REDUCIBLE VERONESE SURFACES

ALBERTO ALZATI AND EDOARDO BALLICO

ABSTRACT. Here we describe all degree n+3 non-degenerate surfaces in \mathbb{P}^{n+4} , $n \geq 1$, connected in codimension 1, which may be isomorphically projected into \mathbb{P}^4 . There are 3 of them. One is a suitable union of n+3 planes (for all $n \geq 1$); it was discovered by Floystad. The other two are unions of a smooth quadric and two planes (only for n = 1).

1. INTRODUCTION

Let \mathbb{P}^N be the *N*-dimensional projective space on \mathbb{C} . For any integer $k \geq 0$, a reduced subvariety $V \subset \mathbb{P}^N$ of pure dimension is said to be connected in codimension k if for any closed subvariety $W \subset V$, such that $cod_V(W) > k$, we have that $V \setminus W$ is connected. For any subvariety $V \subset \mathbb{P}^N$ and for any λ -dimensional linear subspace $\Lambda \subset \mathbb{P}^N$ we say that V projects isomorphically to Λ is there exists a linear projection $\pi_{\mathcal{L}} : \mathbb{P}^N - -- > \Lambda$, from a suitable $(N - \lambda - 1)$ -dimensional linear space \mathcal{L} , disjoint from V, such that $\pi_{\mathcal{L}}(V)$ is isomorphic to V.

In this note we consider the following type of surface arising from the example decribed in §2.

Definition 1. For any positive integer $n \ge 1$, we will call reducible Veronese surface any algebraic surface $X \subset \mathbb{P}^{n+4}$ such that:

i) X is a non degenerated, reduced, reducible surface of pure dimension 2;

ii) deg(X) = n + 3, cod(X) = n + 2, so that X is a minimal degree surface;

iii) dim $[Sec(X)] \leq 4$, so that it is possible to choose a generic linear space \mathcal{L} of dimension n-1 in \mathbb{P}^{n+4} such $\pi_{\mathcal{L}}(X)$ is isomorphic to X, where $\pi_{\mathcal{L}}$ is the the rational projection $\pi_{\mathcal{L}} : \mathbb{P}^{n+4} - - - > \Lambda$, from \mathcal{L} to a generic target $\Lambda \simeq \mathbb{P}^4$;

iv) X is connected in codimension 1, i.e. if we drop any finite number (eventually 0) of points $Q_1, ..., Q_r$ from X we have that $X \setminus \{Q_1, ..., Q_r\}$ is connected;

v) X is a locally Cohen-Macaulay surface.

Remark 1. Actually v) implies iv) by cor. 2.4 of [H], however we think that it is more useful to give the above definition 1 because condition iv) is crucial to get the classification.

In summary: we prove that there are exactly 3 types of reducible Veronese surfaces:

Date: March 9, 2009.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14J25; Secondary 14N20.

Key words and phrases. reducible surfaces, projectability.

This work is within the framework of the national research projects: "Geometry on Algebraic Varieties" Cofin 2006 of MIUR and "Geometric Properties of Real and Complex Varieties" Cofin 2007 of MIUR..

(i) a suitable union of n+3 planes (for any integr $n \ge 1$) which sits as a linearly normal scheme in \mathbb{P}^{n+4} (see theorem 2 and definition 2 for a precise description); these are the examples whose existence is proved in [F];

(ii) two surfaces which are union of a smooth quadric surface and two planes; each of these two examples sits as a linearly normal scheme in \mathbb{P}^5 (see theorems 3) for their description):

and there are no other cases (see proposition 2 and theorem 4).

We will use the following definitions:

 $\langle V_1 \cup ... \cup V_r \rangle$: linear span in \mathbb{P}^N of the subvarieties $V_i \subset \mathbb{P}^N$, i = 1, ..., r;

Supp(V): support of the subscheme $V \subset \mathbb{P}^N$;

 $\begin{aligned} Sing(V) &: \text{ singular locus of the subscheme } V \subset \mathbb{P}^N; \\ Sec(V) &: \overline{\{\bigcup_{v_1 \neq v_2 \in V} < v_1 \cup v_2 >\}} \subset \mathbb{P}^N \text{ for any subvariety } V \subset \mathbb{P}^N. \end{aligned}$

For any positive integer $d \geq 2$ a rational comb of degree d in \mathbb{P}^N is the union of d lines $L_1, L_2, ..., L_d \subset \mathbb{P}^N$ such that, for any $i \geq 2, L_i \cap L_1$ is a point, these d-1points are distinct and, for any $j > i \ge 2$, $L_i \cap L_j = \emptyset$.

