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ABSTRACT

During the spin-up phase of a large pulsar glitch - a sudden decrease of the rotational period of a neutron star - the angular velocity of
the star may overshoot, namely reach values greater than that observed for the new post-glitch equilibrium. These transient phenomena
are expected on the basis of theoretical models for pulsar internal dynamics and their observation has the potential to provide an
important diagnostic for glitch modelling. In this article we present a simple criterion to assess the presence of an overshoot, based
on the minimal analytical model that is able to reproduce an overshooting spin-up. We employ it to fit the data of the 2016 glitch of
the Vela pulsar, obtaining estimates of the fractional moments of inertia of the internal superfluid components involved in the glitch,
of the rise and decay timescales of the overshoot, and of the mutual friction parameters between the superfluid components and the
normal one. We study the cases with and without strong entrainment in the crust: in the former, we find indication of a large inner
core strongly coupled to the observable component and of a reservoir of angular momentum extending into the core to densities below
nuclear saturation, while in the latter a large reservoir extending above nuclear saturation and a standard normal component without
inner core are suggested.
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1. Introduction

Radio pulsars are known for their stable rotational period. Nev-
ertheless, several pulsars exhibit sudden and sporadic spin-up
events of small amplitude, known as glitches (Espinoza et al.
2011). Since the pioneering work of Baym et al. (1969), several
models proposed to describe glitches by formally dividing the
spinning neutron star into two parts: a normal component, coro-
tating with the observed beamed radiation of magnetospheric
origin, and a superfluid neutron component (Haskell & Melatos
2015). A difference of angular velocity may develop between the
two components (constituting a reservoir of angular momentum)
thanks to the pinning of the superfluid vortices to impurities of
the crustal lattice (Anderson & Itoh 1975) or to the quantised
flux-tubes of magnetic field permeating the outer core (Gügerci-
noğlu & Alpar 2014). Following this paradigm, several models
have been employed to study glitching pulsars, yielding indi-
rect constraints on the neutron star structural properties through
observations (Datta & Alpar 1993; Link et al. 1999; Andersson
et al. 2012; Chamel 2013; Newton et al. 2015; Ho et al. 2015;
Pizzochero et al. 2017; Montoli et al. 2020).

The possibility to test our understanding of the glitch mech-
anism is hindered by the difficulty to observe glitches in the act.
In fact, glitch rises are generally not resolved, due to intrinsic
noise in the time of arrival of single pulsations. Moreover, in
spite of the fact that the Vela pulsar has been monitored for
fifty years, only a couple of notable events allowed to put an
upper limit of 40 s on the timescale of the glitch spin-up (Dod-
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son et al. 2002, 2007). Only recently, with the observation of
a glitch on 12th December 2016, it has been possible to mea-
sure the time of arrival of single pulses during the glitch with
a precision never achieved before, and thus to obtain some in-
formation on the first seconds after the event (Palfreyman et al.
2018). In particular, a new strong upper limit of 12.6 s on the
timescale of the glitch spin-up has been determined by Ash-
ton et al. (2019). This kind of observation opens a new window
for theoretical speculations. In fact, complex behaviour during
the spin-up and the first minute of the post-glitch relaxation has
been predicted in simulations based on hydrodynamical models
of the neutron star internal structure, when more than just two
rigid components are considered (Haskell et al. 2012; Haskell &
Antonopoulou 2014; Antonelli & Pizzochero 2017; Graber et al.
2018): when the superfluid component is allowed to sustain non-
uniform rotation, different regions may experience different fric-
tion and hence recouple to the observable normal component on
different timescales, giving different glitch shapes.

In particular, depending on the strength of the couplings and
on the initial conditions for the relative motion between the vari-
ous components, a glitch overshoot (a transient interval in which
the observable component spins at a higher rate than the post-
glitch equilibrium value, obtained by emptying the whole angu-
lar momentum stored into the superfluid reservoir (Antonelli &
Pizzochero 2017) is observed in such models.

Two recent studies have already used the data from the 2016
glitch: in Graber et al. (2018), the drag between the charged
crust and the crustal and core superfluids has been constrained;
in Ashton et al. (2019), different phenomenological models have
been compared to the timing results, obtaining the best current
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limits on the glitch rise timescale. Both studies also confirmed
the presence of an overshoot.

