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Active particle assemblies can exhibit a wide range of interesting dynamical phases depending on internal parameters such
as density, adhesion strength or self-propulsion. Active self-rotations are rarely studied in this context, although they can be
relevant for active matter systems, as we illustrate by analyzing the motion of Chlamydomonas reinhardtii algae under different
experimental conditions. Inspired by this example, we simulate the dynamics of a system of interacting active disks endowed
with active torques and self-propulsive forces. At low packing fractions, adhesion causes the formation of small rotating clusters,
resembling those observed when algae are stressed. At higher densities, the model shows a jamming to unjamming transition
promoted by active torques and hindered by adhesion. We also study the interplay between self-propulsion and self-rotation and
derive a phase diagram. Our results yield a comprehensive picture of the dynamics of active rotators, providing useful guidance
to interpret experimental results in cellular systems where rotations might play a role.

1 Introduction

Recent years witnessed a growing interest in the properties of
active matter, where the system is composed by self-propelled
units1,2. The field was inspired by the observation of nat-
ural phenomena such as the movements of flocks of birds3,
schools of fishes or cell populations4, and pushed forward by
new technological achievements that allowed the production
of active colloids5, Janus particles6 and artificial microswim-
mers7. Basic concepts of statistical physics have been applied
to the study of ensembles of active particles in order to in-
vestigate not only single particle properties, but also their col-
lective behavior1,2. Active matter has shown a rich variety of
emerging phenomena, due to the fact that those systems are
out of thermodynamical equilibrium1,2. Notable examples are
the emergence of vortices in confined geometries8, the forma-
tion of clusters9 and active cristals10, and phase transitions
that differ from the ones typical of passive particles. For in-
stance in active particle systems, the activity itself can induce
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phase separation11 or phase coexistence between regions with
hexatic order and regions in the liquid or gas phase12.

Most theoretical studies of active matter consider self-
propelled particles driven by active forces. The observation of
biological active matter suggests, however, that active torques
may also play an important and yet unexplored role. An in-
teresting example is provided by Chlamydomonas reinhardtii
(C. reinhardtii), a micron-sized unicellular alga that is able to
move thanks to two flagella. It has been noticed that those or-
ganisms not only self-propel to perform translational motion,
but they also have the ability to self-rotate. This peculiar be-
havior is due to the morphology of this alga, characterized by
an éyespotśensible to light located near the cell equator. Ro-
tating around its own axis the alga allows the eyespot to better
scan the surrounding environment looking for light, needed to
perform photosyntesis13. In this paper, we report observations
and quantification of individual rotation and the formation of
rotating clusters, in analogy to what observed for model sys-
tems of active rotating disks in 2D passive media14.

Inspired by this biological example, we study the dynamic
behavior of a collection of interacting active rotators in two
dimensions. Our model system displays some analogies with
chiral active fluids which are composed by particles spinning
with a defined chirality and display peculiar physical proper-
ties such an odd (or Hall) viscosity due to breaking both parity
and time-reversal symmetries15 and the emergence of active
turbulence behavior16. Another interesting example of rotat-
ing active particles was provided in Ref.17 where the authors
studied a set of 3D printed active spinner driven by air flow.
The results showed diffusive behavior and non-equilibrium
dynamical phases.
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Here we focus on the jamming-unjamming transition dis-
played by a system of active rotators. This transition, typi-
cal of granular materials, shares some features with the glass
transition. Increasing the density, the system goes from an un-
jammed liquid-like phase to a jammed solid-like state, char-
acterized by limited mobility and slow relaxation18. Interest-
ingly, this kind of transition has been observed to take place
also in systems of living cells where it may play a role in bi-
ological processes, such as inside the epithelial tissues of pa-
tients affected by asthma19 or in the migration of cancer cells
during wound healing20. In this paper, we explore the role of
self-rotation on the jamming-unjamming phase transition of a
system of bidimensional disks, performing molecular dynam-
ics simulations with LAMMPS (http://lammps.sandia.gov.)21.