2. FLOYSTAD'S EXAMPLE

In [F], corollary 3, the author proves that, for any integer $n \ge 1$, there exists in \mathbb{P}^4 a monad of the following form:

 $\mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus n+2} \to \mathcal{O}_{\mathbb{P}^4}^{\oplus 2n+3} \to \mathcal{O}_{\mathbb{P}^4}(1)^{\oplus n}$

whose homology is $\mathcal{I}_{S_n}(2)$ where S_n is a locally Cohen-Macaulay surface in \mathbb{P}^4 . Moreover S_n is embedded in \mathbb{P}^{n+4} as a linearly normal surface and S_n projects isomorphically to some suitable $\Lambda \subset \mathbb{P}^{n+4}$, $\Lambda \simeq \mathbb{P}^4$. For n = 1, S_1 is the usual (smooth) Veronese surface in \mathbb{P}^5 ; on the contrary, S_n must be singular for $n \geq 2$. If we call $\varphi_n : \mathcal{O}_{\mathbb{P}^4}^{\oplus 2n+3} \to \mathcal{O}_{\mathbb{P}^4}(1)^{\oplus n}$ we get the following exact sequences of

sheaves and vector bundles over \mathbb{P}^4 :

$$\begin{array}{l} 0 \to \ker(\varphi_n) \to \mathcal{O}_{\mathbb{P}^4}^{\oplus 2n+3} \to \mathcal{O}_{\mathbb{P}^4}(1)^{\oplus n} \to 0 \\ 0 \to \mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus n+2} \to \ker(\varphi_n) \to \mathcal{I}_{S_n}(2) \to 0. \end{array}$$

Now it is easy to calculate $\chi[\mathcal{O}_{S_n}(t)] = {\binom{t+4}{4}} - \chi[\mathcal{I}_{S_n}(t)] = {\binom{n+3}{2}}t^2 + {\binom{n+5}{2}}t + 1$, so that $\deg(S_n) = n+3$ and S_n is a minimal degree surface in \mathbb{P}^{n+4} for any $n \ge 1$.

When n = 2, by a computer algebra system as Macaulay, it is easy to get a set of generators for the ideal of a generic S_2 in \mathbb{P}^6 . In fact, by choosing a random (2,7) matrix M of linear forms we have a map as φ_n and, by calculating the higher sizygies of M, we get a free resolution for ker(φ_n) and a commutative diagram as follows:

By choosing another random (5,4) matrix N of constants, in order to get a map $\mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 4} \to \mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 5}, \ (\mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 4} \to \mathcal{O}_{\mathbb{P}^4}(-2)^{\oplus 10} \text{ is the zero map) and by}$ using the mapping cone technique, we have that the ideal I_{S_2} in \mathbb{P}^6 of a generic surface S_2 is generated by one cubic and ten quartics. S_2 has codimension 4, degree 5 and (arithmetic) sectional genus 0. Alternatively, one can also choose 4 generic sections of the rank 5 vector bundle $\ker(\varphi_2) \otimes \mathcal{O}_{\mathbb{P}^4}(1)$ by giving a random (5,4) matrix of constants N': in this case S_2 is the degeneracy locus in \mathbb{P}^6 of these sections; if N' = N we get exactly the same set of generators for I_{S_2} .

By knowing a set of generators for I_{S_2} it is, more or less, easy to see that the generic S_2 is given by 5 planes $\Pi_0, \Pi_1, ..., \Pi_4$ such that: $\Pi_0 \cap \Pi_i := L_i$ is a line for $i = 1, ..., 4; \Pi_i \cap \Pi_j := Q_{ij}$ is a point of Π_0 for $i, j = 1, ..., 4, i \neq j$, and the lines L_i are in general position on Π_0 . The generic hyperplane section of S_2 is a rational comb of degree 5 given by a line l_0 on Π_0 and four other lines $l_i, i = 1, ..., 4, l_i \in \Pi_i$, $l_i \cap l_j = \emptyset$ for $i \neq j$, intersecting l_0 at one point. $Sec(S_2)$ is the union of a finite number of linear spaces of dimension 2 ($\Pi_i i = 0, ..., 4$), 3 ($\langle \Pi_0 \cup \Pi_i \rangle$, i = 1, ..., 4) or 4 ($< \Pi_i \cup \Pi_j >$, $i, j = 1, ..., 4, i \neq j$) so that it is possible to choose a generic line \mathcal{L} in \mathbb{P}^6 , $\mathcal{L} \cap Sec(S_2) = \emptyset$, and to project S_2 , from \mathcal{L} to a generic $\Lambda \simeq \mathbb{P}^4$, in such a way that the projection of S_2 is isomorphic to S_2 .

