
Information and Computation 206 (2008) 1074–1083

Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier .com/ locate / ic

The number of convex permutominoes�

Paolo Boldi ∗, Violetta Lonati, Roberto Radicioni, Massimo Santini

Dipartimento di Scienze dell’Informazione—Università degli Studi di Milano, Via Comelico 39, 20135 Milano, Italy

A R T I C L E I N F O A B S T R A C T

Article history:

Received 1 July 2007

Revised 24 January 2008
Available online 5 June 2008

Permutominoes are polyominoes defined by suitable pairs of permutations. In this paper

we provide a formula to count the number of convex permutominoes of given perimeter.

To this aim we define the transform of a generic pair of permutations, we characterize the

transform of any pair defining a convex permutomino, and we solve the counting problem

in the transformed space.
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1. Introduction

A polyomino (also known as lattice animal) is a finite collection of square cells of equal size arranged with coincident

sides. In this paper we consider a special class of polyominoes, namely the permutominoes, that we define in a purely

geometric way. Actually, the term “permutomino” arises from the fact that this object can be defined by a diagram on the

plane representing a pair of permutations. Such diagramswere introduced in [8] as a tool to study Schubert varieties andused

in [7] (where the term “permutaomino” appeared for the first time) and [6] in relation to Kazhdan-Lusztig R-polynomials.

Counting the number of polyominoes and permutominoes is an interesting combinatorial problem, still open in its more

general form; yet, for some subclasses of polyominoes, exact formulae are known. For instance, the number of convex

polyominoes (i.e., whose intersectionwith any vertical or horizontal line is connected) of given perimeter has been obtained

in [2], whereas the enumeration problem for some subclasses of convex permutominoes has been solved in [5]. In this paper,

we provide an explicit formula for the number of convex permutominoes of a given perimeter. Incidentally, we notice that

an equivalent formula has been independently obtained in [4], using a totally different technique based on the ECOmethod.

Our counting technique is based on two basic facts. First, the boundary of every convex permutomino can be decom-

posed into four subpaths describing, in this order, a down/rightward, up/rightward, up/leftward, down/leftward stepwise

movement. Second, for each abscissa (ordinate) there is exactly one vertical (horizontal) segment in the boundary with that

coordinate. Actually, these two constraints hold not only for the boundary of convex permutominoes, but for a larger class

of circuits we call admissible: in Section 3 we describe admissible circuits and we obtain their number An in Section 5. In

Section 4 we characterize admissible circuits that do not define a permutomino: again we obtain their number Bn in Section

5. As a consequence, we get the number of convex permutominoes as the difference An − Bn.

2. Preliminaries

In this section, we shall recall some basic definitions and properties of polyominoes, permutominoes and generating

functions.
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Fig. 1. (a) The boundary of a polyomino. (b) The extreme points of a polyomino. (c) The extreme points of a convex polyomino.

2.1. Polyominoes and permutominoes

A cell is a closed subset of R2 of the form [a,a + 1] × [b,b + 1], where a,b ∈ Z; we shall identify such a cell with the pair

(a,b). Let us define a binary relation ∼ of adjacency between cells by letting (a,b) ∼ (a′,b′) if and only if a = a′ and |b − b′| = 1,

or |a − a′| = 1 and b = b′. A subset P of R2 is a polyomino if and only if it is a finite nonempty union of cells that is connected

by adjacency, i.e., such that if (a,b),(a′,b′) ∈ P then there exist (a1,b1), . . . ,(ak ,bk) ∈ P such that (a,b) = (a1,b1) ∼ (a2,b2) ∼ · · · ∼
(ak ,bk) = (a′,b′). See Fig. 1(a) for an example. A polyomino is defined up to translations; without loss of generality, we assume

that the lowest leftmost vertex of the mininal bounding rectangle of the polyomino is placed at the point (1,1).