In this article we first give a simple quantitative result for
the onset of a glitch overshoot, by employing a three-rigid-
component model for the glitch dynamics (which is the minimal
model capable of reproducing an overshoot). We then use the
model to fit the 2016 glitch of the Vela pulsar. The advantage
of the present treatment is that it provides an analytical form for
the timing residuals, which is directly related to physical param-
eters of the neutron star. Indeed, in addition to determining the
rise and decay timescales of the overshoot, the fit results allow
to derive some physical properties of the three components, like
the moment of inertia fractions and the drag parameters between
the two superfluid components and the normal one.

2. Three component model

Generalising the approach of Baym et al. (1969), the pulsar is
described by means of three rigidly rotating components. We
consider two neutron superfluid components (labelled with 1,
2 subscripts), that exchange angular momentum with a normal
component p on timescales τ1,2. The p-component is interpreted
as all the charged particles coupled to the observable magneto-
sphere on timescales shorter than τ1 and τ2, while we do not need
to specify what the two superfluid components are: in fact, the
equations we are going to write are completely general, as they
derive from conservation of angular momentum and the only as-
sumption of rigid rotation of the three components. Physically,
however, they could represent the P-wave superfluid in the core
and the S-wave one the crust, as the physical conditions of these
regions are completely different. We thus employ a set of three
equations, one for the conservation of angular momentum, and
two representing the interaction between the normal component
and each of the two superfluid components:

Ω̇p = −
1
xp

(
x1Ω̇1 + x2Ω̇2 + |Ω̇∞|

)
Ω̇1 = −xp

Ω1 −Ωp

τ1
= −xp

Ω1p

τ1

Ω̇2 = −xp
Ω2 −Ωp

τ2
= −xp

Ω1p

τ1
(1)

where Ωip = Ωi − Ωp (i = 1, 2) are the lags and where xi = Ii/I
(i = 1, 2, p) are the ratios of the partial moment of inertia Ii of
the i-component with respect to the total one I = I1 + I2 + Ip,
so that x1 + x2 + xp = 1. The quantity |Ω̇∞| sets the intensity of
the external braking torque (for Vela Ω̇∞ ≈ −9.78×10−11 rad/s2,
but its precise value is unimportant in the following analysis).
Equation (1) is valid without superfluid entrainment: this will be
discussed in a dedicated section.

We remark that a three component model was also intro-
duced in Graber et al. (2018), but with a differential rotation as-
sociated to the reservoir: this was necessary to study the density-
dependent drag parameters, but it requires a numerical integra-
tion of the dynamical equations. The model in equation (1), to
which the equations in Graber et al. (2018) reduce when im-
posing rigid rotation and constant drag, is the simplest analyti-
cal treatment which can reproduce an overshoot, allowing to de-
rive directly the average properties of the superfluid components
(fractional moment of inertia and average drag).

For a real pulsar we expect the two timescales τ1,2 to be
complicated functions of the instantaneous angular velocity lags
Ωip = Ωi − Ωp and also to depend on the past history of the

vortex configuration and internal stresses. In a model with rigid
components, these timescales define the strength of the vortex-
mediated mutual friction, which is responsible for the angular
momentum exchange, suitably averaged over the region of inter-
est. To better compare with Graber et al. (2018), the timescales
τi can be connected to the large-scale hydrodynamic mutual fric-
tion coefficientsBi. In turn, these are related to the dimensionless
drag parameters Ri (which are the results of theoretical calcula-
tions) by the relation Bi = Ri/(1 + R2

i ), see e.g. Andersson et al.
(2006). The dynamical equations for rigidly rotating superflu-
ids in the presence of mutual friction are (see e.g. Haskell &
Melatos 2015):

Ω̇i = −2ΩiBi(Ωi −Ωp) ' −2Ωp(0)Bi(Ωi −Ωp) (i = 1, 2).
(2)

where we approximated Ω1 = Ω2 = Ωp(0) in the prefactor, since
the lags between the superfluids and the normal component are
always orders of magnitude smaller than the angular velocity of
the normal component. Comparing equations (1) and (2) we can
write the (approximate) relation:

Bi =
xp

2Ωp(0)τi
(i = 1, 2). (3)

In the following, we will take a nominal value Ωp(0) = 70.29
rad/s (Dodson et al. 2002).