The above concrete construction of S_2 suggests to define a family of completely reducible surfaces having the same properties.

Definition 2. For any positive integer $n \ge 1$, let us choose a plane Π_0 and n + 2distinct points $P_1, ..., P_{n+2}$ in general position in \mathbb{P}^{n+4} , so that $< \Pi_0 \cup P_1 \cup ... \cup$ $P_{n+2} > = \mathbb{P}^{n+4}$. Let us choose n+2 planes Π_i , i = 1, ..., n+2, $P_i \in \Pi_i$, such that $\Pi_i \cap \Pi_0$ is a line L_i and the n+2 lines L_i are in general position on Π_0 . (i.e. that the curve given by their union has no triple points). Let us call Σ_n any surface in \mathbb{P}^{n+4} which is the union $\Pi_0 \cup \Pi_1 ... \cup \Pi_{n+2}$.

Proposition 1. The previously defined surfaces Σ_n , $n \ge 1$, are reducible Veronese surfaces according to definition 1.

Proof. i, ii, iii, iv) follow directly from the definition, note that $Sec(\Sigma_n)$ is the union of a finite number of linear spaces of dimension 2, 3, 4. As far concerning v), let us remark that for any singular point $P \in \Sigma_n$ its local ring is isomorphic either: - to the local ring at (0,0,0) of the affine variety $\{xy=0\}$ in $\mathbb{A}^3(\mathbb{C})$

or

- to the local ring at (0, 0, 0, 0) of the affine variety

 $\{x = y = 0\} \cup \{z = w = 0\} \cup \{x = z = 0\} =$ = $\{x^2z = xz^2 = x^2w = xzw = xyz = yz^2 = xyw = yzw = 0\}$ in $\mathbb{A}^4(\mathbb{C})$.

They are, up to isomorphisms, the same local rings of the singular points of S_2 and we know that S_2 is a locally Cohen-Macaulay surface by cor. 3 of [F].

To prove that Σ_n are locally Cohen-Macaulay we could also use a slightly different version of the following lemma which will be useful at the end of the paper.

Lemma 1. Let $X \subset \mathbb{P}^5$ be a non degenerate surface such that $X = Q \cup X_1 \cup X_2$, where Q is a smooth quadric, X_1 and X_2 are planes, and either X_1 and X_2 cut Q along two lines intersecting at a point $P = X_1 \cap X_2$ or Q, X_1, X_2 intersect transversally along a unique line $L = Q \cap X_1 \cap X_2$. Then X is a locally Cohen-Macaulay surface.

Proof. Let us consider the first case. Obviously we have to check the property only at P. Let R be the local ring of X at P and let m be its maximal ideal. We have height(m) = 2, so that we have to prove that depth(m) = 2. As X is reduced and

 $\dim(X) \geq 1$ we know that $depth(m) \geq 1$. A generic hyperplane section of X not passing through P cuts X along a reducible curve $Y = C \cup L_1 \cup L_2$, where C is a smooth conic and L_1, L_2 are two disjoint lines intersecting C transversally at two different points. Y is reduced, connected and its arithmetic genus $p_a(Y)$ is 0. Let H be a generic hyperplane section of X passing through P, now $H \cap X := Y_P$ is reducible as the union of a smooth conic C_P and two distinct lines intersecting C_P transversally at P. H gives rise to a non zero divisor element $\alpha \in m$ because X has pure dimension 2. Now let us remark that $p_a(Y_P) = 0$, so that Y_P has no embedded components at $P = Sing(Y_P)$, otherwise $p_a(Y_P) < p_a(Y)$. Hence there is at least a non zero divisor element $\beta \in m/(\alpha)$ and (α, β) is a regular sequence for m, so that $depth(m) \geq 2$. As $depth(m) \leq height(m) = 2$ we are done.