2 Materials and Methods

2.1 Experiments

2.1.1 C. reinhardtii culture growth and exposure to
stress conditions. C. reinhardtii cells were growth in TAP
medium (Invitrogen) as batch cultures until they reached
1−2×106 cells/ml (corresponding to mid-exponential phase
of growth). The cells were cultured under continuous cool-
white fluorescent lamps (' 100µ mol photons/m2 s) within
a 110 rpm shaking incubator, at 25◦C. For palmelloid analy-
sis, 5 ml of cells was spun at 1100 g/5 min/25◦ C and resus-
pended in 20 ml of Tris-Acetate-Phosphate (TAP, Invitrogen
cod. A1379801) medium containing 150 mM NaCl or in fresh
TAP growth medium (control condition) for 6 hrs. 200 µl of
cultured cells for each experimental condition were seeded in
a 96 well and time-lapse imaged immediately. For study of
motility at different densities, 200 µl of cultured cells (2 ·106

cells/ml and 106 cells/ml respectively) were let sediment on
the bottom of a 96 well before imaging. Images were acquired
with DMi8 (Leica) using bright field objective at 20x at 0.5−6
frames per second.

2.1.2 Image segmentation. Image segmentation is done
using standard Matlab functions for the image processing.
First, the image is thresholded using tne edge function in two
steps: the automatic threshold is identified and then lowered to
achieve better edge detection. The detected edges are dilated
using the imdilate function. Then, the closed areas are
filled with the imfill function to remove black spots inside
detected cells. Finally, bwareaopen is used to remove small
noise. The result is a mask that selects only regions occupied
by algae.

2.1.3 Particle image velocimetry (PIV). The measure-
ments of the velocity and vorticity fields were done using the
PIVlab app for Matlab22. The method is based on the com-
parison of the intensity fields of two consequent photographs

of algae. The difference in the intensity is converted into
velocity field measured in px/frame and then converted to
µm/h23. To avoid spurious noise PIV was applied after im-
age segmentation only to the regions occupied by algae.

2.1.4 Cell tracking. The tracking and motion analysis of
algae in 2D is performed using Trackpy: a particle-tracking
Toolkit written in Python, available at https://zenodo.
org/record/3492186. The original implementation of
the tracking algorithm is reported in Ref.24. The first step of
the tracking consists in the location of the algae in each im-
age to extract their coordinates. For this purpose we set the
function locate, performing a band pass and threshold, with
the following parameters: diameter =17, minmass=105, sepa-
ration=5, invert=True. The function annotate allows the
direct visualization of the detected particles. Afterwards, the
algorithm links the coordinates in time to extract the trajecto-
ries (function link with parameters: search range=3, mem-
ory=5). The drift motion is then computed and subtracted
away (compute drift function) and the final trajectories
are obtained. The trajectories are analyzed with the emsd
function to compute the ensemble mean square displacement
(MSD) of all particles.

2.2 Simulations

2.2.1 Model for interacting 2D active disks. We per-
formed Molecular Dynamics simulations of a system made
of active self-rotating particles using LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator)21. Each par-
ticle (described as a 2D disk) has the following physical prop-
erties:

• it is an active particle and it has the ability of both self
propel to move in a straight direction and to self-rotate
around its center

• it is moving on a viscous medium, so performing a Brow-
nian motion

• the system is made up of particles with two different radii
in order to avoid crystallization

• it interacts with its nearest neighbor particles via a granu-
lar potential (Hertzian potential) to which we add an ad-
hesion term (Derjagun-Muller-Toporov Model25). This
is done in order to take into account the adhesion proper-
ties of cells.

The equations of motion describing the center of mass position
−→x i(t) and the rotational angle θi(t) of the two-dimensional
disk i at time t are given by

d2−→x i(t)
dt2 =

1
m
[
−→
Γ i(t)+

−→
χ i(t)+

−→
Φ i(t)+∑

n.n.

−→
Ψ

n
i j(t)+∑

n.n.

−→
Λ i j(t)]

(1)
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d2θi(t)
dt2 =

1
Iz
[ϒi(t)+Θi(t)+ τz

i(t)−∑
n.n.

