
REDUCIBLE VERONESE SURFACES

ALBERTO ALZATI AND EDOARDO BALLICO

Abstract. Here we describe all degree n+3 non-degenerate surfaces in Pn+4,
n ≥ 1, connected in codimension 1, which may be isomorphically projected
into P4. There are 3 of them. One is a suitable union of n + 3 planes (for all
n ≥ 1); it was discovered by Floystad. The other two are unions of a smooth
quadric and two planes (only for n = 1).

1. Introduction

Let PN be the N -dimensional projective space on C. For any integer k ≥ 0, a
reduced subvariety V ⊂ PN of pure dimension is said to be connected in codimen-
sion k if for any closed subvariety W ⊂ V, such that codV (W ) > k, we have that
V \W is connected. For any subvariety V ⊂ PN and for any λ-dimensional linear
subspace Λ ⊂ PN we say that V projects isomorphically to Λ is there exists a linear
projection πL : PN −−− > Λ, from a suitable (N −λ−1)-dimensional linear space
L, disjoint from V , such that πL(V ) is isomorphic to V.

In this note we consider the following type of surface arising from the example
decribed in §2.

Definition 1. For any positive integer n ≥ 1, we will call reducible Veronese
surface any algebraic surface X ⊂ Pn+4 such that:

i) X is a non degenerated, reduced, reducible surface of pure dimension 2;
ii) deg(X) = n + 3, cod(X) = n + 2, so that X is a minimal degree surface;
iii) dim[Sec(X)] ≤ 4, so that it is possible to choose a generic linear space L

of dimension n − 1 in Pn+4 such πL(X) is isomorphic to X, where πL is the the
rational projection πL : Pn+4 −−− > Λ, from L to a generic target Λ ' P4;

iv) X is connected in codimension 1, i.e. if we drop any finite number (eventually
0) of points Q1, ..., Qr from X we have that X\{Q1, ..., Qr} is connected;

v) X is a locally Cohen-Macaulay surface.

Remark 1. Actually v) implies iv) by cor. 2.4 of [H], however we think that it is
more useful to give the above definition 1 because condition iv) is crucial to get the
classification.

In summary: we prove that there are exactly 3 types of reducible Veronese
surfaces:
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(i) a suitable union of n+3 planes (for any integr n ≥ 1) which sits as a linearly
normal scheme in Pn+4 (see theorem 2 and definition 2 for a precise description);
these are the examples whose existence is proved in [F];

(ii) two surfaces which are union of a smooth quadric surface and two planes;
each of these two examples sits as a linearly normal scheme in P5 (see theorems 3
for their description);

and there are no other cases (see proposition 2 and theorem 4).
We will use the following definitions:
< V1 ∪ ... ∪ Vr > : linear span in PN of the subvarieties Vi ⊂ PN , i = 1, ..., r;
Supp(V ) : support of the subscheme V ⊂ PN ;
Sing(V ) : singular locus of the subscheme V ⊂ PN ;
Sec(V ) : { ⋃

v1 6=v2∈V

< v1 ∪ v2 >} ⊂ PN for any subvariety V ⊂ PN .

For any positive integer d ≥ 2 a rational comb of degree d in PN is the union of
d lines L1, L2, ..., Ld ⊂ PN such that, for any i ≥ 2, Li ∩ L1 is a point, these d− 1
points are distinct and, for any j > i ≥ 2, Li ∩ Lj = ∅.

2. Floystad’s example

In [F], corollary 3, the author proves that, for any integer n ≥ 1, there exists in
P4 a monad of the following form:

OP4(−1)⊕n+2 → OP4⊕2n+3 → OP4(1)⊕n

whose homology is ISn(2) where Sn is a locally Cohen-Macaulay surface in P4.
Moreover Sn is embedded in Pn+4 as a linearly normal surface and Sn projects
isomorphically to some suitable Λ ⊂ Pn+4, Λ ' P4. For n = 1, S1 is the usual
(smooth) Veronese surface in P5; on the contrary, Sn must be singular for n ≥ 2.

If we call ϕn : OP4⊕2n+3 → OP4(1)⊕n we get the following exact sequences of
sheaves and vector bundles over P4:

0 → ker(ϕn) → OP4⊕2n+3 → OP4(1)⊕n → 0
0 → OP4(−1)⊕n+2 → ker(ϕn) → ISn(2) → 0.

Now it is easy to calculate χ[OSn(t)] =
(
t+4
4

)−χ[ISn(t)] = (n+3
2 )t2 +(n+5

2 )t+1,

so that deg(Sn) = n + 3 and Sn is a minimal degree surface in Pn+4 for any n ≥ 1.
When n = 2, by a computer algebra system as Macaulay, it is easy to get a

set of generators for the ideal of a generic S2 in P6. In fact, by choosing a random
(2, 7) matrix M of linear forms we have a map as ϕn and, by calculating the higher
sizygies of M, we get a free resolution for ker(ϕn) and a commutative diagram as
follows:

0 0
↑ ↑

0 → OP4(−1)⊕4 → ker(ϕ2) → IS2(2) → 0
↑ ↑

OP4(−1)⊕4 → OP4(−1)⊕5 ⊕OP4(−2)⊕10

↑ ↑
0 OP4(−3)⊕20

↑
...

.

By choosing another random (5, 4) matrix N of constants, in order to get a map
OP4(−1)⊕4 → OP4(−1)⊕5, (OP4(−1)⊕4 → OP4(−2)⊕10 is the zero map) and by
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using the mapping cone technique, we have that the ideal IS2 in P6 of a generic
surface S2 is generated by one cubic and ten quartics. S2 has codimension 4, degree
5 and (arithmetic) sectional genus 0. Alternatively, one can also choose 4 generic
sections of the rank 5 vector bundle ker(ϕ2) ⊗ OP4(1) by giving a random (5, 4)
matrix of constants N ′: in this case S2 is the degeneracy locus in P6 of these
sections; if N ′ = N we get exactly the same set of generators for IS2 .

By knowing a set of generators for IS2 it is, more or less, easy to see that the
generic S2 is given by 5 planes Π0,Π1, ..., Π4 such that: Π0 ∩ Πi := Li is a line for
i = 1, ..., 4; Πi ∩ Πj := Qij is a point of Π0 for i, j = 1, ..., 4, i 6= j, and the lines
Li are in general position on Π0. The generic hyperplane section of S2 is a rational
comb of degree 5 given by a line l0 on Π0 and four other lines li, i = 1, ..., 4, li ∈ Πi,
li ∩ lj = ∅ for i 6= j, intersecting l0 at one point. Sec(S2) is the union of a finite
number of linear spaces of dimension 2 (Πi i = 0, ..., 4), 3 (< Π0∪Πi > , i = 1, ..., 4)
or 4 (< Πi ∪Πj >, i, j = 1, ..., 4, i 6= j) so that it is possible to choose a generic line
L in P6, L∩ Sec(S2) = ∅, and to project S2, from L to a generic Λ ' P4, in such a
way that the projection of S2 is isomorphic to S2.