In the second case we can argue as in the previous one for all points $P \in L$.

Remark 2. It is easy to see that the generic section of Σ_n is a rational comb, quite exactly as in the case of S_2 (which is in fact an example of Σ_2), so that $p_a(\Sigma_n) = 0$, but we will not consider this property in the sequel.

Now it is very natural to ask if the surfaces Σ_n are the only existing reducible Veronese surfaces in our sense. The answer to this question is the aim of the following sections. Moreover we will prove that any generic S_n is a surface Σ_n for $n \geq 2$, see Remark 3. To show that the matter is in fact very intricate, let us consider the following:

Example 1. Let $X = Q \cup \Pi_1 \cup \Pi_2 \cup \Pi_3 \subset \mathbb{P}^6$, where Q is a smooth quadric of \mathbb{P}^3 and any Π_i is a generic plane such that, if we call the three points $P_{ij} := \Pi_i \cap \Pi_j$, we have: $P_{ij} \notin \Pi_k$ for $k \neq i, j$, $P_{ij} \notin Q$, but $P_{ij} \in \langle Q \rangle$. Then X is non degenerated, $\deg(X) = 5$, $\dim[Sec(X)] \leq 4$, but X is not connected in codimension 1, for instance because $X \setminus \{P_{12} \cup P_{23} \cup P_{31}\}$ is not connected.

3. XAMBÒ'S RESULT AND APPLICATIONS

In [X] Xambò proves the following result:

Theorem 1. Let $V = V_1 \cup ... \cup V_r \subset \mathbb{P}^N$ be a non degenerate, reducible, reduced, surface of pure dimension 2, whose irreducible components are $V_1, ..., V_r$. Assume that V is connected in codimension 1 and that it has minimal degree, then:

- any irreducible component V_i of dimension 2 of V is a surface of minimal degree in its span $\langle V_i \rangle$;

- there is at least an ordering $V_1, V_2, ..., V_r$ such that, for any j = 2, ..., r, $V_j \cap (V_1 \cup ... \cup V_{j-1}) = \langle V_j \rangle \cap \langle V_1 \cup ... \cup V_{j-1} \rangle$ and this intersection is always a line.

Proof. The theorem is a simply consequence of th. 1 of [X].

Corollary 1. Let $\Pi_1, \Pi_2, ..., \Pi_r$ be a set of ordered planes in some \mathbb{P}^N such that: *i*) $< \Pi_1 \cup \Pi_2 \cup ... \cup \Pi_r > = \mathbb{P}^N$;

ii) for any $j \ge 2$, dim $(\Pi_j \cap < \Pi_1 \cup ... \cup \Pi_{j-1} >) = 1$;

then $X := \Pi_1 \cup \Pi_2 \cup ... \cup \Pi_r$ is a non degenerated surface in \mathbb{P}^N , of minimal degree, connected in codimension 1.

Proof. The lemma follows from the *Remark* after th. 1 of [X], p. 151. ■

Corollary 2. Let V be any surface as in theorem 1, then for any pair of irreducible components V_j , $V_k \subset V$ we have only three possibilities:

- $V_j \cap V_k = \emptyset$

- $V_j \cap V_k$ is a point

- $V_i \cap V_k$ is a line.

Proof. Let us assume that $V_j \cap V_k \neq \emptyset$ and that k > j in the existing ordering of the components of V considered by theorem 1. Then $V_j \cap V_k \subseteq V_k \cap (V_1 \cup ... V_j \cup ... \cup V_{k-1})$ which is a line, as a scheme, because it is the intersection of two linear spaces in \mathbb{P}^N . By th. 0.4 of [E-G-H-P] V is small according to the definition of [E-G-H-P], p.1364, hence $V_j \cap V_k = \langle V_i \rangle \cap \langle V_j \rangle$ is a linear space by prop. 2.4 of [E-G-H-P]. As $V_j \cap V_k$ is contained in a line corollary 2 follows. ■

Lemma 2. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$. Then:

- i) any connected surface $Y \subset X$ can be isomorphically projected in \mathbb{P}^4 ;
- *ii)* for any pair of irreducible components X_j and X_k of X we have $X_j \cap X_k \neq \emptyset$.