(
−→
R i×

−→
Ψ

t
i j(t))z] (2)

Here the sums are over the nearest neighbor (n.n) disks and
−→
R i

is a vector normal to the disk surface and of amplitude equal
to the disk radius. The quantities are dimensionless because
units are set to Lennard-Jones units in LAMMPS. It is, how-
ever, always possible to convert to real units by setting the disk
radius to the typical algae radius. Since particles are moving
in a viscous environment, the term

−→
Γ i(t) takes into account

the friction due to the surrounding medium. Its value is:

−→
Γ i(t) =−

m
β

−→v (t) (3)

As we can see this term is proportional to the linear velocity
−→v (t) of the particle and to the particle mass m. Here, the in-
put parameter β is inversely proportional to the fluid viscosity.
Since cells moving in a medium are usually in an overdamped
regime, we set β = 0.1 so that Brownian dynamics can effec-
tively be considered as an overdamped Langevin dynamics.
Friction enters also in the rotational motion of our 2D disks,
since we have a friction term proportional to the angular ve-
locity and to the moment of inertia of the disks I given by

ϒi(t) =−
10
3

I
β

ω(t) (4)

Next, we consider in Eqs. 1 and 2 a term representing ran-
dom noise, described by −→χ i(t) and Θi(t). From the fluctu-
ation/dissipation theorem, the magnitude of −→χ i(t) is propor-

tional to
√

KbT m
dtβ , where Kb is the Boltzmann constant, T is the

temperature, m is the mass of the particle, dt is the timestep,
and β is the damping factor. In the case of Θi(t), the mass
in the previous equation is substituted by the moment of iner-
tia I. The random noise is uncorrelated with 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t ′)〉 ∝ δ (t− t ′).

Since our aim is to describe active particles, we include in
Eq. 1 and Eq. 2 terms taking into account the ability of the
particle to self sustain its motion. The term

−→
Φ i(t) takes into

account the ability of the cell to self-propel. The biological
mechanisms that allow the cell to move are simply modeled
as a force with a constant modulus pointing in the direction in
which the particle was already moving, considering a charac-
teristic time until the particle can change direction

−→
Φ i(t) =V

−→v (t)
|v|

(5)

The term −→τ i
z(t) takes into account the self-rotation of the par-

ticle adding a constant torque along the ẑ direction at each time
step for each particle. Since at the beginning of the simulation,
particles are endowed with an initial angular velocity, either

clockwise or counter-clockwise, the torque term initially fol-
lows the direction of rotation, so that a particles that moves
clockwise at the beginning continues to rotate in that direction
under the self rotation effect. Of course changes of rotation
direction can arise due to interaction among particles. In or-
der to study the effect of rotation on the collective properties
of our system, we performed simulations for different values
of the active torque τz. The term

−→
Ψ i j(t) describes contact

interactions between the particles, according to the Hertzian
model26,27. In particular the form of the force is:

−→
Ψ i j(t) =

√
δ

√
RiR j

Ri +R j
[(knδ n̂i j−me f f γn

−→v n)+

− (kt
−→
∆st +me f f γt

−→v t)]

(6)

Where Ri and R j are the radii of the interacting disks. In
our simulations, disks have two different radii R1 = 1.96 and
R2 = 1.4, in order to avoid crystallization. The force is divided
in two components, the force that is normal to the contact sur-
face between the two particles and the one that is tangential.
The normal force has two terms, a contact force and a damping
force. Here δ is the overlap distance between two particles, kn
is the elastic constant for the normal contact, n̂i j is the unit vec-
tor along the line connecting the centers of the two interacting
disks, γn is the viscoelastic damping constant for normal con-
tact and −→v n is the normal component of the relative velocity
of the two particles. This component of the force enters in Eq.
1, influencing the equation of motion of the center of mass of
the disk. The tangential force also has two terms: a shear force
and a damping force. The shear force contains a ”history” ef-
fect that accounts for the tangential displacement between the
particles for the duration of the time they are in contact. Here
kt is the elastic constant for tangential contact and

−→
∆st is the

tangential displacement vector between two particles. In the
tangential damping force the term γt is the viscoelastic damp-
ing constant for tangential contact and −→v t is the tangential
component of the relative velocity of the two particles. This
tangential component of the Hertzian interaction enters in the
rotational equation of motion, via the torque −−→R i×

−→
Ψ t

i j(t).
Then, in order to study the role of adhesion between par-

ticles, typical of many biological systems, a term taking into
account the adhesion is inserted in Eq. 1. This is done us-
ing the Derjaguin-Muller-Toporov model25,28, where the ad-
hesive force has the form

