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Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report

a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls

of East Asian and European ancestries. We discover two previously unreported loci, NFKB1

(rs230540, OR= 1.25, P= 3.4 × 10−12) and IRF4 (rs9405192, OR= 1.29, P= 1.4 × 10−14), fine-

map the PLA2R1 locus (rs17831251, OR= 2.25, P= 4.7 × 10−103) and report ancestry-specific

effects of three classical HLA alleles: DRB1*1501 in East Asians (OR= 3.81, P= 2.0 × 10−49),

DQA1*0501 in Europeans (OR= 2.88, P= 5.7 × 10−93), and DRB1*0301 in both ethnicities

(OR= 3.50, P= 9.2 × 10−23 and OR= 3.39, P= 5.2 × 10−82, respectively). GWAS loci explain

32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20–37% of

the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA

diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and

their interactions accounting for nearly one-third of the disease risk.
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Membranous Nephropathy (MN) is a rare cause of kidney
failure, manifesting as nephrotic syndrome with a peak
incidence between 30 and 50 years of age1. The land-

mark discoveries of pathogenic antibodies against neutral endo-
peptidase in antenatal MN2, and anti-phospholipase A2 receptor
(PLA2R) antibodies in adult MN3 have established MN as the
disease of autoantibodies directed against podocyte antigens.
Several studies have confirmed the presence of autoantibodies
against PLA2R in ~60–70% of cases of primary MN4, with
another 3–5% potentially explained by antibodies against
thrombospondin type 1 domain-containing 7A5.

Previous genome-wide association study (GWAS) for MN
conducted in 75 French, 146 Dutch and 335 British cases geno-
typed with low resolution arrays identified impressively strong
associations of the HLA region and the PLA2R1 locus encoding
the dominant antigen in MN6. These findings suggest that genetic
variation controls the immunogenicity and/or expression level of
the PLA2R auto-antigen, as well as the production of anti-PLA2R
autoantibodies in individuals with a permissive HLA haplotype.
However, specific causal alleles underlying GWAS associations
have not yet been mapped at high resolution. Moreover, prior
GWAS was limited to Europeans, and the reported associations
have not been examined comprehensively across different eth-
nicities. Lastly, because of small sample size, the prior study might
have missed additional disease relevant loci.

Herein, we report a genetic study of primary MN involving
12,820 individuals (3782 biopsy-documented cases and 9038
ancestry-matched controls), across nine cohorts of East Asian and
European ancestries. The composition of our cohorts reflects the
demographics of the centres that have collected DNA samples for
genetic studies of this rare disease over the past 15 years. By using
high resolution arrays with genome-wide imputation and over 7-
fold increase in sample size compared to the prior GWAS, we
discover two previously unreported genome-wide significant risk
loci for MN and perform high resolution mapping and ethnicity-
specific analyses of the known loci.

We describe an unusual genetic architecture of MN, with four
loci and their genetic interactions accounting for nearly one-third
of the disease risk. Our study implicates dysregulation of NFKB1
and IRF4 genes in the disease pathogenesis, providing genetic
support for potential targeting of the NF-κB and interferon sig-
nalling pathways in primary MN. We also refine ethnicity-specific
effects at the HLA locus, defining DRB1*1501 as a major risk
allele in East Asians, DQA1*0501 in Europeans, and DRB1*0301

in both ethnicities. We describe a risk haplotype at the PLA2R1
locus that has a regulatory function and exhibits strong genetic
interactions with the HLA-DRB1 risk alleles. Lastly, we calculate a
genetic risk score (GRS) based on these findings which, when
used in combination with a serum anti-PLA2R ELISA (a serologic
test for MN currently in clinical use), shows superior perfor-
mance in discriminating cases and controls than the ELISA or
GRS alone. We validate the performance of this combined risk
score (CRS) in external validation cohorts. Our results demon-
strate that a combined serum-genetic test can potentially be used
to establish a new diagnosis of primary MN, obviating the need
for a high risk kidney biopsy procedure in the majority of cases.

Results
Study design. Our study involved nine case-control cohorts,
including four East Asian cohorts of 4841 individuals (1632
primary MN cases and 3209 controls) and five European cohorts
of 7979 individuals (2150 primary MN cases and 5829 controls).
Eight cohorts were genotyped with high density SNP arrays,
imputed using the latest whole genome sequence reference panels,
and meta-analyzed genome-wide, and the top 46 loci selected
based on P < 5 × 10−5 were tested by targeted genotyping in the
ninth cohort (Supplementary Table 1). The summary of study
cohorts, genotyping methods, and ancestry-specific imputation
panels is provided in Table 1.

All cases used in this study were defined by a kidney biopsy
diagnosis of idiopathic MN and any suspected secondary cases
due to drugs, malignancy, infection, or autoimmune disease were
excluded. With the exception of the German Chronic Kidney
Disease (GCKD) cohort, all controls used for discovery involved
healthy population controls and any individuals with a known
diagnosis of kidney disease were excluded. The GCKD cohort was
drawn entirely from a prospective observational study of patients
with CKD and consisted of biopsy-defined cases and controls for
whom CKD etiology was clearly assigned to a non-MN cause, as
previously described7.

All genome-wide significant loci (P < 5 × 10−8) were refined by
cohort-stratified stepwise conditional analyses to define indepen-
dently associated haplotypes. We also analyzed classical HLA
alleles and all common amino acid polymorphisms at class I and
class II genes imputed at high resolution. We performed detailed
genomic annotations and explored epistatic effects for significant
loci. Based on significant GWAS loci, we designed a GRS for MN

Table 1 Baseline characteristics of participants in the discovery and replication cohorts.

Cohort Ancestry No. of cases No. of controls Total Genotyping platform Imputation reference
population panel

Asian Cohorts
Chinese Discovery East Asian 561 904 1465 Zhonghua-8 chip (Illumina) 1000G Phase 3 East Asians
Korean Discovery East Asian 164 708 872 MEGA chip (Illumina) 1000G Phase 3 East Asians
Japanese Discovery East Asian 81 358 439 MEGA chip (Illumina) 1000G Phase 3 East Asians
Chinese Replication East Asian 826 1239 2065 KASP (targeted) –
All Asian 1632 3209 4841

European Cohorts
European Discovery 1 European 611 1246 1857 MEGA chip (Illumina) 1000G Phase 3 Europeans
European Discovery 2 European 1045 1094 2139 MEGA chip (Illumina) 1000G Phase 3 Europeans
Turkish Discovery European 254 336 590 MEGA chip (Illumina) 1000G Phase 3 Europeans
Sardinian Discovery European 93 1498 1591 OmniExpress (Illumina) 1000G Phase 3 Europeans
GCKD Discovery European 147 1655a 1802 Omni2.5Exome (Illumina) HRC 1.1
All European 2150 5829 7979
All Participants 3782 9038 12,820

aGCKD participants with chronic kidney disease etiology assigned to a non-MN cause (see Methods).
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and performed its validation in external cohorts, including the
three previously published European GWAS cohorts6 and the
Nephrotic Syndrome Study Network (NEPTUNE) study8.

The descriptions of all cohorts including ancestry analyses and
details of statistical approaches are provided in Methods,
Supplementary Methods, and Supplementary Figs. 1 and 2.