Special types of polyominoes P are the following:

• P is row-convex if and only if (a,b),(a′,b) ∈ P and a ≤ a′′ ≤ a′ imply (a′′,b) ∈ P;

• P is column-convex if and only if (a,b),(a,b′) ∈ P and b ≤ b′′ ≤ b′ imply (a,b′′) ∈ P;

• P is convex if and only if it is both row- and column-convex;

• P is directed if and only if it contains at least one of the corner cells of its minimal bounding rectangle;

• P is parallelogram if and only if it is convex and contains at least a pair of opposite corner cells of its minimal bounding

rectangle (e.g., both the lower-left and upper-right cells).

The (topological) border of a polyomino P is a disjoint union of simple closed curves; in particular, if there is only one

curve, we say that P has no holes: all polyominoes in this work will have no holes. The border is a simple closed curve made

of alternating vertical and horizontal nontrivial segments whose endpoints (vertices) have integral coordinates; conversely,

every such a closed curve is the border of a polyomino without holes, so we shall freely identify polyominoes with their

borders.

We say that P is a permutomino of size n if and only if its minimal bounding rectangle is a square of size n − 1, and the

border of P has exactly one vertical segment of abscissa z and one horizontal segment of ordinate z, for every z ∈ {1, . . . ,n}.
Notice that, since convex polyominoes have the sameperimeter as theirminimal bounding rectangle, a convex permutomino

of size n has perimeter 4(n − 1).

In order to handle polyominoeswe introduce the following definitions. A (stepwise) simple path is a sequence P1 = (x1,y1),

P′
1

= (x′
1
,y′
1
), P2 = (x2,y2), P

′
2

= (x′
2
,y′
2
) …, Pm = (xm,ym), P′

m = (x′
m,y

′
m) of distinct points with integer coordinates such that,

for all i ∈ {1, . . . ,m}, xi = x′
i
, and y′

i
= yi+1 if i < m; notice that the segments PiP

′
i
are vertical, whereas the segments P′

i
Pi+1

are horizontal. More generaly, a path is a sequence of points P1, P
′
1
, …, Pk , P

′
k
such that, for some m ≤ k, P1, P

′
1
, …, Pm, P

′
m

is a simple path, and for all i > m, Pi = Pi−m and P′
i
= P′

i−m
. A circuit is a simple path such that y′

m = y1; when dealing with

circuits, we shall implicitly assume that the subscripts are treated modulo m; so, for example Pm+1 is just P1. A point is a

(self-)crossing point of a simple path if and only if it is the intersection of two segments, say PiP
′
i
and P′

j
Pj+1; we also say that

the path has a crossing at indices (i,j).

Clearly, visiting the border of a polyomino P counter-clockwise and starting from the highest vertex of the leftmost edge,

we identify a circuit without crossing points: we call it the boundary of P and denote it by P1,P
′
1
,P2,P

′
2
, . . . ,Pm,P

′
m (see Fig. 1(a)).

Notice that if P is a permutomino, then m = n.

In particular we consider four special points in the boundary of any polyomino P: let A = P1 be the highest vertex of the

leftmost edge, B be the leftmost vertex of the lowest edge, C be the lowest vertex of the rightmost edge, D be the rightmost

of the highest edge (see Fig. 1(b)). Notice that, if P is convex, then the subsequence of vertices between A and B (B and C, C

and D, D and P′
m, respectively) is a path directed down/rightward (up/rightward, up/leftward, down/leftward, respectively);

see Fig. 1(c).
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Fig. 2. (a) The permutomino of size n = 7 defined by σ = (5,7,4,1,6,3,2) and τ = (4,5,1,2,7,6,3) (squares represent σ , whereas lozenges represent τ ). (b) The

path of σ = (3,2,1,4,7,5,6) and τ = (2,1,7,3,6,4,5), which does not define a permutomino. (c) The path of σ = (3,2,1,4,6,5,7) and τ = (2,1,3,7,5,4,6), which

does not define a permutomino of size n = 7.

