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ABSTRACT
The Retinex image �ltering algorithms have been inspired by ex-
perimental �ndings on the behavior of the Human Vision Sys-
tem. They are known to locally adjust image color and contrast
by preserving edges and attenuating gradients. In a reference for-
mulation of the algorithm by Land and McCann, edge preservation
and gradient attenuation are granted by two ad-hoc mechanisms:
called respectively reset (the distinctive feature of all the Retinex
algorithms) and thresholding. A somehow unanticipated �nding is
that gradient attenuation is also observed with algorithm variants
that do not include the latter mechanism, which was explicitly de-
vised to implement gradient attenuation. In this work, we provide
an analytic demonstration of the capability of Retinex models to
attenuate gradients using only the "reset" mechanism, combined
with the local character of the mutual pixel in�uences. We show
that this capability is an emergent property of all the reset-based
Retinex models.

CCS CONCEPTS
• Applied computing → Imaging.

KEYWORDS
Retinex models; Reset mechanism; Thresholding mechanism; Gra-
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1 INTRODUCTION
The Spatial Color Algorithms (SCA) [26] family, for which Retinex
is the founding model, is a group of algorithms inspired by the
Human Vision System (HVS), built on the principle – suggested
by experimental observations – that the color sensation at a point
is not determined simply by the color stimulus at that point, but
rather by the relationship between that stimulus and a wider set of
stimuli, ranging from the surrounding area to the rest of the image.
The algorithms of this family di�er from one another mainly in
the mechanisms by which the information from the surrounding
is selected, and aggregated to yield the output color.

The Retinex algorithm in [10] – the earliest model of the family
– has originated many close variants [2, 3, 8, 9, 11, 13–15, 17, 18,
20, 21, 23, 24, 28–30, 32], some of which focus on the way to select
and use the neighboring pixels [4–7, 12, 31].

In the original Retinex [20] and the Milano Retinex family [22,
28] (a detailed description of their di�erences can be found in [19,
27]), the information from the surrounding is collected by statis-
tical sampling – the samples are typically paths [14–17] or sprays
[1, 23]) – then sample-wise compared to the center/target pixel
using an operator called reset, which in the simplest cases corre-
sponds to the "max" operator (more details in the following sec-
tions). The reset outputs a value, which represents the contribution
of that particular sample.

The output at a target pixel is obtained (in each chromatic chan-
nel) by re-scaling the input with respect to a reference white, com-
puted as the harmonic average of the di�erent samples’ contri-
butions. On the one hand, the detailed de�nition of the sampling
mechanism controls the intensity of the in�uence of the pixels at
di�erent distances from the target pixel and determines how much
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local the resulting �ltering will be, on the other hand, the reset
grants edge preservation.

Along with edge preservation, also gradient attenuation had
been observed in perceptual experiments [17]: this observation
prompted Land and McCann, in their seminal paper [10], to in-
troduce an additional ad-hoc mechanism for smooth gradient sup-
pression – called thresholding. The thresholding, was also meant
to render the �nite sensitivity of the HVS to intensity di�erences
of contiguous pixels, which was regarded as the main cause of the
perceived gradient attenuation.

To some surprise, even turning o� the thresholding – i.e. us-
ing only the reset mechanism – gradients turned out to be attenu-
ated. In fact, this e�ect can be appreciated in all the versions of the
reset-based Retinex algorithms, even in those that, by construc-
tion, cannot embody any form of thresholding (such as RSR [23]).
This �nding was unanticipated, since the core mechanism – the
reset – was devised to preserve edges, at the same time rescaling
w.r.t. local maxima, but was not built for gradient attenuation.

The present work aims at bringing some clari�cation to this
puzzle. We demonstrate analytically that the reset mechanism, com-
bined with the locality of the pixel in�uence does, indeed, cause
gradient attenuation. In other words, we prove that gradient at-
tenuation is an emergent property of reset-based Retinex models
(the emergent character of the e�ect is discussed at the end of the
paper).

To this purpose, we examine a sequence of Spatial Color Algo-
rithms of increasing complexity: �rst we recall the de�nition of
the main Retinex mechanisms and show how they are realized in
the di�erent Retinex variants (Section 2), then (Section 3) we fo-
cus on gradient attenuation: �rst, using a stylized algorithm (Local
Scale-to-Max), we demonstrate analytically how reset and locality,
combined, yield gradient attenuation (Subsection 3.1) and indicate
how the same combination of mechanisms can explain gradient
attenuation in all the Retinex algorithms based only on the reset
(i.e. without thresholding) (Subsection 3.2). A discussion of gradi-
ent attenuation as an emergent property of the model (Section 4)
concludes the paper.