Genome-wide association. The results of combined genome-
wide meta-analyses are summarized in Fig. 1 and Table 2, with
more information provided in Supplementary Table 1 and Sup-
plementary Figs. 3 and 4. We discovered two novel genome-wide
significant loci: a locus on chromosome 4q24 encoding NFKB1
(rs230540, OR= 1.25, Meta-analysis P= 3.4 × 10−12) and a locus
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Fig. 1 Manhattan and regional plots for non-HLA loci for the combined meta-analysis of all MN cohorts. a The results of the combined meta-analysis
across all cohorts; the dotted horizontal line indicates a genome-wide significance threshold (α= 5 × 10−8); the y-axis is truncated twice to accommodate
large peaks over PLA2R1 and HLA loci; genome-wide-significant loci highlighted in red; b Regional plot for the PLA2R1 locus; the upper panel shows
unconditioned meta-results, the lower panel depicts meta-results after conditioning for the top SNP (rs17831251). c Regional plot for the NFKB1 locus; the
upper panel corresponds to unconditioned results; the lower panel shows meta-results after controlling for rs230540. d Regional plot for the IRF4 locus; the
upper panel corresponds to unconditioned results; the lower panel shows meta-results after controlling for rs9405192. The x-axis denotes genomic
location (hg19 coordinates), left y-axis represents –log P values for association statistics, right y-axis represents average recombination rates based on
HapMap-III reference populations combined (blue line). In the conditional analyses, we conditioned on the top SNP in each individual cohort, then meta-
analyzed conditioned summary statistics as described in the Methods.
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on chromosome 6p25.3 encoding IRF4 (rs9405192, OR= 1.29,
Meta-analysis P= 1.4 × 10−14). We also confirmed strong and
highly significant associations at the previously described loci,
including chromosome 2q24.2 encoding PLA2R1 (rs17831251,
OR= 2.25, Meta-analysis P= 4.7 × 10−103) and 6p21.32 encod-
ing HLA-DQA1/DRB1 genes (rs9271573, OR= 2.41, Meta-
analysis P= 2.7 × 10−154).

Conditional analyses of the three non-HLA loci revealed that
each signal is explained by a single SNP in each cohort, suggesting
a single shared risk haplotype per locus in East Asian and
European populations (Fig. 1b–d). To further test if the causal
variants at these loci are likely shared between Europeans and
East Asians, we performed 99% credible set analyses using
summary statistics for each ancestry-defined subgroup and
compared them with credible sets derived from the trans-ethnic
meta-analysis. We confirmed that the predicted causal variants
derived from the trans-ethnic analysis were largely overlapping
with ancestry-specific results (Supplementary Fig. 5). In contrast,
stepwise conditional analyses of SNPs at the HLA region revealed
a complex pattern of association, with at least three indepen-
dently genome-wide significant SNPs explaining the signal across
all cohorts (Supplementary Table 2).

Given the complexity of the association signal at the HLA locus
and known differences in linkage disequilibrium (LD) patterns by
ancestry, we performed additional analyses of this region
separately in East Asians and Europeans. In the conditional
analyses of the East Asian cohorts, only two independently
associated SNPs explained the entire signal at this locus
(rs9269027 and rs1974461). In Europeans, stepwise conditional
analyses revealed three independently associated genome-wide
significant SNPs (rs9271541, rs9265949, and rs2858309), suggest-
ing a more complex pattern of association (Supplementary
Table 2). In both ethnicities, the top signal centred on HLA-DRB1
and DQA1 genes (Fig. 2a, b).

Classical HLA alleles and amino acid polymorphisms. We next
imputed classical HLA alleles at two- and four-digit resolution
using ethnicity-specific reference panels (see Methods). The first
two digits specify a group of HLA alleles known as super-types as
defined by older typing methodologies. The third through fourth
digits specify nonsynonymous substitutions. Moreover, we
imputed individual amino acid polymorphisms at class I (HLA-A,
-B, and -C) and class II (HLA-DQB1, -DQA1 and -DRB1) genes.

In East Asian cohorts, stepwise conditioning on classical HLA
alleles defined two independent risk alleles, DRB1*1501 (OR=
3.81, Wald test P= 2.0 × 10−49) and DRB1*0301 (ORconditioned=
3.88, Wald test P= 4.5 × 10−24, Fig. 2c, Supplementary Table 3).
In the analysis of polymorphic amino acid sites, genetic variation
at only two codons encoding residues at positions 13 and 71 in
DRβ, explained the entire HLA-DRB1 signal (Fig. 3a, Supplemen-
tary Table 4). Specifically, DRβ position 13 occupied by Arginine
(OR= 3.68, 95% CI: 2.74–4.95) or Serine (OR= 2.76, 95% CI:
2.06–3.71), and position 71 occupied by Lysine (OR= 3.10, 95%
CI: 2.49–3.86) or Alanine (OR= 2.96, 95% CI: 2.55–3.45)
conveyed the greatest risk (Supplementary Table 5). Consistent
with a prior study in Chinese patients9, these amino acids define
the classical risk alleles DRB1*1501 and DRB1*0301

(Supplementary Table 6), and their side chains map adjacent to
each other within the antigen-binding pocket of the β-chain of DR
(Fig. 3c).

The top Asian risk allele DRB1*1501 had no significant risk effect
in Europeans despite its frequency being comparable between
populations (control freq. 10% vs. 8% in Europeans and East
Asians, respectively). The most strongly associated European risk
allele was DQA1*0501 (OR= 2.88, Wald test P= 5.7 × 10−93,
Fig. 2d). After conditioning the locus on DQA1*0501, DRB1*0301
remained genome-wide significant (ORconditioned= 2.00, Wald test
P= 2.0 × 10−19, Supplementary Table 7) suggesting that this risk
allele is shared between Asian and European populations. We note
that DQA1*0501 allele is twice as common in Europeans compared
to Asians (control freq. 30% vs. 14%). Moreover, DQA1*0501
and DRB1*0301 are in imperfect LD that is stronger in Europeans
(r2= 0.40) compared to East Asians (r2= 0.29). Although a weak
effect of DQA1*0501 was apparent in our Asian cohorts (Fig. 2c,
Supplementary Table 3), this allele became non-significant after
conditioning on DRB1*0301. In contrast, DQA1*0501 exhibited a
genome-wide significant risk effect after conditioning on
DRB1*0301 in Europeans (ORconditioned= 2.40, Wald test P=
1.8 × 10−18).

Given that our HLA imputation reference panels were
considerably smaller for East Asians compared to Europeans,
we sought additional validation of the observed classical HLA
associations that were Asian-specific. We therefore created
another reference panel based on the MHC sequence data from
Zhou et al.10 including 10,689 control individuals of Han Chinese
ancestry. Using SNP2HLA software, we then re-imputed classical
HLA alleles for our East Asian cohorts. We used the same quality
control filters (MAF > 0.01 and imputation R2>0.8) and methods
for association testing as described above. We observed no major
differences in the association statistics for the two Asian risk
alleles, DRB1*1501 (OR= 3.49, P= 3.85e−40) and DRB1*0301
(OR= 4.08, P= 6.3E−24), demonstrating that these effects do
not represent artifacts of smaller imputation panels.

We next performed the analysis of HLA amino acid
substitutions in Europeans. Consistent with the association
analyses of classical alleles, five bi-allelic sites in DQA1 that
correlate with the DQA1*0501 allele were most strongly
associated with the risk of MN (75Ser-107Ile-156Leu-161Glu-
163Ser, Wald test P= 5.7 × 10−93, Fig. 3b, Supplementary
Tables 8–10). Conditioning on this haplotype in Europeans
uncovered a second independent signal in HLA-DRB1, position
74 (Supplementary Tables 8 and 9), with Arginine representing
the key risk residue (OR 2.86, 95% CI: 2.54–3.23). This residue
defines the European DRB1*0301 risk haplotype (Supplementary
Tables 9 and 10). Notably, positions 74 (Europeans) and 71 (East
Asians) are separated by a single turn along the α-helix, and their
side chains are spatially close to that of position 13, located on the
beta-sheet floor with its side chain oriented into the peptide-
binding groove (Fig. 3c).

To confirm ethnicity-specific HLA effects, we repeated stepwise
conditioning in a joint stratified analysis of all cohorts using bi-
allelic tests of HLA alleles with formal tests of heterogeneity
(Supplementary Table 11, Fig. 4a). The top classical allele
supported by all cohorts regardless of ethnicity was DRB1*0301

Table 2 Effect estimates for top GWAS SNPs by ethnicity and combined across all cohorts.

Locus SNP Risk allele E. Asian
case freq.

E. Asian
control freq.

E. Asian OR
(95% CI)

E. Asian P-
value

European
case freq.

European
control freq.