2.2. Generating functions

The generating function f (z) of the sequence {an}n is defined as [10] f (z) = ∑
n anz

n; it is well known that

zf ′(z) =
∑
n

nanz
n and f (z) · g(z) =

∑
n

⎛
⎝ n∑

k=0

anbn−k

⎞
⎠ zn,

where g(z) = ∑
n bnz

n. Some examples of generating functions that we will need in the following are

1√
1 − 4z

=
∑
n

(
2n

n

)
zn and

1

1 − 4z
=

∑
n

4nzn.

As a consequence of the previous facts, we have that

n∑
k=0

(
2k

k

)(
2(n − k)

n − k

)
= 4n. (1)

3. Permutominoes, permutations, and transform

In this section we illustrate the relationship between the set of permutominoes of size n and the set

�n = {(σ ,τ) | σ ,τ ∈ S(n), σ(x) �= τ(x) for every x, and σ(1) > τ(1)}.
Consider a permutomino P of size n and let P1,P

′
1
,P2,P

′
2
, . . . ,Pn,P

′
n be its boundary. By definition, for any z ∈ {1, . . . ,n} there

is exactly one index i such that Pi and P′
i
have abscissa z and there is exactly one index j such that P′

j
and Pj+1 have ordinate

z. Thus, a permutomino P of size n uniquely determines a pair of permutations (σ ,τ) ∈ �n (which we call the permutation

pair of P): σ(x) and τ(x) are defined as the respective ordinates of the (unique) points Pi and P′
i
with abscissa x. In particular,

observe that A = P1 = (1,σ(1)), B = (τ−1(1),1), C = (n,σ(n)), D = (τ−1(n),n).

Conversely, a pair (σ ,τ) ∈ �n does not always define a permutomino. However, one can always consider the set of points

(i ∈ {1, . . . ,n})
Si = (xi,σ(xi)) and Ti = (xi,τ(xi)),

where for every i < n,

x1 = 1, xi = σ−1(τ (xi−1)).

Wedefine the path of (σ ,τ) as the path S1,T1,S2,T2, . . . ,Sn,Tn. Notice that this path needs not be simple, as Fig. 2(c) illustrates.

However, if the 2n points are all distinct, the path is indeed a circuit with exactly one vertical (and horizontal) segment for

every abscissa (and ordinate), see Fig. 2(a); yet, the circuit may contain crossing points (see Fig. 2(b)).

Remark 1. A pair of permutations in �n is the permutation pair of a permutomino P if and only if its path has exactly 2n

distinct vertices and has no crossing points. In this case its path coincides with the boundary of P, that is Si = Pi and Ti = P′
i

for every i.

We notice that this remark is actually the definition of permutomino as introduced in [7]. Indeed, our definition of path

of a pair of permutation recalls the geometric contruction used in [7], even though there are some differences (for instance

in the case of Fig. 2(c)).

We now introduce a map Fn : �n → �n where �n is the set of pairs of endofunctions of {1, . . . ,n}. For any pair (σ ,τ) ∈ �n

we set Fn(σ ,τ) = (v,h) where
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v(1) = 1, v(i + 1) = σ−1(τ (v(i)))

h(1) = τ(1), h(i + 1) = τ(σ−1(h(i)))

for every i ∈ {1, . . . ,n − 1}. The pair (v,h) is called the transform of (σ ,τ); Fig. 3 shows an example of permutomino and the

transform (v,h) of its permutation path (σ ,τ). The transform Fn has the following geometric interpretation: v(i) is the abscissa

of the ith vertical edge along the path of (σ ,τ), whereas h(i) is the ordinate of the ith horizontal edge along the same path.

Indeed, the following proposition holds:

Remark 2. Let (σ ,τ) be a pair of permutations, S1,T1,S2,T2, . . . ,Sn,Tn be its path and (v,h) = Fn(σ ,τ) be its transform. Then one

has

Si = (v(i),h(i − 1)) and Ti = (v(i),h(i)) (2)

for every i ∈ {1, . . . ,n}, where we let h(0) = h(n) for the sake of simplicity.