How to construct realistic models of vortex-mediated mutual
friction (i.e. understanding the many-vortex dynamics in neutron
stars in the presence of pinning sites) is one of the current chal-
lenges of glitch theory. In the present phenomenological descrip-
tion we assume that, at the glitch time, τ1,2 undergo a transition
from large “pre-trigger” values to much smaller “post-trigger”
values: the nature of the trigger is undetermined but, according
to this simple picture, the vortices change their state of motion,
increasing their creep rate and thus mimicking the onset of a
vortex avalanche (Alpar et al. 1984). In fact, if the vortices of the
i-component are pinned, or their motion is severely hindered,
the timescale τi diverges, so that the corresponding Ωi remains
constant regardless of the state of motion of the other compo-
nents. Therefore, pinning implies the decoupling of that compo-
nent from the rest of the system, while a suddenly recoupling of
such a component results in an exchange of angular momentum
from the superfluid to the crust, leading to a glitch.

We now study the solutions of the system (1). Since the main
goal of the present analysis is to provide the simplest criteria for
overshooting glitches, we take τ1 and τ2 to be constants for t > 0,
thus neglecting the repinning process (that may be nonetheless
important for a complete description of the inter-glitch dynam-
ics): this approximation should hold at least for the overshoot
phase.

First, it is useful to rewrite the problem using the lags Ωip
as variables instead of Ω1 and Ω2. In this way, the two equa-
tions for Ω̇ip do not depend on Ωp, and it is possible to solve
them independently from the equation for Ω̇p. To set the un-
known initial conditions Ω0

ip we rely on a physical assump-
tion: we impose the component 1 to be a “passive” one that
does not change its creep rate (i.e. τ1 is always constant and
Ω0

1p = τ1 |Ω̇∞|/xp), while the component 2 (acting as the reser-
voir) has a lag Ω0

2p = ω(0) + τ2 |Ω̇∞|/xp. The positive quantity
ω(0) is the excess lag with respect to the asymptotic post-glitch
steady-state lag, which has been accumulated before the trigger-
ing event.

The angular velocity of the normal component for t > 0 can
finally be written as Ωp(t) = Ω0

p + Ω̇∞t + ∆Ωp(t), where the
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difference with respect to the steady-state, ∆Ωp(t) = Ωp(t) −
Ω0

p − Ω̇∞t, is given by

∆Ωp(t) = ∆Ω∞p − ε
Q + R
τ+

e−t/τ− + ε
Q − R
τ−

e−t/τ+ , (4)

where ∆Ω∞p = x2ω(0). In the above expression the following
constants have been defined:

Q = 1 − x1 − β(1 − 2x1 − x2) (5)

R =

√
[1 − x1 + β(1 − x2)]2 − 4β(1 − x1 − x2) (6)

ε =
x2τ1

2(1 − x1 − x2)R
ω(0) (7)

τ± =
2βτ1

1 − x1 + β(1 − x2) ∓ R
, (8)

where β = τ2/τ1 is the ratio between the two timescales and
τ+ > τ− > 0.

We remark that our solution, equation (4), has the same form
of one of the phenomenological models studied in Ashton et al.
(2019). Here we make the further step of connecting the coeffi-
cients of the two exponentials and the timescales τ− and τ+ to
physical parameters of the neutron star, that can thus be inferred
after comparison with the data.

It is interesting to point out some properties of the expression
in (4). First, we have ∆Ωp → ∆Ω∞p for t → ∞, which is the glitch
amplitude measured at t � τ+. The glitch amplitude, however,
can overcome this asymptotic value at earlier times: the presence
of such an overshoot is revealed by the existence of a maximum
in ∆Ωp(t), occurring at time

tmax =
τ1β

R
ln

(
Q + R
Q − R

)
. (9)

The maximum exists only if the argument of the logarithm is
positive, which implies β < 1. In other words, the condition
for an overshoot is that the post-glitch timescale τ2 associated
to the “active” component (that in the pre-glitch state was only
loosely coupled to the rest of the star) must be smaller than the
timescale τ1 of the “passive” component (that does not change its
coupling). From the physical point of view, the overshoot occurs
if the “active” superfluid region that stores the angular momen-
tum for the glitch can transfer its excess of angular momentum
to the normal component faster than the typical timescale the
“passive” superfluid component reacts with. This behaviour can
already be seen in Figure 3 of Graber et al. (2018) and was ex-
plicitly noted in Ashton et al. (2019). Here we confirm this, by
giving it a mathematical foundation.