Proof. As X is a reducible Veronese surface there exists a projection $\pi_{\mathcal{L}} : \mathbb{P}^{n+4} - -- > \Lambda$, from a suitable linear space \mathcal{L} to a suitable linear space $\Lambda \subset \mathbb{P}^{n+4}$, $\Lambda \simeq \mathbb{P}^4$, such that $\pi_{\mathcal{L}}(X) \simeq X$. This implies that, for any $i = 1, ..., r, \pi_{\mathcal{L}}(X_i) \simeq X_i$, and, for any pair $X_j, X_k \subset X, \pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k) \simeq X_j \cap X_k$. Hence for any surface $Y \subset X$ we have $\pi_{\mathcal{L}}(Y) \simeq Y$ and $\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)$, being the intersection of two surfaces in \mathbb{P}^4 , can not be empty, so that $X_j \cap X_k$ can not be empty too.

Lemma 3. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$. Let P be a singular point of X and let X_1^P, \ldots, X_s^P be the irreducible components of X containing P with $s \geq 2$. For any $i = 1, \ldots, s$ let T_i be the tangent space of X_i^P at P in $\langle X_i^P \rangle$ and let us assume that the natural ordering of X_1^P, \ldots, X_s^P is coherent with the ordering given by theorem 1. Then, for any $j \geq 2$, $T_j \not\subseteq \langle T_1 \cup \ldots \cup T_{j-1} \rangle$ and dim $[T_j \cap \langle T_1 \cup \ldots \cup T_{j-1} \rangle] \leq 1$.

Proof. By contradiction, let us assume that $T_j \subseteq \langle T_1 \cup ... \cup T_{j-1} \rangle$, hence $T_j \subseteq T_j \cap \langle T_1 \cup ... \cup T_{j-1} \rangle \subseteq \langle X_j^P \rangle \cap \langle X_1^P \cup ... \cup X_{j-1}^P \rangle$. As we are assuming that the natural ordering of $X_1^P, ..., X_s^P$ is coherent with the ordering given by theorem 1, we have that dim $[\langle X_j^P \rangle \cap \langle X_1^P \cup ... \cup X_{j-1}^P \rangle] \leq 1$. Moreover dim $(T_j) = 2$ if P is a smooth point of X_j^P and dim $(T_j) = 3$ if P is a singular point of X_j^P ; in fact by theorem 1 we know that every X_j is an irreducible, reduced, surface of minimal degree in its span and from the well known classification of these surfaces (see for instance th. 0.1 of [E-G-H-P]) we have that X_j is singular if and only if it is a rank 3 quadric. So that in any case we get a contradiction. By the way we have also proved that dim $[T_j \cap \langle T_1 \cup ... \cup T_{j-1} \rangle] \leq 1$. ■

Lemma 4. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$. Let P be any point of X and let X_1^P, \ldots, X_s^P be the irreducible components of X containing P, $s \geq 1$. For any $i = 1, \ldots, s$ let T_i be the tangent space of X_i^P at P in $\langle X_i^P \rangle$ and let $\mathbb{T}_P := \bigcup_{i=1}^s T_i$. Then dim $(\langle \mathbb{T}_P \rangle) \leq 4$.

Proof. If s = 1 we have that $\langle \mathbb{T}_P \rangle = T_1$ and $\dim(T_1) \leq 3$ as in the proof of lemma 3. If $s \geq 2$, \mathbb{T}_P is the union of s linear spaces, of dimensions 2 or 3, passing through P according a certain configuration $\mathcal{C}_P \subset \mathbb{P}^{n+4}$. By contradiction, let us assume