Notice that the path goes rightwards (resp. leftwards) according towhether v is increasing or decreasing and goes upwards

(resp. downwards) according to whether h is increasing or decreasing (see Fig. 3 for an example). Also observe that the

functions v and h need not to be permutations; for instance this is the case for the permutation pair of Fig. 2(c).

The transform of the permutation pair of a convex permutomino has special properties, that can be observed in Fig. 3

(right). To illustrate them, we introduce the following definition.

Definition 3. The pair (v,h) ∈ �n is said to be admissible whenever (v,h) ∈ S(n) × S(n) and, setting v∗ = v−1(1), h∗ = h−1(1),

v∗ = v−1(n), and h∗ = h−1(n), one has

• 1 = v∗ ≤ h∗ < v∗ ≤ h∗,
• v is increasing in {1, . . . ,v∗} and decreasing in {v∗, . . . ,n},
• h is decreasing in {1, . . . ,h∗}, increasing in {h∗, . . . ,h∗}, decreasing in {h∗, . . . ,n}, with h(n) > h(1).

The set of admissible pairs in �n shall be denoted by �A
n .

This definition is justified by the following fact:

Remark 4. Let (σ ,τ) ∈ �n be a pair of permutations. Then Fn(σ ,τ) is admissible if and only if the path of (σ ,τ) is a circuit that

can be decomposed into four subpaths directed, in this order, down/rightward, up/rightward, up/leftward, down/leftward.

The previous proposition leads us to define a circuit as admissible if it can be decomposed as in the statement (see, for

example, Figs. 3 and 4), and to introduce the set

�A
n = {(σ ,τ) ∈ �n | the path of (σ ,τ) is an admissible circuit}.

Indeed, the previous remark can be extended as follows:

Proposition 5. The sets �A
n and �A

n are in bijection via Fn.

Proof. Remark 4 implies that Fn(�
A
n ) ⊆ �A

n ; we need to prove bijectivity. Given two permutations (v,h)∈�A
n , set

σ(x) = h(v−1(x) − 1) and τ(x) = h(v−1(x)).

Letting Fn(σ ,τ) = (v′,h′), onecaneasilyverify thatv(i) = v′(i)andh(i) = h′(i)by inductionon i. Foruniqueness, it is sufficient

to use the definition of Fn and Remark 2. �

The preimage (σ ,τ) ∈ �A
n of a (v,h) ∈ �A

n is called the antitransform of (v,h), and the path of (σ ,τ) is called the anticircuit

of (v,h).

In particular, since the boundary of a convex permutomino is an admissible circuit, we obtain:

Corollary 6. If (σ ,τ) is the permutation pair of a convex permutomino P, then its transform (v,h) is admissible.Moreover, A = Sv∗ ,
B = Th∗ , C = Sv∗ and D = Th∗ .

Observe however that, in general, the converse of the previous corollary is not true, because an admissible circuit may

contain crossing points, as shown in Fig. 4 (Left).

4. Crossing points

At this point, it should be clear that, if (σ ,τ) ∈ �A
n , then either its path is a permutomino or it has crossing points. Such

points can ensue only from one of the following two cases: the up/rightward subpath intersects the down/leftward subpath
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Fig. 3. (Left) A convex permutomino P. (Right) The diagram of the transform (v,h) (circles represent h, whereas crosses represent v) of the permutation pair

of P.

Fig. 4. (Left) An admissible circuit which is not a permutomino. (Right) The diagram of the pair of functions (v,h) corresponding to the circuit (circles

represent h, whereas crosses represent v).

(crossing point of the first type, as in Fig. 4), or the down/rightward subpath intersects the up/leftward subpath (crossing

point of the second type, as in Fig. 5). Actually, we will show that the crossing points do satisfy stronger conditions.

Lemma 7. Let (v,h) ∈ �A
n and P be its anticircuit. Then, the crossing points of P (if any) are all of the same type.