The above concrete construction of S2 suggests to define a family of completely
reducible surfaces having the same properties.

Definition 2. For any positive integer n ≥ 1, let us choose a plane Π0 and n + 2
distinct points P1, ..., Pn+2 in general position in Pn+4, so that < Π0 ∪ P1 ∪ ... ∪
Pn+2 > = Pn+4. Let us choose n + 2 planes Πi, i = 1, ..., n + 2, Pi ∈ Πi, such that
Πi ∩Π0 is a line Li and the n + 2 lines Li are in general position on Π0. (i.e. that
the curve given by their union has no triple points). Let us call Σn any surface in
Pn+4 which is the union Π0 ∪Π1... ∪Πn+2.

Proposition 1. The previously defined surfaces Σn, n ≥ 1, are reducible Veronese
surfaces according to definition 1.

Proof. i), ii), iii), iv) follow directly from the definition, note that Sec(Σn) is the
union of a finite number of linear spaces of dimension 2, 3, 4 . As far concerning v),
let us remark that for any singular point P ∈ Σn its local ring is isomorphic either:

- to the local ring at (0, 0, 0) of the affine variety {xy = 0} in A3(C)
or:
- to the local ring at (0, 0, 0, 0) of the affine variety
{x = y = 0} ∪ {z = w = 0} ∪ {x = z = 0} =
= {x2z = xz2 = x2w = xzw = xyz = yz2 = xyw = yzw = 0} in A4(C).
They are, up to isomorphisms, the same local rings of the singular points of S2

and we know that S2 is a locally Cohen-Macaulay surface by cor. 3 of [F].

To prove that Σn are locally Cohen-Macaulay we could also use a slightly different
version of the following lemma which will be useful at the end of the paper.

Lemma 1. Let X ⊂ P5 be a non degenerate surface such that X = Q ∪X1 ∪X2,
where Q is a smooth quadric, X1 and X2 are planes, and either X1 and X2 cut
Q along two lines intersecting at a point P = X1 ∩ X2 or Q,X1, X2 intersect
transversally along a unique line L = Q ∩ X1 ∩ X2. Then X is a locally Cohen-
Macaulay surface.

Proof. Let us consider the first case. Obviously we have to check the property only
at P. Let R be the local ring of X at P and let m be its maximal ideal. We have
height(m) = 2, so that we have to prove that depth(m) = 2. As X is reduced and
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dim(X) ≥ 1 we know that depth(m) ≥ 1. A generic hyperplane section of X not
passing through P cuts X along a reducible curve Y = C ∪ L1 ∪ L2, where C is a
smooth conic and L1, L2 are two disjoint lines intersecting C transversally at two
different points. Y is reduced, connected and its arithmetic genus pa(Y ) is 0. Let
H be a generic hyperplane section of X passing through P, now H ∩ X := YP is
reducible as the union of a smooth conic CP and two distinct lines intersecting CP

transversally at P. H gives rise to a non zero divisor element α ∈ m because X has
pure dimension 2. Now let us remark that pa(YP ) = 0, so that YP has no embedded
components at P = Sing(YP ), otherwise pa(YP ) < pa(Y ). Hence there is at least a
non zero divisor element β ∈ m/(α) and (α, β) is a regular sequence for m, so that
depth(m) ≥ 2. As depth(m) ≤ height(m) = 2 we are done.

In the second case we can argue as in the previous one for all points P ∈ L.

Remark 2. It is easy to see that the generic section of Σn is a rational comb, quite
exactly as in the case of S2 (which is in fact an example of Σ2), so that pa(Σn) = 0,
but we will not consider this property in the sequel.

Now it is very natural to ask if the surfaces Σn are the only existing reducible
Veronese surfaces in our sense. The answer to this question is the aim of the
following sections. Moreover we will prove that any generic Sn is a surface Σn for
n ≥ 2, see Remark 3. To show that the matter is in fact very intricate, let us
consider the following:

Example 1. Let X = Q ∪Π1 ∪Π2 ∪Π3 ⊂ P6, where Q is a smooth quadric of P3

and any Πi is a generic plane such that, if we call the three points Pij := Πi ∩Πj ,
we have: Pij /∈ Πk for k 6= i, j , Pij /∈ Q, but Pij ∈< Q >. Then X is non
degenerated, deg(X) = 5, dim[Sec(X)] ≤ 4, but X is not connected in codimension
1, for instance because X\{P12 ∪ P23 ∪ P31} is not connected.

3. Xambò’s result and applications

In [X] Xambò proves the following result:

Theorem 1. Let V = V1 ∪ .... ∪ Vr ⊂ PN be a non degenerate, reducible, reduced,
surface of pure dimension 2, whose irreducible components are V1, ..., Vr. Assume
that V is connected in codimension 1 and that it has minimal degree, then:

- any irreducible component Vi of dimension 2 of V is a surface of minimal degree
in its span < Vi >;

- there is at least an ordering V1, V2, ...Vr such that, for any j = 2, ..., r,
Vj ∩ (V1 ∪ ... ∪ Vj−1) = < Vj > ∩ < V1 ∪ ... ∪ Vj−1 > and this intersection is
always a line.

Proof. The theorem is a simply consequence of th. 1 of [X].

Corollary 1. Let Π1, Π2, ..., Πr be a set of ordered planes in some PN such that:
i) < Π1 ∪Π2 ∪ ... ∪Πr > = PN ;
ii) for any j ≥ 2, dim(Πj∩ < Π1 ∪ ... ∪Πj−1 >) = 1;
then X := Π1 ∪ Π2 ∪ ... ∪ Πr is a non degenerated surface in PN , of minimal

degree, connected in codimension 1.

Proof. The lemma follows from the Remark after th. 1 of [X], p. 151.
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Corollary 2. Let V be any surface as in theorem 1, then for any pair of irreducible
components Vj , Vk ⊂ V we have only three possibilities:

- Vj ∩ Vk = ∅
- Vj ∩ Vk is a point
- Vj ∩ Vk is a line.

