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1. Introduction

We recall some definitions, just to fix the notations. Let K be a number field, let nK denote
its dimension, ∆K the absolute value of its discriminant, and r1(K), r2(K) the number of its
real and complex places, respectively. The von Mangoldt function ΛK is defined on the set
of ideals of OK as ΛK(I) := log Np if I = pm for some p and m ≥ 1, and is zero otherwise,
where p denotes any nonzero prime ideal and Np its absolute norm.
Moreover, let K ⊆ L be a Galois extension of number fields with relative discriminant ∆L/K.

For P a prime ideal of L above a non-ramified p of K, the Artin symbol
[L/K

P

]
denotes

the Frobenius automorphism corresponding to P/p, and
[L/K

p

]
the conjugacy class of all the[L/K

P

]
. The symbol

[L/K
.

]
is then extended multiplicatively to the group of fractional ideals of

K coprime to ∆L/K.
Finally, let C be any conjugacy class in G := Gal(L/K) and let εC be its characteristic
function. Then the function πC and the Chebyshev function ψC are defined as

πC(x) := ]
{
p : p non-ramified in L/K,Np ≤ x,

[
L/K
p

]
= C

}
=

∑
p

p non-ram.
Np≤x

εC

([L/K
p

])
,

ψC(x) :=
∑
I⊂OK

I non-ram.
NI≤x

εC

([L/K
I

])
ΛK(I).

In [5] we have proved the following explicit bound.
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Theorem. Assume GRH holds. Let x ≥ 1, then

(1.1)
∣∣∣ |G||C|ψC(x)−x

∣∣∣ ≤ √x[( log x

2π
+2
)

log ∆L+
( log2 x

8π
+2
)
nL

]
.

This result concludes a quite long set of similar but partial computations, originated with Jef-
frey Lagarias and Andrew Odlyzko’s paper [7] where this result is proved with undetermined
constants, and which was followed by the result announced by Joseph Oesterlé [12] and the
one of Bruno Winckler [15, Th. 8.1] (both with the same generality and explicit but larger
constants), the one of Lowell Schoenfeld [14] (same bound but only for the case L = K = Q),
and our recent paper [4] (same conclusion, but only for the case L = K).

Bound (1.1) implies that for every class C there is a prime ideal p with

(1.2) Np ≤
(( 1

2π log δ
+o(1)

)
log ∆L(log log ∆L)2

)2

which is not ramified and for which
[L/K

p

]
= C, where δ is any lower bound for the root

discriminant of the family of fields for which we are interested to apply the result:
√

3 is a
possible value for all fields, and 3

√
23 is another possible value when the six quadratic fields

Q[
√
d] with d ∈ {−7,−3,−2,−1, 2, 5} are excluded.

This consequence of any bound similar to (1.1) is already discussed in Lagarias and Odlyzko’s
paper, where in fact the existence of a bound of the form c(log ∆L(log log ∆L)2)2 for some
computable (but not explicit) constant c is proved.

The appearance of the factor (log log ∆L)4 in (1.2) is a consequence of the use of (1.1),
which actually is not designed for that purpose. In fact, in essence, this comes down to the
fact that the kernel xs

s , needed to relate ψC to a convenient sum of logarithmic derivatives
of Artin L-functions, does not decay very quickly along the vertical lines. To overcome this
problem, the authors of [7] also sketched a different approach replacing xs

s with the kernel(ys−1−xs−1

s−1

)2
. With a suitable choice of the parameters x and y in terms of log ∆L, this kernel

allows to remove the factor (log log ∆L)4 from the bound.
This improvement is not exclusive of this specific kernel, and the same conclusion may be
achieved also via different kernels, provided that they decay quickly enough along vertical

lines. In particular, we have obtained (1.1) as a by-product of computations for ψ
(1)
C (x) :=∑

n≤x ψC(n), which is related to the kernel xs+1

s(s+1) . Its decay along vertical lines is better than

the one of xs

s and is actually strong enough to get a bound of the type of (1.2), without the

factor (log log ∆L)4. In fact, we prove here the following claim as a consequence of some of
the inner results we got in [5].

