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Abstract 

This work contributes significantly to previous research on the relationship between specific features 

of a regional knowledge space and the technological progress of the region. In particular, the main 

element of originality of this work is to have singled out the determinants of the technological 

progress intensity and relevance. We acknowledge the importance of knowledge assets for new 

knowledge production, and we identify path-dependent processes that allow a region to become 

increasingly competitive in terms of innovation potential. In particular, adopting an evolutionary view 

of regional development, we describe the regional knowledge space through four crucial 

characteristics: 1) technological knowledge base, 2) technological cumulativeness, 3) technological 

diversification, and 4) technological relatedness. We then measure to what extent each of the 

knowledge space’s characteristics differently affects the technological progress intensity and 

relevance of the region. A longitudinal study of 269 European regions over the period 1996-2012 was 

organized using data from REGPAT and Eurostat databases. Results show that technological 

relatedness affects positively both the intensity and relevance of the technological progress of 

European regions and that the other components of the knowledge space show a different impact on 

the two features of the technological progress. Finally, implications for EU policies supporting and 

stimulating regional technological progress are discussed. 
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1. Introduction 
 

Over the last ten years, the role of knowledge in fostering regional development and technological 

progress has been of particular interest for European policy makers, as well expressed in the Lisbon 

Agenda in 2005, and in the most recent Europe 2020 strategy, where actions are planned to “improve 

the conditions for innovation, research and development” (EUCO, 2010). The objective is to sustain 

in Europe a dynamic knowledge-based economy, based on the production and use of advanced 

technologies (EC, 2010). 

From a theoretical point of view, many authors have applied the endogenous growth theory to the 

understanding of the drivers of subnational economic development, either at the city or the regional 

level (Cheshire and Magrini 2000; MacKinnon et al. 2002; Acs and Armington 2004; Harrison 2006, 

2007; Button 2011; Stimson et al. 2011; Plummer et al. 2014). In this article we depart from studies 

that focus on the importance of endogenous technological progress for growth (Romer 1990; Aghion 

et al. 1998), and concentrate on, among the various factors influencing technological progress, the 

role of regional knowledge space in shaping new knowledge production and innovation.  

Literature based on an evolutionary economics approach (Dosi 1982; Dosi et al. 1988), which 

underlines the main role of learning processes for understanding technological development, offers a 

fertile ground for further research at different levels of analysis (industry, firm, local system of 

production, region). The learning capacity of regions is anchored on the availability of specific 

regional assets for the production and dissemination of knowledge (Hudson, 1999). Since the 

competitive advantage of regions relies increasingly on knowledge assets and knowledge 

management, it is important to ask which factors provide the basis for being successful learners.  

Our first research question (RQ1) is as follows. What types of pre-existing knowledge are best suited 

for new knowledge creation in European regions? Some recent studies (Kogler et al. 2013; Tavassoli 

and Carbonara, 2014; Rigby, 2015; Castaldi et al., 2015; Miguelez and Moreno, 2017), grounded on 

the evolutionary economic geography theory, have tried to investigate the features of the knowledge 

produced within a region that improve the chance of knowledge recombination and new knowledge 

creation. In these contributions, the knowledge space is often approximated with measures of 

innovation input and output (such as R&D expenditures and patents). Main focus in the above cited 

literature is on the relatedness argument, disregarding other important aspects of the regional 

knowledge space, such as, for instance, the path dependent processes that shape the technological 

trajectories of regions. In this realm, it is important to underline that innovation activities have a 

strong cumulative nature (Feldman, 1994, Breschi, 2000). The literature on the technological regime 

(Malerba and Orsenigo, 1993; 1996; Lee and Kim, 2001), offers an important point of view to 
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understand how knowledge cumulativeness could influence the generation of new knowledge, thus 

opening up to a new set of indicators characterising the knowledge space. Our work aims at 

responding to this research question through an original perspective, which considers together the 

more common used indicators of technological relatedness, with less explored indicators of 

technological knowledge base and technological cumulativeness. 

The second research question (RQ2) pertains an evaluation of the output of the knowledge production 

process: which are the features of the knowledge space that are able to increase the intensity of the 

technological progress in European regions? Are these the same affecting the relevance of their 

technological progress? In the literature on regional innovation, the majority of studies focused on 

the innovation intensity, which is stock measure of innovation output (Acs et. al., 2002; Rigby, 2015, 

Paci and Usai, 2009). Recently some research works have devoted attention not only to innovation 

intensity, but also to the quality of the innovation output, in terms of type of innovation (radical vs. 

incremental - Castaldi et al. 2015) and technological impact (Jaffe and de Rassenfosse 2017; Miguelez 

and Moreno 2017) or technological importance (Nemet and Johnson, 2012; Benson and Magee, 

2012). We build upon these contributions, sharing the goal of increasing the understanding of 

differences in the determinants of general innovation and breakthrough innovations.  

By answering these research questions, this research work sheds light on the relative impact of the 

technological knowledge base and cumulativeness, the technological diversification and relatedness, 

on the capacity of regions not only to be innovative, but to be a high-quality innovator. Since existing 

research works on the topic adopt different units of analysis (European regions, US States, specific 

European Countries), thus not helping to compare the empirical evidence provided, due to the variety 

of capitalism (Hall and Soskice, 2003) and the cultural differences (Hofstede, 1984) arguments, the 

definition of a unified system of indicators useful to answer the RQs is crucial.  

In our work we take in consideration both the two measures of technological progress: innovation 

intensity (based on the number of patents), which is a stock measure of technological progress, and 

innovation relevance (based on the number of forward citations), which is a quality measure of 

technological progress. In more detail, the innovation relevance reflects the adoption and 

dissemination of innovations, mirroring the technological importance for subsequent technological 

developments and the economic value of innovations (Trajtenberg et al. 1990; Lanjouw and 

Schankerman 2004; Hall et al. 2005, Gambardella et al. 2008, Jaffe and de Rassenfosse 2017). 

The unit of analysis is the region, and the empirical setting is Europe. Theoretically grounded in the 

literature of evolutionary economic geography, this study adds to the debate on the drivers of 

technological progress by 1) accounting for the marginal effect of the different features of a regional 
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knowledge space, and 2) accounting for the two main features of the technological progress (intensity 

and relevance).  

The paper proceeds as follows. In Section 2 we review the literature on regional space and 

technological progress, focusing on features that are more likely to encourage technological progress 

at the regional level, and present the research hypotheses. In Section 3 we define the methodology 

and provide the empirical analysis. Results are shown in Section 4. Section 5 offers some concluding 

remarks. 

 

2. Theoretical framework and hypotheses 

According to recent economic geography studies, regions are a key unit of analysis for understanding 

the dynamics of learning and innovation (see the debate on regional innovation system and learning 

region: Asheim 1996; Cooke et al. 1997; Morgan 1997; Braczyk et al. 1998; Hassink 2001; Asheim 

and Gertler 2005; Iammarino 2005).  

The competitiveness of regions is based on innovation and on the capacity to understand, explore and 

exploit knowledge assets conducive to continuous technological progress. In this context, we are 

moving increasingly towards a knowledge-based economy in which knowledge is fundamental to 

enhancing productivity and economic value (Castells 1996; Cooke 2002) at regional and national 

level. With this in mind, it is important to understand how the accumulation of knowledge in a region 

can influence its capacity to produce new knowledge and thus lead to technological progress. Studies 

that focus on the role of knowledge in economic systems consider knowledge to be the most important 

strategic resource and learning the most important process (Lundvall and Johnson 1994). In particular, 

Lundvall and Johnson (1994) argue that know-how has become the key resource for firms in staying 

abreast of product and process innovation. Alongside this perspective, the literature on innovation 

highlights that the invention process is path-dependent, since the inventions that come before 

influence those coming after (Jaffe and de Rassenfosse 2017) and pays attention to the role of previous 

knowledge in leveraging incremental (Bierly and Chakrabarti 1996; DeCarolis and Deeds 1999) and 

radical innovation (Hill and Rothaermel 2003; Miller et al. 2007; Zhou and Li 2012). 