Proof. Let us assume that Vj∩Vk 6= ∅ and that k > j in the existing ordering of the
components of V considered by theorem 1. Then Vj∩Vk ⊆ Vk∩(V1∪...Vj∪...∪Vk−1)
which is a line, as a scheme, because it is the intersection of two linear spaces in PN .
By th. 0.4 of [E-G-H-P] V is small according to the definition of [E-G-H-P], p.1364,
hence Vj ∩ Vk = < Vi > ∩ < Vj > is a linear space by prop. 2.4 of [E-G-H-P]. As
Vj ∩ Vk is contained in a line corollary 2 follows.

Lemma 2. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1. Then:

i) any connected surface Y ⊂ X can be isomorphically projected in P4;
ii) for any pair of irreducible components Xj and Xk of X we have Xj ∩Xk 6= ∅.

Proof. As X is a reducible Veronese surface there exists a projection πL : Pn+4 −
−− > Λ, from a suitable linear space L to a suitable linear space Λ ⊂ Pn+4, Λ '
P4, such that πL(X) ' X. This implies that, for any i = 1, ..., r, πL(Xi) ' Xi,
and, for any pair Xj , Xk ⊂ X, πL(Xj)∩ πL(Xk) ' Xj ∩Xk. Hence for any surface
Y ⊂ X we have πL(Y ) ' Y and πL(Xj)∩ πL(Xk), being the intersection of two
surfaces in P4, can not be empty, so that Xj ∩Xk can not be empty too.

Lemma 3. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1. Let P be a singular point of X and let XP

1 , ... , XP
s be the

irreducible components of X containing P with s ≥ 2. For any i = 1, ..., s let Ti

be the tangent space of XP
i at P in < XP

i > and let us assume that the natural
ordering of XP

1 , ... , XP
s is coherent with the ordering given by theorem 1. Then,

for any j ≥ 2, Tj *< T1 ∪ ... ∪ Tj−1 > and dim[Tj∩ < T1 ∪ ... ∪ Tj−1 >] ≤ 1.

Proof. By contradiction, let us assume that Tj ⊆< T1 ∪ ... ∪ Tj−1 >, hence Tj ⊆
Tj∩ < T1∪ ...∪Tj−1 > ⊆< XP

j > ∩ < XP
1 ∪ ...∪XP

j−1 > . As we are assuming that
the natural ordering of XP

1 , ..., XP
s is coherent with the ordering given by theorem

1, we have that dim[< XP
j > ∩ < XP

1 ∪ ...∪XP
j−1 >] ≤ 1. Moreover dim(Tj) = 2 if

P is a smooth point of XP
j and dim(Tj) = 3 if P is a singular point of XP

j ; in fact
by theorem 1 we know that every Xj is an irreducible, reduced, surface of minimal
degree in its span and from the well known classification of these surfaces (see for
instance th. 0.1 of [E-G-H-P]) we have that Xj is singular if and only if it is a rank
3 quadric. So that in any case we get a contradiction. By the way we have also
proved that dim[Tj∩ < T1 ∪ ... ∪ Tj−1 >] ≤ 1.

Lemma 4. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1. Let P be any point of X and let XP

1 , ... , XP
s be the irreducible

components of X containing P, s ≥ 1. For any i = 1, ..., s let Ti be the tangent

space of XP
i at P in < XP

i > and let TP :=
s⋃

i=1

Ti. Then dim(< TP >) ≤ 4.

Proof. If s = 1 we have that < TP > = T1 and dim(T1) ≤ 3 as in the proof of lemma
3. If s ≥ 2, TP is the union of s linear spaces, of dimensions 2 or 3, passing through
P according a certain configuration CP ⊂ Pn+4. By contradiction, let us assume
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that dim(< TP >) ≥ 5. Let πL : Pn+4 − −− > Λ be any linear projection, from a
suitable (n−1)-dimensional linear space L to a suitable Λ ⊂ Pn+4, Λ ' P4, such that
πL(X) is isomorphic to X, hence πL(CP ) is isomorphic to CP . As dim(< TP >) ≥ 5
there is a non empty linear space L′ := L∩ < TP > such that πL(CP ) = πL′(CP )
where πL′ :< TP > −−− > Λ. But, as dim(Λ) < dim(< TP >), it is not possible
that πL′(CP ) ' CP , otherwise isomorphic configurations of linear spaces would have
linear spans of different dimensions, so that we get a contradiction.

Lemma 5. Let V and W be two irreducible surfaces of PN such that V ∩ W =
< V > ∩ < W > is a line L. Let us assume that anyone among V and W is a
smooth rational scroll of degree 3 in P4, or a smooth quadric in P3, or a rank 3
quadric in P3, then dim[Join(V, W )] = 5 unless V and W are both rank 3 quadrics,
having the same vertex.

Proof. Let us recall that Join(V,W ) := { ⋃
v∈V \L,w∈W\L

< v ∪ w >} ⊂ PN . Let

U ⊂ Join(V, W ) be the open set { ⋃
v∈V \L,w∈W\L

< v∪w >}, it suffices to show that

dim(U) = 5.
Let p be a generic point of U , hence p ∈< v ∪ w > for two generic points

v ∈ V \L,w ∈ W\L and we claim that, in our assumptions, < v ∪ w > is the only
line of U containing p. By contradiction, let us suppose that there exists another
line < v′∪w′ > 6= < v∪w >, with v′ ∈ V \L,w′ ∈ W\L, such that p ∈< v′∪w′ > .
Then the two lines < v ∪ v′ > and < w ∪ w′ > intersect at a point q ∈ L =
< V > ∩ < W > . But our surfaces have no trisecant lines and, for generic
points v ∈ V \L,w ∈ W\L, it is not possible that < v ∪ v′ > ∩ < w ∪ w′ > is
a point of L, when < v ∪ v′ >⊂ V and < w ∪ w′ >⊂ W, unless V and W are
rank 3 quadrics of common vertex P. In this case there are infinitely many pairs
of points v′ ∈ V \L, w′ ∈ W\L such that < v ∪ v′ > ∩ < w ∪ w′ > = P (and
dim[Join(V,W )] = 4). So that the claim is proved. Now we can define a rational
map s : U − −− > G(1, N), the Grassmannian of lines in PN , such that s(p) =
< v ∪ w > . Of course the generic fibre of s has dimension 1 and dim(Im(s)) = 4,
so that dim(U) = 5.

From theorem 1, and from the previous lemmas we get the following:

Proposition 2. Every reducible Veronese surface X ⊂ Pn+4, according to defini-
tion 1, can be only the union X = X1 ∪ .... ∪Xr of irreducible, reduced surfaces of
the following types:

- planes
- smooth quadrics of P3

- quadrics of P3 having rank 3 (quadric cones for simplicity).
Moreover only one irreducible surface of degree 2 can be contained in X.