Proof. LetX be a crossing point of first type. Then the down/rightward subpath ofP is all included in the squarewith vertices

(1,1) and X; analogously, the up/leftward subpath of P is all included in the square with vertices X and (n,n). This implies

that these subpaths never cross each other, so any other crossing point must be of the first type. �

Now consider the sequence of crossing points of P , ordered so that their abscissas are (strictly) increasing. Clearly, the

circuit P passes through all these points once in this order and then again in the reverse order. Notice that also the ordinates

turns out to be ordered: if the crossing points are of the first (resp. second) type, then they are strictly increasing (resp.

decreasing).

For the sake of simplicity, thanks to Lemma 7, we now focus on admissible pairs whose anticircuit P has only crossing

points (if any) of the first type. The other case can be dealt with by simmetry. Under this hypothesis, the crossing points of

P can be classified into two groups, as illustrated in Fig. 6.

• A crossing point X is UL if it is the intersection of an upward segment SμTμ subpath of P) (where h∗ < μ < v∗) with a

leftward segment TλSλ+1P) (where λ > h∗); in this case, X = (v(μ),h(λ)) by Remark 2.
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Fig. 5. The anticircuit of (v,h), which is not a permutomino and has crossing points of the second type.

Fig. 6. (a) A UL crossing point at indices (μ,λ); (b) A RD crossing point at indices (δ,ρ).

• A crossing point X is RD if it is the intersection of a righward segment TρSρ+1 (where h∗ < ρ < v∗) with a downward

segment SδTδ (where δ > h∗); in this case X = (v(δ),h(ρ)) by Remark 2.

It is easy to see that the first crossing point of P is UL, the last one is RD, whereas the inner ones alternate. In particular

this implies that the number of crossing points is always even. Thus, letting X1,X2, . . . ,X2k−1,X2k be the ordered sequence of

crossing points of P , there exists a sequence of indices

μ1 ≤ ρ1 < μ2 ≤ ρ2 < · · · < μk ≤ ρk < δk ≤ λk < δk−1 ≤ · · · < δ1 ≤ λ1

such that, for every i = 1, . . . ,k,

X2i−1 = (v(μi),h(λi)) and X2i = (v(δi),h(ρi));
note that the crossing points with odd indices are UL whereas those with even indices are RD. Since the abscissa—and the

ordinates—are increasing, we also have

v(μ1) < v(δ1) < v(μ2) < · · · < v(μk) < v(δk)

and

h(λ1) < h(ρ1) < h(λ2) < · · · < h(λk) < h(ρk).

Actually, the points Xj ’s all lay on the diagonal with endpoints (1,1) and (n,n). (On the other hand, if the crossing points

are of the second type, it turns out that they all lay on the diagonal with endpoints (1,n) and (n,1).) Indeed, we show that the

previous chains of inequalities coincide, that is

Lemma 8. For every i, v(μi) = h(λi) and v(δi) = h(ρi).

Proof. Consider any UL crossing point X2i−1 = (v(μi),h(λi)), and the new circuits (that, in general, may themselves contain

crossing points):

S1,T1, . . . ,Sh∗ ,Th∗ , . . . ,Sμi
,X2i−1,Sλi+1,Tλi+1, . . . ,Sn,Tn

X2i−1,Tμi
,Sμi+1,Tμi+1 . . . ,Sv∗ ,Tv∗ , . . . ,Sh∗ ,Th∗ , . . . ,Sλi Tλi .
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Fig. 7. How the crossing points split a circuit into a sequence of permutominoes.

Observe that, by Corollary 6, the first circuit contains A and B and is included in the square with vertices (1,1) and X2i−1,

whereas the second circuit contains C and D and is included in the square with vertices X2i−1 and (n,n). Also, by Remark 2,

the second circuit is the anticircuit of the restrictions of v and h to the set {μi, . . . ,λi} (up to suitable translations). Hence,

such restrictions are bijections onto the sets {v(μi), . . . ,n} and {h(λi), . . . ,n}, respectively, and hence one gets v(μi) = h(λi).