European OR
(95% CI)

European
P-value

Combined OR
(95% CI)

Combined
P-value

PLA2R1 rs17831251 C 0.85 0.70 2.81 (2.48–3.17) 3.5 × 10−61 0.76 0.61 1.98 (1.81–2.17) 4.7 × 10−48 2.25 (2.09–2.42) 4.7 × 10−103

NFKB1 rs230540 C 0.43 0.35 1.24 (1.14–1.36) 1.8 × 10−6 0.35 0.32 1.25 (1.14–1.36) 7.8 × 10−7 1.25 (1.17–1.33) 3.4 × 10−12

IRF4 rs9405192 G 0.51 0.42 1.40 (1.28–1.53) 8.8 × 10−14 0.73 0.69 1.18 (1.07–1.29) 6.6 × 10−4 1.29 (1.21–1.37) 1.4 × 10−14

HLA rs9271573 A 0.60 0.35 2.97 (2.69–3.28) 3.7 × 10−102 0.62 0.44 2.06 (1.89–2.25) 1.8 × 10−60 2.41 (2.26–2.57) 2.7 × 10−154
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(OR= 3.71, Wald test P= 2.9 × 10−127). After conditioning for
DRB1*0301, the top classical allele was DQA1*0501 (ORconditioned=
1.80, Wald test P= 1.1 × 10−30), but this association was supported
predominantly by Europeans. After controlling for both
DRB1*0301 and DQA1*0501, the top allele was DRB1*1501
(ORconditioned= 1.94, Wald test P= 4.7 × 10−29), but the risk effect
was supported exclusively by East Asians (heterogeneity I2= 97.5,
Cochrane’s Q-test P < 0.05).

PLA2R1 locus and its genetic interactions. Consistent with prior
GWAS, the most significant non-HLA locus resided on chro-
mosome 2q24.26. The top SNP was in the first intron of PLA2R1,
which encodes the main podocyte autoantigen in primary MN.
This signal was supported by both ethnicities, but the effect
appeared stronger in East Asians (OR= 2.81, Meta-analysis P=
3.5 × 10−61) compared to Europeans (OR= 1.98, Meta-analysis
P= 4.7 × 10−48, Table 2). After conditioning the association on
the top SNP, rs17831251, there was no residual association at this
locus, suggesting a common risk haplotype in both ethnicities
(Fig. 1b).

We next refined the previously reported genetic interactions
between the PLA2R1 locus and HLA risk haplotypes. The
PLA2R1 risk genotype exhibited significant multiplicative
interaction with both Asian and European HLA risk haplotypes
(Fig. 4b, c), with the risk homozygosity at both loci associated
with 89-fold increased odds of disease risk in East Asians [OR=
88.8 for double risk homozygotes (N cases/controls= 103/10)
vs. double protective homozygotes (N cases/controls= 15/152),
95% CI: 38.0–207.3, Interaction test P= 7.8 × 10−3] and 14-fold
in Europeans [OR= 14.1 for double risk homozygotes (N cases/
controls= 291/89) vs. double protective homozygotes (N cases/
controls= 52/237), 95% CI: 10.0–22.1, Interaction test P=
6.4 × 10−5]. Because the effect modification was weaker in
Europeans, we next repeated interaction testing separating
individual HLA risk haplotypes (Fig. 4d, e). Notably, the
interaction in Europeans was driven predominantly by the
DRB1*0301-DQA1*0501 haplotype [OR= 28.7 for double risk
homozygotes (N cases/controls= 115/13) vs. double protective
homozygotes (N cases/controls= 75/339), 95% CI: 15.1–54.4,
Interaction test P= 2.2 × 10−3]. After removing its effect,
DQA1*0501 had no residual interaction with PLA2R1
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(Interaction test P= 0.1). Similarly, there was no significant
interaction between DQA1*0501 allele and PLA2R1 locus in East
Asians. These analyses suggest that the PLA2R1 locus interac-
tions are driven primarily by the DRB1 alleles.

We annotated all SNPs in LD with rs17831251 for potential
impact on the structure and/or transcriptional regulation of
PLA2R1. We found two common missense variants in moderate
LD, rs35771982 (p.H300D, r2= 0.69) and rs3749117 (p.M292V,
r2= 0.68), but the effects of these variants were considerably
weaker compared to rs17831251, suggesting that they are unlikely
to represent causal variants (Supplementary Table 12). Our
tissue-specific functional scoring method for non-coding variants
based on the ENCODE and Roadmap Epigenetics data11

prioritized another variant in intron 1, rs17241973 (r2= 0.93
with rs17831251) that intersects a putative enhancer element
across multiple tissues (Supplementary Fig. 6). Both rs17831251
and rs17241973 exhibit strong cis-eQTL effects on PLA2R1
expression wherein the MN risk alleles associate with lower
mRNA expression of PLA2R1 across multiple tissues in GTEx12,
but this effect appears reversed for the kidney tissue (Supple-
mentary Fig. 7). To further confirm these kidney-specific effects,
we used gene expression data from manually micro-dissected
human kidney compartments of 166 NEPTUNE participants13.
We detected suggestive glomerular eQTL effects that were weak,
but direction-consistent with GTEx for rs17831251 (Wald test
P= 0.055) and rs17241973 (Wald test P= 0.024), wherein MN
risk allele were associated with increased glomerular PLA2R1
mRNA levels (Supplementary Fig. 8).

Because kidney tissue compartments are not well represented
in either ENCODE or Roadmap datasets, we next examined the

genomic location of rs17831251 and rs17241973 in relationship
to the recently published kidney compartment-specific chromatin
landscape14 (Supplementary Fig. 9); rs17241973 lies within intron
1 of PLA2R1 in open chromatin that is active in both glomerular
and tubular compartments and is contiguous with the gene
promoter. In contrast, rs17831251 lies within a broad region of
increased chromatin accessibility in glomeruli, and is only 2.1-kb
away from a glomerulus-specific DHS that contains a high-
confidence NFKB1-binding motif. In glomerulus-specific chro-
matin conformation (Hi-C) data, both rs17831251 and
rs17241973 make regional and distal contacts with other
glomerular DHS, emphasizing a composite cis-regulatory module
for PLA2R1 gene expression.

Novel loci encoding NFKB1 and IRF4. The 4q24 locus contains
the NFKB1 gene, which encodes an active DNA binding subunit
of the NF-κB transcriptional complex. The top SNP, rs230540
(OR= 1.25, Meta-analysis P= 3.4 × 10−12), is an intronic variant
predicted to have a functional effect specific to immune cells
(Supplementary Fig. 10). In agreement with our prediction,
rs230540 has been associated with higher mRNA expression of
NFKB1 in whole blood (P= 2.6 × 10−11)15 and in CD4+ T cells
(P= 2.0 × 10−9)16. Consistent with pro-inflammatory effects of
NF-κB, the MN risk haplotype at this locus determined higher
leukocyte counts17 and increased risk of ulcerative colitis18,19 and
primary biliary cholangitis20,21 (Supplementary Table 13, Fig. 5a).
NFKB1 is also expressed in human podocytes22, as well as pri-
mary human glomerular and tubular epithelial cell cultures14, and
rs230540 intersects an active glomerular DHS with several
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glomerular Hi-C contact sites14 (Supplementary Fig. 11). Notably,
the MN risk allele has previously been associated with lower
estimated glomerular filtration rate in GWAS of renal
function23,24, thus this locus may be more broadly associated with
the risk of kidney disease.

The top SNP on chromosome 6p25.3, rs9405192 (OR= 1.29,
Meta-analysis P= 1.4 × 10−14), resides upstream of IRF4 gene,
which belongs to the family of transcription factors regulating
interferon-inducible genes. IRF4 is lymphocyte specific and
negatively regulates Toll-like-receptor signalling that is central
to the activation of innate immune system; this gene is known to

be under the transcriptional control of the NF-kB complex25–27.
Unlike PLA2R1 and NFKB1, IRF4 does not appear to be
expressed in human kidney cells by single nuclei RNA-seq28

(Supplementary Fig. 12). We did not find functional or coding
SNPs in LD with rs9405192, nor did we observe any cis-eQTL
effects for this variant, thus the precise mechanism underlying
this association remains unknown. However, the analysis of
binding sites for individual components of the NF-κB complex in
lymphocytes29 suggested binding of the complex in close
proximity of rs9405192 (Supplementary Fig. 13). The risk allele
at this locus is also in strong LD with variants previously
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associated with increased risk of inflammatory bowel disease19,
and in weaker LD with several risk variants for chronic
lymphocytic leukemia (Supplementary Table 13, Fig. 5a), suggest-
ing the pattern of pleiotropy that is similar to the NFKB1 locus.
Nevertheless, we detected no statistically significant genetic
interactions of IRF4 and NFKB1 loci.