Proof. From theorem 1 we know that X = X1 ∪ .... ∪Xr and that every Xj is an
irreducible, reduced, surface of minimal degree in its span. From the well known
classification of irreducible, reduced surfaces of minimal degree, (see th. 0.1 of
[E-G-H-P]), we have that every Xj is a surface as above or it is a smooth Veronese
surface, a smooth rational scroll of degree 4 in P5, a smooth rational scroll of degree
3 in P4.

As any surface Xj contains a line by theorem 1, none of them can be a smooth
Veronese surface. The secant variety of a smooth rational scroll of degree 4 has



VERONESE SURFACES 7

dimension 5, so that X can not contain such surfaces by condition iii) of definition
1.

Let us consider a smooth rational scrolls of degree 3 and let us assume, by
contradiction, that it is a component of X, say Xj . Let Xk be any other component
of X, different from Xj , and suppose that Xk is not a plane. As X is a reducible
Veronese surface there exists a projection πL : Pn+4 − −− > Λ, from a suitable
linear space L to a suitable Λ ' P4, such that πL(X) ' X. This implies that, for any
i = 1, ..., r, πL(Xi) ' Xi, and πL(Xj)∩ πL(Xk) ' Xj ∩Xk. Recall that πL(Xj)∩
πL(Xk) is the intersection of two surfaces in P4 and that, by assumption, πL(Xj)
is a smooth rational scrolls of degree 3 and πL(Xk) is another rational scrolls of
degree 3 or a quadric cone or a smooth quadric. Let us examine these possibilities.

If πL(Xk) is another rational scrolls of degree 3 then, by lemma 2, πL(Xj)∩
πL(Xk) can not be empty, hence dim[πL(Xj)∩ πL(Xk)] ≥ 0. If dim[πL(Xj)∩
πL(Xk)] = dim(Xj ∩ Xk) = 0, then deg[πL(Xj)∩ πL(Xk)] = 9 and this is not
possible by corollary 2. Hence dim[πL(Xj)∩ πL(Xk)] = dim(Xj ∩Xk) ≥ 1 and, by
corollary 2, Xj∩ Xk = < Xj > ∩ < Xk > is a line, so that dim[Join(Xj , Xk)] = 5
by lemma 5, and dim[Sec(Xj ∪Xk)] ≥ 5. This implies dim[Sec(X)] ≥ 5, giving a
contradiction with definition 1 iii).

If πL(Xk) is a quadric cone or a smooth quadric we can argue in the same way.
Now let us assume that Xk ' πL(Xk) is a plane. By the above arguments,

the only possibility is that the plane πL(Xk) cuts πL(Xj) along a line l, but also
this case can be excluded, in fact we can consider a generic hyperplane H of Λ
containing the plane πL(Xk), the intersection H ∩ πL(Xj) is the union of l and of
a smooth conic Γ. As Γ and πL(Xk) are contained in H ' P3 their intersection can
not be empty, so that Supp[πL(Xj)∩ πL(Xk)] is non contained in a line and we
have a contradiction with corollary 2.

After proving that none of the irreducible components of X can be a rational
scroll of degree 3, let us exclude that X has two (or more) components of degree
2, i.e smooth quadrics or quadric cones. By contradiction, let us assume that X
contains two irreducible components of degree 2, say Xj and Xk as before, and
suppose that they are not both quadric cones with the same vertex. Then we can
repeat the same argument, with the only difference that now < Xj > ' < Xk >
' P3, and we get the same contradiction: dim[Sec(X)] ≥ 5. If Xj and Xk are
quadric cones with the same vertex P we can not use lemma 5, however in this case
TP (Xj) = < Xj > ' P3 ' < Xk > = TP (Xk) and their intersection is a line so
that dim(< TP >) ≥ 5 and we get a contradiction with lemma 4.

Note that, on the contrary, if Xj is a smooth quadric or a quadric cone and Xk

is a plane we can not repeat the previous arguments to exclude the existence of
quadrics in X.

Now we give the following:

Corollary 3. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1. Then:

i) for any singular point P ∈ X there passes only 1, 2 or 3 irreducible components
of X and the first case occurs only when P is the vertex of a quadric cone;

ii) if P is a singular point of X, not the vertex of a quadric cone, the tangent
planes at P to the irreducible components of X passing through P (2 or 3) are all
distinct;
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iii) if P is a singular point of X which it is the vertex of a quadric cone Γ and
there are at least two irreducible components of X passing through P :

- if the components are two, one of them is Γ and the other one is a plane not
contained in < Γ >

- if the components are three, one of them is Γ and the other ones are two distinct
planes not contained in < Γ > .

Proof. i) Obviously, by proposition 2, a singular point P ∈ X belongs to only one
irreducible component XP of X if and only if XP is a quadric cone and P is its
vertex. In the other cases, let XP

1 , ... , XP
s be the irreducible components of X

containing P, s ≥ 2. We can assume that their natural ordering is coherent with
the existing ordering considered in theorem 1. Let Ti be the tangent space of XP

i

at P in < XP
i >, i = 1, ..., s.

By lemma 3, dim(< T1 ∪ ... ∪ Ts >) = dim(< TP >) ≥ dim(T1) + s− 1 ≥ s + 1.
If s ≥ 4 we would get a contradiction with lemma 4, hence s ≤ 3.

ii) As P is not the vertex of a quadric cone, all the irreducible components of
X passing through P are smooth at P by proposition 2 and they are 2 or 3 by
the previous proof. Let T1, T2 or T1, T2, T3 be the tangent planes at P to these
components, with an ordering coherent with the ordering given by theorem 1. By
lemma 3, T2 * T1 and T3 *< T1 ∪ T2 > so that the planes must be distinct.

iii) By i) we have only one or two other irreducible components of X passing
through P and they are planes by proposition 2. The tangent space at P of Γ is
< Γ >, while the tangent spaces at P of the other components concide with the
components themselves, so that they can not be contained in < Γ >, otherwise we
would get a contradiction with lemma 3 for any possible ordering of these (2 or 3)
components coherent with the ordering given by theorem 1.

The following lemma is based on property v) of definition 1 and corollary 3.

Lemma 6. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1. Let P be a singular point of X such that the union CP of the
irreducible components of X passing through P is a cone, i.e. (by proposition 2) the
irreducible components of X passing through P are planes and, possibly, a quadric
cone with vertex in P. Then if we cut CP with a generic hyperplane H, not passing
through P, the curve CP ∩H is an Arithmetically Cohen-Macauley (in brief ACM)
scheme.