Theorem. Assume GRH holds. Fix any class C and any integer k ≥ 0. Assume

√
x ≥ 1.075log ∆L+

√
2 |G||C|k log

( |G|
|C|k

)
+2 |G||C|+15,

where k log k is set to 0 for k = 0. Then πC(x) ≥ k+1. In other words, if we order the prime

ideals {pk}∞k=1 which are not ramified and for which
[L/K

p

]
= C according to their norm, for

every k ≥ 0 we have

Npk+1 ≤
(

1.075log ∆L+
√

2 |G||C|k log
( |G|
|C|k

)
+2 |G||C|+15

)2
.
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Thus, for instance, there is a non-ramified prime ideal p in C with Np ≤
(
1.075log ∆L+2 |G||C|+

15
)2

(case k = 0) and two such ideals within
(

1.075log ∆L+
√

2 |G||C| log
( |G|
|C|
)
+2 |G||C|+15

)2
(case

k = 1).
The proof of this theorem shows that the constant 15 can be removed when the degree

of the field is large enough, but the main constant 1.075 is rooted in the method and can
be improved only marginally. In particular it remains larger than 1. This implies that the
case k = 0 of the theorem is weaker than the analogous conclusion of the paper by Eric Bach
and Jonathan Sorenson [1, Th. 3.1], further improved for the case where K = Q and L/Q
is abelian by Youness Lamzouri, Xiannan Li and Kannan Soundararajan [8, Th. 1.2] (see
also [9]).
The claim giving more ideals (i.e., k ≥ 1) cannot be reached with Lagarias–Odlyzko’s, Bach–
Sorenson’s or Lamzouri–Li–Soundararajan’s approaches.

The case where K = Q and C is the trivial class has been considered also in [3, Corollary
2.1], with similar conclusions, in particular with the same constant for log ∆L but a larger
one for the k log k term.

Finally, we notice that if the field extension L/K and the class C are fixed and only the
dependence on k is retained, then the theorem says that the norm of the kth prime ideals

in C is ≤ (2+o(1)) |G||C|k log k: this is the correct upper bound in its dependency on k and on

the density factor |G||C| , but we know from the prime ideals density theorems that the absolute

constant 2 could be 1. This overestimation represents the price we pay in order to get a
uniform and totally explicit result.

Acknowledgments. The authors are members of the INdAM group GNSAGA.

2. Preliminary facts

For any prime ideal p ⊆ OK, possibly ramified, let P be any prime ideal dividing pOL, let
I be the inertia group of P and τ be one of the Frobenius automorphisms corresponding to
P/p. Let

θ(C; pm) :=
1

|I|
∑
a∈I

εC(τma).

Notice that θ(C; pm) ∈ [0, 1], and that θ(C; pm) = εC(
[L/K
pm

]
) for any non-ramified prime p

and power m. Thus θ(C; ·) extends εC(
[L/K
·
]
) to ramifying prime ideals powers. With θ(C; ·)

at our disposal we define the new function

ψ(C;x) :=
∑
I⊂OK
NI≤x

θ(C; I)ΛK(I).

Observe that ψC(x) and ψ(C;x) are essentially equivalent since they agree except on ramified-
prime-powers ideals. However, ψ(C; ·) is easier to deal with, since θ(C; ·) is well defined for
every prime ideal.
We further set

ψ(1)(C;x) :=

∫ x

0
ψ(C; t) dt
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and, for s > 1,

K(C; s) :=
∑
I⊆OK

θ(C; I)ΛK(I)(NI)−s.

As in [6, Ch. IV Sec. 4, p. 73] and [7, Sec. 5], we have the integral representation

(2.1) ψ(1)(C;x) =
1

2πi

∫ 2+i∞

2−i∞
K(C; s)

xs+1

s(s+1)
ds.

The function θ(C; ·) is a class function and therefore can be written as a linear combination
of characters of irreducible representations of the group G. A clever trick (due to Deuring [2]
and MacCluer [10], see also Lagarias and Odlyzko [7, Lemma 4.1] and [5, p. 445–446]) allows
to write this function as a linear combination of characters which are induced from characters
of a certain cyclic subgroup H of G specified below. Namely,

(2.2) K(C; s) = −|C|
|G|

∑
χ

χ̄(g)
L′

L
(s, χ,L/E),

where g is any fixed element in C, E := LH is the subfield of L fixed by H := 〈g〉, L(s, χ,L/E)
is the Artin L-function associated with the extension L/E and the character χ, and the sum
runs on all irreducible characters χ of H. Since the extension is abelian, this coincides with
a suitable Hecke L-function, by class field theory.
With (2.1), (2.2) produces the identity

(2.3)
|G|
|C|

ψ(1)(C;x) = −
∑
χ

χ̄(g)
1

2πi

∫ 2+i∞

2−i∞

L′

L
(s, χ,L/E)

xs+1

s(s+1)
ds.