In addition, we systematically annotated all other suggestive
non-HLA loci defined by P < 5.0 × 10−5 and these results are
summarized in Supplementary Table 14. To enhance potential
genetic discovery of novel podocyte antigens, we also repeated
genome scans after conditioning for the PLA2R1 locus, but
detected no additional suggestive loci.

SNP-based heritability and risk explained by GWAS. Using our
genotype data and genome-based restricted maximum likelihood
method (GREML)30, we estimated the overall SNP-based herit-
ability of MN at 0.43 (SE= 0.039) in East Asians and 0.36 (SE=
0.0046) in Europeans. Remarkably, all genome-wide significant
risk alleles exhibited unusually large effect sizes for GWAS. In
order to quantify the fraction of disease variance cumulatively
explained by genome-wide significant SNPs and their interac-
tions, we performed ethnicity-specific GRS analyses (see Meth-
ods). Each GRS was expressed as a weighted sum of risk alleles
with weights defined by their mutually adjusted effect estimates
and included the 3 independent non-HLA SNPs (rs6707458,
rs230540, rs9405192) as well as ethnicity-specific HLA risk alleles
and their interactions. This included rs9269027, rs1974461, and
rs9269027*rs6707458 interaction term for East Asians, and
rs9271541, rs9265949, rs2858309 and rs9271541*rs6707458
interaction term for Europeans (Supplementary Table 15). The
GRS calculated using this method explained 32% disease risk in
East Asians, 25% in Europeans, and 29% of overall disease risk
across all cohorts combined. Remarkably, the magnitude of the
GRS effect was comparable to rare, highly penetrant mutations
causing Mendelian forms of kidney disease, with individuals in
the top decile of GRS having 30 to 40-fold higher disease risk
compared to the lowest decile (Fig. 6a, b).

Clinical correlations of the GRS. For a subset of patients with
available clinical data, we performed genetic correlation analyses
with selected clinical features reflective of disease severity. The
GRS was positively correlated with PLA2R antibody seroposi-
tivity (Wald test P= 9.0 × 10−8), and in those with detectable
antibodies, higher titers at the time of biopsy (Slope test P= 1.2 ×
10−9, Fig. 5b). The GRS also predicted worse proteinuria at the
time of biopsy, which represents the key marker of MN severity
and prognosis (Slope test P= 1.3 × 10−3, Fig. 5c). Other clinical
features, such as age at diagnosis, renal function, or serum
albumin levels at the time of biopsy were not significantly cor-
related with the GRS after multivariate adjustment (Supplemen-
tary Table 16).

Potential diagnostic implications of the GRS. Although the
diagnosis of MN is traditionally established by a kidney biopsy,
the detection of circulating PLA2R antibodies by ELISA has
recently emerged as a useful diagnostic modality31. In this study,
we performed ELISA in sera obtained within 6 months of a
diagnostic kidney biopsy in a total of 2331 individuals (1488
cases, 300 healthy controls, and 543 disease controls). In East
Asians, we estimated that the standard ELISA cut-off of 20 U/mL
provided 100% specificity and 60% sensitivity for the diagnosis of
MN. In the analysis of Europeans, depending on the specific
cohort, the same cut-off provided 99–100% specificity and
51–57% sensitivity (Supplementary Table 17). While the antibody
level of 20 U/mL represents the manufacturer’s recommended

cut-off, levels 2–20 U/mL are frequently considered as borderline-
negative, and levels <2 U/mL as negative31. In our cohorts, the
cut-off 2 U/mL had inadequate diagnostic specificity (range
73–92%). These results confirm the key limitation of the PLA2R
antibody ELISA, which has high specificity (99–100%) but low
sensitivity (51–60%) at the standard recommended cut-off point;
while lowering the cut-off increases sensitivity, it results in
inadequate specificity. Consequently, the levels in the borderline-
negative range (2–20 U/mL) are difficult to interpret clinically.

Given this limitation, we evaluated if the addition of genetic risk
information can improve the performance of ELISA, especially in
cases that fall in the borderline-negative range. First, we evaluated
diagnostic properties of the GRS alone in our discovery cohorts. In
East Asians, the genetic test had area under the receiver operating
characteristics curve (AUROC) of 0.80 (95% CI: 0.78–0.82), while
in Europeans the AUROC was 0.75 (95% CI: 0.74–0.77).
Combining genetic and serologic tests in the form of a CRS
provided superior case discrimination with AUROCs of 0.96 (95%
CI: 0.95–0.98) in East Asians and 0.89 (95% CI: 0.87–0.91) in
Europeans (Fig. 6, Supplementary Table 18).

We next tested the GRS performance in several external
validation cohorts, including three independent GWAS cohorts of
European ancestry as well as in the European-American
NEPTUNE participants with incident nephrotic syndrome
(Supplementary Table 18C-E). Overall, the effects and the
diagnostic performance of the GRS were comparable between
the European discovery and each validation cohort (Fig. 6c).
When combined with the serum antibody titer, the CRS achieved
AUROC of 0.96 (95% CI: 0.94–0.97) across all validation cohorts
combined (Supplementary Table 18E, Fig. 6f).

In the subgroup analyses, we compared the diagnostic
properties of GRS and CRS by the antibody status in all cohorts
pooled by ancestry (Fig. 7). These analyses demonstrated that
both GRS and CRS were predictive of case status even for
antibody-negative MN. Importantly, the CRS continued to have
excellent performance in classifying the borderline-negative cases
(antibody level 2–20 U/mL range), with AUROCs of 0.98 (95%
CI: 0.97–0.99) in East Asians and 0.95 (95% CI: 0.93–0.96) in
Europeans. Notably, among all cases for which the ELISA test was
either negative or inconclusive, adding genetic information in the
form of CRS can establish the diagnosis in 20–37% cases with
99% specificity. The comparison of AUROCs between GRS, CRS,
and serum anti-PLA2R Ab test by ancestry is provided in
Supplementary Fig. 14, and the clinical implications of these
findings are summarized in Supplementary Note 1 and
Supplementary Table 19.

Lastly, we expanded our validation studies to non-European
participants of the NEPTUNE study (Supplementary Tables 20
and 21). Although the European risk score performance was
diminished in Hispanic Americans, the European GRS performed
well in African Americans, and this is despite substantial
differences in risk allele frequencies between Europeans and
Africans (Supplementary Table 22). Similar to the European
validation cohorts, the European GRS was superior compared to
the trans-ethnic GRS when applied to the NEPTUNE minority
populations, while the Asian GRS had relatively poor perfor-
mance in both African-American and Hispanic/Latino cohorts
(Supplementary Table 21, Supplementary Fig. 15).

Discussion
Our study provides important insights into an autoimmune dis-
ease and the genetic architecture of MN. First, we discover novel
genome-wide significant risk loci for MN with large effects
encoding two transcriptional master regulators of inflammation,
NFKB1 and IRF4. The association at the NFKB1 locus highlights
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the role of the canonical NF-κB pathway in primary MN. Upon
activation by pro-inflammatory signals, NFKB1 undergoes pro-
teasome processing to p50, an active DNA binding subunit of the
NF-κB complex. Inappropriate activation of this pathway has
previously been studied in progressive diabetic nephropathy32,

and in the context of inflammatory diseases, including IBD33,34

and MN35–37. Importantly, the MN risk allele at this locus has a
concordant effect on the risk of ulcerative colitis18,19 and primary
biliary cirrhosis20,21. It has also been associated with increased
mRNA expression of NFKB1 in cis, and reduced DNA
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methylation in trans across >400 CpGs that overlap with NF-κB-
binding sites, suggesting enhanced baseline activity of NF-κB38.
The NF-κB complex is known to up-regulate IRF4 expression
with cross-regulatory feedback loops between NFKB1 and IRF4
described in several prior studies25–27. Taken together, NFKB1
and IRF4 loci participate in a common regulatory pathway in
immune cells, and our genetic findings clearly establish a critical
role of this pathway in the pathogenesis of MN.