Nevertheless, not all types of pre-existing knowledge are equally distributed and successfully 

combined to contribute to technological progress; therefore, the aim of this paper is to investigate 

how different characteristics of the regional knowledge space (technological knowledge base, 

technological cumulativeness, technological diversification, and technological relatedness) could 

impact on the technological progress in terms of innovation intensity and relevance. 

 



5 
 

2.1 Technological knowledge base and technological progress 

The accumulation of technological knowledge creates increasing returns in scale in many contexts 

(Grossman and Helpman 1990); thus, a region with a consistent base of technological knowledge 

has a better chance of activating learning processes that will increase the capacity to produce new 

technological knowledge than regions without a consistent base (Arthur 1996). Moreover, 

technological innovation is commonly understood to be a cumulative process in which most new 

artefacts are being invented by recombining existing technologies in a new manner (Arthur 2007, 

Tria et al. 2014; Castaldi et al. 2015). Consequently, the stock of knowledge accumulated in a 

region increases its future invention/innovation capacity. It follows that the size of the knowledge 

base is related to the region’s technological change (Ahuja and Katila 2001; Fleming 2001). Smith 

et al. (2005) point out that existing knowledge influences the extent to which new knowledge is 

created, and new knowledge that is created in turn becomes part of the knowledge stock. A 

dynamic and self-reinforcing system of knowledge production is in place. The accumulation of 

knowledge leads to improved performance in terms of technological progress, giving rise to a sort 

of Matthew effect, in which “the rich get richer” (Merton 1988); that is, regions with a larger 

knowledge base are more likely than those with a smaller knowledge base to produce new 

knowledge and to maintain their status of being rich in knowledge assets. A higher innovation 

potential is typically joined by a larger organizational and institutional thickness of the regional 

innovation system, able to provide better infrastructures and research support for knowledge 

transfer, knowledge spillovers and innovation process (Asheim et al. 2011). This leads to the 

articulation of our first baseline hypothesis. 

Hypothesis 1a: The size of the technological knowledge base positively affects the intensity of 

the technological progress of regions. 

The relationship between the size of the technological knowledge base and the regional innovation 

relevance is not clearly defined in the literature. Some authors highlighted the absence of a significant 

impact of the technological knowledge base on innovation relevance. More in details, analysing the 

relationship between level of R&D at the firm level and quality of patents from panel data on 

manufacturing firms in the US for the period 1980–93, Lanjouw and Schankerman (2004) did not 

find any significant correlation. Thus, suggesting that the magnitude of the innovative effort does not 

show any impact on the relevance of the technological progress of a region. Nevertheless, following 

a process of technological exhaustion, which could undermine the ability to reach for radically new 

technologies, it is likely to observe a negative impact of the size of the technological knowledge base 

on the relevance of the innovative output (Fleming, 2001). The assumption of bounded rationality 
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and local search (March, 1991) explains the tendency of inventors to recombine knowledge within a 

familiar set of technology components, or refine previous combinations, thus locking in the 

innovation process within an innovation pattern that is more oriented to the exploitation of local 

knowledge spaces rather than the exploration of distant knowledge spaces. Accordingly, inventive 

certainty is preferred to inventive uncertainty (Fleming, 2001), favouring a technological exhaustion 

process, where most of the possible relationships between a set of components have already been 

tried. These arguments lead to the formulation of our Hypothesis 1b: 

Hypothesis 1b: The size of the technological knowledge base negatively affects the relevance 

of the technological progress of regions. 

2.2. Technological cumulativeness and technological progress 

The generation of technological progress is linked to a region’s ability to explore, select and use 

existing knowledge. This ability is a specific feature of the regional technological regime (Malerba 

and Orsenigo, 1996), and is widely addressed by evolutionary literature as cumulativeness. The 

cumulativeness of technological advances is the degree to which new technology builds on existing 

technology (Nelson and Winter, 1982). Technological cumulativeness is related to the fact that one 

innovation can generate a stream of subsequent innovations that improves upon the original or creates 

new knowledge that is used for other innovations in related areas (Breschi, 2000; Breschi et al., 2000; 

Lee et al., 2017; Peneder, 2010, Malerba and Orsenigo, 1993). The process of knowledge selection, 

and the recombination of existing knowledge into new knowledge, become relevant steps in shaping 

the region’s potential for technological progress. Accordingly, the analysis of the knowledge sources 

used by the region is essential to determine the relative adoption of different technologies over time 

and influences the path of technological progress generated by any given invention (Banerjee and 

Cole 2010). Following a pre-existing trajectory could be easier, less expensive and resource saving, 

because of the use of capabilities that already exist and are well managed in the region. Therefore, 

the selection and recombination of a higher number of knowledge sources allows a wider knowledge 

pool, where each component can be recombined to create new knowledge and might lead to 

technological progress, especially in terms of innovation intensity. Building on the Schumpeterian 

tradition, and aligning with Malerba and Orsenigo (1996), Breschi et al. (2000), Lee and Lim (2001), 

we consider two main patterns of innovations: a creative destruction pattern, in which innovation are 

less related to previous innovations, and a creative accumulation pattern where innovations are highly 

related to previous innovations and could be interpreted as result of an exploitation process of pre-

existing technologies. In particular, our Hypothesis 2a refers to technological trajectories of regions 

dominated by Schumpeter Mark II technologies (Schumpeter, 1942), traditionally developed by scale 
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intensive firms (Pavitt, 1984) within routinized innovation regimes and high concentration of 

innovative activities especially related to the exploitation of existing technologies (Breschi et al., 

2000; Frenz and Prevezer, 2012, Lee et al. 2017; Peneder, 2010). In this context, the process of 

technological accumulation leads to augment the intensity of the technological progress.  

Hypothesis 2a: Technological cumulativeness positively affects the intensity of the 

technological progress of regions. 

In addition, the identification and measurement of which knowledge sources are recombined to create 

new knowledge can help to assess the degree of novelty of new inventions and may be informative 

of the intrinsic dynamics of the technological process. Trajtenberg et al. (1997) highlighted that more 

trivial inventions are more extensively rooted in what has come before, while more basic inventions 

are less incremental in nature and thus have fewer identifiable antecedents. Therefore, the size of the 

portfolio of knowledge sources, which a patent refers to, may signal that the innovation is more 

incremental in nature (Lanjouw and Schankerman 2004) and also mirrors the existence of a regional 

innovation strategy aimed at following the inventive trajectory to which it is tied to (Jaffe and de 

Rassenfosse 2017). 

Taking in consideration the regions dominated by Schumpeter Mark I technologies (Schumpeter, 

1934), characterised by creative firms that operate within a regime of low technological 

cumulativeness and by innovations that continuously disrupt the existing technological routines 

(Breschi et al., 2000; Frenz and Prevezer, 2012, Lee et al. 2017; Peneder, 2010) we expect that in this 

context regions might be able to produce more impactful and relevant innovations. Our Hypothesis 

2b thus follows. 

Hypothesis 2b: Technological cumulativeness negatively affects the relevance of the 

technological progress of regions. 

 

2.3. Technological diversification and technological progress 

Knowledge that is not oriented to new directions could lead to closure and increase the risk of lock-

in into a specific technological domain, allowing only the exploitation of existing knowledge. The 

exploration of new knowledge in different technological domains may open up new opportunities and 

expand the technological possibilities (Boschma and Lambooy 1999; Martin and Sunley 2006, 2010; 

Rosenzweig, 2017). Therefore, new knowledge is created predominantly by processes of 

recombination of knowledge from different technological classes, which represent different 

knowledge sources. These types of knowledge sources tend to be specific forms of scientific and 
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applied knowledge related to technology, markets and organizational aspects (Grillitsch et al. 2015). 