Finally, we introduce a special notation for the type of sum on characters as the one appearing

in (2.3), and for any f : ̂Gal(L/E)→ C we set

MCf :=
∑
χ

χ̄(g)f(χ).

With this language, Equality (2.3) reads

(2.4)
|G|
|C|

ψ(1)(C;x) =MCIχ(x),

where

(2.5) Iχ(x) := − 1

2πi

∫ 2+i∞

2−i∞

L′

L
(s, χ,L/E)

xs+1

s(s+1)
ds.

3. Some computations with Abelian Artin L-functions

Let E ⊆ L be an abelian extension of fields and let χ be any irreducible character of
Gal(L/E). We will use L(s, χ) to denote L(s, χ,L/E). Also, set δχ = 1 if χ is the trivial
character, and 0 otherwise.

We recall that for each χ there exist non-negative integers aχ, bχ such that

aχ+bχ = nE

and a positive integer Q(χ) such that if we define

(3.1) Γχ(s) :=
[
π−

s
2 Γ
(s

2

)]aχ[
π−

s+1
2 Γ
(s+1

2

)]bχ
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and

(3.2) ξ(s, χ) := [s(s−1)]δχQ(χ)s/2Γχ(s)L(s, χ),

then ξ(s, χ) satisfies the functional equation

(3.3) ξ(1−s, χ̄) = W (χ)ξ(s, χ),

where W (χ) is a certain constant of absolute value 1. Furthermore, ξ(s, χ) is an entire function
(by class field theory) of order 1 and does not vanish at s = 0, and hence by Hadamard’s
product theorem we have

(3.4) ξ(s, χ) = eAχ+Bχs
∏
ρ∈Zχ

(
1−s

ρ

)
es/ρ

for some constants A(χ) and B(χ), where Zχ is the set of zeros (multiplicity included) of
ξ(s, χ). They are precisely those zeros ρ = β+iγ of L(s, χ) for which 0 < β < 1, the so-called
“non-trivial zeros” of L(s, χ). From now on ρ will denote a non-trivial zero of L(s, χ).

Differentiating (3.2) and (3.4) logarithmically we obtain the identity

(3.5)
L′

L
(s, χ) = Bχ+

∑
ρ

( 1

s−ρ
+

1

ρ

)
−1

2
logQ(χ)−δχ

(1

s
+

1

s−1

)
−

Γ′χ
Γχ

(s),

valid identically in the complex variable s.
Using (3.2), (3.3) and (3.5) one sees that

(3.6)

L′

L
(s, χ) =

aχ−δχ
s

+rχ+O(s) as s→ 0,

L′

L
(s, χ) =

bχ
s+1

+r′χ+O(s+1) as s→ −1,

where

rχ = Bχ+δχ−
1

2
log

Q(χ)

πnE
−aχ

2

Γ′

Γ
(1)−bχ

2

Γ′

Γ

(1

2

)
,(3.7)

r′χ = −L
′

L
(2, χ̄)−log

Q(χ)

πnE
−nE

2

Γ′

Γ

(3

2

)
−nE

2

Γ′

Γ
(1).(3.8)

Comparing (3.7) and (3.5) with s = 2, we further get

(3.9) rχ =
L′

L
(2, χ)−

∑
ρ

2

ρ(2−ρ)
+

5

2
δχ+bχ.