Proof. By assumption we know that the local ring of X at P is a Cohen-Macaulay
ring, of course it is isomorphic to the local ring of CP at P. As CP is a cone over
CP ∩H, with vertex P, the local ring of CP at P is a Cohen-Macaulay ring if and
only if CP ∩H is an ACM scheme.

Corollary 4. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1. Let P be a singular point of X such that the union CP of the
irreducible components of X passing through P is a cone. Then:

i) if P is not the vertex of a quadric cone and there are only two components of
X, i.e. two planes, passing through P, then the two planes intersect along a line;

ii) if P is not the vertex of a quadric cone and there are three components of X,
i.e. three planes, passing through P, then:

- the three planes intersect two by two along three lines passing through P, or
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- the three planes intersect along a unique line passing through P and they span
a 3-dimensional linear space, or

- the three planes intersect along a unique line passing through P and they span
a 4-dimensional linear space, or

- two planes intersect only at P and the third plane cuts the other ones along
two lines, passing through P ;

iii) if P is the vertex of a quadric cone and there is only another component of
X, i.e. a plane, passing through P, then the plane cuts the cone only along a line
of the cone.

Proof. Let us apply lemma 6. In case i) the cone CP is given by two planes passing
through P, if they intersect only at P then the curve H ∩ CP is a pair of disjoint
lines in H ' P3 and this is not an ACM scheme.

In case ii) the cone CP is given by three planes passing through P, and the curve
H∩CP is a cubic curve reducible into three lines. H∩CP is an ACM scheme if and
only if it is: a plane cubic given by three lines in generic position or passing through
a point (H ' P2) or a space cubic given by a rational comb (H ' P3) or three lines
passing through a point and spanning a 3-dimensional linear space (H ' P3). The
four possibilities give rise only to the previously described configurations.

In case iii) the cone CP is given by the union of a quadric cone Γ having vertex
at P and a plane passing through P . By lemma 3 and corollary 3 iii), the plane is
not contained in < Γ > so that it cuts < Γ > only at P or along a line L passing
through P. If L ∈ Γ, then H ∩ CP is a space cubic (H ' P3) given by a smooth
conic and a line cutting the conic transversally at some point, a well known ACM
scheme. In the other cases H ∩ CP would be the disjoint union of a smooth conic
and a line and this is not an ACM scheme.

4. The main results

In this section we will get a complete classification of reducible Veronese surfaces.
First of all we will prove the following theorem.

Theorem 2. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1, and let us assume that all the irreducible components of X are
planes. Then X = Σn.

Proof. By ii) of definition 1 we have that X is the union of n + 3 planes, say
X = Π0 ∪Π1 ∪ ...∪Πn+2. By theorem 1 we can assume that the planes are ordered
in such a way that, for any j ≥ 1, Πj ∩ (Π0 ∪ ... ∪ Πj−1) is a line. Let us call
Lij := Πi ∩ Πj when the intersection is a line and Qij := Πi ∩ Πj when the
intersection is a point. We want to use induction on n ≥ 1.

Step one. If n = 1, X = Π0 ∪ Π1 ∪ Π2 ∪ Π3 and we have to prove that
X = Σ1 ⊂ P5. Let us consider Π0 and Π1, by theorem 1 they intersect along a
line L01 and < Π0 ∪ Π1 > ' P3. Let us consider Π2, by theorem 1 we know that
Π2∩ < Π0 ∪ Π1 > is a line L. By lemma 2 ii) we have that Π2 ∩ Π0 6= ∅ and
Π2 ∩Π1 6= ∅, hence L ∩Π0 6= ∅ and L ∩Π1 6= ∅.

Let us suppose that L intersects Π0 only at a point A /∈ L01 and that L intersects
Π1 only at a point B /∈ L01, so that < Π0 ∪ Π1 ∪ Π2 > ' P4. Then A = Q12 and
B = Q02 are singular points of X. By corollary 4 i) it is not possible that only two
components of X pass through A and B, hence there is another component of X
passing through A and there is another component of X passing through B. As X
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has only four components we have that Π3 passes through A and B, moreover, by
theorem 1, Π3 ∩ (Π0 ∪ Π1 ∪ Π2) is a line, so that Π3 ∩ (Π0 ∪ Π1 ∪ Π2) = L and
A = Q13, B = Q03. Now let us consider A, for instance, it is a singular point of
X and Π1, Π2,Π3 pass through it, but the configuration of these planes contradicts
lemma 4 ii), so that this case is not possible.

Let us suppose that L = L01. In this case for any point of L there pass three
planes, components of X (this is the maximal number by corollary 3 i)) intersecting
among them only along the line L. By corollary 4 ii), the three planes belong to the
same 3 -dimensional linear space, or generates a 4-dimensional linear space. Let
us consider the last plane Π3, it cuts Π0 ∪ Π1 ∪ Π2 along a line L′ by theorem 1,
hence L′ belongs to Π0 or to Π1 or to Π2 so that in any case L′∩L 6= ∅ and for any
point in L′ ∩ L there pass four components of X, but this is a contradiction with
corollary 3 i).

Let us assume that L ∩ L01 is only one point P = Q02 = Q12. Through P there
pass three planes, components of X (this is the maximal number by corollary 3 i)),
but the configuration of these planes contradicts lemma 4 ii), so that this case is
not possible.

Therefore there is only one possibility: L belongs to one of the two planes Π0, Π1

and cuts L01 at one point P = Q12. We can assume that L ⊂ Π0 by reversing the
role of Π0 and Π1, if necessary (note that we can change the position of Π0 and Π1

in the ordering given by theorem 1) and we have L = L02 and < Π0 ∪ Π1 ∪ Π2 >
' P4. By theorem 1, Π3∩ < Π0 ∪ Π1 ∪ Π2 > is a line L′ and, by lemma 2, L′ cuts
every plane Π0, Π1, Π2, hence it cuts L at some point A = Q03 = Q23 and it cuts
Π1 at some point B = Q13. If B /∈ L01 then through B would pass only two planes,
components of X intersecting only at B and this is a contradiction with corollary
4 ii). Then B ∈ L01 and L′ = L03. Note that B 6= P otherwise there would be
four components of X passing through P, hence the three lines: L01, L = L02, and
L′ = L03 are three lines of Π0 in general position. Summing up: Π1, Π2, Π3 cut
Π0 along the lines L01, L02, L03, and they cut each other only at the three points
P = Q12 = L01 ∩L02, B = Q13 = L01 ∩L03, A = Q23 = L02 ∩L03, so that X = Σ1

when n = 1.
Step two. Let us assume that n ≥ 2 and let us define Y := X\Πn+2. We want

to prove that Y is a reducible Veronese surface in Pn′+4, according to definition 1,
for n′ := n− 1 ≥ 1. Let us check properties i), ..., v).