Following Graber et al. (2018), we now study the time de-
pendence of the time residuals r(t) with respect to the timing
model of a uniformly decelerating pulsar:

r(t) = r0 −
1

Ωp(0)

∫ t

0
∆Ωp(t′) dt′ , (10)

where a constant residual r0 has been added to account for an
offset due to magnetospheric changes. It is easy to see how the
condition for the overshoot is translated in terms of the residu-
als: the glitch presents an overshoot if r(t) is first concave down-
wards, then upwards, with a flex point at t = tmax. Conversely,
a non-overshooting glitch is always concave downwards. In Fig-
ure 1 we show the behaviour of both the angular velocity with
respect to the steady state and of the residuals, for β = 0.1 < 1
(overshoot) and for β = 1.1 > 1 (no overshoot).
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Fig. 1. Representation of a glitch with (β = 0.1) and without (β = 1.1)
overshoot. The remaining parameters are taken from Table 1. In the up-
per panel we show the angular velocity with respect to the steady state,
∆Ωp(t), in the lower panel the (shifted) residuals, r(t) − r0. The flex in
the residuals for the glitch with overshoot is marked by the intersection
with the vertical line at t = tmax.

Looking at the averaged data for the 2016 Vela glitch shown
in Figure 5 of Graber et al. (2018), we deduce that that glitch
presents an overshoot, as it shows a positive concavity before
reaching steady-state. The first instants of negative concavity are
lost, probably due to the extremely fast acceleration of the star
and to the magnetospheric change in the pulsar magnetic field
(Palfreyman et al. 2018), although a flex can be detected (with
difficulty, due to the scale of the figure) in the solid line a few
seconds after the beginning of the glitch. The overshoot was also
recently confirmed by Ashton et al. (2019).

3. Fit to the 2016 Vela glitch

We now fit expression (10) (which contains 7 independent pa-
rameters) to the data of the residuals made available by Palfrey-
man et al. (2018) using a least-squares method. However, some
precautions have to be taken. First, although the glitch time tgl
and amplitude ∆Ω∞p were already estimated by Palfreyman et al.
(2018), here we will take them as free parameters, thus allowing
for a check of our results. Secondly, as noticed by Palfreyman
et al. (2018), soon after a null (missing) pulse at time t0, a sudden
and persistent increase of the timing residuals has been detected
in the time interval between t1 = t0 + 1.8s and t2 = t0 + 4.4s (cf.
Figure 3 for the relative positions of these times). This behaviour
may correspond to a slow down of the star just before the glitch
(Ashton et al. 2019) or to a magnetospheric change in the star
(Palfreyman et al. 2018). As we are not able to model this kind of
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Table 1. Results of the fit for the 7 independent parameters of equa-
tion (10). The time of beginning of the glitch, tgl, is given with respect
to t0, while tmax is given with respect to tgl. The relative error on ∆Ω∞p
is of order 10−5, while the other errors are at 1σ confidence level. The
second part of the table reports some dependent quantities and their
propagated errors, obtained from equations (3), (8) and (9).

Parameter Value
x1 0.60 ± 0.01
x2 0.08 ± 0.01
τ1 34.6 ± 1.3 s
β (2.3 ± 1.6) · 10−3

∆Ω∞p 1.014 · 10−4 rad/s
r0 0.086 ± 0.002 ms
tgl 2.0 ± 0.1 s
xp 0.32 ± 0.02
τ2 0.08 ± 0.06 s
τ− 0.20 ± 0.14 s
τ+ 43.3 ± 2.1 s
tmax 1.2 ± 0.7 s
B1 (6.6 ± 0.6) · 10−5

B2 (2.8 ± 2.2) · 10−2

phenomena with the current equations, we will just consider the
resulting positive offset in the timing residuals r0 as a variable for
our fit. For the same reason, we will have to neglect some of the
data after the occurrence of the glitch. Indeed, during the interval
∆tm = t2 − t1 the emitting magnetosphere has decoupled from (is
not corotating with) the rapidly accelerating crust: the persistent
positive offset in the mean of the timing residuals and their asso-
ciated low variance observed by Palfreyman et al. (2018) during
∆tm cannot describe the overshooting normal component, which
instead would correspond to decreasing residuals. Therefore, the
data around the interval ∆tm do not describe the crust rotation
and should be excluded from the fit.