Regions accumulate know-how across a variety of disciplines and heterogeneous market domains 

through extensive processes of knowledge exploration (Prabhu et al. 2005). Processes of new 

knowledge creation and innovation in a region are influenced not only by the size of the technological 

knowledge base, but also, and maybe more importantly, by the diversification of this knowledge base 

(Audretsch and Vivarelli 1996; Saviotti 1996; Rodan and Galunic 2004; Frenken et al. 2007; 

Tavassoli and Carbonara 2014). The exposure to heterogeneous knowledge allows for new 

recombination opportunities and spillovers, which sustain the creativity of firms in the region, 

leveraging on their opportunity recognition and recombinant abilities, and boosting their capacity to 

develop new knowledge and innovation (Kogut and Zander 1992; Rodan and Galunic 2004). A 

diversified knowledge base is more likely to be conducive to novelties and expands regional learning 

capabilities, avoiding lock-in and path-dependent processes, which are particularly critical in case of 

external economic shocks (Sedita et al. 2017). Some studies have shown that regional knowledge 

heterogeneity influences positively knowledge creation and innovation performance (Jacobs 1969; 

Phene et al. 2006), providing opportunities for novel linkages and associations. The diversification 

of knowledge augments the selection opportunities and decreases the likelihood of technological 

dead-ends (Singh and Fleming 2010). Following this line of reasoning, a region that recombines 

broader pre-existing knowledge could be more inclined to create new knowledge and actively 

contribute to technological progress, in terms of innovation intensity, than a specialized region. 

Hypothesis 3a: Technological diversification positively affects the intensity of the technological 

progress of regions. 

Moreover, the recombination of widely diversified knowledge is likely to lead to impactful innovation 

(Benson and Magee 2012; Nemet and Johnson 2012), with high economic value (Fleming and 

Soreson 2004; Kaplan and Vakili 2015), which can lead to complete new operational principles, 

functionalities and applications (Fleming 2001; Saviotti and Frenken 2008; Castaldi et al. 2015). The 

combination of diverse technological components generates unique and thus genuine innovation (Van 

de Vrande 2013) that could enable further combinations (Nemet and Johnson 2012). A diversified 

knowledge base allows the combination of ideas that had not been brought together before, thus 

leading to increased innovation performance (Ahuja and Lampert 2001; Singh and Fleming 2010; 

Rosenzweig 2017). In this perspective, we hypothesize a positive relationship between technological 

diversification and the relevance of the technological progress.  

Hypothesis 3b: Technological diversification positively affects the relevance of the 

technological progress of regions. 
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2.4. Technological relatedness and technological progress 

Despite the role of the diversified knowledge base in fostering technological progress being well 

recognised in the literature, we have to take into consideration that high diversification is often 

accompanied by high risks and switching costs, because of the limited capabilities of firms and the 

peculiarities of their business models, which clearly hinder their possibilities to move their 

technological frontier in completely different knowledge domains (Boschma et al. 2014). The 

recombination of diversified knowledge sources requires strong abilities of firstly recognising the 

value of distant knowledge, secondly assimilating it, and thirdly exploiting it for technological and 

commercial ends (Cohen and Levinthal 1990). 

Fornahl et al. (2011), stemming from the concept of cognitive proximity of Nooteboom (2000), 

introduced the definition of an “optimal cognitive distance”, which characterizes knowledge that is 

neither identical (hence it can be usefully exchanged) nor too distant (therefore it can still be 

effectively absorbed), but related. Relatedness can therefore be associated with knowledge transfers 

that occur across industries because of their optimal cognitive distance. Some degree of cognitive 

proximity is desirable because it ensures effective communication and common understanding, while 

guaranteeing to avoid cognitive lock-in.  

As for the industrial structure, Frenken et al. (2007) introduced the concept of related and unrelated 

variety, highlighting that regional variety impacts on regional development only if regional sectors 

are technologically related to each other. Other authors have applied these concepts to different 

regional contexts: The Netherlands (Frenken et al. 2007), Italy (Boschma and Iammarino 2009; 

Quatraro 2010), Sweden (Boschma et al. 2009), Great Britain (Bishop and Gripaios 2010), Germany 

(Brachert et al. 2011), Spain (Boschma et al. 2012), Finland (Hartog et al. 2012), European Regions 

(Cortinovis and Van Oort 2015), confirming that related variety tends to contribute positively to 

regional growth in terms of employment or productivity.  

Shifting from the analysis of the features of the regional industrial structure to the determinants of the 

regional innovation performance, the concept of relatedness is applied to the technological trajectories 

of the innovation process. By doing so, the measure of technological relatedness proposed by Breschi 

et al. (2003) at the firm level has been borrowed by scientists from the realm of economic geography. 

In particular, previous research proved that technologically related variety affects positively the 

regional innovation performance in general, while the technologically unrelated variety affects 

positively the creation of radical/breakthrough innovations (Tavassoli and Carbonara 2014; Castaldi 

et al. 2015).  
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Technological relatedness at a regional level measures how regions’ diversification possibilities are 

affected by the degree to which technologies are connected to one another, where the link between 

two technologies is usually measured by how much they share in terms of common scientific 

knowledge, technical principles, heuristics, and common needs in general (Petralia et al. 2017). 

Several studies have confirmed the role of relatedness in fostering technological or industrial 

development – through “branching processes”. Regarding the industrial diversification of regions, 

Neffke et al. (2011) and Essletzbichler (2015) highlighted that regions are more likely to enter into 

industries that are related to those already existing. Similarly, Kogler et al. (2013), Boschma et al. 

(2015) and Rigby (2015), focusing on regional technological diversification, found that technologies 

related to pre-existing technologies in U.S. cities or metropolitan regions increase the possibility of 

entering those regions and that they are crucial for technological change. Quatraro and Usai (2017) 

found that as the trajectory becomes more familiar, innovating agents learn to move across the 

knowledge space and are more likely to undertake organized searches directed towards the 

combination of technologies that are close to one another. Therefore, if the knowledge space of a 

region is characterized by a patenting activity alongside a large number of related technological 

classes, the region is more likely to host regional knowledge spillovers between these related 

technological classes, which provide venues for new knowledge creation. Following this line, a region 

that recombines related pre-existing knowledge could be more inclined to create new knowledge and 

actively contribute to technological progress, both in terms of innovation intensity and relevance. 

Hypothesis 4a: Technological relatedness positively affects the intensity of the technological 

progress of regions. 

Hypothesis 4b: Technological relatedness positively affects the relevance of the technological 

progress of regions. 

3. Methodology 

This study investigates the relationship between regional knowledge space and technological progress 

by exploring the relative impact of the technological knowledge base, technological cumulativeness, 

technological diversification and technological relatedness of the regional knowledge space. The 

sample involves N=269 regions in 29 countries (European Union plus Norway). NUTS2 

(Nomenclature of Territorial Units for Statistics) is used to define the regional level. Data concerning 

patents, patent citations, technological classes and inventors were collected from the Organisation for 

Economic Co-operation and Development (OECD) REGPAT database (version released 02/2016). 

Patent data have been regionalized on the basis of the inventors' address. Fractional counting is 

applied in case of multiple inventors per patent coming from different regions (De Noni et al. 2017). 
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Technological classification refers to International Patent Classification (IPC) classes at the 4-digit 

level. The final panel dataset covers the time period from 1996 to 2012. Explanatory variables (x) 

about regional knowledge features are measured on the previous five-year moving average in order 

to mitigate the effect of time fluctuations. Differently, the dependent variables (y) are computed on 

the following three-year moving time-windows, lagged one period with respect to the explanatory 

variables. The time lags are introduced to minimize endogeneity and reverse causality issues. To sum 

up, if y is operationalized gathering data from t to t+2, x is defined from t-1 to t-5. In addition, the 

control variables, which concern the economic and demographic regional features and are provided 

by the statistical office of the European Union (Eurostat), are measured in t-1. Therefore, because of 

these variables’ structure, the number of time series in the panel dataset is limited to T=9.1  

Finally, spatial modelling with individual fixed effects is implemented to control for potential spatial 

dependence of innovation and for a number of unobserved factors at the regional level, such as 

institutional setting or policy differences (Cortinovis et al. 2017). 