Second, due to the bi-ethnic composition of our cohorts, we
were able to refine ethnicity-specific effects at the HLA locus,
defining DRB1*1501 as a major risk allele in East Asians,
DQA1*0501 in Europeans, and DRB1*0301 in both ethnicities.

These findings suggest that different epitopes are likely presented
to T cells to initiate the anti-PLA2R response in East Asians and
Europeans. We also identified specific high-risk amino acid
substitutions, at positions 13, 71, and 74, mapping to the P4
pocket of DRβ1. Although the same positions contribute to the
risk of T1D39 and rheumatoid arthritis40, the effects of individual
residues at each position are discordant, likely reflecting differ-
ences in target epitopes.

Third, we confirm that a single haplotype at the PLA2R1 locus
conveys the disease risk in both East Asians and Europeans, and
exhibits genetic interactions with HLA-DRB1 risk alleles. Our
analysis supports a regulatory function of the PLA2R1 risk
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Ab  >20 U/mL AUROC = 0.91 (0.88–0.94)
Ab 2–20 U/mL AUROC = 0.87 (0.82–0.92)
Ab <2.0 U/mL AUROC = 0.78 (0.71–0.85)

Ab  >20 U/mL AUROC = 0.80 (0.78–0.83)
Ab 2–20 U/mL AUROC = 0.74 (0.69–0.79)
Ab <2.0 U/mL AUROC = 0.69 (0.66–0.73)

Subgroup Cut-off Specificity Sensitivity

CRS All 1.45 99% 74%

CRS Ab- 1.45 99% 37%

GRS All 2.78 99% 15%

East Asians

Subgroup Cut-off Specificity Sensitivity

CRS All 2.50 99% 60%

CRS Ab- 2.50 99% 20%

GRS All 2.64 99% 13%

Europeanse f

Fig. 7 Diagnostic properties of the genetic risk score (GRS) and combined risk score (CRS) stratified by anti-PLA2R antibody status. Comparisons of
receiver operating characteristic (ROC) curves to discriminate antibody positive (PLA2R Ab > 20 U/mL), borderline negative (PLA2R Ab 2–20 U/mL), and
negative (PLA2R Ab < 2 U/mL) cases of primary MN from all available healthy and diseased controls combined for a GRS in East Asian discovery cohorts,
b GRS in European discovery and validation cohorts, c CRS in East Asian discovery cohorts, d CRS in European discovery and validation cohorts. Overall
sensitivities for risk score cut-offs corresponding to 99% specificities in (e) East Asian discovery cohorts and (f) European discovery and validation
cohorts; CRS All: all patients with serum Ab measurements by ELISA within 6 months of a diagnostic kidney biopsy; CRS Ab-: patient subgroup with PLA2R
Ab < 20 U/mL, and GRS All: all patients with GWAS data available for GRS calculation. AUROC: area under the ROC curve (95% confidence interval).
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haplotype. The candidate causal variant resides in the first intron of
PLA2R1 and intersects a predicted enhancer element. While this
variant is normally associated with suppressed PLA2R1 transcrip-
tion across multiple tissues, it appears to increase expression of
PLA2R1 in the kidney. This finding highlights the importance of
studying target tissues and is consistent with the findings that
among CKD loci that are transcriptionally active in renal tissue,
15.8% of effects are kidney-specific41. Notably, the top variants at
the PLA2R1 locus also intersect a putative NF-κB binding site in
lymphocytes, although no similar data is presently available for
podocytes. Further experimental work is thus needed to test if the
glomerular-specific eQTL effect is under the transcriptional control
of NF-κB. Moreover, larger glomerular compartment-specific
datasets will be needed to confirm the observed eQTL effects.

Another observation is that all four genome-wide significant
risk loci (PLA2R1, IRF4, NFKB1, and HLA) exhibit highly
pleiotropic effects and all four lead SNPs have a concordant effect
on the risk of inflammatory bowel disease (IBD). This observation
suggests shared pathogenic mechanism between IBD and MN.
Considering that MN is an orphan disease without a targeted
treatment, there may now be opportunities for drug re-
positioning approaches from IBD, where several new anti-
inflammatory agents are currently under development. Our
study suggests that the NF-κB and interferon pathways may
represent particularly attractive drug targets.

Remarkably, our GWAS loci are highly predictive of the disease
status and jointly explain up to one third of disease risk, an
exceptionally large fraction for common alleles. This may be
partially explained by the fact that MN frequently occurs after the
peak reproductive age, allowing the risk alleles to escape purifying
selection. Moreover, even though the risk alleles are common, our
interaction analysis demonstrates that specific high-risk genotype
combinations are relatively rare in the general population,
potentially explaining the low overall prevalence of MN42. The
alternative hypothesis is that of balancing selection. NF-kB and
IRF4 are both involved in immune defenses against common
pathogens and some Phospholipase A2 ligands for PLA2R1
represent downstream NF-kB targets with antibacterial
properties43,44. Therefore, the observed high frequencies of MN
risk alleles could be explained by their protective effects against
common infections.

Finally, a simple GRS based on our GWAS loci has excellent
discriminant properties when combines with anti-PLA2R
ELISA test. Importantly, the combined genetic-serum test has
superior diagnostic properties compared to serologic test alone,
mitigating the key issue of low sensitivity. The GRS provides
complementary information to the serum test and correctly re-
classifies 20–37% of antibody-negative cases, potentially sparing
the need for a kidney biopsy in this large subgroup of patients.
In the clinical settings where neither a serum test nor a kidney
biopsy is possible, the GRS itself can establish a diagnosis of
MN with 99% specificity in 13–15% of cases. The practical
advantage of this approach is that the GRS can be readily
determined at any time after birth and, unlike the serum test, it
does not fluctuate with time or in relationship to the disease
onset, activity, or treatment. One important limitation, how-
ever, is that genetic effects may be population-specific and may
not be generalizable to populations not represented in our
GWAS. The performance of the GRS is remarkably consistent
in our discovery and validation cohorts, including African-
Americans, but it appears to be lower in self-reported Latino/
Hispanics. Therefore, future efforts extending GWAS for MN to
more diverse populations will be important.

In summary, we described a highly unusual genetic archi-
tecture of MN, including large effect sizes for a small number of
common alleles and a strong evidence for ethnicity-specific

genetic interactions. These insights enabled formulation a pow-
erful genetic disease predictor that provides means to enhance a
non-invasive diagnosis of MN, and can be especially useful in the
settings where kidney biopsy represents too great of a risk or is
not readily available.

Methods
Study design overview. We performed a genome-wide meta-analysis of eight
discovery cohorts of East Asian and European ancestry (2956 cases and 7799
controls), all genotyped with high resolution arrays and imputed to ~7 million
common high-quality markers using ancestry-matched reference panels. The top
signals from the meta-analysis (P < 5 × 10−5) were typed in the additional East
Asian replication cohort of 826 cases and 1239 controls. Subsequently, all cohorts
(3782 cases and 9038 controls) were analyzed jointly to define genome-wide sig-
nificant signals. All subjects provided informed consent to participate in genetic
studies, and the Institutional Review Board of Columbia University as well as local
ethics review committees for each of the individual cohorts approved our study
protocol. The individual cohorts, genotyping methods, and quality control analyses
are described in the Supplementary Methods.