Similarly, any RD crossing point X2i = (v(δi),h(ρi)) splits the circuit P into two circuits: the one included in the square with

endpoints (1,1) and X2i, and the other included in the square with endpoints X2i and (n,n). Thus, one obtains v(δi) = h(ρi) for

every i = 1, . . . ,k. �

Hence, the crossing points split the circuit P into 2k + 1 new circuits Pj , for j = 0, . . . ,2k (see Fig. 7). Each of them has no

crossing point, thus it is the boundary of a convex polyomino. Actually, reasoning as above, one can prove that each Pj is

the boundary of the permutomino whose permutation pair (σj ,τj) is defined as follows (setting δ0 = 1, μk+1 = v∗, and up to

suitable traslations of domains and codomains):

• σ2i is the restriction of σ to the domain {v(δi), . . . ,v(μi+1)} for every i = 0,1, . . . ,k;

• τ2i is the restriction of τ to the domain {v(δi), . . . ,v(μi+1)}, except for τ0(v(μ1)) = v(μ1), τ2k(v(δk)) = v(δk), τ2i(v(δi)) = v(δi)

for every i = 1,2, . . . ,k, and τ2i(v(μi+1)) = v(μi+1), for every i = 0,1, . . . ,k − 1;

• σ2i−1 is the restriction of σ to the domain {v(μi), . . . ,v(δi)} for every i = 1,2 . . . ,k, except for σ2i−1(v(μi)) = v(μi) and

σ2i−1(v(δi)) = v(δi);

• τ2i−1 is the restriction of τ to the domain {v(μi), . . . ,v(δi)} for every i = 1,2 . . . ,k.

Intuitively, the pairs (σj ,τj) are the restrictions of (σ ,τ) to suitable subintervals of {1, . . . ,n}, except for the interval endpoints

in correspondence with crossing points. Permutominoes with boundaries P0 and P2k are both directed-convex, while the

other ones are parallelograms. So, we have proved the following theorem.

Theorem 9. Let (v,h) ∈ �A
n and P be its anticircuit. Then, either P is the boundary of a convex permutomino, or P has an even

number 2k of crossing points of the same type. In the latter case, either all crossing points lay on the diagonal with endpoint (1,1)

and (n,n), or they all lay on the diagonal with endpoints (1,n) and (n,1). Moreover,P determines 2k + 1 new circuits, each of which

is the boundary of a convex permutomino: the 2k − 1 inner permutominoes are parallelogram, whereas the two outer ones are

directed-convex.

5. Counting convex permutominoes

Theorem 9 provides a precise characterization of the admissible pairs having crossing points. Wewill call them bad pairs,

since they do not define a permutomino. Hence, in order to count the number Cn of convex permutominoes of size n, we

first obtain the number An of admissible pairs and then the number Bn of the bad ones. Our main result is hence given by a

subtraction Cn = An − Bn.
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To this aim, we recall that in [5] the authors succeeded in giving an explicit formula for counting the number of some

subclasses of convex permutominoes; more precisely, they proved that the number dn of directed-convex permutominoes

with size n is

dn = 1

2

(
2(n − 1)

n − 1

)
, (3)

whereas the number of parallelogram permutominoes of size n equals the (n − 1)th Catalan number

pn = cn−1 = 1

n

(
2n − 2

n − 1

)
. (4)

We start by computing the number of admissible pairs:

Theorem 10. For every n ≥ 2, the number of admissible pairs is

An =
n−2∑
s=0

s∑
t=0

t∑
u=0

(
n − 2

t

)(
n − 2

u + s − t

)
.

Proof. By the definition of admissible pair, we first have to choose the values h∗, v∗ and h∗ such that 1 ≤ h∗ < v∗ ≤ h∗ ≤ n.