3.1 Variables 

In this study, we define technological progress by looking at its intensity and relevance at the regional 

level. Explanatory variables involve data on technological knowledge base, technological 

cumulativeness, diversification and relatedness. Finally, we introduce R&D capacity, human capital, 

manufacturing specialization and population density as controls.  

Dependent variables 

Technological progress intensity. Despite the limitations2 for measuring technological knowledge 

(Alcacer and Gittelman 2006; Lane et al. 2006) through patents, nevertheless they have been found 

to be a good proxy for computing innovation performance at a regional level (Acs et al. 2002) and 

are widely used today. In addition, since patents refer to the output of a lagged invention process 

(Paci and Usai 2009; Crescenzi et al. 2012), using a lag window larger than three years is typically 

recommended (Marrocu et al. 2013; Paci et al. 2014). To sum up, technological progress intensity is 

here measured as the logarithmic transformation of the cumulated regional patent contribution per 

million inhabitants over a shifted three-year window3; the higher the index, the higher the regional 

capacity to innovate. 

 
1 We also tested five-year moving time-windows of dependent variables. However, since this procedure further decreases 
the time span of panel dataset from T=9 to T=7 and does not change the findings significantly, we moved the models 
concerning the five-year lagged dependent variables in appendix A. 
2 Although patent data are typically used to measure knowledge outputs and innovation, they do not represent the overall 
knowledge production of a region (Rigby, 2015) 
3 To check the robustness of our results, we operationalized also a 5-year time window instead of a 3-year time window 
for our dependent variable (see Appendix A). 
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Technological progress relevance. This study uses the citations a given patent spawns (forward 

citations) as an indicator of its technological impact and economic value (Jaffe and de Rassenfosse, 

2017). The forward citations refer to the technological descendants of an invention and its extent 

suggests the technological importance of a patent for the development of subsequent technologies 

(Harhoff et al. 2003; Hall et al. 2005, Namet and Johnson, 2012). The number of forward citations in 

the following five years from application is automatically provided per patent by the OECD REGPAT 

database. Then, we computed the logarithm of the average number of forward citations associated 

with the cumulated regional patent contribution over three-year moving time-windows4. The more a 

patent is cited by future patents, the greater the likelihood of being adopted for exploiting a 

technological trajectory and the higher the estimation of its potential relevance. On the basis of the 

findings of Hall et al. (2005), the measure also includes self-citations, which are as valuable as 

citations from external patents.  

Independent variables 

Technological knowledge base. The size of the technological knowledge base of a region represents 

the regional capacity to produce and accumulate knowledge stock, which may potentially be exploited 

to create technological progress. Based on Dettori et al. (2012), this index is operationalized as the 

logarithmic transformation of cumulative patent stock of the region in the previous five years over 

the total population. The larger the knowledge stock of a region, the higher the recombination 

potential and expected innovation performance. The use of this variable for estimating the regional 

technological progress intensity corresponds to run a dynamic panel model.  

Technological cumulativeness. Backward citations inform about the technological antecedents of an 

invention. The basic idea is that the extent to which inventions rely on antecedents proxies the degree 

of path-dependency between new and pre-existing knowledge, notifying their novelty or radicalness 

(Jaffe and de Rassenfosse 2017). Thus, technological cumulativeness is operationalized as the 

logarithm of the average number of regional backward citations (within or outside the region) 

reported by patents filed by the region over five-year moving time-windows. 

Technological diversification. Technological diversification of a region is supposed to be strongly 

related to the extent of knowledge sources that inventors of a region can acquire, exploit and transform 

into new knowledge (Zahra and George 2002). Thus, it is not just a matter of a diversified structure 

of internal knowledge base, but mainly of a regional capacity for accessing to and using diversified 

 
4 Also, in this case we operationalized an additional 5-year time window instead of a 3-year time window (see Appendix 
A). 
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knowledge in the invention process. Nevertheless, since absorptive capacity strongly depends on 

cognitive proximity (Noteboom, 2000), the diversity of the regional knowledge base can positively 

impact on the heterogeneity of the regional knowledge sources. In other words, the more diversified 

the knowledge of a region, the higher the opportunity for that region to access to and use differentiated 

knowledge sources. In order to measure this type of technological diversification, we refer to 

backward citations rather than patents and specifically apply the Patent Originality Index, provided 

by OECD REGPAT, which refers to the breadth of the technology fields on which backward citations 

of a patent rely on (Jaffe and de Rassenfosse 2017). Based on Hall et al. (2001), the originality index 

measures the degree of heterogeneity of the backward citations across patent classes (IPC4-level). 

The higher the index, the larger the number of diverse knowledge sources a patent is based upon, and 

therefore the higher the probability to obtain original results. Conversely, the lower the value, the 

higher the concentration of the citations within few technological fields, and therefore the higher the 

probability that the patent mirrors an incremental innovation. An average value is calculated at the 

regional level on the patent stock of a region over five-year moving time-windows. 

Technological relatedness. Following Balland et al. (2015), we firstly construct matrices of the 

technology space in order to measure the degree of relatedness across 438 IPC4-level technological 

classes by computing a technology-technology matrix based on normalized co-occurrences of 

technological classes5 within the same patent over five-year moving time-windows. Second, we 

compute incidence regions-technologies matrices based on the relative distribution of regional patents 

over five-year moving time-windows. A dichotomized matrix of Revealed Comparative Advantage 

(RCA) is further defined by considering the technologies with a location quotient6 higher than 1. 

Finally, the average relatedness density within the regional patent portfolio is computed by integrating 

the IPC technological space matrix and RCA matrix (Balland 2017). The higher the value, the higher 

the relatedness across the most relevant patent technologies of a region. 

Control variables 

R&D expenditures. Gross domestic expenditure on Research & Development (R&D) as a percentage 

of gross domestic product is an indicator of high political importance at the EU, national, and regional 

levels. R&D intensity is expected to have a positive impact on innovation, assuming that there exists 

a positive correlation between technological input and output (Gilsing et al. 2008). 

 
5 Differently from USPTO patents, EPO patents are not required to identify a priority technological class. Thus, most of 
them declare multiple technological classes. Technological space defines how often two technologies are found within 
the same patent. In other words, two technological classes co-occur if they are both cited in the same patent.  
6 The location quotient is applied by comparing the share of each technology in a given region to the share of this 
technology in overall sampled European countries. 
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Human capital. Since the attitude of a region to innovate depends on the average level of human 

capital within the local economy (Lee et al. 2010), tertiary educational attainment is used as a proxy 

for human capital. The higher the educational level, the higher the potential number of inventors. This 

indicator, provided by Eurostat, is specifically based on the EU Labour Force Survey. It is defined as 

the percentage of the population aged 25-64 who have successfully completed tertiary studies (e.g. 

university, higher technical institution, etc.). Educational attainment is defined with reference to the 

International Standard Classification of Education 1997 levels 5-6 for data up to 2013.  

Manufacturing specialization. Since sectors have different technology and innovation opportunities, 

and manufacturing is typically more inclined to innovate than services (Hipp and Grupp 2005) – 

especially when innovation is measured in terms of patents – manufacturing specialization is used as 

the control. Specifically, the level of manufacturing concentration is measured as the share of 

employees operating within the manufacturing industry with respect to the total number of employees 

in a given region.  

Population density. Population density (population divided by land area in square kilometers) is 

usually applied as a proxy for externalities related to the urbanization process (Mameli et al. 2012). 

Urbanization is positively associated with the presence of universities, industry research laboratories, 

trade associations and other knowledge-generating organizations (Frenken et al. 2007). Thus, urban 

economies may better support regional innovation performance than non-urban economies.  