Primary association analyses and genome-wide meta-analyses. Within each
cohort, primary association scans were performed for markers that were common
(MAF > 0.01) and imputed at high quality (r2 > 0.8) using logistic regression under
additive coding of dosage genotypes, and with adjustment for cohort-specific sig-
nificant principal components (PCs) of ancestry. To quantify potential inflation of
type I error due to stratification or technical artifacts, we estimated genomic
inflation factors45 for each genome-wide scan after excluding HLA and PLA2R loci.
No substantial inflation was noted in any individual scan (lambda consistently
<1.05 for each individual cohort). Subsequently, a fixed effects meta-analysis was
performed to combine the results of the eight discovery cohorts using METAL46.
Genome-wide distributions of P-values were examined visually using quantile-
quantile plots for each individual cohort as well as for the combined analysis. The
final meta-analysis quantile-quantile plot showed no global departures from the
expected null distribution (Supplementary Fig. 3), with the genomic inflation factor
estimated at 1.03 for the overall meta-analysis. Suggestive signals were defined by
P-value < 5.0 × 10−5. To declare genome-wide significance of a novel locus, we used
the generally accepted P-value threshold of 5.0 × 10−8.

Conditional analyses. To detect additional independent SNPs at genome-wide
significant loci, we performed stepwise conditional analyses of each locus using
logistic regression. This was done by including the genotype of conditioning SNP
(s) under additive coding as covariate(s) in the outcome model. The conditional
analyses were performed individually within each cohort and with adjustments for
cohort-specific ancestry PCs. Subsequently, the conditioned summary statistics
were combined across cohorts using fixed effects meta-analysis, similar to our
primary association analyses.

Credible set analyses. For each of the three genome-wide significant non-HLA
loci, we derived 99% credible sets using the trans-ethnic and ethnicity-specific
meta-analysis results. First, we derived approximate Bayes factors from GWAS
association statistics using Wakefield’s formula, as implemented in the R package
gtx47. Using CAVIAR software48, we next calculated the posterior probability (PP)
for each SNP driving the association signal at each locus. We assumed there was
only a single causal variant at each locus, since no additional independent SNPs
were detected on stepwise conditioning analyses. We derived both trans-ethnic as
well as ethnicity-specific 99% credible sets based on ranking the variants by their
PPs and adding the variants to the set until cumulative PP > 99% was reached for
each region. The overlaps between ethnicity-specific and trans-ethnic analyses were
visualized in Supplementary Fig. 5.

HLA imputation. Six discovery cohorts (Chinese, South Korean, Japanese, Eur-
opean-1, European-2, and Turkish) had primary genotype data available for HLA
imputation and association testing. For each of these cohorts, we imputed classical
HLA alleles at two- and four-digit resolution, as well as individual amino acid
polymorphisms at class I (HLA-A, -B, and -C) and class II (HLA-DQB1, HLA-
DQA1 and HLA-DRB1) loci using SNP2HLAsoftware49. The European cohorts and
the East Asian cohorts were imputed separately, using ethnicity-specific reference
panels. For European reference, we used the pre-phased HLA reference dataset
generated by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 indivi-
duals)49. For our East Asian cohorts, we used the Pan-Asian HLA Reference Panel
(268 individuals)50. For validation of classical HLA association results in East
Asians, we built additional East Asian reference panel based on the MHC sequence
data from Zhou et al. (10,689 Han Chinese)10. In the association analyses, we
included only common HLA alleles (MAF > 0.01) that were imputed with high
certainty (R2 > 0.8).
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Statistical framework for HLA association testing. Given that the frequency of
HLA alleles can vary by ethnicity, we performed HLA association testing Eur-
opeans and East Asians separately. We used logistic regression models to test the
additive effects of HLA allele dosages with adjustment for significant PCs of
ancestry. For multi-allelic loci, we used the following logistic regression model:

log oddsið Þ ¼ β0 þ
Xm�1

j¼1

βjxj;i þ
Xn
k¼1

βkPk;i ð1Þ

where m indicates a total number of alleles at a specific multi-allelic locus, j
indicates a specific allele being tested, and xj,i is the imputed dosage for allele j for
individual i; β0 represents the intercept and βj represents the additive effect of an
allele j; Pk,i denotes the value for kth PC of individual i, n is the total number of
significant PCs in the dataset, βk is the effect size of principal component k. We
compared log-likelihoods of two nested models: the full model containing the test
locus and relevant covariates with the reduced model without the test locus, but
with the same set of covariates. The deviance was defined as −2×log likelihood
ratio, which follows a X2-distribution with m− 1 degrees of freedom, from which
we calculated P-values. In addition to multi-allelic tests, we also performed bi-
allelic tests of association for all individual SNPs, classical HLA alleles, and indi-
vidual amino acid residues in HLA molecules. All analyses were performed using
dosage method under additive coding. Stepwise conditioning analyses across the
HLA region were performed using both multi-allelic and bi-allelic coding of HLA
variants. In each round of stepwise conditioning, we first included the most sig-
nificant variant as the covariate in the logistic regression model. If additional
independently associated markers are detected, they are included as covariates in
our subsequent models. We repeated these analyses until no residual associations
across the entire locus were observed.

Analysis of polymorphic amino-acid sites in HLA genes. To test the effects of
individual amino acid substitution sites within the HLA-DRB1 and HLA-DQA1
genes, we applied a conditional haplotype analysis using fully phased haplotypes
across the HLA region. We tested each single amino acid position by first
identifying the m possible amino acid residues occurring at that position and
then using m− 1 degrees of freedom test to derive P-values, with a single amino
acid residue arbitrarily selected as a reference. For conditioning on individual
amino acid sites, we used the following procedure: by adding a new amino acid
position to the model, a total of k additional unique haplotypes were generated
and tested over the null model (without a new amino acid site) using the like-
lihood ratio test with k degrees of freedom. If the new position was indepen-
dently significant, we further updated the null model to include all unique
haplotypes created by all amino acid residues at both positons to identify
another independent position. The procedure was repeated until no statistically
significant positions were observed.

Testing for pairwise epistasis. Multiplicative interactive effects were tested using
logistic regression model; SNPs were coded under additive genotype coding (0, 1,
2), and interaction terms were defined as simple products of genotypes. To screen
for interactions, we tested a lead SNP at each of the three non-HLA loci against
each of the five independent HLA SNPs (three in Europeans and two in East
Asians) resulting in a total of 15 independent tests. We additionally tested for all
pairwise interactions between the three non-HLA loci shared between both eth-
nicities resulting in three additional tests. In each case, we used a likelihood ratio
test comparing two nested models: the full model with both main effects and the
interaction term to the reduced model with main effects only. Given a total of 18
pairwise interaction tests, we used a Bonferroni-corrected significance threshold of
0.05/18= 2.8 × 10−3. In secondary analyses, we explored if significant HLA risk
haplotypes interact with the PLA2R1 risk allele in the six cohorts with fully
imputed classical HLA alleles. This included a total of 2759 East Asians (803 cases
and 1956 controls) and 4507 Europeans (1880 cases and 2627 controls).

Functional annotations of GWAS loci. We used several different approaches to
perform functional annotations of our significant loci. We first defined the
region of each locus as +/−400 kb of the index SNP. Using ANNOVAR soft-
ware51, we identified functional variants within each region that were in strong
linkage disequilibrium (r2 > 0.8) with the top SNP, including all known coding,
splicing, 3′UTR and 5′UTR variants (Supplementary Table 12). To assess for
potential functional variation in non-coding regions, we used our recently
proposed tissue-specific functional scoring method (FUN-LDA)11. Using FUN-
LDA, we estimated the posterior probability for each variant in strong LD with
the top SNP of being functional across 127 different tissues or cell types profiled
by ENCODE and ROADMAP consortia (Supplementary Figs. 6 and 10). To
interrogate candidate variants against kidney-specific chromatin landscape, we
analyzed regulatory DNase-seq maps paired with RNA-seq gene expression
profiles from primary outgrowth cultures of human glomeruli (composed mainly
of podocytes and mesangial cells) and renal cortex cultures (composed mainly of
tubular cells), as well as chromatin conformation (Hi-C) maps from freshly
isolated human glomeruli (Supplementary Figs. 9 and 11)14. To test for eQTL
effects in kidney tissue, we used gene expression data from the NEPTUNE
study13. This dataset is comprised of whole genome DNA sequence data and

genome-wide transcriptome data (Affymetrix 2.1 ST chips) performed on micro-
dissected glomerular (N= 136) and tubulointerstitial (N= 166) tissue com-
partments from kidney biopsies of patients with nephrotic syndrome. For each
locus, we tested the index SNP and its high LD SNPs (r2 > 0.8). Testing for cis-
eQTL effects involved all transcripts within 1-Mb region centred on each SNP
using the additive linear regression with adjustments for age, sex, PEER factors
and first 4 PCs of ancestry as described previously13. In addition to kidney tissue,
all loci were similarly interrogated for eQTL effects in the GTEx database version
8. Because NFKB1 and IRF4 both encode transcription factors, we also explored
their potential binding in close proximity of each other or PLA2R1 gene. Based
on the Chip-seq data for all five subunits of NFκB complex in immortalized
lymphocytes (GSE55105)29, we found that the top SNPs at PLA2R1 and IRF4
loci intersect potential NFκB complex binding site (Supplementary Figs. 8 and
13). In addition, rs230492, a variant in strong LD (r2=0.94) with the top SNP at
the NFKB1 locus intersects a potential IRF4 binding site based on the Chip-seq
data of IRF4 (GEO: GSM803390).