Once these values are fixed, take any two subsets of {2, . . . ,n − 1}, say V and H, with cardinalities v∗ − 2 and h∗ − h∗ − 1,

respectively. Let now v be the unique permutation such that v(1) = 1, v(v∗) = n, v({2, . . . ,v∗ − 1}) = V , with v increasing in

such an interval, and decreasing in the remaining interval {v∗ + 1, . . . ,n}; similarly, let h be the unique permutation such

that h(h∗) = 1, h(h∗) = n, h({h∗ + 1, . . . ,h∗ − 1}) = H, with h increasing in such an interval, and decreasing (cyclically) in the

remaining interval {h∗ + 1, . . . ,n} ∪ {1, . . . ,h∗ − 1}. This is clearly an admissible pair, and it is uniquely determined by the

choice of V and H. So, the number of admissible pairs is

An =
∑

1≤h∗<v∗≤h∗≤n

(
n − 2

v∗ − 2

)(
n − 2

h∗ − h∗ − 1

)
.

Substituting s = h∗ − 2, t = v∗ − 2 and u = v∗ − h∗ − 1 in the previous summation, we obtain the result. �

As proved in a separate work [1], the previous summation can be rewritten to obtain

An = 2n4n−3 − (n − 2)

(
2(n − 2)

n − 2

)
. (5)

As shown in the previous section, bad admissible pairs can be depicted as particular sequences of parallelogramanddirect

convex permutominoes. We proceed with two counting lemmata that will lead to an explicit formula for Bn in Theorem 13.

Lemma 11. For every m ≥ 0, we have

∑
k

∑
t1,...,t2k−1>0

t1+...+t2k−1=m+1

ct1 · · · ct2k−1
=

(
2m

m

)
.

Proof. The Catalan number ct counts the number of trees1 with 2t edges whose internal nodes have exactly two children.

So, the left-hand side of the formula counts the number of ordered forests made by an odd number of trees, each being

non-trivial and with all internal nodes having two children exactly, where the overall number of edges is 2m + 2.

The set F2m+2 of such forests is in bijection with the set T2m+2 of the trees with 2m + 2 edges, all internal nodes with

exactly two children, and the root with 4i + 2 children for some integer i. Indeed, let T1, . . . ,T2k−1 be any forest in F2m+2 and

consider, for every i, the two subtrees T ′
i
and T ′′

i
rooted at the two children of the root of Ti. The corresponding tree in T2m+2

is obtained by attaching T ′
1
,T ′′
1
, . . . ,T ′

2k−1
,T ′′
2k−1

at a new root. Conversely, every tree in T2m+2 can be obtained from a suitable

forest in F2m+2. Thus, the result is proved if we show that the cardinality of T2m+2 is exactly
(2m
m

)
.

This follows from the general formula of [3], with R = {2,6,10,14, . . .}, N = {2} and L = {1}, that yields the generating

function T(z) = 1 + z2/
√
1 − 4z2 of the sequence {|Tm|}. Since G(z) = 1/

√
1 − 4z is the generating function for the central

binomial coefficient
(2m
m

)
, we obtain that

T(z) = 1 + z2G(z2) = 1 +
∑
m≥0

(
2m

m

)
z2m+2. �

Lemma 12. For every m ≥ 0, we have

1 Here and henceforth, by tree we mean ordered rooted tree.
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m∑
s=0

4s
(
2(m − s)

m − s

)
=

(
2m

m

)
(2m + 1).

Proof. We prove that the generating function for the left-hand side is the same as the one for the right-hand side. The

left-hand side is a convolution, whose generating function is the product of 1/(1 − 4z) and 1/
√
1 − 4z, i.e., (1 − 4z)−3/2. For

the right-hand side, notice that

∞∑
m=0

(2m + 1)

(
2m

m

)
zm =2

∞∑
m=0

m

(
2m

m

)
zm +

∞∑
m=0

(
2m

m

)
zm

=2z
d

dz

(
1√

1 − 4z

)
+ 1√

1 − 4z
= (1 − 4z)−3/2. �

Theorem 13. For every n ≥ 3, the number of admissible pairs that do not define a permutomino is

Bn = (n − 1)

(
2(n − 2)

n − 2

)
− 4n−2.