In order to decide how much data to neglect, we proceed
as follows: defining tcut as the time before which the data are
neglected, we perform the fit varying tcut between t2 − 1s and
t2 + 4s by steps of 0.1s (the frequency of the Vela being about
11Hz, this amounts to eliminating one data point at each succes-
sive fit). The fitted parameters can then be plotted as a function
of tcut: in Figure 2 this is shown for ∆Ω∞p (the best determined
parameter in our model, due to the extension of the data well
after relaxation has completed). The fitted ∆Ω∞p first decreases
until tcut = t2 + 0.5s, then stabilises until tcut = t2 + 2s, then de-
creases to stabilise at a slightly smaller value until tcut = t2 + 3s.
Short after that, the fitting of the data with expression (10), con-
taining two exponentials, does not converge anymore, probably
because too much data has been omitted to resolve the short time
component and determine its parameters. The variations of ∆Ω∞p
even during the ’stable’ phases shows the sensitivity of our fit to
the choice of data range: even removal of one data point affects
the result, which reflects the inherent noise in the timing resid-
ual data. We then decide to take as final result for each parameter
the mean and standard deviation calculated from the values it as-
sumes when tcut varies in the interval [t2 + 0.5s, t2 + 2s]. We have
also checked that taking the mean and standard deviation in the
longer interval [t2 + 0.5s, t2 + 3s] yields mean values within the
previous errors and larger standard deviations (as obvious from
the figure for ∆Ω∞p ). However, we prefer to adopt the smaller in-
terval (whose datapoint are marked in orange in Figure 3), which
eliminates less information about the short time component.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
tcut [time from t2 (s)]

1.0139

1.0140

1.0141
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Fig. 2. We show the results of the fit for the parameter ∆Ω∞p as a function
of tcut, the time (measured with respect to t2) before which we neglect
the data. We vary tcut by steps of 0.1s, and connect the results by a
line for clarity. The vertical lines define the region we have chosen to
evaluate ∆Ω∞p ; the mean and standard deviation reported in Table 1 are
taken for the values of ∆Ω∞p marked by black dots.

Although not compelling, the fact that ∆Ω∞p ’stabilises’ only
five pulsar revolutions after t2 seems to indicate that shortly after
∆tm the magnetosphere recouples with the normal component.
To our knowledge, no theoretical work on the decoupling and
recoupling of the magnetosphere following a glitch has been per-
formed, so that the timescale of order ∆tm = 2.6 s for the duration
of this process remains, at present, only speculative. Incidentally,
the recent work by Bransgrove et al. (2020) studies the response
of the magnetosphere to a quake in the crust, arguing that this is
the cause of the null pulse at t0 and speculating that the quake
may be the trigger of the glitch.

The data points were taken from Palfreyman et al. (2018)
and they cover 72 min across the glitch: part of them is shown in
Figure 3. The results for the 7 independent parameters of equa-
tion (10) are reported in Table 1; in its lower part, we also show
some dependent quantities, that can be derived from the equa-
tions in the previous section. The glitch, ∆Ωp(t), and its (shifted)
residuals, r(t) − r0, corresponding to the parameters in the table
are shown in Figure 4, while the curve for the residuals r(t) is
also superimposed to the data in Figure 3.

The results of Table 1 yield some interesting considerations.
First of all, the glitch size ∆Ω∞p is the same as what obtained in
Palfreyman et al. (2018) (∆Ω∞p = 1.006 · 10−4 rad/s) once their
long-term (τd = 0.96 day) decay term ∆Ωd = 0.008 · 10−4 rad/s
(absent in our model, since the data we use extend to about 34
minutes after the glitch time) has been added.

Moreover, we find a decay timescale τ+ = 43.3± 2.1 s, close
to the shortest timescales measured in the 2000 and 2004 Vela
glitches (Dodson et al. 2002, 2007) and within the errors of the
value obtained in Ashton et al. (2019). The rise time τ− = 0.20±
0.14 s is over two order of magnitude shorter than τ+; it has
quite large errors, reflecting the difficulty to resolve the short
time behaviour, but it is well within the upper limit of 12.6 s
determined by Ashton et al. (2019).

