strategies to

mitigate the epidemic may affect the A-SIR dynamics is
presented in a related paper [44]; see also [47, 48].
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APPENDIX A: A-SIR VERSUS SIR DYNAMICS,
AND R0 ESTIMATES

The basic reproduction number (BRN) is a popular in-
dicator for the speed of diffusion of an epidemic in its
first stages [35–37]. This is usually denoted as R0, but

which here will be denoted as ρ0 (to avoid any confusion
with the value of R(t) at t = 0).

The BRN represents the average number of infections
caused by a single infective; we want to discuss how the
estimate of this can be flawed if one works with the SIR
formalism in a situation where a large number of asymp-
tomatic infectives is present, and hence better described
by the A-SIR model; our discussion reproduces that in
[51], and is given here for the sake of completeness.

1. The reproduction number and the SIR
framework

The extraction of the BRN from epidemiological data
can be tricky, but its evaluation in terms of a model is
much simpler. In fact, in this case S(t) can be consid-
ered, for small t, as constant, i.e. S(t) ≈ S0. The SIR
equations reduce to linear ones, and in the very begin-
ning (before any infective can be removed) the new infec-
tives grow as dI/dt = αS0I. Thus any infective produces
αS0(δt) new infectives in a short time length δt. As each
infective is active, on the average, for a time β−1, this
yields a first rough estimate

ρ0 ≃ (α/β)S0 = S0/γ . (A1)

Obviously, as β−1 is not so small (of the order of days),
we should look more carefully at the equation for I(t),
which can be solved and yields I(t) = exp [αS0t] I(0). As
each infective is active for an average time δ = β−1, this
just reads

I(δ) = exp [S0/ga] I(0) . (A2)

The situation is slightly different if we take into account
also the removal of infectives. With the same approxi-
mation S ≈ S0 but with the full (1) equations, we get
dI/dt = α(S0 − γ)I and hence

I(t) ≈ exp[α(S0 − γ) t] I0 := H(t) I0 .

Considering again that an infective remains active for a
time δ = β−1 on average, the previous equation means
that (on average) there will be ρ0 = H(δ) new infectives
originating from a single one. From the previous expres-
sion for H(t) we easily get ρ0 = exp[(S0/γ)− 1].

If we are facing a pathogen for which there is no natural
immunity in the population (e.g. a new virus), S0 = N
(the total population) and we get

ρ0 = exp

[
N

γ
− 1

]
. (A3)

Thus, evaluating R0 is in this case immediate if we know
γ; and conversely if we are able to evaluate ρ0 by epi-
demiological data, then it is immediate to evaluate γ as

γ =
N

1 + log(ρ0)
(A4)
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(or a simpler formula if we adopt the earlier and simpler
definitions for ρ0, e.g. (A1) above).
The parameter ρ0, and more generally ρ(t), met a great

favor in the general press, as it gives the impression to
describe a complex phenomenon by a single number. As
we mentioned above, evaluating ρ(t) from epidemiologi-
cal data can be a tricky matter [35, 36], in particular if
this is attempted without resorting to a specific model.
In this case too, using the SIR model without taking

into account the presence of a large set of asymptomatic
infectives leads to a wrong estimation of ρ, as we will see
in a moment.

2. The reproduction number and the A-SIR
framework

With the A-SIR equations (30), the number of new in-
fected per unit of time is αS(I+J), and in the early phase
of the epidemic we can assume S ≈ S0, and infectives will
grow as

K(t+ δt) = K(t) exp[α S0 δt] .

Thus each infective will give origin in the time span δt
to exp[αS0δt] new infectives. In order to know the BRN,
we we should look at the average infective time τ in the
early phase of the epidemic, and choose δt = τ . At the
beginning of the epidemic the ratio between registered
and total infectives is simply

x0 :=
I0

I0 + J0
≃ ξ , (A5)

while – as discussed above – in later stages the proportion
between I and J changes, as individuals stay longer in
the J class than in the I class.
The average removal rate for t ≃ 0 is thus

B0 = ξ β + (1− ξ) η . (A6)

This means that each (symptomatic or asymptomatic)
infective individual will give direct origin, across its infec-
tive and non-isolation period, not to ρ0 = exp[αS0/β] =
exp[S0/γ] new infectives, but instead to

ρ̂0 = exp[(α/B)S0] = (ρ0)
β/B

(A7)

new infectives. As β > B, this means that the actual
basic reproduction number ρ̂0 is larger – and possibly
substantially larger – than the value ρ0 which would be
estimated solely on the basis of registered infections.

A trivial computation on the basis of the values given
above – i.e. β−1 ≃ 7, η−1 ≃ 21, ξ ≃ 1/10 – provides

ρ̂0 = (ρ0)
5/2

. (A8)

Recalling that the estimates of the COVID ρ0 on the basis
of registered infectives are in the range ρ0 ∈ (2.5 − 3.0),
this means that the actual BRN turns out to be instead
in the range

ρ̂0 ∈ (10− 15) . (A9)

This could explain why all Health Systems were sur-
prised by the rapid growth of the number of COVID-19
infections; in fact, the presence of a large set of asymp-
tomatic infectives was not realized when the epidemic
attacked the first countries, and is becoming clearly es-
tablished only now.

Remark A.1. In terms of the standard SIR model,
our discussion shows that one should consider B0 – see
eq.(A6) – rather than β in computing the BRN. This also
explains the poor performance of the SIR model in fitting
Italian epidemiological data with “medically reasonable”
estimates for β; in fact, considering the B0 value instead
of β produces a good enough fit [48]. See also Remark
12 in this context. ⊙

Remark A.2. On the other hand, it should be noted
that according to Britton, Ball and Trapman [52] the
herd immunity level for COVID-19 is substantially lower
than the classical herd immunity level; this yields a nicer
perspective for the future. ⊙

Remark A.3. Note that eq.(A8) is obtained considering
the A-SIR equivalent of eq.(A4). Had we stayed with the
rough estimate (A1) (as in [51]), its A-SIR equivalent
would have given ρ̂0 = (5/2)ρ0, which means that the
actual BRN is in the range ρ̂0 ∈ (6.25 − 7.5), i.e. still
substantially higher that the SIR estimation of ρ0. ⊙
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fectives could be, for COVID, even smaller [23, 24]; this
would by all means make even greater the differences be-
tween the dynamic predictions by a standard SIR model
or by a model, like the simple A-SIR model we propose

here, taking into account the peculiar feature of the pres-
ence of a large class of asymptomatic infectives.