i) By theorem 1 we know that Πn+2 ∩ < Π0 ∪ ...∪Πn+1 > is a line, hence Πn+2

∩ < Y > is a line. As n + 4 = dim(< X >) = dim(< Y ∪ Πn+2 >) = dim(< Y >
)+2−dim(< Y > ∩ Πn+2) = dim(< Y >)+1 (we are assuming that dim(∅) = −1),
we get that dim(< Y >) = n + 3 = n′ + 4, so that Y is a nondegenerate, reduced,
reducible surface of pure dimension 2 in Pn′+4.

ii) deg(Y ) = deg(X)− 1 = n + 2 = n′ + 3, cod(Y ) = n′ + 2.
iii) dim[Sec(Y )] ≤ dim[Sec(X)] ≤ 4.

iv) Y is a set of ordered planes Π0, ..., Πn+1 in Pn′+4 such that:
- < Π0 ∪ ... ∪Πn+1 > = Pn′+4 by the previous check of i),
- for any j ≥ 1, dim(Πj∩ < Π0 ∪ ... ∪ Πj−1 > = 1 by theorem 1 (recall that we

have ordered all the components of X according to this theorem).
Hence we can apply corollary 1 and we get that Y is connected in codimension

1.
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v) To prove that Y is locally Cohen-Macaulay we have to check all points of Y,
obviously we have to check only the points of Y ∩Πn+2 because for all other points
of Y the property follows from the fact that X is locally Cohen-Macaulay.

Let P be a point of Y ∩ Πn+2 and let us assume that there exists only one
component Πi ⊂ Y such that P ∈ Πi ∩ Πn+2. As X is locally Cohen-Macaulay at
P , by corollary 4 i), we have that Πi intersects Πn+2 along a line passing through
P, so that when we delete Πn+2 we have that P is a smooth point of Y .

Let us assume that there are two components Πi, Πj ⊂ Y such that P ∈ Πi ∩
Πj ∩ Πn+2 (two is the maximal number by corollary 3 i)). As X is locally Cohen-
Macaulay at P , by corollary 4 ii), we have the following possibilities:

- the three planes intersect two by two along three lines passing through P ; in
this case when we delete Πn+2 we get that Πi intersect Πj along a line passing
through P and Y is locally Cohen-Macaulay at P (see also the proof of corollary 4
ii));

- the three planes intersect along a unique line passing through P and they span
a 3-dimensional or a 4-dimensional linear space; in these cases we can argue as in
the previous case and Y is locally Cohen-Macaulay at P ;

- Πi (or Πj) and Πn+2 intersect only at P and the third plane cuts the other
ones along two lines, passing through P ; in this case we can argue as in the previous
cases and Y is locally Cohen-Macaulay at P ;

- Πi and Πj intersect only at P and Πn+2 cuts the other planes along two
lines, passing through P ; in this case if we delete Πn+2 we have that Y is not
locally Cohen-Macaulay at P, so we have to prove that this case is not possible;
by contradiction, let us assume that the configuration of Πi, Πj and Πn+2 is as
above; we can assume that 0 ≤ i < j < n + 2 in the ordering given by theorem 1,
so that Πj ∩ (Π0 ∪ ... ∪ Πi ∪ ... ∪ Πj−1) is a line L passing through P ; note that
L is contained in at least a plane Πk among Π0, ..., Πi, ..., Πj−1 and that Πk 6= Πi

because Πi ∩Πj = P (this implies j > 1 because Π0 ∩ Π1 is a line), then P ∈ Πk,
so that we would have four different components of X passing through P and we
would have a contradiction with corollary 3 i).

Step three. Now let us proceed by induction on n ≥ 1. If n = 1 theorem 2 is true
by step one. Let us assume that the theorem is true for any X in P5,P6, ...,Pn+3

and let us prove the theorem for X ⊂ Pn+4. As in step two we can decompose
X = Y ∪Πn+2 and we know that Y is a reducible Veronese surface in Pn+3 according
to definition 1, by step two. By induction we can say that Y = Σn−1 so that
X = Σn−1 ∪ Πn+2. By theorem 1 we have that Σn−1 ∩ Πn+2 is a line L and, as
above, L is contained in at least a plane among Π0, ..., Πn+1.

By contradiction, let us assume that L ⊂ Πi for some i > 0 and let us consider
the line L0i. L can not contain any point Qij ∈ L0i (j = 1, ..., n + 1, j 6= i) and a
fortiori L 6= L0i otherwise we would have four different components of X passing
through Qij : Π0,Πi, Πj , Πn+2, a contradiction with corollary 3 i). So that L∩L0i

is a point P 6= Qij for any j = 1, ..., n + 1, j 6= i, and the point P ∈ X belongs
exactly to Πn+2,Πi,Π0, but this configuration contradicts corollary 4 ii) because
Πn+2 ∩Πi = L, Πn+2 ∩Π0 = P, Πi ∩Π0 = L0i and L ∩ L0i = P.

Therefore L ⊂ Π0 (i.e. L = L0(n+2)) and to prove that X = Σn we have only to
show that the lines L0i with i = 1, ..., n + 1 and L are in general position on Π0 i.e.
that the curve given by their union has no triple points. But this curve has a triple
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point if and only if L passes through some point Qij for some i, j = 1, ..., n + 1
i 6= j, (recall that Y = Σn−1) and we have proved that this is not possible.

To classify reducible Veronese surfaces containing a quadric we need other lem-
mas.

Lemma 7. Let V = V1 ∪ ... ∪ Vr ⊂ PN be a non degenerate, reducible, reduced,
surface of pure dimension 2, whose irreducible components are V1, ..., Vr. Let W ⊂ V
be a proper subvariety of V such that W = V1∪ ...∪Vρ with 1 ≤ ρ < r. Assume that
V and W are connected in codimension 1. Then there exists at least a component
Vi ⊂ V with ρ < i ≤ r such that dim(W ∩ Vi) = 1 and W ∪ Vi is connected in
codimension 1.

Proof. If dim(W ∩ Vi) ≤ 0 for any irreducible component Vi ⊂ V with ρ < i ≤ r,
then dim[W ∩ (Vρ+1 ∪ ... ∪ Vr)] ≤ 0, but this is not possible, otherwise V \[W ∩
(Vρ+1∪...∪Vr)] would be not connected while we are assuming that V is connected in
codimension 1. Hence, by changing the ordering of Vρ+1, ..., Vr if necessary, we can
assume that dim(W∩Vρ+1) ≥ 1. It is not possible that dim(W∩Vρ+1) ≥ 2, otherwise
the irreducible surface Vρ+1 would be a component of W, so that dim(W∩Vρ+1) = 1.