Shifting the axis of integration in (2.5) arbitrarily far to the left, we collect the terms
coming from the pole of L at s = 1 (if any), the non-trivial zeros, the pole of the kernel (and
of L′/L, if any) at s = 0, the pole of the kernel (and of L′/L, if any) at s = −1 and all the
remaining terms coming from the trivial zeros of L. This procedure gives the identity

(3.10) Iχ(x) = δχ
x2

2
−
∑
ρ∈Zχ

xρ+1

ρ(ρ+1)
−xrχ+r′χ+Rχ(x) ∀x > 1,

where rχ and r′χ are defined in (3.6) and Rχ(x) is the explicit function

f1(x) :=
∞∑
r=1

x1−2r

2r(2r−1)
, f2(x) :=

∞∑
r=2

x2−2r

(2r−1)(2r−2)
,
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Rχ(x) := −(aχ−δχ)(x log x−x)+bχ(log x+1)−aχf1(x)−bχf2(x)

(with x > 1). The correctness of this procedure is proved in a way similar to [7, § 6],
further simplified by the fact that the integral is absolutely convergent on vertical lines (see
also [6, Ch. IV Sec. 4, p. 73]).
According to (2.4), in order to proceed we need to know the effect of the MC operator on
each term in (3.10). To this effect, we recall a few lemmas that we will need in the following.

Lemma 3.1 ([5, Lemma 1]). Let

S :=


r1(L)+r2(L) if g has order 1,

r2(L)−2r2(E) if g has order 2,

0 otherwise.

Moreover let δC be defined to be 1 if C is the trivial class and 0 otherwise. Then

MCaχ =
∑
χ

χ̄(g)aχ = S,

MCbχ =
∑
χ

χ̄(g)bχ = δCnE−S = δCnL−S.

From now on, we assume that L/E is cyclic, and let Z be the multiset of zeros of the

Dedekind zeta function ζL. Thus Z is the disjoint union of the sets Zχ for χ ∈ ̂Gal(L/E).

Lemma 3.2 ([5, Lemma 2]). Let f be any complex function with
∑

ρ∈Z |f(ρ)| <∞. Then

MC

∑
ρ∈Zχ

f(ρ) =
∑
ρ∈Z

ε(ρ)f(ρ)

where, for any ρ ∈ Z, |ε(ρ)| = 1 and ε(ρ) = ε(ρ).

The following lemma comes from (3.9) and Lemmas 3.1 and 3.2.

Lemma 3.3 ([5, Lemma 3]).

MCrχ = 2
∑
ρ∈Z

ε(ρ)

ρ(2−ρ)
− nL
nK|C|

∑
I⊆OK

θ(C; I)
ΛK(I)

(NI)2
+nLδC−S+

5

2
.

Lemma 3.4 ([5, Lemma 5]). Define for any x > 1, RC(x) :=MCRχ(x). Then

RC(x) =

∫ x

0
log udu−S

∫ x+1

1
log udu+δC

nL
2

[
log(x2−1)+x log

(x+1

x−1

)]
.

Lemma 3.5 ([5, Lemma 10]). Assume GRH. Then∑
ρ∈Z

1

|ρ(ρ+1)|
≤ 0.5375log ∆L−1.0355nL+5.3879−0.2635r1(L).

We finally prove three technical lemmas.

Lemma 3.6. Assume GRH. Then

MCrχ ≤ 1.075log ∆L−1.571nL+13.276.
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Proof. By Lemma 3.3, we have

MCrχ ≤ 2
∑
ρ∈Z

1

|ρ(2−ρ)|
+nLδC−S+

5

2
.

A brief check shows that nLδC−S ≤ r2(L) ≤ 1
2nL. Moreover, |ρ(2−ρ)| = |ρ(ρ+1)|, thus

Lemma 3.5 applies here and the result follows. �

Lemma 3.7. We have

−MCr
′
χ ≤ log ∆L.

Proof. As a consequence of (3.8), we have

−MCr
′
χ =MC

L′

L
(2, χ̄)+MC logQ(χ)−nE

(
log π−1

2

Γ′

Γ

(3

2

)
−1

2

Γ′

Γ
(1)
)
MC1.

Letting C1 to be the class of g−1, we see from (2.2) that

MC
L′

L
(2, χ̄) = −|G|

|C|
K(C1; 2)

which, by definition of K, is a negative real. Moreover,

|MC logQ(χ)| = |
∑
χ

χ̄(g) logQ(χ)| ≤
∑
χ

logQ(χ) = log ∆L,

by the product formula for conductors. The result follows because nEMC1 = nLδC ≥ 0 and
log π−1

2
Γ′

Γ

(
3
2

)
−1

2
Γ′

Γ (1) = 1.41 . . . is positive. �

Lemma 3.8. If L 6= Q, for any x > 1,

−RC(x) ≤ (nL−1)

∫ x+1

1
log u du.