Pleiotropy analysis. We used the latest GWAS catalogue data to perform sys-
tematic cross-annotation of our top risk alleles against all other published GWAS
findings. We first identified all genome-wide significant SNPs (P < 5 × 10−8)
reported in the catalogue that resided within the genomic regions of association
with MN. We assessed the extent of linkage disequilibrium (r2) between these SNPs
and the top MN risk alleles based on the combined European and East Asian
sequence data from 1000 Genomes (phase 3). We next defined the directionality of
pleiotropic effects as either concordant or opposed in relationship to the MN risk
alleles. In addition, we queried each qualifying SNP from the catalogue against our
genome-wide summary statistics to extract the odds ratios and P-values for asso-
ciations with MN. We defined overlapping susceptibility alleles if r2 exceeded 0.2
(Supplementary Table 13). Lastly, we constructed a susceptibility overlap map that
connects each of the MN loci to the previously associated GWAS traits and
highlights associations with SNPs in high LD with the top MN signals (Fig. 5a).
The map was visualized with Cytoscape v.3.6 software.

Podocyte gene annotations of GWAS loci. To search for potential novel podo-
cyte antigens encoded by our suggestive loci, we interrogated each locus against a
podocyte-specific gene list predicted with in silico “nanodissection” approach
(Supplementary Table 14). This computational approach used Affymetrix gene
expression data from micro-dissected glomerular and tubulo-interstitial compart-
ments of 452 renal biopsies52. In addition, we cross-annotated our positional
candidates against the list of native podocyte proteins discovered by proteomic
profiling of mouse podocytes53. All suggestive loci were additionally tested for
multiplicative interactions with classical alleles, and the top most significant
interactions were summarized in Supplementary Table 14. Lastly, we annotated all
positional candidate genes using manual PubMed literature searches to prioritize
genes with a previously established role in podocyte biology.

GR analysis. To estimate the cumulative effect of independently significant
GWAS loci, we used a GRS approach. We first identified SNPs with independent
contributions to MN risk at each locus using stepwise conditional analyses. Next,
we tested for multiplicative interactions among those independently associated
SNPs. We then built a logistic regression model including all independent SNPs
along with their significant interaction terms to derive mutually adjusted effect
sizes (Supplementary Table 15). Because we observed ethnicity-specific signals at
the HLA locus, we generated ethnicity-specific for East Asians and Europeans
separately. The ethnicity-specific risk scores were defined as a weighted sum of
independent risk alleles and their significant interaction terms, weighted by their
mutually adjusted effect sizes. The GRS was standardized using a Z-score
transformation based on the mean and standard deviation for the distribution of
ethnically matched controls, so that the standardized GRS was reflective of the
distance between the raw score and the control mean in units of standard
deviation. The final formulation of the GRS is as follows:

East AsianGRSi ¼ 0:69173 ´ d rs9269027� Að Þi þ 1:23685 ´ d rs1974461� Tð Þiþ0:36687
�
´ d rs6707458� Gð Þiþ 0:25098 ´ d rs230540� Cð Þiþ 0:39127

´ d rs9405192� Gð Þi þ 0:48798 ´ d rs9269027� Að Þi ´ d rs6707458� Gð Þi
� East Asian ControlMeanGRS�= East Asian Control SDGRS

ð2Þ

where GRSi= genetic risk score for individual i, di= dosage of risk allele (from 0
to 2) for individual i, East Asian Control Mean GRS= 1.6804, East Asian
Control SD GRS= 1.003

EuropeanGRSi ¼ 0:34945 ´ d rs9271541� Cð Þi þ 0:67919 ´ d rs9265949� Tð Þi
�
þ 0:30707 ´ d rs2858309� Cð Þi þ 0:34601 ´ d rs6707458� Gð Þi
þ 0:17450 ´ d rs230540� Cð Þi þ 0:18343 ´ d rs9405192� Gð Þi
þ 0:33782 ´ d rs9271541� Cð Þi ´ d rs6707458� Gð Þi
�European ControlMeanGRS�=European Control SDGRS

ð3Þ

where GRSi= genetic risk score for individual i, di= dosage of risk allele (from 0
to 2) for individual i, European GRS control mean= 1.5089, European GRS
control SD= 0.8202.
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The percentage of the total variance in disease risk explained was estimated
using Nagelkerke’s pseudo R2 from the logistic regression model with the
standardized GRS as a predictor and case-control status as an outcome. The
performances of the ethnicity-specific GRS were estimated by the AUROC. We
performed detailed GRS cut-off analyses in the discovery cohorts by selecting cut-
off points on the ROC curve that provide specificities in the range from 95 to 100%.
For each cut-off point, we calculate sensitivity, specificity, positive likelihood ratio
(LR+), and negative likelihood ratio (LR-). All GRS analyses were implemented in
R version 3.3.2.

CRS formulation. The CRS was formulated as a weighted sum of the GRS and
serum anti-PLA2R antibody levels in U/mL. The weight was determined using
logistic regression model, with standardized ethnicity-specific GRS (formulated as
described above) and natural log-transformed anti-PLA2R antibody levels as two
predictors and case-control status as an outcome. This resulted in the following
model:

Yi ¼ β0 þ β1GRSi þ β2ln αPLA2Ri þ 0:001ð Þ ð4Þ
where GRSi indicates the Z-transformed ethnicity-specific GRS for individual i, β0
indicates the intercept, β1 indicates the effect size of the GRS estimated based on
discovery cohorts; αPLA2Ri is the serum level of PLA2R antibodies in U/mL; the
constant 0.001 is added to enable log transformation of undetectable (zero) levels;
β2 represents the effect size for anti-PLA2R antibody positivity estimated based on
discovery cohorts. The weight for the In(αPLA2Ri+ 0.001) term was then defined
as follows:

Weight ¼ β2
β1

ð5Þ

Consequently, the weights for antibody levels were calculated for East Asian and
European separately, which resulted in the following Crude CRS formulation:

Crude CRSi ¼
GRSi þ 0:4829 ´ ln αPLA2Ri þ 0:001ð Þ; if i 2 European

GRSi þ 1:7712 ´ ln αPLA2Ri þ 0:001ð Þ; if i 2 East Asian

�
ð6Þ

In the final step, the Crude CRS was Z-transformed using the mean and
standard deviation for ethnicity-matched healthy controls:

CRSi ¼
Crude CRSi � European ControlMeanCRSð Þ= European Control SDð Þ; if i 2 European

Crude CRSi � E:Asian ControlMean CRSð Þ= E:AsianControl SDð Þ; if i 2 East Asian

�

ð7Þ
where European Control Mean CRS=−1.4982, European Control SD= 1.4354, E.
Asian Control Mean CRS= 0.3724, E. Asian Control SD= 2.7503.