−→
Λ i j(t) = −

AccRi j n̂i j
6ε2 , where Acc is

the Hamaker constant that takes into account the coefficient
of the particle-particle pair interaction, Ri j =

RiR j
Ri+R j

is the ef-
fective radius of the two touching particles and ε is the least
possible spacing between the contact surfaces. In particu-
lar the adhesion force is calculated in the LAMMPS code
pair-dmt distinguishing between two cases: If the dis-
tance among the centers of two spheres is bigger than the sum

1–11 | 3



of the radii r > R1 + R2, the adhesion force takes the form−→
Λ i j(t) = −

AccRi j n̂i j
6[r−(Ri+R j)+ε]2

, otherwise the adhesion force be-

comes
−→
Λ i j(t) = −

AccRi j n̂i j
6ε2 . So the adhesion is simply repre-

sented by a spring force when two particles overlap. In the
following we studied the role of adhesion performing simula-
tions with different values of the Hamaker constant Acc. In-
tegrating Eqs. 1 and 2, it is possible to update positions and
velocities of the particles at each time step of our simulation.

2.2.2 Parameters used for the simulations. For the sim-
ulations we used 2D disks of radius R1 = 1.96 and R2 = 1.4
and density of the disk d = 0.46 (so mass m = d ∗πR2). We
used a time step of 0.0001 in LJ units and run the simulations
for 106 steps, so covering 100 time units. The temperature is
constant during the integration of the equation of motion and
equal to T = 1.

3 Results

3.1 Active rotators in the diluted limit

To quantify self-rotation in C. reinhardtii, we first consider
the diluted limit shown in Fig. 1a and perform a PIV analysis
to recostruct the probability distributions for linear and angu-
lar velocities (also reported in Fig. 1a). The plots show that
the distributions of the absolute value of the linear velocities
follows a Rayleigh-like distribution, while the angular veloc-
ity distribution has a Gaussian-like behavior. When algae are
stressed by adding 150mM NaCl added to the medium, we
observe the formation of rotating clusters because these algae
tend to aggregate in response to stress. The probability distri-
butions obtained under stress indicate that aggregation leads
to a decrease of velocity and angular velocity fluctuations.

In order to explain these experimental observations and gain
insight on those systems of active rotators, we perform simula-
tions in LAMMPS using the model described in the model sec-
tion. We consider a low density system with a packing fraction
φ =

Vparticles
VTOT

= 0.14 and active torque τz = 6000. When adhe-
sion is switched off (Acc = 0), the active particles do not form
clusters and rotate mostly individually (see Fig. 1b). When
adhesion is present, however, particles aggregate into clusters
as shown in Fig. 1b (obtained for Acc = 3950).

From the simulations, we also extracted the probability dis-
tributions for the linear and angular velocities of the particles,
in the cases with and without adhesion (see Fig. 1b). The dis-
tributions obtained from the model are very similar to those
observed in experiments, suggesting that our model can cap-
ture some important features of those biological systems.

3.2 Active rotators in the dense regime

After comparing model and experiments in the dilute regime,
we investigate how the self-rotation of the disks can affect the
phase behavior of a dense system of interacting rotators. We
first analyze with PIV the motion of C. reinhardtii at higher
densities and find that increasing the density, the algae became
more motile, since the linear velocity peak is shifted toward
higher values and the variance of the angular velocity distri-
bution increases (compare the distributions in Fig 1a and Fig.
2a). Visual inspection of the velocity and vorticity maps ob-
tained by PIV shows that algae rotate and tend to form rotating
clusters and vortex like behavior. The experimental observa-
tion that increasing the density leads to higher mobility can
not easily be explained by the model. If we only increase the
density, keeping all the other parameters constant, the mobil-
ity progressively decreases until the system jams. This is the
typical behavior expected for inactive jamming phenomena18.
In this active system, however, a possible explanation is that
algae respond to crowding by increasing their active torque.
We therefore study numerically the effect of self-rotation in a
dense system of active rotators.

To improve the statistics, our numerical results are averaged
over ten initial configurations initially placed into a jammed
phase. To this, end we create a simulation box with 1000 disks
in random positions (500 with radius R1 = 1.96 and 500 with
radius R2 = 1.4, corresponding to a binary mixture with di-
ameter ratio of 1.4, as in previous studies on jamming of a
2D disk packing29,30). We then performed subsequent steps
of box reduction and energy minimization, monitoring the be-
havior of the pressure of the system as a function of the pack-
ing fraction φ .