3.2 Model estimation 

In this study, we used a spatially lagged model based on a 9-panels dataset, since the ordinary least 

squares (OLS) estimates, though unbiased, are inefficient when spatial dependence is present 

(Anselin 1988). Spatial lag is suggestive of a possible diffusion process of knowledge creation 

because of the spatial dimension of social interactions and collaboration processes, which are 

typically considered as important drivers for innovation and knowledge spillovers. Moreover, fixed 

effects are typically preferred to random effects in modelling regions because of the distribution of 

innovation, which is inclined to be influenced by observed and latent time-invariant territorial 

features. Finally, we introduce individual effects (regional effects in our case) in order to analyze 

changes at the individual level and control for regional heterogeneity. The use of n-year moving time-

windows mitigates the effect of time fluctuations and makes it unnecessary to control for time effects. 

In addition, a number of statistical tests are applied to verify our choices. Firstly, the F-test is 

performed by using the pFtest function of R7’s plm package and confirms that both fixed and random 

 
7 R is an open source software environment for statistical computing and graphics. 
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effects models better fit than OLS. Secondly, the Moran I test is applied to measure the spatial 

autocorrelation given a set of features and an associated attribute. The result confirms that regional 

technological progress is a spatially clustered process. Furthermore, Lagrange Multiplier (LM) and 

Robust Lagrange Multiplier (RLM) tests confirm that regional technological progress is spatially 

lagged. Finally, the Hausman test statistically confirms that fixed effect is more consistent than 

random effect modelling (Greene 2008). The results of the tests are reported in Tables 3 and Appendix 

A. Moreover, fixed effect models are the safest choice to eliminate possible omitted variables bias 

such as cultural and social aspects (Nickell 1981). Important differences between regions are the 

consequences of region-specific effects related to regional systems of innovation and to specific 

histories of firms and industries across regions. 

We used the R package splm (spatial panel linear model) to estimate the regressive models with a 

maximum likelihood approach controlling for spatial lag dependence. 

Thus, following Anselin (1988), we defined the expression of the spatial fixed effects lag model 

as: 

! = #$% + '( + )	  

where Y is a vector of the dependent variables, X is a matrix of the explanatory and control variables, 

( represents the vector of the coefficients, ) is the vector of the residuals, and W is the spatial weight 

matrix, showing the strength of the interaction between two regions. 

4. Results 

Tables 1 and 2 present the descriptive statistics and the correlation matrix for all variables. As Table 

2 shows, all the explanatory variables tend to be positively correlated with the two dependent 

variables that measure the technological progress intensity and relevance. 

Table 1: Descriptive statistics 
 

Variables Mean Sd. Min. Max. Obs. 
Tech. progress intensity 0,10 0,12 0.00 0,56 2421 
Tech. progress relevance 0,22 0,10 0.00 0,64 2421 
Tech. knowledge base 2,31 0,93 0.00 4,20 2421 
Tech. cumulativeness 0,76 0,09 0.00 1,16 2421 
Tech. diversification 0.63 0.09 0.00 0.92 2421 
Tech. relatedness 16.83 10.11 0.00 42.44 2421 
R&D expenditures 0.01 0.01 0.01 0.12 2421 
Human capital 21.76 8.44 3.70 48.90 2421 
Manuf. specialization 18.32 6.82 3.70 36.90 2421 
Pop. Density 344.71 859.69 3.30 9839.90 2421 
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The correlation values are relatively low under the cut-off point of 0.50 (O’Brien 2007). The only 

exceptions are the correlations between technological knowledge base and technological relatedness, 

and between technological cumulativeness and technological diversification. For this reason, we 

entered separately all the explanatory variables in the regression models to avoid any kind of bias due 

to multicollinearity among explanatory regressors. Moreover, we checked for the existence of 

multicollinearity (see Table 3) by computing the variance inflation factors (VIFs) and found 

multicollinearity is not a problem, as the VIFs are well below the suggested cut-off value of 5 

(O’Brien 2007). 

Table 2: Correlation matrix 
 

  Variables 1 2 3 4 5 6 7 8 9 10 

1 Tech. progress intensity 1          

2 Tech. progress relevance 0.34*** 1         

3 Tech. knowledge base 0.75*** 0.17*** 1        

4 Tech. cumulativeness 0.10*** 0.09*** 0.03 1       

5 Tech. diversification 0.18*** 0.18*** 0.11*** 0.51*** 1      

6 Tech. relatedness 0.63*** 0.37*** 0.55*** 0.18*** 0.26*** 1     

7 R&D expenditures 0.66*** 0.34*** 0.48*** 0.12*** 0.24*** 0.49*** 1    

8 Human capital 0.39*** 0.29*** 0.25*** 0.23*** 0.28*** 0.41*** 0.51*** 1   

9 Manuf. specialization 0.17*** 0.04* 0.15*** -
0.08*** -0.03 0.13*** 0.00 -

0.33*** 1  

10 Pop. Density 0.14*** 0.16*** 0.10*** 0.03 0.09*** 0.17*** 0.14*** 0.30*** -
0.21*** 1 

Notes: Significance levels are *** p<0.001, ** p<0.01, * p<0.10. 

 
In Table 3 we present the results of the spatial panel estimations using individual effects to explain 

the drivers of technological progress intensity (Models 1a, 2a, 3a, 4a and 5a) and technological 

progress relevance (Models 1b, 2b, 3b, 4b and 5b) in European regions.  

As a baseline model (see Models 1a and 1b) to compare our results against, we first present the 

outcome with only the control variables. Models 1a (tech. progress intensity) and 1b (tech. progress 

relevance) in Table 3 represent the effect of the control variables on the dependent variables. Models 

2a and 2b show the results of the controls after entering the technological knowledge base. Models 

3a and 3b introduce the results of the controls plus the technological cumulativeness. Models 4a and 

4b present the results of the controls after entering the technological diversification. Finally, Models 

5a and 5b introduce the last explanatory variable – technological relatedness. 

Generally, the overall fit of the models increases compared to the baseline in terms of lower values 

of generalized least square residual variance (GLS residual variance) and higher values of adjusted R 

squared. In other words, the introduction of the four independent terms is important in explaining the 
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intensity and relevance of the regional technological progress, and it adds explanatory power to the 

models. 

The analysis of the results in Table 3 on the intensity of the technological progress (see Models 1a, 

2a, 3a, 4a and 5a) suggests some main considerations.  

First, looking at the control variables (Model 1a), R&D intensity is confirmed to have a significant 

and positive effect on the intensity of regional technological progress in terms of the number of 

fractionalized patents in all models (Marrocu et al. 2013; Castaldi et al. 2015). Human capital, even 

though positive across all models, is not statistically significant. These results seem to confirm the 

relevant role of mixing R&D investments, highly skilled workers, educational services and structures 

at a regional level to improve the stock of technological progress (Ponds et al. 2010). Manufacturing 

specialization shows significant but unexpected effects on the intensity of technological progress. 

Several authors (Hipp and Grupp 2005; Marrocu et al. 2013) suggest that regions with a large 

manufacturing base present better levels of patenting activities, because manufacturing is typically 

more inclined to innovate than other sectors. In contrast, our results show that regions with positive 

variations of manufacturing activities with respect to their mean value show a decrease in innovative 

performance, probably due to decreasing return effects. Finally, the urbanization level measured by 

population density has a positive but not statistically significant impact on the intensity of 

technological progress. Urbanization economies seem not to confirm the benefits usually associated 

with the presence of universities, industry research laboratories, trade associations and other 

knowledge generating organizations (Frenken et al. 2007; Marrocu et al. 2013).  

Second, all models confirm the importance of spatial dependence on the intensity of technological 

progress. The positive and significant lambda-coefficient (spatial lag dependence) means that an 

innovation intensive neighborhood facilitates and promotes the technological progress of neighboring 

regions (Capello 2009; Ponds et al. 2010; Basile et al. 2012).  

Third, with respect to our research hypotheses related to the intensity of regional technological 

progress, we found interesting results. 