The CRS performance was estimated by the area under the receiver operating
curve (AUROC). Similar to GRS, we explored different CRS cut-offs that
maximized specificity in the range 95 to 100%. For each cut-off, we calculated
sensitivity, specificity, positive likelihood ratio (LR+), and negative likelihood ratio
(LR−). The integrated discrimination improvement (IDI) and net reclassification
improvement (NRI)54 were calculated comparing the CRS test to the serum PLA2R
antibody test alone. All CRS analyses were implemented in R version 3.3.2
(CRAN).

European GWAS validation cohorts. For the purpose of GRS validation, we
utilized three previously published external GWAS cohorts of European ancestry:
the UK, French, and Dutch Validation Cohorts6. These cohorts were composed of
biopsy-documented cases of primary MN and ethnicity-matched healthy controls,
totalling 2,887 individuals (550 cases and 2337 controls, see Supplementary
Methods for details). For all three cohorts, we obtained primary genotype data after
quality control analysis as published previously6 and performed phasing and
imputation using Eagle v.2.3 and Minimac3 with European populations of Phase 3
1000 Genome Project as a reference. The cases and controls were imputed jointly.
The GRS for each individual was determined using genotype dosages for the SNPs
included in the score. The performance of GRS was then analyzed individually in
each cohort, and in all cohorts combined (Supplementary Tables 17–19).

NEPTUNE GRS validation cohorts. The Nephrotic Syndrome Study Network
(NEPTUNE) is a prospective, longitudinal cohort recruiting participants with
nephrotic syndrome at the time of first kidney biopsy8; primary disease diagnoses
of MN, FSGS, MCD, and IgAN were determined by a central pathology review. All
NEPTUNE participants underwent low-depth whole genome sequencing as
described in the Supplementary Methods. The GRS was successfully determined for
N= 475 NEPTUNE participants. This included 89 cases with the diagnosis of
primary MN and 386 disease controls, including 184 with FSGS, 164 with MCD,
and 38 with IgAN. Our pre-specified primary GRS validation involved 180 NEP-
TUNE participants of European ancestry (46 cases and 134 disease controls,
Supplementary Tables 17–18). In secondary analyses, we extended our validation
studies to the entire multiethnic cohort of 475 NEPTUNE participants (Supple-
mentary Tables 20–21), including subgroup analyses of 133 individuals of African
American ancestry (18 cases and 115 disease controls) and 94 individuals of
Hispanic/Latino American ancestry (18 cases and 76 disease controls). The

numbers of NEPTUNE participants in other ancestral groups were too small for a
meaningful analysis.

PLA2R antibody testing. In total, we determined serum antibody levels in N=
2331 study participants with genetic data (N= 1488 cases, N= 300 healthy con-
trols, and N= 543 disease controls) across all cohorts and ethnicities. The ancestry-
matched diseased controls were recruited among patients commonly presenting
with nephrotic syndrome, including FSGS, MCD, IgAN. For all MN cases and
disease controls, serum samples were obtained near or at the time of kidney biopsy
and any samples obtained more than six months after the biopsy were excluded
from the analysis. All individuals that underwent antibody testing had matched
genetic data, enabling derivation and diagnostic testing of the CRS.

We performed a standardized measurement of serum anti-PLA2R Ab levels
using the anti-PLA2R ELISA (IgG) test kit (EUROIMMUN Medizinische
Labordiagnostika AG), which employs the indirect ELISA methodology. The kit
includes a 96-well microplate pre-coated with PLA2R, 5 calibrators (2, 20, 100, 500,
and 1500 U/mL respectively), positive and negative control samples, peroxidase-
labelled anti-human IgG (rabbit) enzyme conjugate, kit specific sample and wash
buffers, Chromogen/substrate solution (TMB/H2O2), and stop solution. The assay
was run as per the protocol included with the kit. A 5-point calibrated analysis was
used to calculate the results for each assay performed. A standard curve was
generated based on the spectrophotometric reading of the five calibrators included
on each microplate. As recommended by EUROIMMUN, the sample was called
positive if antibody level was ≥20 U/mL.

In the discovery stage, we analyzed sera for a total of N= 459 East Asian and
N= 1034 European participants. The European cohorts included 810 cases with
MN, 99 healthy controls, and 125 disease controls (37 FSGS and 88 IgAN). The
East Asian cohorts included 304 cases with MN, 56 healthy controls, and 99 disease
controls (52 FSGS and 47 IgAN). The disease controls were not included in the
GWAS discovery analysis, but were added to test for disease specificity of the
serologic test. We note that one East Asian disease control with a clinical diagnosis
of IgAN tested anti-PLA2R antibody positive at high titer; follow-up pathology
review found evidence of previously unrecognized sub-epithelial deposits
diagnostic of MN in addition to IgA-dominant mesangial deposits; this individual
was subsequently removed from the analysis.

In the validation phase, we analyzed sera for a total of N= 540 individuals
including European case-control cohorts (N= 248 cases and N= 145 healthy
controls) and a total of 147 European NEPTUNE participants (N= 36 cases and
N= 111 disease controls). In secondary analysis, we extended testing to additional
180 NEPTUNE participants of non-European ancestry (N= 28 cases and N= 152
controls). This included 103 NEPTUNE participants of African American ancestry
(16 cases and 87 disease controls) and 77 participants of Hispanic/Latino ancestry
(12 cases and 65 disease controls). These numbers are smaller compared to the
GRS validation cohorts, since not all NEPTUNE participants had sera sampled
within 6 months of biopsy.

Testing for phenotypic correlations of the GRS. Using extensive clinical infor-
mation available for our discovery cohorts, we investigated correlations between
GRS and clinical traits from the time of kidney biopsy including age at diagnosis,
24-h proteinuria (P24), estimated glomerular filtration rate (eGFR), serum albumin
(Alb) and serum anti-PLA2R1 antibody level (Supplementary Table 16). The eGFR
was estimated based on serum creatinine level using the Modification of Diet in
Renal Disease (MDRD) equation55. The proteinuria was quantified using spot
urine protein-to-creatinine ratios. The values of proteinuria and eGFR were nor-
malized by natural log-transformation. The serum albumin and anti-PLA2R1
antibody levels also required natural log-transformation. For each quantitative
trait, we built a linear regression model with GRS as a predictor and each corre-
sponding trait as an outcome. For dichotomous traits (anti-PLA2R seropositivity or
presence of nephrotic range proteinuria), we used logistic regression with a GRS as
a predictor and each binary trait as an outcome. The association analysis for age at
diagnosis (biopsy) was performed before and after adjustment for sex and ancestry.
The tests of proteinuria, eGFR, serum albumin and serum anti-PLA2R1 antibody
levels were carried out before and after controlling for age, sex and ancestry.
Statistical analyses were implemented in R version 3.3.2.

SNP-based heritability. We estimated the SNP-based heritability of MN in East
Asians and Europeans using the GCTA-GREML algorithm30,56. For this analysis,
we included three European cohorts (European discovery 1, European discovery 2
and Turkish discovery) and three East Asian cohorts (Chinese, Korean and Japa-
nese discovery) that had primary genotype data available for joint heritability
analysis. We first estimated pairwise genetic relationship matrix between all indi-
viduals using autosomal SNPs. With the GCTA software57, we next estimated the
disease variance explained by all autosomal SNPs. We transformed the estimate
assuming an underlying liability scale and disease prevalence of 0.001. We derived
a standard error (SE) and 95% confidence interval for each estimate.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
All genome-wide summary statistics, including those presented in Fig. 1, are freely
available for download on our lab website: www columbiamedicine org/divisions/kiryluk/
resources.php. The calculations of genetic risk score (GRS) and combined risk score
(CRS) are implemented in the form of an online risk calculator, which is also freely
available on our lab website. The PAGE consortium control genotype data is available on
dbGAP under accession number phs000356.v2.p1. Primary genotype data for the
European-1 discovery cohort is available under dbGAP accession number phs001984.v1.
p1. Our IRB determined that the use of this dataset is restricted to genetic studies of
kidney disease. Because of consent restrictions and/or country-specific privacy laws, we
are unable to share primary genotype data on dbGAP for other cohorts. All data and
summary statistics are available from the corresponding authors upon reasonable
request.
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