that $\dim(\langle \mathbb{T}_P \rangle) \geq 5$. Let $\pi_{\mathcal{L}} : \mathbb{P}^{n+4} - \cdots > \Lambda$ be any linear projection, from a suitable (n-1)-dimensional linear space \mathcal{L} to a suitable $\Lambda \subset \mathbb{P}^{n+4}$, $\Lambda \simeq \mathbb{P}^4$, such that $\pi_{\mathcal{L}}(X)$ is isomorphic to X, hence $\pi_{\mathcal{L}}(\mathcal{C}_P)$ is isomorphic to \mathcal{C}_P . As $\dim(\langle \mathbb{T}_P \rangle) \geq 5$ there is a non empty linear space $\mathcal{L}' := \mathcal{L} \cap \langle \mathbb{T}_P \rangle$ such that $\pi_{\mathcal{L}}(\mathcal{C}_P) = \pi_{\mathcal{L}'}(\mathcal{C}_P)$ where $\pi_{\mathcal{L}'} :< \mathbb{T}_P \rangle - \cdots > \Lambda$. But, as $\dim(\Lambda) < \dim(\langle \mathbb{T}_P \rangle)$, it is not possible that $\pi_{\mathcal{L}'}(\mathcal{C}_P) \simeq \mathcal{C}_P$, otherwise isomorphic configurations of linear spaces would have linear spans of different dimensions, so that we get a contradiction.

Lemma 5. Let V and W be two irreducible surfaces of \mathbb{P}^N such that $V \cap W = \langle V \rangle \cap \langle W \rangle$ is a line L. Let us assume that anyone among V and W is a smooth rational scroll of degree 3 in \mathbb{P}^4 , or a smooth quadric in \mathbb{P}^3 , or a rank 3 quadric in \mathbb{P}^3 , then dim[Join(V, W)] = 5 unless V and W are both rank 3 quadrics, having the same vertex.

Proof. Let us recall that $Join(V, W) := \overline{\{\bigcup_{v \in V \setminus L, w \in W \setminus L} < v \cup w >\}} \subset \mathbb{P}^N$. Let $\mathcal{U} \subset Join(V, W)$ be the open set $\{\bigcup_{v \in V \setminus L, w \in W \setminus L} < v \cup w >\}$, it suffices to show that $\dim(\mathcal{U}) = 5$.

Let p be a generic point of \mathcal{U} , hence $p \in \langle v \cup w \rangle$ for two generic points $v \in V \setminus L, w \in W \setminus L$ and we claim that, in our assumptions, $\langle v \cup w \rangle$ is the only line of \mathcal{U} containing p. By contradiction, let us suppose that there exists another line $\langle v' \cup w' \rangle \neq \langle v \cup w \rangle$, with $v' \in V \setminus L, w' \in W \setminus L$, such that $p \in \langle v' \cup w' \rangle$. Then the two lines $\langle v \cup v' \rangle$ and $\langle w \cup w' \rangle$ intersect at a point $q \in L = \langle V \rangle \cap \langle W \rangle$. But our surfaces have no trisecant lines and, for generic points $v \in V \setminus L, w \in W \setminus L$, it is not possible that $\langle v \cup v' \rangle \cap \langle w \cup w' \rangle$ is a point of L, when $\langle v \cup v' \rangle \subset V$ and $\langle w \cup w' \rangle \subset W$, unless V and W are rank 3 quadrics of common vertex P. In this case there are infinitely many pairs of points $v' \in V \setminus L, w' \in W \setminus L$ such that $\langle v \cup v' \rangle \cap \langle w \cup w' \rangle = P$ (and dim[Join(V, W)] = 4). So that the claim is proved. Now we can define a rational map $s : \mathcal{U} - -- \rangle G(1, N)$, the Grassmannian of lines in \mathbb{P}^N , such that $s(p) = \langle v \cup w \rangle$. Of course the generic fibre of s has dimension 1 and dim $(\mathrm{Im}(s)) = 4$, so that dim $(\mathcal{U}) = 5$.

From theorem 1, and from the previous lemmas we get the following:

Proposition 2. Every reducible Veronese surface $X \subset \mathbb{P}^{n+4}$, according to definition 1, can be only the union $X = X_1 \cup ... \cup X_r$ of irreducible, reduced surfaces of the following types:

- planes

- smooth quadrics of \mathbb{P}^3
- quadrics of \mathbb{P}^3 having rank 3 (quadric cones for simplicity).
- Moreover only one irreducible surface of degree 2 can be contained in X.

Proof. From theorem 1 we know that $X = X_1 \cup \ldots \cup X_r$ and that every X_j is an irreducible, reduced, surface of minimal degree in its span. From the well known classification of irreducible, reduced surfaces of minimal degree, (see th. 0.1 of [E-G-H-P]), we have that every X_j is a surface as above or it is a smooth Veronese surface, a smooth rational scroll of degree 4 in \mathbb{P}^5 , a smooth rational scroll of degree 3 in \mathbb{P}^4 .