Now let us consider W ∪Vρ+1. W is connected in codimension 1 by assumptions,
Vρ+1 is connected in codimension 1 because it is an irreducible surface; as dim(W ∩
Vρ+1) = 1 we have that W ∪ Vρ+1 is connected in codimension 1 too.

Lemma 8. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1, and let X1, ..., Xr be its irreducible components. Let us assume
that X contains a quadric Q. Then:

i) r = n + 2;
ii) there exists an ordering X1, ..., Xn+2 according to theorem 1 such that

Q = X1.

Proof. i) Recall that, by proposition 2, Q is the only component of X having degree
≥ 2, so that n + 3 = deg(X) = 2 + r − 1, hence r = n + 2.

ii) Let us put X1 = Q. By lemma 7 there is (at least) another component Xi ⊂
X such that dim(Q∩Xi) = 1 and Q∪Xi is connected in codimension 1, moreover
Xi is a plane. By corollary 2 Q ∩ Xi is a line. If we put X2 = Xi we have that
X1 ∩X2 = < X1 > ∩ < X2 > and the intersection is a line.

As n ≥ 1 we have r ≥ 3, so that there exists at least another component. Now
let us apply lemma 7 to X1 ∪X2, which is connected in codimension 1, and there
is (at least) another component Xi ⊂ X such that dim[(X1 ∪ X2) ∩ Xi] = 1 and
X1 ∪X2 ∪Xi is connected in codimension 1, moreover Xi is a plane, and so on. By
applying lemma 7 a suitable number of times we get an ordering X1, ..., Xn+2 such
that X1 = Q and, for any j ≥ 2, dim[Xj ∩ (X1, ..., Xj−1)] = 1 and X1 ∪ ... ∪Xj is
connected in codimension 1.

Let us consider < Xj > ∩ < X1∪ ...∪Xj−1 > = Xj∩ < X1∪ ...∪Xj−1 > for any
j ≥ 2 and we have dim(Xj∩ < X1∪ ...∪Xj−1 >) ≥ dim[Xj ∩ (X1∪ ...∪Xj−1)] = 1.
Let us put aj := dim(Xj∩ < X1 ∪ ... ∪Xj−1 >) for any j ≥ 3, so that:

dim(< X1 ∪X2 >) = 4
dim(< X1 ∪X2 ∪X3 >) = dim(<< X1 ∪X2 > ∪X3 >) =
= dim(< X1 ∪X2 >) + 2− a3

dim(< X1 ∪X2 ∪X3 ∪X4 >) = dim(<< X1 ∪X2 ∪X3 > ∪X4 >) =
= dim(< X1 ∪X2 >) + 2− a3 + 2− a4
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..........
dim(< X1 ∪X2 ∪ ... ∪Xn+2 >) = dim(<< X1 ∪X2 ∪ ... ∪Xn+1 > ∪Xn+2 >) =
= dim(< X1 ∪X2 >) + 2− a3 + 2− a4 + ...... +2− an+2 =

= 4 + 2n−
n+2∑
j=3

aj = n + 4.

Hence
n+2∑
j=3

aj = n. As aj ≥ 1 for any j ≥ 3 we have in fact aj = 1 for any j ≥ 3,

so that 1 = dim(Xj∩ < X1 ∪ ... ∪Xj−1 >) = dim[Xj ∩ (X1 ∪ ... ∪Xj−1)] for any
j ≥ 2 (the case j = 2 was considered previously) and Xj∩ < X1 ∪ ... ∪Xj−1 > is
obviously a line.

To prove lemma 8 ii) now we have to show that Xj∩ < X1 ∪ ... ∪ Xj−1 >
= Xj ∩ (X1 ∪ ... ∪ Xj−1) for any j ≥ 2. As above, the case j = 2 was considered
previously, so we can assume j ≥ 3 and recall that Xj is a plane. As Xj∩ <
X1 ∪ ... ∪Xj−1 > ⊇ Xj ∩ (X1 ∪ ... ∪Xj−1) and Xj∩ < X1 ∪ ... ∪Xj−1 > is a line
we have only to show that Xj ∩ (X1 ∪ ... ∪Xj−1) is a line. As dim[Xj ∩ (X1 ∪ ... ∪
Xj−1)] = 1 there exists at least one component Xi, with 1 ≤ i ≤ j − 1, such that
dim[Xj ∩Xi)] = 1, hence Xj ∩Xi is a line Lij by corollary 2. Moreover there are no
other points P ∈ Xj ∩ (X1 ∪ ...∪Xj−1), P /∈ Lij , otherwise Xj would be contained
in < X1∪ ...∪Xj−1 > and this is not possible as dim(Xj∩ < X1∪ ...∪Xj−1 >) = 1.
It follows that, for any j ≥ 3, Xj ∩ (X1 ∪ ... ∪Xj−1) is a line and we are done.

Now we can conclude this section with the following theorems.

Theorem 3. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1, and let X1, ..., Xr be its irreducible components. Let us assume
that X contains a smooth quadric Q. Then n = 1, r = 3, X = Q ∪X1 ∪X2, where
X1 and X2 are planes, and we have only two possibilities:

a) Q,X1, X2 intersect transversally along a unique line L = Q ∩X1 ∩X2;
b) X1 and X2 cut Q along two lines intersecting at a point P = X1 ∩X2.

Proof. By lemma 8 we know that r = n + 2 ≥ 3 and there exists an ordering
X1, ..., Xn+2 given by theorem 1 such that X1 = Q, Xi is a plane for any i ≥ 2 and
X2 cuts Q along a line L. Now let us consider the plane X3 cutting Q ∪ X2 and
< Q ∪X2 > ' P4 along a line L′ by theorem 1. We have some cases to consider.

1) Let us assume that L′ ⊂ X2 and L′ 6= L so that L′ ∩ L is a point P ∈ Q,
then < X2 ∪ X3 > ' P3, L = < X2 ∪ X3 > ∩ < Q > , < Q ∪ X2 ∪ X3 > ' P5.
and P = Q ∩X3 so that < Q ∪X3 > = < Q ∪X2 ∪X3 > ' P5. This case is not
possible, in fact, let P be a generic point in < Q ∪X3 >; note that, in particular,
this means that P /∈< Q > ∪X3 and P /∈< TP (Q) ∪ X3 > ' P4. Let us consider
the 3-dimensional linear space ΛP := < P ∪ X3 >⊂< Q ∪ X3 > ' P5. We have
that ΛP∩ < Q > is a line LP passing through P and that there exists (at least)
another point P ′ ∈ Q on LP with P 6= P ′; recall that P /∈< TP (Q) ∪X3 > so that
the line LP is not tangent to Q. Now the line PP ′ ∈ ΛP cuts X3 at some point
P ′′ 6= P (otherwise LP = PP ′ and P ∈< Q >) so that P ∈ Sec(Q∪X3) ⊂ Sec(X).
It follows that the generic point of < Q ∪X2 ∪X3 > ' P5 is contained in Sec(X),
hence dim[Sec(X)] ≥ 5 and we get a contradiction with iii) of definition 1.