Model 2a shows that the intensity of technological progress is positively influenced by the size of the 

technological knowledge base (Model 2a, p<0.001), fully confirming Hypothesis 1a.  

Model 3a does not support Hypothesis 2a, which claims that technological cumulativeness positively 

affects the intensity of the technological progress of the region. Even though increments of the 

dimension of the knowledge sources positively affect the intensity of regional innovation 

performance, this result is not statistically significant (Model 3a, p>0.1).  

We also found not statistically significant results concerning the effect of the technological 

diversification of the knowledge sources. Model 4a presents a positive but not statistically significant 
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(p<0.1) impact of the technological diversification on the intensity of technological progress leading 

us to reject Hypothesis 3a. Several studies underline that technological diversification is crucial for 

innovation (Harhoff and Wagner 2009). Inventions relying on a large number of diverse knowledge 

sources are supposed to lead to original innovations but not to increase the intensity of the regional 

progress. 

Technological progress intensity also depends on the technological relatedness of the knowledge 

space. More specifically, a region that increases (Model 5a, p<0.01) the technological relatedness is 

inclined to report higher technological intensity, thus leading to confirm Hypothesis 4a. 

In Models 1b, 2b, 3b, 4b and 5b we present the results of the spatial panel estimations using individual 

effects to explain the drivers of the relevance of the regional technological progress. 

The analysis of the results on the technological progress relevance suggests the following 

considerations.  

Control variables present interesting and sometimes unexpected results (see Model 1b). R&D 

intensity is not statistically significant. Human capital shows significant but negative impacts. The 

innovation output of regions with higher increments of human capital and R&D investments seem to 

be of scarce relevance, thus mirroring an inefficient technology diffusion trajectory. Contrary to our 

expectations, human capital is negatively associated with the relevance of regional innovations; 

however, there is a rational explanation. This counterintuitive result depends on the operationalization 

of the human capital variable (the percentage of the population aged 25-64 who have successfully 

completed tertiary studies) and the econometric model specification used. Fixed effects models with 

individual effects study the deviations from the average value of each single region in order to reduce 

the bias of the starting knowledge stock. Thus, if we look at the dynamics of our sample, related to 

the distribution of human capital and the relevance of innovations, we can observe very different 

patterns between lagging and leading innovative European regions. We classified knowledge-

intensive regions (Innovation Leaders and Strong Innovators) and less innovative regions (Moderate 

Innovators and Modest Innovators) using the Regional Innovation Scoreboard (RIS) provided by the 

European Commission (European Commission, 2016; De Noni et al., 2018). Less innovative or 

peripheral regions show higher increments of human capital (around 27% in the period analyzed) 

than the knowledge-intensive regions (around 16%) in front of an opposite distribution of the number 

of citations (technological relevance) per patent in which the knowledge-intensive regions have much 

higher increments. This rationale is also supported by the results of the pooled OLS regression in 

which the starting regional levels are considered and also by the correlation matrix in Table 2. In the 

pooled regression models both human capital and R&D investments show positive and statistical 

significant coefficients. The pooled OLS results are available upon request. 
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In contrast, in terms of individual effects, regions with positive variations of manufacturing activities 

with respect to their mean show a superior technological progress relevance. In regions characterized 

by the presence of a large manufacturing base, the adoption and diffusion of new technologies seems 

to be facilitated, because manufacturing is typically more inclined to innovate through the 

exploitation of new patented technologies than other sectors (Hipp and Grupp 2005; Marrocu et al. 

2013). Finally, regions with higher increments of population density report lower levels of 

technological progress relevance. Even though urbanization economies are expected to better support 

regional innovation performance, increased urbanization may lead to negative externalities due to 

congestion costs, unskilled workers and immigrant inflows rather than talents, oversupply of labor, 

higher cost of living and insufficient infrastructure investments worsening the quality and the value 

of patents (Dijkstra et al. 2013). 

As previously observed in the results coming from the analysis of drivers for technological progress 

intensity, all models confirm the importance of spatial dependence on the technological progress 

relevance. The positive and significant lambda-coefficient (spatial lag dependence) means that being 

located in a high-quality innovative geographical context is likely to promote the adoption and 

diffusion of the technologies coming from neighboring regions (Castaldi et al. 2015).  

Finally, with respect to our research hypotheses related to the relevance of regional technological 

progress, we found the following results. 

Model 2b presents a negative and significant (p<0.001) impact of the size of the knowledge base on 

the relevance of technological progress. This means that an increase of the regional knowledge base 

above the average does not lead to improvements in the relevance of technological progress. Thus, 

we confirm our Hypothesis 1b. 

Model 3b suggests negative effects (p<0.001) of the technological reliance on the technological 

progress relevance, leading us to confirm Hypothesis 2b. Probably reducing the number of regional 

knowledge sources leads to more original inventions or innovation with higher adoptability and 

diffusion potentials.  

Model 4b shows that a decrease in the variety and complexity of the knowledge sources inside a 

region can have positive and significant effects (p<0.01) on the relevance of inventions. Regions with 

lower heterogeneity in the knowledge sources are able to produce simpler technologies and this ability 

supports increased technological relevance. Hence, Hypothesis 3b is rejected. 

Technological progress relevance positively and significantly depends on the relatedness of the 

regional knowledge space. More precisely, a region with higher increments (Model 5b, p<0.1) of 

relatedness in its knowledge space is inclined to produce technologies with a higher adoption rate 

than a region with a lower technological relatedness. This fully supports Hypothesis 4b. 
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Finally, we tested the robustness of our results using different time windows of the dependent 

variables, and alternative model specifications. First, we used a 5-year time window instead of a 3-

year time window for our dependent variables. The results of these analyses, reported in Appendix 

A, are consistent with those presented in Table 3.  

Second, we checked the robustness of our results by estimating fixed effects panel models without 

spatial dependences but using clustered standard errors at regional and country levels. Also, in this 

case, the results of the analyses were qualitatively similar to those presented here and are available 

upon request. 
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Table 3: Spatial fixed effects regression model results (3-year window lag) 
 

Dependent variables  Spatial panel fixed effects lag models 
Tech. progress intensity Tech. progress relevance 

  Model 1a  Model 2a Model 3a  Model 4a  Model 5a   Model 1b  Model 2b Model 3b  Model 4b  Model 5b 

Lambda (spatial lag) 
0.412 

(0.022)*** 

0.411 

(0.022)*** 

0.418 

(0.022)*** 

0.423 

(0.022)*** 

0.422 

(0.022)*** 

0.307 

(0.023)*** 

0.292 

(0.023)*** 

0.307 

(0.023)*** 

0.295 

(0.023)*** 

0.306 

(0.023)*** 

Explanatory variables                     

Tech. knowledge base  0.009 

(0.002)*** 
    -0.051 

(0.010)*** 
   

Tech. cumulativeness   0.002 

(0.003) 
    -0.104 

(0.017)*** 
  

Tech. diversification    0.014 

(0.011) 
    -0.120 

(0.042)** 
 

Tech. relatedness     0.001 

(0.000)** 
    

0.003 

(0.002)* 

Control variables                     

R&D expenditures 0.920 

(0.170)*** 

0.871 

(0.170)*** 

0.921 

(0.170)*** 

0.918 

(0.170)*** 

0.887 

(0.170)*** 

-0.233 

(0.873) 

0.060 

(0.872) 

-0.239 

(0.867) 

-0.194 

(0.872) 

-0.328 

(0.875) 

Human capital 0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

-0.015 

(0.001)*** 

-0.011 

(0.002)*** 

-0.013 

(0.002)*** 

-0.014 

(0.002)*** 

-0.016 

(0.002)*** 

Manuf. specialization -0.001 

(0.000)* 

-0.001 

(0.000)* 

-0.001 

(0.000)* 

-0.001 

(0.000)* 

-0.001 

(0.000)* 

0.007 

(0.002)*** 

0.008 

(0.002)*** 

0.007 

(0.002)*** 

0.007 

(0.002)*** 

0.007 

(0.002)*** 

Pop. Density 0.011 

(0.028) 