Proof. Consider the formula for RC(x) given in Lemma 3.4. When r2(L) ≥ 1 we have S ≤
r1(L)+r2(L) = nL−r2(L) ≤ nL−1 producing

−RC(x) ≤ S

∫ x+1

1
log udu ≤ (nL−1)

∫ x+1

1
log udu.

On the other hand, if r2(L) = 0 then when δC = 0 we have S = 0 and RC(x) > 0, while if
δC = 1 we have S = r1(L) = nL, nL

2 δC ≥ 1 because L 6= Q, and

−RC(x) ≤ nL
∫ x+1

1
log u du−

∫ x

0
log udu−

[
log(x2−1)+x log

(x+1

x−1

)]
= (nL−1)

∫ x+1

1
log udu−log(x−1)−x log

( x

x−1

)
≤ (nL−1)

∫ x+1

1
log udu. �

4. Proof of the theorem

When L = Q the claim follows easily by Chebyshev’s bound π(x) ≥ x
2 log x . For the next

computations we assume L 6= Q.

Lemma 4.1. Let x ≥ 400 and y > 0, then

(x−y) log y ≤ x(log x−log(2 log x)).
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Proof. Let fx(y) := (x−y) log y. Its maximum is attained at a unique point y0(x) ∈ (1, x),
with y0(log y0+1) = x. The formula shows that y0 grows as a function of x. A simple
computation shows that

fx(y0)

x
−log x+log log x = g(1+log y0),

where

g(z) := log
(

1+
log z−1

z

)
+

1

z
−1.

This function decreases for z ≥ e and is lower than − log 2 when z ≥ 5.3193. Since
5.3193e4.3193 = 399.67 . . ., the claim is proved. �

Let aC(n) := ]{p : p unramified ,
[L/K

p

]
= C, Np = n} and let also

ϑC(x) :=
∑
p

p non-ram.
Np≤x

εC

([L/K
p

])
log Np =

∑
n≤x

aC(n) log n, ϑ
(1)
C (x) :=

∫ x

0
ϑC(t) dt.

Then, by Lemma 4.1, for x ≥ 400,

ϑ
(1)
C (x) =

∑
n≤x

aC(n)(x−n) log n ≤ x(log x−log(2 log x))
∑
n≤x

aC(n)

= πC(x)x(log x−log(2 log x)).(4.1)

Now we produce a lower bound for ϑ
(1)
C (x) out of a lower bound for ψ(1)(C;x).

To ease the notation we set gc := |G|/|C| and observe that this is a positive integer.
By (2.4), (3.10) and Lemma 3.2, we get

gcψ
(1)(C;x) =MCIχ(x) =

x2

2
−
∑
ρ∈Z

ε(ρ)
xρ+1

ρ(ρ+1)
−xMCrχ+MCr

′
χ+RC(x)

which with the GRH assumption yields

x2

2
−gcψ(1)(C;x) ≤ x3/2

∑
ρ∈Z

1

|ρ(ρ+1)|
+xMCrχ−MCr

′
χ−RC(x).

With Lemmas 3.5–3.8, this gives

x2

2
−gcψ(1)(C;x) ≤ (0.5375(x3/2+2x)+1)log ∆L+x3/2(5.4−1.0355nL)

+
(∫ x+1

1
log udu−1.571x

)
nL+13.276x−

∫ x+1

1
log udu.

When x ≥ 400 the term in nL appearing in the last line is bounded by nLx(log x−2.55) and
the sum of the last two terms by 8.3x. We further simplify their contribution noticing that

nLx(log x−2.55)+8.3x = nLx(log x−2.4)−0.15nLx+8.3x ≤ nLx log x−2.4xnL+8x,

where in the last step we used that nL ≥ 2. We thus have

x2

2
−gcψ(1)(C;x) ≤(0.5375(x3/2+2x)+1)log ∆L+x3/2(5.4−1.0355nL)

+nLx log x−2.4nLx+8x.
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Now we remove the contribution to ψ(1)(C;x) of the prime powers pm with m ≥ 2. Let

ϑ(C;x) :=
∑
p⊂OK
Np≤x

θ(C; p) log(Np), ϑ(1)(C;x) :=

∫ x

0
ϑ(C; t) dt.