It is already known from previous studies on random pack-
ing of frictionless particles that φ at which the pressure be-
comes non zero is the same as the jamming threshold, when
also the static shear modulus becomes non-zero29. This can
be understood by thinking that when the packing fraction is
small, particles do not touch and the internal pressure is zero.
Increasing the particle density via box reduction, the system
reaches a state in which the particles touch and are blocked
into a rigid structure. At this point, a further increase of the
packing fraction will lead to a pressure increase. Hence, pres-
sure is a good indicator of the jamming point.

In our case, we observe that the pressure is zero until
φ ' 0.78 and increasing rapidly for larger values of φ . To
ensure that the system is in the jammed state, we chose ini-
tial configurations with φ = 0.87. Previous work on packing
and jamming of 2D bidisperse hard disks at T = 0 shows that
the value for random close packing φRCP (maximum density
without crystallization) is φ = 0.8430. Here, we are consid-
ering friction so that jamming is reached at a density lower
than φRCP. Furthermore, we are considering a system that is
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not at zero temperature. Thus as suggested by the jamming
diagram proposed by Liu e Nagel18, the jamming transition
is expected to occur at a higher density. These facts justify
the value we found for the onset of jamming. It has recently
been observed that the critical value of the density at which the
jamming transition takes place can depend also on the condi-
tions in which the system has been prepared and varies also
within the same material31 making it hard to find a well de-
fined value of the packing fraction for the onset of jamming.
Furthermore, we have to consider that our 2D disks are not
hard, their ’hardness’ being controlled by the kn coefficient in
the Hertzian potential. Thus, they can overlap and elastically
deform, reaching higher values of packing fractions.

We perform MD simulations starting from the initial
jammed configurations and increasing the value of the active
torque τz. When self-propulsion is switched off (v= 0) as well
as the adhesion term (Acc = 0), we noticed that at low active
torques the system stays in a jammed phase, characterized by a
very low mobility of the active disks. Above a critical value of
the active torque, the system switches to a flowing, unjammed
phase, characterized by a high mobility of the disks. Fig. 2b
reports typical snapshots of the simulations for different val-
ues of the active torque, highlighting the internal rotations of
the disks. We then analyzed the probability distribution of
linear and angular velocities and, as shown in Fig. 2b, we
observe that disks increase their velocities in response to the
active torque. The distribution of the linear velocities is qual-
itatively similar to the experimentally measured one (Fig. 2a)
while the distribution of angular velocity displays two peaks,
reflecting the constant active torque used in the simulations.
The active torque in algae is likely not constant explaining the
difference between simulations and experiments.

3.3 Rotational induced unjamming transition

To gain insight on the mobilization of the jammed active disks,
we studied individual trajectories of the disks computing their
mean square displacement (MSD). We first consider the exper-
imental data and perform tracking of individual algae. Fig. 3a
reports an example of the recorded trajectories which displays
a diffusive behavior as show in Fig. 3b.

We then perform a similar analysis on the simulations and
in Fig. 3c, we show that in the jammed phase trajectories are
localized (see inset of Fig. 3c) while for higher values of the
active torque they spread. The mean square displacement is
close to zero for low torques while it grows linearly for larger
values of the self-rotation (Fig. 3d and Fig. 3e). From a linear
fit of the long time region of the MSD, we also extracted an
effective diffusion coefficient, that clearly shows a sharp in-
crease at (τz = 4000), suggestive of a phase transition into a
flowing state (Fig. 3f).

Since we have seen that the self-rotation can lead from a

jammed to an unjammed state, it is interesting to investigate
the role of adhesion, present in many cellular systems, includ-
ing C. reinhardtii where it could be triggered by stress. As
discussed in the Model section, adhesion is modeled using
the Derjaguin-Muller-Toporov model and the parameter used
to tune the intensity of the adhesion force in the simulations
is the Hamaker constant Acc. We performed simulation with
τz = 6000, so in the unjammed phase switching on the adhe-
sion term. Analyzing the mean square displacement and as
before the effective diffusion coefficient, it emerges that in-
creasing the adhesion strength the system remains unjammed
until a critical value (Acc ∼ 1500−2000) at which diffusion is
strongly reduced, unveiling a transition to a jammed phase.