2 RETINEX AND THE SPATIAL COLOR
ALGORITHMS

2.1 The de�ning mechanisms of retinex
To recall the de�ning Retinex mechanisms, we use the path-based
Retinex. Consider a path γ taken from the collection of all the pos-
sible oriented paths to x : it de�nes an ordered list of pixels from
the image. Let us denote by t the step count and indicate by rt the
ratio of the intensities i(xt ) and i(xt−1) of two consecutive pixels

along the path: for t > 0 rt ≡
i(xt )

i(xt−1)
. By convention r0 ≡ 1. If the

pixel at step t is darker than the one at (t − 1), then r0 < 1.

2.1.1 Thresholding. The threshold mechanism is introduced by me-
ans of a threshold function θ (ϵ )(·), de�ned for s ∈ R by

θ (ϵ )(s) ≡

{
1 i f (1 − ϵ) < s < (1 + ϵ)

s otherwise
(1)

where ϵ > 0 is a parameter of the model. This operator �lters out
smooth intensity changes, but preserves sharper intensity changes,
e.g. edges.

2.1.2 Reset. The reset mechanism is introduced through a "cap"
function ρ(·)

ρ(s) ≡

{
s i f s < 1

1 otherwise
(2)

The contribution of each path is computed by means of a compos-
ite function of the path-ordered intensities, which, at every step,
applies the threshold function to the current intensity ratio and
then the reset �lter to the chain product of ratios; such a function
is de�ned recursively as follows:

C(ϵ )(t) ≡

{
1 f or t = 0

ρ
(
θ (ϵ ) ( rt ) ×C(t − 1)

)
f or 1 ≤ t ≤ n

The contribution by a path to the target pixel x is de�ned as the
value at the last stepC(ϵ )(n) (at which it gets to x ). The output o(x)
at a pixel x is computed, in Milano Retinex, by averaging those
contributions over a large set of paths.

It can be easily shown that switching o� the thresholding mech-
anism (setting ϵ = 0) is equivalent to computing the maximum of
a path and to compute the output as the input times the harmonic
average of the collection of maxima. Most variants of Retinex drop
the thresholding and use only the reset, thus, in fact, compute the
output by harmonic averaging the maxima of their samples.

2.2 Stylized algorithms: Scale-to-Max and Local
Scale-to-Max

Hereafter we represent the input gray-scale image by the function
i : x ∈ X → i(x), de�ned on the support X , and the output image
by o : x ∈ X → o(x).

2.2.1 Scale-to-Max. The algorithm Scale-to-Max is a simple algo-
rithm, which rescales the input using, as a single reference white,
the brightness of the brightest pixel from those forming the im-
age; it is also known as von Kries �lter [25, 33]. In Scale-to-Max
the �ltered output image o at any point x0 is computed as

o(x0) =
i(x0)

max{i(x)}x ∈X
=

i(x0)
imax
X

Since X is the whole image support, the algorithm uses a global
�ltering criterion.

2.2.2 Local Scale-to-Max. The algorithm Local Scale-to-Max in-
troduces some locality in the correction: the input is rescaled us-
ing as reference white the value of the brightest pixel in a circular
neighborhood, for a prede�ned radius ∆. The �ltered output image
o at any point x0 is computed as

o(x0) =
i(x0)

max{i(x)}x ∈Ω∆(x0)
=

i(x0)
imax
Ω

with Ω(x0) = {x ∈ X : |x − x0 | < ∆}, for a �xed radius ∆ > 0
shorter than the image diagonal. Clearly, this algorithm uses a local
�ltering criterion.

This is considered a stylized or toy algorithm because it does not
provide a satisfactory �ltering: the sharp boundary between the
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neighboring region Ω and its complement can create, in the vicin-
ity of the brightest areas, abrupt changes in the reference white
and determine the formation of artifacts. However, this algorithm
comprises all the qualitative traits necessary for deriving the ana-
lytical form of the gradient attenuation, as we are going to show
in Section 3.

Notice that both Scale-to-Max and Local Scale-to-Max use all
the pixel of a given area to �nd the reference white: the former
considers all the pixels of the whole image support X , while the
latter considers all the pixels of the neighborhood region Ω∆(x0)
of the pixel at x0. The algorithms described below, on the contrary
use a subset of pixels from X chosen by statistical sampling.