The estimation in [13, Th. 13] gives 0 ≤ ψ(1)(C;x)−ϑ(1)(C;x) ≤ 1.432
3x

3/2nK. Thus

x2

2
−gcϑ(1)(C;x) ≤(0.5375x3/2+1.075x+1)log ∆L

+x3/2(5.4−0.082nL)+nLx log x−2.4nLx+8x

which simplifies to

(4.2)
x2

2
−gcϑ(1)(C;x) ≤ (0.5375x3/2+1.075x+1)log ∆L+2nLx+5.4x3/2+8x,

because (−0.082x3/2+x log x−2.4x)/x has a maximum at x = (2/0.082)2 = 594.88 . . . where
it is lower that 2. The quantities ϑ(C;x) and ϑC(x) differ only by the contribution of the
ramified prime ideals to ϑ(C;x). In fact,

0 ≤ ϑ(C;x)−ϑC(x) ≤
∑
p

p ram.
Np≤x

log Np ≤
∑

p ram.

log Np ≤ log(N∆L/K) ≤ log ∆L.

Hence,

0 ≤ ϑ(1)(C;x)−ϑ(1)
C (x) ≤ (x−1)log ∆L,

which with (4.2) gives

(4.3)
x2

2
−gcϑ(1)

C (x) ≤ (0.5375x3/2+gcx+1.075x)log ∆L+2nLx+5.4x3/2+8x.

By (4.1) and (4.3), in order to have πC(x) > k it is sufficient to have

x2

2
> (0.5375x3/2+gcx+1.075x)log ∆L+2nLx+5.4x3/2+8x+kgcx(log x−log(2 log x)),

i.e.

(4.4)
√
x >

(
1.075+

2gc+2.15√
x

)
log ∆L+4

nL√
x

+10.8+
16√
x

+2kgc
log x−log(2 log x)√

x

which is true when √
x = 1.075log ∆L+

√
2gck log(gck)+2gc+15.

Proof. Let
A := 1.075log ∆L+2gc+15

and

B :=
(

1.075+
2gc+2.15√

x

)
log ∆L+4

nL√
x

+10.8+
16√
x
.

To show that (4.4) holds with the indicated value of x, it is sufficient to prove

(4.5) A+
√

2gck log(gck) > B+2kgc
log x−log(2 log x)√

x
.

We have

(A−B−1)
√
x = (2gc+3.2)

√
x−((2gc+2.15)log ∆L+4nL+16) ≥ 1.4log ∆L−4nL+72
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which is positive, according to entry b = 4 in [11, Table 3]. Since A−B > 1, our claim will
hold if √

2gck log(gck)+1 ≥ 2gck
log x−log(2 log x)√

x
,

i.e. k = 0 or

(4.6)

√
log y√
2y

+
1

2y
≥ log x−log(2 log x)√

x
,

where y := gck ≥ 1. The right-hand side decreases if x ≥ 30 hence is at most 0.2 and the
left-hand side is larger than 0.2 for 1 ≤ y ≤ 120. We thus assume y ≥ 120, and in that case
x ≥ 2y log y ≥ 30, hence (4.6) holds if

√
log y√
2y
≥ log(2y log y)−log(2 log(2y log y))√

2y log y

i.e.
log y ≥ log(2y log y)−log(2 log(2y log y))

which is obviously true in this range. �

This proves the claim under the assumption that x ≥ 400. The exceptions to this condition
are the cases where

1.075log ∆L+
√

2gck log(gck)+2gc+15 < 20

and this happens only when gc = 1, ∆L ≤ 16 and k ≤ 2.
For these remaining cases we check directly the existence of the corresponding ideals. We
observe that gc = |G|/|C| = 1 if and only if |G| = 1 and hence L = K. Moreover, ∆L ≤ 16
implies nL ≤ 2. Hence it is sufficient to check that, in quadratic fields, there are at least three
ideals of norm at most

⌊
(1.075 log 3+17)2

⌋
= 330. They exist because the primes above 2, 3

and 5 have norm at most 25.
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