3.4 Self-rotation and self-propulsion

We next consider the interplay between self-propulsion and
self-rotation, exploring the behavior of the system in terms of
two parameters τz, the active torque and v, the self-propulsion.
We consider a system of disks placed at the jamming density
(φ = 0.87) without adhesion. We scan the parameter space and
record the trajectories of disks. We then compute the mean-
square displacement and estimate the effective diffusion con-
stant De f f for each case.

Fig. 5a reports the variation of diffusion constant as a
function of the active torque in presence of a relatively weak
self-propulsion v = 25. The curve shows that increasing self-
rotation leads to a rapid reduction of diffusion. Further in-
crease in the self-rotation, however, induces an increase in the
diffusion. This monotonic behavior is due to the fact that in
absence of self-rotation, self-propulsion leads to coherent di-
rected motion. We have checked that this coherent motion is
not an artifact of periodic boundary conditions, but persists
also for closed boundary conditions. Self-rotation breaks the
coherence of the self-propelled motion, inducing jamming.
Rotational-induced unjamming is then observed for higher
values of the active torque. In absence of self-rotation, unjam-
ming is driven by self-propulsion as already observed in many
active particle models (see Fig. 5b). All the numerical simula-
tions can then be summarized into a qualitative phase-diagram
reported in Fig 5c, where we plot the effective diffusion con-
stant as a function of V and τz.

4 Discussion

Our work was inspired by the observation of a natural example
of active rotators like C. reinhardtii. Quantification by image
segmentation and PIV analysis shows that this kind of algae
can not only self-rotate13 but also aggregate forming collec-
tively rotating clusters. The formation of these aggregates is
observed both in high density limit, and low density in pres-
ence of a stress agent, such as NaCl. Starting from these sim-
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ple observations, we built and simulate a model of 2D active
disks that have the ability to self-rotate and interact with each
other. We found that in the low density limit (φ = 0.14) and
in presence of an adhesion term among the disks, the active
rotators tend to aggregate and form rotating clusters, in anal-
ogy with what is observed in algae. Similar rotating clusters
where observed in confined cellular assemblies in vitro32and
is glandular tissues33, as well as in previous simulations of a
model of self-propelled particles34. In particular, we saw that
the adhesion term plays a crucial role in the formation of clus-
ters, suggesting that a form of attraction should also be present
in the case of C. reinhardtii.

An interesting feature of the clusters is that they rotate col-
lectively but also show internal particle rotations that are not
always synchronized with the global rotation of the cluster. A
similar behavior is observed in C. reinhardtii and also in pre-
vious studies on 2D active spinners embedded in passive col-
loidal monolayers14. In the latter case, it has been observed
that the presence of a passive monolayer that behaves elasti-
cally as a solid-like material, induces an attractive interaction
between the active rotating particles, which results in aggrega-
tion of spinners14. We also mention here another related ex-
periment where an active granular material composed of spin-
ning disks is confined within a circular arena35. The authors
reveal an interesting transition in the collective circulation of
the spinning disks35.

Furthermore, we studied with our simulations the role of
self-rotation in a jammed system. We observed that self-
rotation alone can lead to a phase transition from a jammed
solid-like state to an unjammed, flowing phase. In the past the
role of active forces has been investigated, studying the phase
diagram of 2D soft disks, that exhibit a liquid phase with gi-
ant number fluctuations at low packing fraction φ and high
self-propulsion V and a jammed phase at high φ and low V 36

or in active dumbbell systems with different packing fraction
and Péclet number12. These studies, however, did not consider
self-rotations as we did. We also studied the effect of adhesion
and investigated its role when combined to the self-rotation of
the disks. We revealed how adhesion can act in the opposite
direction with respect to self-rotation, promoting jamming. In-
creasing the adhesion strength, we can move the system from
a flowing unjammed phase to a jammed one. It would be in-
teresting to observe a similar phase transition in experiments
controlling self-rotation and adhesion, for instance in chiral
ative fluids made of superparamagnetic particles in a magnetic
field14).