2.3 Sampling Retinex algorithms using only
the reset mechanisms

Most Retinex algorithms use samples to explore the neighborhood
of a point: those point sets are obtained typically by random paths
or by generating isotropic samples of points (the so-called sprays)
around the target pixel. The typical structure of the sampling-based
algorithms of the Milano Retinex family, for computing the output
o(x0) at a target point x0 is the following. Generate a sample of
points near the target; collect their intensities into a set S ; add the
pixel intensity i(x0) to the set, obtaining an augmented sample S∗.
At this point the algorithms that do not implement the thresholding
�nd the maximum intensity of S∗, i.e. imax

S ≡ max{i(x0),max{i ∈
S}} and use it as the contribution by S ; the operation is repeated
for many samples S and eventually the harmonic average is taken
as reference white. Overall

o(x0) = i(x0)

〈
1

imax
S

〉

where 〈·〉 denotes the average over the samples, i.e. for a number
N of samples

〈
1

imax

〉

=
1
N

∑

S

1
imax
S

The number N of samples is determined so as to provide a reason-
able exploration of all the starting regions in the image and to grant
that the �nal correction is a�ected as little as possible by statistical
noise.1

Notice, for future reference, that this statistical process can be
interpreted as the computation of the sampling average of the re-
ciprocal of the maximum.

2.3.1 Path-based Milano Retinex. In its standard de�nition [22],
the path-based Milano Retinex collects the samples in the follow-
ing way. One generates starting points uniformly at random over
the image, then generates a memoryless random walk γ over the
set of pixels until it meets the target x0: at that point, it stops, and
the maximum intensity is used as imax

γ for that sample. Many path-
based variants are based on this one [13].

1Statistical noise becomes perceivable when nearby pixels with similar intensities
i ′and i ′′ yield remarkably di�erent outputs o′ and o′′, due to the di�erence in the
sample collection: the set of maximum intensities found by the collection of N samples
for i ′ is so di�erent from the set maximum intensities found by the collection of N
samples for i ′′, that the harmonic averages are sensitively di�erent.

2.3.2 Random Spray Retinex (RSR). To reduce the computational
e�ort and the redundancy in the samples collected using paths, a
version of Milano Retinex called Random Spray Retinex or RSR has
been devised [23]. In this algorithm, each sample consists of a set
of points collected randomly around the target x0 according to a
decreasing sampling density. The set of points is called spray. The
number n of points in the spray and the number N of sprays are
parameters that can be tuned to reduce as much as possible statis-
tical noise. A version of this algorithm based on fuzzy set theory
was also created to further reduce the computational cost [7].

2.4 Algorithms based on probabilistic models
of sampling

To remove completely the statistical noise generated by the sam-
pling based algorithms, some algorithms have been devised, which
modeled the sampling as a probabilistic process [4–6, 8]: in those
algorithms the averages are not estimated statistically, but com-
puted exactly, based on a probabilistic model.

2.4.1 QBRIX. The simplest Retinex probabilistic modeling algo-
rithm is QBRIX, short for Quantile-Based Retinex [6]. The starting
observation for the construction of QBRIX is that when comput-
ing the sampling average of the reciprocal of the max of a distribu-
tion one obtains a high order quantile of the distribution. Conse-
quently, in place of proceeding by sampling, one can resort to the
construction of the intensity histogram and proceed directly to the
computation of a high-order quartile. As the parameters in other
algorithms (such as the number n of points in a spray for RSR) the
quantile order q can be tuned based on the image characteristics.
The intensity histogram can be built using all the pixels from the
whole image, with the same weight (Global QBRIX), or changing
the weights of each point falling into the histogram, based on its
distance from the target pixel, as in RSR (Local QBRIX).

The prescription for the global version of QBRIX is the follow-
ing. Create an histogram f (i) containing the intensities i(x) for
x ∈ X ; consider its cumulative F (i); compute the (pseudo)-inverse
of the cumulative i.e. the quantile function2 iq ≡ F (−1)(q) = {i :
F (i) = q}. Once found iq , if i(x0) < iq set

o(x0) =
i(x0)
iq

Set o(x0) = 1 elsewhere (set to white every value above the refer-
ence quantile).

2.4.2 Local QBRIX. In the local version, the histogram is built with
reference to the target point x0, using a weight function λ(|x −x0 |)
decreasing with the distance, such as h(|x − x0 |) ∝ (x − x0)−2,
to weight each histogram entry. Thus the reference quantile for a
pixel strongly depends on the closer neighborhood. Denoting by
iλq (x0) such local quantile reference one can compute the output as

o(x0) =
i(x0)

iλq (x0)

if i(x0) < iλq (x0), and set i(x0) = 1 elsewhere.