As any surface X_j contains a line by theorem 1, none of them can be a smooth Veronese surface. The secant variety of a smooth rational scroll of degree 4 has dimension 5, so that X can not contain such surfaces by condition iii) of definition 1.

Let us consider a smooth rational scrolls of degree 3 and let us assume, by contradiction, that it is a component of X, say X_j . Let X_k be any other component of X, different from X_j , and suppose that X_k is not a plane. As X is a reducible Veronese surface there exists a projection $\pi_{\mathcal{L}} : \mathbb{P}^{n+4} - \cdots > \Lambda$, from a suitable linear space \mathcal{L} to a suitable $\Lambda \simeq \mathbb{P}^4$, such that $\pi_{\mathcal{L}}(X) \simeq X$. This implies that, for any $i = 1, ..., r, \pi_{\mathcal{L}}(X_i) \simeq X_i$, and $\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k) \simeq X_j \cap X_k$. Recall that $\pi_{\mathcal{L}}(X_j) \cap$ $\pi_{\mathcal{L}}(X_k)$ is the intersection of two surfaces in \mathbb{P}^4 and that, by assumption, $\pi_{\mathcal{L}}(X_j)$ is a smooth rational scrolls of degree 3 and $\pi_{\mathcal{L}}(X_k)$ is another rational scrolls of degree 3 or a quadric cone or a smooth quadric. Let us examine these possibilities.

If $\pi_{\mathcal{L}}(X_k)$ is another rational scrolls of degree 3 then, by lemma 2, $\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)$ can not be empty, hence $\dim[\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)] \ge 0$. If $\dim[\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)] = \dim(X_j \cap X_k) = 0$, then $\deg[\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)] = 9$ and this is not possible by corollary 2. Hence $\dim[\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)] = \dim(X_j \cap X_k) \ge 1$ and, by corollary 2, $X_j \cap X_k = \langle X_j \rangle \cap \langle X_k \rangle$ is a line, so that $\dim[Join(X_j, X_k)] = 5$ by lemma 5, and $\dim[Sec(X_j \cup X_k)] \ge 5$. This implies $\dim[Sec(X)] \ge 5$, giving a contradiction with definition 1 *iii*).

If $\pi_{\mathcal{L}}(X_k)$ is a quadric cone or a smooth quadric we can argue in the same way.

Now let us assume that $X_k \simeq \pi_{\mathcal{L}}(X_k)$ is a plane. By the above arguments, the only possibility is that the plane $\pi_{\mathcal{L}}(X_k)$ cuts $\pi_{\mathcal{L}}(X_j)$ along a line l, but also this case can be excluded, in fact we can consider a generic hyperplane H of Λ containing the plane $\pi_{\mathcal{L}}(X_k)$, the intersection $H \cap \pi_{\mathcal{L}}(X_j)$ is the union of l and of a smooth conic Γ . As Γ and $\pi_{\mathcal{L}}(X_k)$ are contained in $H \simeq \mathbb{P}^3$ their intersection can not be empty, so that $Supp[\pi_{\mathcal{L}}(X_j) \cap \pi_{\mathcal{L}}(X_k)]$ is non contained in a line and we have a contradiction with corollary 2.

After proving that none of the irreducible components of X can be a rational scroll of degree 3, let us exclude that X has two (or more) components of degree 2, i.e smooth quadrics or quadric cones. By contradiction, let us assume that X contains two irreducible components of degree 2, say X_j and X_k as before, and suppose that they are not both quadric cones with the same vertex. Then we can repeat the same argument, with the only difference that now $\langle X_j \rangle \simeq \langle X_k \rangle \simeq \mathbb{P}^3$, and we get the same contradiction: dim $[Sec(X)] \geq 5$. If X_j and X_k are quadric cones with the same vertex P we can not use lemma 5, however in this case $T_P(X_j) = \langle X_j \rangle \simeq \mathbb{P}^3 \simeq \langle X_k \rangle = T_P(X_k)$ and their intersection is a line so that dim $(\langle \mathbb{T}_P \rangle) \geq 5$ and we get a contradiction with lemma 4.

Note that, on the contrary, if X_j is a smooth quadric or a quadric cone and X_k is a plane we can not repeat the previous arguments to exclude the existence of quadrics in X.