The mutual friction parameters B can be directly compared
to the constraints given by (Graber et al. 2018), namely 3 ×
10−5 < Bcore < 10−4 for the drag between the core superfluid
and the normal component, and Bcr > 10−3 for that between the
crustal superfluid and the normal component. These values pos-
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Fig. 3. The timing residuals around the time of the glitch, as obtained
in Palfreyman et al. (2018). Superimposed in blue, we plot our best fit
for the residuals (equation (10) with the parameters of Table 1). In the
zoom we indicate the times t0, t1, t2 defined in Palfreyman et al. (2018)
and our result for tmax (cf. Figure 4). The glitch begins right after t1. The
data points are connected by a line for clarity: in light grey those always
omitted from the fit, in dark grey those always included, in orange the
region corresponding to the interval of tcut over which we evaluate the
parameters of the model, as explained in the text (cf. Figure 2)

sibly correspond to electron scattering off magnetised vortices in
the core and kelvon scattering in the crust, the latter parameter
being poorly predicted by theory, with differences of more than
one order of magnitude at higher densities between different cal-
culations (Graber et al. 2018).

If we interpret the two superfluid components of our model
as the core (i = 1) and the crustal reservoir (i = 2), then the value
B1 = (6.6 ± 0.6) · 10−5 lies right in the constrained interval for
Bcore; the parameter B2 is affected by a large error (reflecting the
large uncertainty of all short time parameters, as seen in Table 1)
but it also satisfies the lower limit on Bcr. Since to date calcula-
tions of the drag coefficients Ri are uncertain, the present model
provides a simple technique to extract average values of these
parameters from glitch observations, which may help clarifying
the theoretical issues concerning the microphysics involved in
the dissipative channels at work during a glitch.
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Fig. 4. In the upper panel we show the angular velocity with respect
to the steady state, ∆Ωp(t), in the lower panel the (shifted) residuals,
r(t)− r0, corresponding to the values of the fitted parameters in Table 1.
The flex in the residuals is marked by the intersection with the vertical
line at tmax (see the zoom) and the time is measured from the beginning
of the glitch.
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density corresponding to the internal boundary of the shell is given in
units of n0 (nuclear saturation). The vertical line marks the core-crust
transition at 0.45n0. The horizontal line represent x2 and x1 + x2 = 1− xp
without (solid lines: m∗1 = m∗2 = 1) and with strong entrainment in the
crust (dashed lines: m∗1 = 1, m∗2 = 4). We used the SLy4 equation of
state and four reference masses: 1, 1.4, 1.8 and 2 M�. The inset is a
zoom on the outermost regions of the core.
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Regarding the time when the glitch begins, tgl, our value is
before what estimated in Palfreyman et al. (2018), but within
their error bars. We find tgl ≈ t1, which supports the idea that
the magnetosphere decoupling is associated to the onset of the
glitch.

We finally discuss the fractional moments of inertia. In Fig-
ure 5 we display the partial fraction of neutrons for shells starting
from the surface and going deeper into the star, using a unified
nucleonic equation of state (SLy4 (Douchin & Haensel 2001))
and for different values of the stellar mass. We see that the value
x2 ≈ 8% implies that the reservoir cannot be limited to the crust
(which contains at most 4% of the neutron fraction for the light-
est neutron star), but extends into the outer core to densities be-
low nuclear saturation. For a standard 1.4M� star, the intersec-
tion of the curve with the solid horizontal line representing x2 in
Figure 5 shows that the reservoir extends to about 0.75n0 (with
n0 = 0.168 fm−3 the nuclear saturation density); this is compat-
ible with some calculations of S-wave pairing gaps (Ho et al.
2015; Montoli et al. 2020).