2The pre-image of q can be a set of intensities, however, using in advance a suitable
regularization of F one can get always a single intensity as iq .
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2.4.3 RSR-P and ReMark. The full-�edged probabilistic version of
RSR is RSR-P [5]: it models, step by step, the probabilistic processes
at work in RSR and it computes the sampling average the whole
set of pixels.

Similarly, ReMark [8] represents the probabilistic version of the
path-based Milano Retinex. The model relies on the computation
of probability �uxes with suitable Absorbing Markov Chains. The
computations necessary to generate the output are rather involved,
requiring the repeated solution of large linear systems.

Although the two models do not allow in general closed-form
analytic computations, they are often reasonably well approximated
by QBRIX: in some simple cases, both RSR-P and ReMark coincide
with Local QBRIX, for a suitable value of q [5]. This is precisely
the case of the gradient images used in the following section.

3 GRADIENT ATTENUATION
Here we model analytically the mechanism of gradient attenuation
that is originated by the reset mechanism in various algorithms.

3.1 E�ect of Local Scale-to-Max on a gradient
In the local version of Scale-to-Max one can see two stylized ver-
sions of the mechanisms that are at work in the reset-based Retinex
models:

1) a rescaling qualitatively similar to the one produced by the
reset mechanism (based on the max over a full area, instead
of the max over a sample) and

2) the locality of the correction algorithm (the max is com-
puted for an area within a given radius from the target pixel,
rather than by using all the pixels and a distance-dependent
weight).

Consider a simple input image i(x ,y) = i(x) consisting in a ramp
of slope α , over an interval [xmin ,xmax ] of the spatial variable x
(we disregard, here the spatial variable y, that has no in�uence on
the output):

i(x) = c + αx

where c can be any non-negative constant. Let the range ∆, spec-
ifying the radius of the neighborhood Ω, be given. The maximum
in the neighborhood of a target point x0 is – due to monotonicity
of the ramp – at x0 +∆ and has value imax

Ω = i(x0 +∆) = i(x0)+α∆
(provided that x0 is far enough from the border). Thus the output
at x for this special image (provided that x ≤ (xmax − ∆)) is

o(x) =
i(x)

i(x) + α∆
=

1

1 + α∆
i(x )

=
1

1 + ∆
(c/α )+x

The key observation of the present discussion is the following: for
(c/α )+x high w.r.t. to ∆, this function tends to a horizontal line. The
mechanism is described with an even simpler function in Figure 1,
while the e�ect on a gradient image is shown in Figure 2.

3.2 E�ect of other Retinex algorithms on a
gradient image

We discuss the gradient reduction capability of the other algo-
rithms – introduced in the previous section – without using ana-
lytical tools: the analytic treatment of their e�ect on a simple slope
function is possible but rather involved due to unavoidable border

e�ects. Indeed the weight functions involved in RSR, RSR-P, and
QBRIX have radial symmetry, while the input image is rectangu-
lar. However, the qualitative behavior of those algorithms can be
inferred by the salient characteristics of their de�nitions.

3.2.1 Local QBRIX. The e�ect of Local QBRIX on a gradient is
very similar to the one of Local Scale-to-Max. This is a conse-
quence of the regularity of the slope input function i(x) = c + αx .

Computing the output of Local QBRIX amounts to building a
pixel-speci�c histogram of the weighted intensities in the image –
the weight function being a decreasing function h of the distance
from the target pixel – then picking the q-quantile (of a high order
q) of such an histogram: the intensity iλq (x0), to compute the output

o(x0) = i(x0)/iλq (x0).
Thanks to the regularity of the input image i(x) – given a x0

su�ciently far from the border, the translation of x0 by a small dis-
placement δ toward the right causes the translation of the iλq (x0)
by an amount approximately equal to αδ . Despite this approxi-
mation, the reference white iλq (x0) translates almost rigidly with
the reference point intensity: an e�ect that in Local Scale-to-Max
was able to produce gradient attenuation. Thus, also Local QBRIX
causes gradient attenuation.

3.2.2 RSR-P and RSR. By construction, Local QBRIX is an approx-
imation of RSR-P [5], which in turn is the probabilistic model of the
process enacted by RSR. The main di�erence lies in the fact that
QBRIX uses a �xed quantile order q for all the image, whereas the
intensity identi�ed by RSR-P as a reference white corresponds in
general to a di�erent quantile for every pixel.