A better characterization of the key features of this
jamming-unjamming transition in active particles systems
could be very useful to better understand biological processes
in which the involved cells have the ability to self-rotate, both
at a single particle level or as collective rotation. For exam-
ple, experiments involving epithelial cells confined in narrow

channels showed the formation of vorticity, suggesting a pos-
sible role for rotations in collective cell migration37. Another
context in which the mechanical properties of tissues gain a
peculiar interest is in the study of cancer cells, and in partic-
ular in the formation of metastasis. It has been observed that
cancer cells are softer than non-cancerous ones38, divide more
often than healthy cells and, as in the case of the epithelial-
to mesenchymal transition (EMT), they decrease the cell-cell
adhesion, potentially allowing for rotational motion. All those
features contribute to fluidize a confluent tissue of cancer cells,
favoring the unjamming transition and so the formation of dif-
fusing groups of cells (for a review see39). Hence, our theo-
retical study of a model system of active rotators reveals how
self-rotation of the active particles is a parameter that can con-
trol the jamming-unjamming transition, besides already well
studied mechanisms such as self-propulsion36 or density, and
can help in better understanding physical aspects of cancer cell
invasion40.
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Control

Stressed

a)

b)

Fig. 1 a) Typical snapshots of C. reinhardtii suspensions (scale bars 50µm) at low density with and without the stress induced by the
presence of NaCl are shown together with a boxplot of cluster areas, the distribution the absolute value of the linear velocities P(|v|) and the
distribution of the angular velocities P(ω). b) Snapshots of the simulations at low density φ = 0.14 in presence of active torque (τz = 10) with
adhesion (Acc = 3950). Particles are colored according to their angular velocity ωz. The formation of clusters is clearly visible. In the inset a
zoom of a portion of the simulated box is shown, together with the velocity vectors of the particles. In particular it is easy to see a system of
three collectively rotating particles. We also show a boxplot of cluster sizes and the distributions of velocities and angular velocities with and
without adhesion.
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1

0

𝜔 (1/s)

a)

b)

⌧z = 500 ⌧z = 2000 ⌧z = 4000 ⌧z = 6000 ⌧z = 8000

Fig. 2 a) Typical snapshot of a C. reinhardtii suspension at high density (scale bars 100µm) is shown together with the corresponding map of
angular velocities obtained by PIV. On the right-hand side, we report plots of the probability distribution of the angular velocity P(ω) and of
the absolute value of the linear velocity P(|v|). b) Typical snapshot of the system obtained with the model at high density for different values
of the active torque. Below we report the corresponding distributions of angular and linear velocities.
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Fig. 3 a) Trajectories of randomly selected algae for experimental conditions similar to those reported in Fig. 2a. b) Mean-square
displacement of the experimental trajectories, showing diffusive behavior. c) Selected trajectories obtained in simulations for the system in the
jammed phase (τz = 500 in the inset) and in the system in the unjammed phase (τz = 8000, main plot). In both plots, the the coordinates are
rescaled using the length of the simulation box L. d) The time evolution of the mean-square displacement averaged over all the disks
belonging to the system is shown for different values of the active torque, showing a clear increase for increasing values of the disks self
rotation. e) The same plot as in d) is reported also in logarithmic scale. f) The diffusion coefficient, obtained from a linear fit of the long time
region of the mean square displacement is plotted. The increase after a critical value of the active torque τz is associated to a phase transition
from a jammed/solid-like phase to an unjammed/flowing phase of the system.
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Fig. 4 The mean square displacement of the system in the unjammed phase (τz = 6000) and high density (φ = 0.87) is shown for different
values of the Hamaker constant Acc, that defines the intensity of the adhesive potential among the particles. Results are reported in a)
logarithmic and b) linear plots. Increasing the strength of the adhesion, the mean square displacement decreases. c) The effective diffusion
coefficient averaged on all the disks is extracted from the linear fit of the mean square displacement. Here the phase transition from the
unjammed to the the jammed phase is clearly visible as the diffusion coefficient rapidly drops to zero for large adhesion strengths.
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Fig. 5 The effective diffusion constant De f f as a function of a) active torque τz at constant self-propulsion V = 25 and b) self-propulsion V at
τz = 0. c) A qualitative phase diagram can be obtained by plotting logDe f f as a function of V and τz. Notice the peculiar role of the
self-rotation that can both induce jamming and unjamming, depending on the presence of self-propulsion. The color plot is obtained by
interpolating the estimated values of log4De f f .
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