We also see that x1 + x2 ≈ 68%, implies that the moment of
inertia fraction associated to normal matter is xp ≈ 32%. This is
much more than the value predicted by equations of state with-
out an inner core (between 5% and 10%, as shown for SLy4 by
the endpoints of the curves in Figure 5, which give the total neu-
tron fraction of the star, xn, the remaining 1 − xn then being the
proton fraction). Therefore, our results suggest the presence of
an inner core of matter strongly coupled to the charged compo-
nent. For each mass in Figure 5, the intersection of the curve with
the solid horizontal line corresponding to x1 + x2 identifies the
transition density to the innermost region that is rigidly coupled
to the normal component. For a standard 1.4M� star, such a core
would start around 2n0. This is compatible with microscopic cal-
culations, which predict the appearance of an inner core of non-
nucleonic matter (hyperons, meson condensates, quarks) at den-
sities in the range 2n0 − 3n0. Other possibilities, however, can
be proposed, such as strong coupling of the neutron superfluid
to the proton superconductor in the inner core, due to the (still
poorly known) vortex-fluxoid interaction.

4. Accounting for entrainment

In this section we introduce entrainment, namely the non-
dissipative coupling between the superfluid and the normal com-
ponent (see e.g. Haskell & Sedrakian 2017; Chamel 2017). This
can be represented by a dimensionless effective mass m∗ of the
free neutrons. The superfluid angular momentum for rigid ro-
tation is given by a mixing between the superfluid and normal
component Jn = In(m∗Ωn + (1 − m∗)Ωp), see e.g. Andersson &
Comer (2001) and Chamel & Carter (2006), and the dynamical
equations (1) become:

Ω̇p = −
1
xp

(
x1Ω̇1 + x2Ω̇2 + |Ω̇∞|

)
m∗1Ω̇1 + (1 − m∗1)Ω̇p = −xp

Ω1p

τ1

m∗2Ω̇2 + (1 − m∗2)Ω̇p = −xp
Ω2p

τ2
(11)

where m∗1,2 are the (averaged) effective masses for entrainment
for the two superfluid components. The RHS of the equations
for the superfluid in (11) are not effected by entrainment: this ap-
proximation holds under the same conditions valid for equations
(2) and (3), namely that the lags between the superfluids and the

normal component are much smaller than the angular velocity of
the normal component (cf. equation (52) for the vorticity density
in Sidery et al. (2010), which reduces to 2Ωi ' 2Ωp(0) (i = 1, 2)
when Ωip << Ωp(0)). Under such conditions, the (approximate)
relation (3) still holds also in the presence of entrainment.

To solve the system (11) we introduce an auxiliary angu-
lar velocity, Ωv, directly related to the vortex density by the
Feynman-Onsager relation, and we properly rescale the mo-
ments of inertia and the mutual friction coefficient with the ef-
fective mass. In this way the rescaled dynamical equations in the
v-formalism are identical to those in the n-formalism without
entrainment (Antonelli & Pizzochero 2017). In the case of our
model with three rigid components the Ωvi are given by

Ωvi = m∗i Ωi + (1 − m∗i )Ωp (i = 1, 2) , (12)

which implies:

Ω̃ip = Ωvi −Ωp = m∗i Ωip (i = 1, 2). (13)

The rescaled (tilded) variables are defined by:

x̃i =
xi

m∗i
(i = 1, 2) (14)

x̃p = 1 − x̃1 − x̃2 = xp − (1 − m∗1)x̃1 − (1 − m∗2)x̃2 (15)

B̃i =
Bi

m∗i
(i = 1, 2) (16)

τ̃i =
τim∗i x̃p

xp
=

x̃p

2Ωp(0)B̃i
(i = 1, 2) (17)

where we used equation (3). By direct substitutions of equa-
tions (12)-(17) in the system of equations (11) and after some
calculations we finally obtain:

Ω̇p = −
1
x̃p

(
x̃1Ω̇v1 + x̃2Ω̇v2 + |Ω̇∞|

)
Ω̇v1 = −x̃p

Ω̃1p

τ̃1

Ω̇v2 = −x̃p
Ω̃2p

τ̃1
(18)

which is identical to the system of equations (1), but for the
tilded variables.

It follows that, in the presence of entrainment, the timing so-
lutions are still represented by equations (4) and (10) for the
glitch and its residuals, but with tilded parameters instead of un-
tilded ones. Therefore we do not need to repeat the fit: all the re-
sults reported in Table 1 are still valid, but they now represent the
rescaled quantities. We can then go back to the physical variables
using the previous relations: of course, the ’observable’ parame-
ters (rise and decay timescale of the overshoot, amplitudes of the
exponentials, ∆Ω∞p , tgl and r0) remain the same, while only the
’internal’ parameters (fractional moment of inertia and mutual
friction coefficients) must be rescaled.