In the case of a slope function however the relative distribution
of the intensities with respect to the target pixel intensity is (dis-
regarding border e�ects) homogeneous over the image: in other
words, all the pixel-speci�c histograms have the same shape (even
if they are translated w.r.t. one another). So, every reference iden-
ti�ed by RSR-P corresponds to the same quantile value q for the
pixel-speci�c histogram. In short: for the gradient image, Local
QBRIX coincides with RSR-P. It follows that RSR-P causes natu-
rally gradient attenuation, and that so does RSR.

3.2.3 ReMark and Path-based Milano Retinex. RSR was built as an
approximation of the Path-based Milano Retinex (version without
thresholding). It follows that the respective probabilistic versions
are approximations of one another, i.e. RSR-P is an approximation
of ReMark.

The points forming the sprays were intended as an approxima-
tion of the sample of points visited by a path (typically a memory-
less random walk): the spray is less redundant, thus more compu-
tationally e�cient.

The main qualitative di�erence between the sprays and the paths,
in terms of information carried to the target pixel, is the following.
A path, in order to go from one point to the target pixel, has to
visit a chain of pixels crossing the region in between, so every in-
formation from a far region is necessarily mediated by information
of intermediate regions. If there is a tiny bright region close to the
target – let us call this region a geometric "barrier" – by crossing
it, the path will discard the information it carries from farther re-
gions, due to the reset mechanism (it will start carrying the new
maximum brightness of this "barrier"). On the contrary, the sprays
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(0, 0) x

i(x)

α

o(x0) = i(x0)
i(x0)+α∆ = 1

1+α∆
x

i(x0)

x0 x0 + ∆

∆

Ω

maxx∈Ω(i(x)) = i(x0 + ∆) = i(x0) + α∆

Figure 1: Illustration of the e�ect of Scale-to-Max on a slope with constant gradient α .

0 20 40 60 80 100
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250

i(x)
w(x)
o(x)

o(x)

i(x)

Figure 2: Scan-lines and images illustrating the e�ect of Scale-to-Max on a slope with constant gradient α . Left: at the bottom,
the input (blue line), just above, the reference white level (green line), at the top, the output (red line). We used an image
rescaled in the interval i ∈ [0, 255] and [xmin ,xmax ] = [0, 100] The expression for the output holds up to x ≤ xmax − ∆, then
border e�ects set up. Right: at the bottom, the input image, at the top, the output image. One can notice that, except for the
region with border e�ects, the slope of the output is considerably reduced w.r.t. the one in the input.

sample all the points of the surrounding and a bright region has
a probability of being sampled and becoming the maximum only
proportional to its extension: sprays can "�y over barriers". This
is just an example: in general, the paths are more sensitives to the
asperities of the brightness landscape.

In the case of the gradient image, however, there are no barriers,
and no asperities at all, therefore the qualitative behavior of spray
sampling and memoryless random walk sampling are very simi-
lar. Other minor qualitative di�erences, between paths and sprays,
materialize only on landscapes endowed at least by some mini-
mal complexity, while they disappear if the image is de�ned by a
linearly increasing function. In short, on the gradient image, RSR
and RSR-P are good approximations of Path-based Milano Retinex
(without thresholding) and ReMark, respectively. It follows that
also the latter two algorithms are endowed with gradient attenua-
tion capabilities.

4 DISCUSSION AND CONCLUSIONS
We have shown that gradient attenuation is an intrinsic property
of the reset-based Retinex algorithms, that arises even in the ab-
sence of the ad-hoc thresholding mechanism. This turns out to be
an emergent property of the Retinex algorithms. Here we use the

term "microscopic" for the path-level (or spray level) description of
the mechanisms, and the term "macroscopic" for the whole-image
level description of the e�ects. This allows us to speak of reduc-
tionist properties to indicate those present at a microscopic level
and preserved at the macroscopic level and to speak of emergent
properties to indicate those that are properties of the operation of
the algorithm at the macroscopic level, but are not of the algorithm
at the microscopic level. It is apparent that while edge preservation
can be obtained by a reductionist approach by means of the reset
mechanism, gradient suppression is an emergent property of the
algorithm. The path-wise reset mechanism results in the discovery
of "jumps" in the reference white at "microscopic" level, that are
preserved by the subsequent averaging at the macroscopic level.
On the other hand, gradient attenuation is an emergent property
born because it arises from the combination of two mechanisms:
the reset mechanism and of the locality of the in�uence between
pixels, determined by the sampling mechanism.

A last clari�cation: as to the thresholding mechanisms, even if
it is not essential for gradient attenuation, it is an e�ective mech-
anism (as shown already in [22] page 2617 Fig 1) and one can use
it to attenuate small gradients. The gradient attenuation property
determined by reset and locality, on the contrary, operates on all
(small and large) gradients.
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