2) Let us assume that L′ ⊂ X2 and L′ = L. By contradiction let us assume that
there exists another plane X4 in X. Then X4 ∩ (Q ∪X2 ∪X3) is a line L′′, but L′′

can not be contained in X2 or in X3 otherwise we would have four components of
X passing through a point and this is not possible by corollary 3 i), hence L′′ ⊂ Q.
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Analogously we have L′′ ∩ L = ∅, but in this case X4 must intersect X2 at some
point P by lemma 2 ii), so that X4 = < P ∪ L′′ > would be contained in <
Q ∪X2 ∪X3 > and this is not possible by lemma 8 ii). Hence there are only two
planes in X and we get a).

3) Let us assume that L′ ⊂ Q and that L ∩ L′ = ∅. Then X3 ∩ X2 would be
a point P by lemma 2 ii) and we would get a contradiction by arguing as above:
X3 = < L′ ∪ P > would be contained in < Q ∪X2 > .

4) Let us assume that L′ ⊂ Q and that L∩L′ is a point P and, by contradiction,
let us assume that there exists another plane X4 in X. Then X4 ∩ (Q∪X2 ∪X3) is
a line L′′. If L′′ ⊂ Q, L′′ 6= L, L′′ 6= L′ then X4∩X2 = ∅ or X4∩X3 = ∅ and this is
not possible by lemma 2 ii), on the other hand if L′′ = L or L′′ = L′ we would have
four components of X passing through a point and this is not possible by corollary
3 i). So that L′′ * Q and L′′ ⊂ X2 or L′′ ⊂ X3. Now let us suppose that L′′ ⊂ X2

(the other case is similair), if P /∈ L′′ then X4 ∩ X3 = ∅ and this is not possible
by lemma 2 ii), on the other hand if P ∈ L′′ we would have four components of X
passing through a point and this is not possible by corollary 3 i). Hence there are
only two planes in X and we get b).

To complete the proof of theorem 3 now we have to prove that the surfaces X in
cases a) and b) are reducible Veronese surfaces according to definition 1: i), ii) and
iv) are obvious; for iii) let us remark that Sec(X) is the union of a finite number
of linear spaces of dimension ≤ 4; for v) we can apply lemma 1.

Theorem 4. Let X ⊂ Pn+4 be a reducible Veronese surface, according to definition
1, for some n ≥ 1, and let X1, ..., Xr be its irreducible components. Then none of
the components of X can be a quadric cone.

Proof. By contradiction, let us suppose that X contains a quadric cone Γ of ver-
tex PΓ. By lemma 8 we know that r = n + 2 ≥ 3 and there exists an ordering
X1, ..., Xn+2 such that Γ = X1, the other components are planes and X2 ∩ Γ is a
line L passing through PΓ. Let us consider the plane X3 ant let us remark that
PΓ /∈ X3, in fact the union of the tangent spaces to Γ and X2 at PΓ spans the
4-dimensional linear space < Γ∪X2 > and X3 /∈< Γ∪X2 > by theorem 1, so that,
if PΓ ∈ X3, we would get a contradiction with lemma 4 for P = PΓ.

On the other hand we know that X3 ∩ (Γ ∪ X2) is a line L′ by theorem 1. As
PΓ /∈ X3 we have that L′ * Γ, so that L′ ⊂ X2 and it cuts Γ only at a point P ∈ L,

P 6= PΓ. Hence X3 and Γ are in the same configuration as X3 and Q in case 1) of
theorem 3, so that we can argue as above and we can prove that this case is not
possible. Therefore X3 does not exist and we get a contradiction as r ≥ 3.

Remark 3. The above theorems 2, 3 and 4, taking into account proposition 2, give
a complete classification of the reducible Veronese surfaces according to definition
1. It follows that the generic surfaces Sn, embedded in Pn+4, introduced by Floystad
in [F], are in fact surfaces Σn for any n ≥ 2. If n = 2 the proof was made in §2.
If n ≥ 3 we have only to check that any generic Sn satifies definition 1: in [F] it
is proved that Sn is non degenerated and that iii) and v) hold; from v) it follows
that Sn is reduced, of pure dimension 2, and that iv) holds (see Remark 1); ii)
follows from direct calculation as in §2; to have i) it suffices to show that Sn is
reducible, if not, from the classification of irreducible, reduced surfaces of minimal
degree (see the beginning of the proof of proposition 2) it would follow deg(Sn) ≤ 4,
while deg(Sn) ≥ 6 as n ≥ 3.
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Remark 4. Reducible Veronese surface X are not locally complete intersections.
In fact let us consider any triple point P ∈ X and let Yp be any generic hyperplane
section of X passing through P. If X is locally complete intersection at P then Yp is
locally complete intersection at P too (see for instance [B-H] Th. 2.3.4). If X = Σn

then Yp is the union of 3 lines passing through P, spanning a 3-dimensional linear
space. If X is one of the cases a), b) of theorem 3 then YP is the union of a smooth
conic and two lines passing through P, spanning a 4-dimensional linear space. In
any case YP is not locally complete intersection at P.

Remark 5. Reducible Veronese surfaces are not even locally Gorenstein. Let X,
P, YP be as in remark 4. If X is locally Gorenstein at P then the dualizing sheaf
ωX is free at P and it has rank 1 (see [E] p.532). By adjunction we have that
ωYP

= (ωX + H)|YP
where H is the Cartier divisor of X corresponding to YP

(see lemma 1.7.6 of [B-S]), so that ωYP
is free at P and it has rank 1 too. But

this is not possible: let f : YP → YP be the normalization of YP , note that f
is a triple unramified covering locally at P . The conductor sheaf C of OYP ,P in
OYP ,P is the maximal ideal of OYP ,P , hence dimC(OYP ,P /C) = 1, on the other hand
dimC(OYP ,P /OYP ,P ) = 2 and this is a contradiction because dimC(OYP ,P /OYP ,P ) =
dimC(OYP ,P /C) + dimC(OYP ,P /C) = 2 + 1 = 3.
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