Proof. By Theorem 9, if an admissible pair does not define a permutomino, then it defines a sequence of 2k + 1 permutom-

inoes P0,P1, . . . ,P2k where P0 and P2k are direct-convex and P1, . . . ,P2k−1 are parallelogram. Letting ni be the size of Pi, we

have
∑

i ni = n + 2k, since each crossing point Xi (i ∈ {1, . . . ,2k}) coincides with both the upper-rightmost corner of Pi−1 and

lower-leftmost corner of Pi. Hence the number of admissible pairs that do not define a permutomino are

Bn = 2 ·
n/2�∑
k=1

∑
n0,...,n2k≥2

n0+···+n2k=n+2k

dn0pn1 · · ·pn2k−1
dn2k ,

where dn and pn are the numbers of direct-convex and parallelogram permutominoes of size n, respectively. The factor 2

accounts for the symmetry between crossing points of the first and second type. Now, set r = n0 − 1, s = r − 1 + n2k and

ti = ni − 1 for every i ∈ {1, . . . ,2k − 1}. Recalling Eqs. (3) and (4), we have

Bn = 2 ·
n−2∑
s=2

⎛
⎜⎜⎜⎝

n/2�∑
k=1

∑
t1,...,t2k−1≥1

t1+···+t2k−1=n−1−s

ct1 · · · ct2k−1

⎞
⎟⎟⎟⎠

⎛
⎝1

4

s−1∑
r=1

(
2r

r

)(
2(s − r)

s − r

)⎞
⎠ .

Applying Lemma 11 with m = n − 2 − s and Eq. (1) with n = s, we obtain

Bn = 1

2
·
n−2∑
s=2

(
2(n − s − 2)

n − s − 2

) (
4s − 2

(
2s

s

))

= 1

2
·
n−2∑
s=0

(
2(n − s − 2)

n − s − 2

) (
4s − 2

(
2s

s

))
+ 1

2

(
2(n − 2)

n − 2

)

= 1

2
·
n−2∑
s=0

(
2(n − s − 2)

n − s − 2

)
4s −

n−2∑
s=0

(
2(n − s − 2)

n − s − 2

)(
2s

s

)
+ 1

2

(
2(n − 2)

n − 2

)
.

Now, applying Lemma 12 with m = n − 2 to the first summand, and using again Eq. (1), we obtain the result. �

From Theorems 10 and 13 and Eq. (5), we are now able to show the main result.

Corollary 14. The number of convex permutominoes of size n ≥ 2 is

Cn = An − Bn = 2(n + 2)4n−3 − (2n − 3)

(
2(n − 2)

n − 2

)
.

The first few terms of the sequences An, Bn and Cn are given in Table 1.

6. Conclusions

In this paper we have presented a novel technique to study permutominoes: we defined the transform of a pair of

permutations that can be thought of as a sort of duality. More precisely, even though the set of pairs of permutations

(σ ,τ) defining a convex permutomino is difficult to be described directly, its image through the transform Fn can be fully
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Table 1

The number An of admissible pairs, the number Bn of admissible pairs with crossings and the number Cn of convex permutominoes of size n

n 2 3 4 5 6 7 8 9 10

An 1 4 20 100 488 2324 10840 49704 224720

Bn 0 0 2 16 94 488 2372 11072 50294

Cn 1 4 18 84 394 1836 8468 38632 174426

characterized. As a consequence, we were able to obtain an explicit formula for the number Cn of convex permutominoes

(Corollary 14). We point out that a recursive generation technique (namely, the ECO method) has been independently

proposed in [4], where an equivalent formula counting the number of convex permutominoes has been found.

We conclude remarking that the generating function of {Cn}n is algebraic, as it happens also for unambiguous context-free

languages [9]. Hence, itwould be interesting to investigate if there is a bijectionϕ between the class of convexpermutominoes

and some natural unambiguous context-free language, where ϕ maps permutominoes of size n to words of length n.
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