0.022 

(0.028) 

0.011 

(0.028) 

0.012 

(0.028) 

0.016 

(0.028) 

-0.372 

(0.147)* 

-0.440 

(0.147)** 

-0.341 

(0.146)* 

-0.371 

(0.147)* 

-0.360 

(0.147)** 

No. of observations 2421 2421 2421 2421 2421 2421 2421 2421 2421 2421 

EU NUTS-2 regions 269 269 269 269 269 269 269 269 269 269 

No. of panels 9 9 9 9 9 9 9 9 9 9 

R squared 0.843 0.855 0.845 0.843 0.851 0.711 0.714 0.715 0.712 0.712 
GLS residual variance 0.0067 0.0065 0.0067 0.0067 0.0066 0.0152 0.0150 0.0150 0.0151 0.0151 

Moran I 12.99*** 12.99*** 12.99*** 12.99*** 12.99*** 5.73*** 5.73*** 5.73*** 5.73*** 5.73*** 

LM-lag 321.25*** 293.83*** 318.93*** 317.65*** 310.18*** 197.47*** 177.02*** 181.54** 196.49*** 197.36*** 

RLM-lag 12.39***  28.09***  13.99***  15.34***  20.01***  40.85*** 25.28***  35.04*** 33.12***  46.28***  

Hausman !	(df) 268(4)*** 240(5)*** 278(5)*** 268(5)*** 178(5)*** 238(4)*** 276(5)*** 157(5)*** 205(5)*** 231(5)*** 

Max VIF 1.62 2.17 1.69 1.63 1.75 1.62 2.17 1.69 1.68 1.75 

Notes: Standard errors are in parentheses. Significance levels are *** p<0.001, ** p<0.01, * p<0.10. 
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5. Discussion and conclusions 
 

This study investigates how the knowledge space of regions influences their technological progress. 

On the theoretical side, the originality of our research relies in 1) accounting for the marginal effect 

of the different features of a regional knowledge space, and 2) accounting for the two main features 

of the regional technological progress (intensity and relevance). The most interesting results are the 

following. The size of the regional knowledge base affects in a radically opposite way the intensity 

and relevance of the technological progress (a); technological cumulativeness (b) and diversification 

(c) negatively affect the relevance; finally, technological relatedness affects positively both the 

intensity and relevance of the technological progress (d). 

The first result (a), on the divergent effect of the size of the regional knowledge on the two main 

features of the technological progress can be commented as follows. The positive impact of the size 

of the regional knowledge base on the intensity of the technological progress is well supported by 

previous contributions, and therefore aligns with previous results (Ahuja and Katila, 2001; Smith et 

al., 2005; Tria et al. 2014; Castaldi et al. 2015). There is a path-dependent process and a scale effect 

in the innovation trajectory of regions. The development and diffusion of a regional innovation 

culture, favoured by the presence of numerous innovative firms and private and public organizations 

offering knowledge intensive support services, fosters the knowledge creation process and enables, 

through local contamination processes, the achievement of economies of scale at the regional level. 

This self-reinforcing process determines a successful path in terms of intensity of the technological 

progress, as depicted in the literature on regional innovation systems (Cook, 2001; Asheim and 

Gartler, 2005). The negative impact of the size of the regional knowledge base on the relevance of 

the technological progress can be linked to exhaustion processes, which are typical of advanced 

regions that are starting to face a decline in their role of technological leaders. The focus on 

exploitation rather than exploration processes might underestimate the value of searching for new 

venues of research and the investment in new “risky business”, which might lead to impactful 

innovative output and potential radical innovations. In business literature, there is a metaphor for 

illustrating this attitude, that of the “cash cows” – companies whose corporate strategy tends to 

maximize the resources possessed, even if this behaviour configures as being myopic, mostly in 

dynamic and fast evolving sectors.  

The second result (b) is strongly related to the previous one. The negative effect of cumulativeness 

on innovation relevance suggests that the more the technological trajectory of the region is built upon 

a vast array of consolidated technologies, and, therefore, generally speaking, path-dependent, the less 
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the probability that the output of the innovation effort is a breakthrough and further exploitable in 

different areas of applications.  

The first two results (a and b) highlight the need to address a regional policy framework able not only 

to sustain the innovation efforts of the “champions”, but also to identify and develop specific 

technological niches where to invest through ad-hoc industrial plans, which may also include 

initiatives to sustain innovative entrepreneurships. Moreover, as claimed by Miguelez and Moreno 

(2017) the analysis of the geographical dimension of the technological cumulativeness might be 

conducive to important choices on the matter of which can be the more useful inter-regional and 

global collaborations to be sustained, as a complementary asset to the exploitation of regional 

knowledge sources.  

The third finding (c) is more surprising, because of the presence of a vast literature that sustains the 

benefits of diversification on innovation performance (Rodan and Galunic, 2004; Frenken et al. 2007; 

Nemet and Johnson, 2012; Tassavoli and Carbonara 2014; Rosenzweig, 2017) – yet not 

distinguishing between intensity and relevance of the technological progress. Our results offer an 

important contribution by showing that diversification negatively influences the relevance of the 

regional technological progress. A note is due. We define diversification not in terms of breadth of 

the current regional knowledge base, but in terms of the capacity of the region to access and 

recombine a number of diversified internal and external regional knowledge sources. In this matter, 

the negative impact of diversification can be understood as a low capability of regions to have access 

to “meaningful” knowledge sources. In other words, the fact that a region develops technologies that 

are the result of a pool of diverse knowledge sources does not mean that the one that it is developed 

suits the need of the production processes that are conducted in the region and that can find 

opportunities for further development and transformation in valuable products. This raises the need 

for regions to encourage a better interaction between knowledge sources and knowledge users, 

enhancing the collaborations between firms and local research organizations and universities through, 

for instance, technological transfer offices (TTOs) or new forms of hybrid organizations. 

Nevertheless, TTOs have some limitations, mainly due to the fact that in order to be effective TTOs 

should handle specific managerial capacities, should count on a suitable mix of staff members with 

complementary competences, and last, but not least, should enrol licensing professionals with strong 

marketing and business skills (Siegel et al., 2003). On the contrary, in most of the cases, TTOs focus 

on administrative issues without attempting to identify the better and faster strategies to market 

inventions. Haeussler and Colyvas (2011) and Perkmann et al. (2013) claim that TTOs’ organizational 

structures and cultures are often not well aligned. Therefore, TTOs should play a potentially 

increasing role in evaluating the quality of inventions and better identifying potential technological 
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applications. A better support from hybrid organizations in developing a deeper analysis of the three 

helixes of university, industry, and government are desired. 

Fourth (d), the research findings show that technological relatedness is the key factor influencing the 

technological progress of regions, either measured in terms of intensity or relevance. This evidence 

provides support for the interpretative framework put forward by the Utrecht school, led by members 

of the Department of Human Geography and Planning (Ron Boschma, Koen Frenken, Frank van Oort 

– among others), who in the early 2000s started to devote attention to the neglected relationship 

between variety and economic development in regions. Focusing on innovation performance, the 

combination of related technologies allows to develop more familiar technological trajectories, 

produces general innovation benefits (Ponds et al., 2010), increases the likelihood of related 

knowledge spillovers (Quatraro and Usai, 2017), and positively affects innovation quantity and 

quality performance (Miguelez and Moreno, 2017). However, some conflicting results suggest it 

might be unable to stimulate and support radical and path-breaking innovation processes (Tavassoli 

and Carbonara, 2014; Castaldi et al., 2015).  