For example, we consider the case of no entrainment in the
core component and strong entrainment in the reservoir; this is
justified by some theoretical calculation, which suggest an effec-
tive mass slightly smaller than 1 in the core (Chamel & Haensel
2006) and quite large in the crust (Chamel 2012). In particular,
we take m∗1 = 1 and m∗2 = 4, the latter being close to the average
value of 4.3-4.3 (Andersson et al. 2012; Chamel 2013), but other
values could be tested: to date, the issue of strong entrainment in
the crust is still open to debate (Chamel 2012; Martin & Urban
2016; Watanabe & Pethick 2017; Sauls et al. 2020).
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Table 2. Fractional moments of inertia and drag parameters obtained in
the presence of strong entrainment in the reservoir (m∗1 = 1 and m∗2 = 4).
The quantities and their propagated errors were obtained by rescaling
the results of Table 1, as explained in the text.

Parameter Value
x1 0.60 ± 0.01
x2 0.32 ± 0.04
xp 0.08 ± 0.05
B1 (6.6 ± 0.6) · 10−5

B2 (1.1 ± 0.9) · 10−1

In Table 2 we report the physical quantities whose values are
changed because of entrainment, namely the fractional moments
of inertia and the mutual friction coefficients; with entrainment
being confined to the crust (i = 2), only the values of the reser-
voir are affected, namely B2 = m∗2B̃2 and x2 = m∗2 x̃2. In particu-
lar, the value of B2 = (1.1 ± 0.9) · 10−1 is four times larger than
before and still satisfies the constraint of Graber et al. (2018);
due to the mentioned uncertainty of theoretical calculations, no
strong conclusion can be drawn at this stage. As for the fractional
moments of inertia, the normal component now results xp ≈ 8%,
in agreement with standard neutron star models without an ex-
otic inner core (indeed, in Figure 5 the dashed horizontal line
corresponding to x1 +x2 = 1−xp is very close to the endpoints of
the curves for the neutron fraction). On the other hand, now the
reservoir is x2 ≈ 32%, a very large fraction extending into the
outer core up to densities above nuclear saturation. For a stan-
dard 1.4M� star, the intersection of the curve with the dashed
horizontal line representing x2 in Figure 5 shows that the reser-
voir extends to about 1.25n0. This suggests strong non-crustal
pinning, possibly with the pasta phase and/or the magnetic flux-
oids in the superconducting core, but other mechanisms could be
envisaged.

5. Conclusions

We have presented the explicit, analytical timing solution for the
minimal three-component model, which confirms the presence
of an overshoot when the coupling timescales of the angular mo-
mentum reservoir are shorter than those of the superfluid core.

The fit of the 2016 Vela glitch with this model has provided
several interesting physical quantities, like the rise and decay
timescales of the overshoot, the time and amplitude of the glitch,
and the fractional moments of inertia of the different compo-
nents. We have compared our results with existing constraints
derived from the 2016 Vela glitch, and found agreement with
them.

We have studied the cases with and without strong entrain-
ment in the crustal reservoir: in the former scenario, we find ev-
idence of an inner core strongly coupled to the observable nor-
mal component and a reservoir extending beyond the crust up
to densities below nuclear saturation; in the second scenario, the
normal component has standard values of fractional moment of
inertia, but the reservoir extends deeper into the outer core, up to
densities above nuclear saturation.

The explicit mathematical form of our model allows to ex-
tract physical parameters of the neutron star directly from well
resolved (pulse to pulse) glitch observations in a reasonably sim-
ple way. This may help clarifying some presently open issues,
like entrainment in the crust, mutual friction parameters, pin-
ning in the pasta phase and vortex-fluxoids interaction (Sourie
& Chamel 2020).

It would also be interesting to study the possibility of both
components being “active” (two distinct reservoirs of angular
momentum), as well as to incorporate general relativistic cor-
rections to the moments of inertia (Andersson & Comer 2001;
Antonelli et al. 2018) and to the timescales (Sourie et al. 2017;
Gavassino et al. 2020): we plan to address these issues in future
work.
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