This result stresses the European Union's current regional innovation policy concept of smart 

specialization, which defines “a bottom-up policy approach based on the idea that regions should 

leverage their existing capabilities to develop and secure comparative advantage in related high-

value-added activities” (Balland et al., 2017, pp. 24). In this light, as suggested by Neffke et al. (2011), 

regions should strengthen the industrial cohesion by entering industries which are related to pre-

existing industries and by exiting industries which are technologically peripheral. Investing in related 

industries, on the one hand, may increase the number of collaboration opportunities and the number 

of knowledge spillovers, and on the other hand, may foster the invention adoption across regional 

industries where these technologies could be applied. In addition, because of the uncertainty of 

valuable breakthrough inventions, regions should support a less risky and more systematic innovation 

process able to stimulate interconnections and cross-fertilization opportunities by focusing on the 

own knowledge domain and on closer technological trajectories to be explored.  

Consequently, an immediate policy implication concerns the direction of the R&D expenditure in 

regions, which might be chosen coherently with the industrial structure and the possible areas of 

interactions across sectors. New or existing specific infrastructures should be assigned to provide 

information on the cognitive proximity between technologies and should be in charge of monitoring 

possible cross-fertilization between technologies, with the final objective of illuminating local firms 

on potential partnerships and/or merger and acquisition processes for acquiring complementary 

knowledge and capabilities.  
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Finally, even though our analysis does not explore the differences between knowledge-intensive and 

lagging behind regions - and this is for sure a promising future research trajectory - we believe no 

one-size-fits-all solution exists, and, as the smart specialization agenda claims (Foray 2009), the 

technological trajectories of regions must be shaped around past and present resource endowments 

and future objectives. In particular, a twofold technological trajectory might discriminate knowledge-

intensive territories by lagging-behind ones. Since it has been theorized that more socio-economically 

developed regions are more conducive to knowledge-intensive, innovative activity (Rodriguez-Pose 

and Wilkie 2017), they might be more suited to capitalize on their past R&D expenditure, by 

exploiting core capabilities alongside a technological trajectory that follows a related-specialization 

strategy. This is the recommendation that is spawned by the statistics illustrated in the previous 

section, which show how the technological specialization, together with the relatedness, boosts the 

technological progress relevance. Stemming from the observation that more is not better or, similarly, 

quantity is not relevant, a developed region with a consolidated technological trajectory should deploy 

its knowledge base not by increasing the number of patents, but by maximizing the diffusion of the 

innovations that depart from the application of its patents. In contrast, lagging-behind regions should 

invest more in R&D in order to establish a feasible knowledge space and reach a level of technological 

progress intensity that allows them to compete with knowledge-intensive regions, as also claimed by 

Rodriguez-Pose (2001). Nevertheless, our results suggest using caution when adopting the same 

policy for developed regions, because, in this realm, the marginal effects of an increase in innovation 

output might be lower than that of investing in expanding the potential for new applications of pre-

existing inventive output. Moreover, since the proximity to knowledge-intensive regions contributes 

positively to innovation intensity and relevance – as the spatial parameters inform – a cross-regional 

technological fertilization pattern is desired, where knowledge flows from developed to lagging-

behind regions is enhanced (De Noni et al. 2018). 

In this research study, a number of limitations need to be disputed. Firstly, patents, while being a 

good proxy for technological advancement in a region, are only a part of it and represent only 

innovation input/throughput. However, they represent a very homogeneous measure of technological 

novelty across regions. Secondly, co-invented patents are equally fractionalized for the number of 

inventors, even if some of them may be responsible for the majority of patent applications. Thirdly, 

some specific forms of knowledge spillover might not be properly captured by using only 

geographical distance (as referred to contiguity-based weights matrix in the regression models) 

without considering other forms of distance, such as social, cognitive or institutional (Paci et al. 

2014). Fourthly, although the IPC is acceptable and clear for our purpose, it has been developed for 
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reasons other than providing scholars with a complete picture of the knowledge bases and variety of 

organizations and regions (Alcacer and Gittelman 2006). 

Nevertheless, we encourage further investigation into the relationship between the specific 

technological investments of a region and the magnitude and impact of its innovation performance in 

terms of technological progress. Furthermore, future research could attempt to draw the dynamics of 

the technological progress in the European regions by distinguishing the contribution of different 

types of organization (e.g., small and medium enterprises, large firms, multinationals and public 

research organizations). The availability of more comprehensive datasets, providing further 

information on patents, could allow future research to extend and improve our work. 
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Appendix A: Spatial fixed effects regression model results (5-year window lag) 

Dependent variables Spatial panel fixed effects lag models 
Tech. progress intensity Tech. progress relevance 

  Model 1c  Model 2c Model 3c Model 4c  Model 5c   Model 1d  Model 2d Model 3d  Model 4d  Model 5d 

Lambda (spatial lag) 0.430 
(0.024)*** 

0.422 
(0.024)*** 

0.429 
(0.024)*** 

0.429 
(0.024)*** 

0.420 
(0.024)*** 

0,358 
(0,025)*** 

0,335 
(0,025)*** 

0,344 
(0,025)*** 

0,358 
(0,025)*** 

0,357 
(0,025)*** 

Explanatory variables                     

Tech. knowledge base  0.005 
(0.003)* 

    -0,044 
(0,009)*** 

   

Tech. cumulativeness   0.003 
(0.004) 

    -0,077 
(0,013)*** 

  

Tech. diversification 
  

 0.011 
(0.009) 

 
  

 -0,058 
(0,032)* 

 

Tech. relatedness     0.002 
(0.001)** 

    -0,001 
(0,002) 

Control variables                     

R&D expenditures 0.708 
(0.192)*** 

0.698 
(0.192)*** 

0.710 
(0.192)*** 

0.706 
(0.192)*** 

0.695 
(0.192)*** 0,266 (0,656) 0,385 (0,653) 0,235 (0,651) 0,280 

(0,655) 0,274 (0,656) 

Human capital 0.001 
(0.000)* 

0.000 
(0.000) 

0.001 
(0.000)* 

0.001 
(0.000)* 

0.000 
(0.000) 

-0,011 
(0,001)*** 

-0,009 
(0,001)*** 

-0,010 
(0,001)*** 

-0,011 
(0,001)*** 

-0,011 
(0,001)*** 

Manuf. specialization 0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0,006 
(0,002)*** 

0,006 
(0,002)*** 

0,006 
(0,002)*** 

0,006 
(0,002)*** 

0,006 
(0,002)*** 

Pop. Density 0.016 
(0.041) 

0.023 
(0.041) 

0.016 
(0.041) 

0.017 
(0.041) 

0.018 
(0.041) 

-0,554 
(0,143)*** 

-0,626 
(0,143)*** 

-0,561 
(0,142)*** 

-0,558 
(0,143)*** 

-0,555 
(0,143)*** 

No. of observations 1883 1883 1883 1883 1883 1883 1883 1883 1883 1883 
EU NUTS-2 regions 269 269 269 269 269 269 269 269 269 269 
No. of panels 7 7 7 7 7 7 7 7 7 7 
R squared 0.711 0.713 0.718 0.718 0.737 0.843 0.845 0.846 0.843 0.843 
GLS residual variance 0.0152 0.0151 0.0150 0.0150 0.0147 0.0067 0.0066 0.0065 0.0066 0.0067 
Moran I 13.10*** 13.10*** 13.10*** 13.10*** 13.10*** 7.79*** 7.79*** 7.79*** 7.79*** 7.79*** 
LM-lag 264.82*** 242.39*** 262.78*** 261.39*** 244.64*** 237.12*** 198.57*** 217.60*** 234.35*** 236.48*** 
RLM-lag 23.61*** 68.53*** 25.27*** 26.15*** 56.54*** 49.03*** 44.94*** 44.48*** 44.31*** 48.28*** 
Hausman !	(df) 74(4)*** 145(5)*** 76(5)*** 75(5)*** 698(5) 216(4)*** 251(5)*** 188(5)*** 207(5)*** 210(5) 
Max VIF 1.60 2.15 1.64 1.66 1.74 1.60 2.15 1.64 1.66 1.74 

Notes: Standard errors are in parentheses. Significance levels are *** p<0.001, ** p<0.01, * p<0.10. 
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