Now we give the following:

Corollary 3. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$. Then:

i) for any singular point $P \in X$ there passes only 1, 2 or 3 irreducible components of X and the first case occurs only when P is the vertex of a quadric cone;

ii) if P is a singular point of X, not the vertex of a quadric cone, the tangent planes at P to the irreducible components of X passing through P (2 or 3) are all distinct;

iii) if P is a singular point of X which it is the vertex of a quadric cone Γ and there are at least two irreducible components of X passing through P:

- if the components are two, one of them is Γ and the other one is a plane not contained in $<\Gamma>$

- if the components are three, one of them is Γ and the other ones are two distinct planes not contained in $<\Gamma>$.

Proof. i) Obviously, by proposition 2, a singular point $P \in X$ belongs to only one irreducible component X^P of X if and only if X^P is a quadric cone and P is its vertex. In the other cases, let X_1^P, \ldots, X_s^P be the irreducible components of X containing $P, s \geq 2$. We can assume that their natural ordering is coherent with the existing ordering considered in theorem 1. Let T_i be the tangent space of X_i^P at P in $\langle X_i^P \rangle$, i = 1, ..., s.

By lemma 3, dim $(\langle T_1 \cup ... \cup T_s \rangle) = \dim(\langle \mathbb{T}_P \rangle) \ge \dim(T_1) + s - 1 \ge s + 1$. If $s \ge 4$ we would get a contradiction with lemma 4, hence $s \le 3$.

ii) As P is not the vertex of a quadric cone, all the irreducible components of X passing through P are smooth at P by proposition 2 and they are 2 or 3 by the previous proof. Let T_1, T_2 or T_1, T_2, T_3 be the tangent planes at P to these components, with an ordering coherent with the ordering given by theorem 1. By lemma 3, $T_2 \notin T_1$ and $T_3 \notin < T_1 \cup T_2 >$ so that the planes must be distinct.

iii) By *i*) we have only one or two other irreducible components of X passing through P and they are planes by proposition 2. The tangent space at P of Γ is $<\Gamma>$, while the tangent spaces at P of the other components concide with the components themselves, so that they can not be contained in $<\Gamma>$, otherwise we would get a contradiction with lemma 3 for any possible ordering of these (2 or 3) components coherent with the ordering given by theorem 1.

The following lemma is based on property v) of definition 1 and corollary 3.

Lemma 6. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$. Let P be a singular point of X such that the union C_P of the irreducible components of X passing through P is a cone, i.e. (by proposition 2) the irreducible components of X passing through P are planes and, possibly, a quadric cone with vertex in P. Then if we cut C_P with a generic hyperplane H, not passing through P, the curve $C_P \cap H$ is an Arithmetically Cohen-Macauley (in brief ACM) scheme.

Proof. By assumption we know that the local ring of X at P is a Cohen-Macaulay ring, of course it is isomorphic to the local ring of C_P at P. As C_P is a cone over $C_P \cap H$, with vertex P, the local ring of C_P at P is a Cohen-Macaulay ring if and only if $C_P \cap H$ is an ACM scheme.

Corollary 4. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$. Let P be a singular point of X such that the union C_P of the irreducible components of X passing through P is a cone. Then:

i) if P is not the vertex of a quadric cone and there are only two components of X, i.e. two planes, passing through P, then the two planes intersect along a line;

ii) if P is not the vertex of a quadric cone and there are three components of X, i.e. three planes, passing through P, then:

- the three planes intersect two by two along three lines passing through P, or

VERONESE SURFACES

- the three planes intersect along a unique line passing through P and they span a 3-dimensional linear space, or

- the three planes intersect along a unique line passing through P and they span a 4-dimensional linear space, or

- two planes intersect only at P and the third plane cuts the other ones along two lines, passing through P;

iii) if P is the vertex of a quadric cone and there is only another component of X, i.e. a plane, passing through P, then the plane cuts the cone only along a line of the cone.

Proof. Let us apply lemma 6. In case *i*) the cone C_P is given by two planes passing through *P*, if they intersect only at *P* then the curve $H \cap C_P$ is a pair of disjoint lines in $H \simeq \mathbb{P}^3$ and this is not an ACM scheme.

In case ii) the cone C_P is given by three planes passing through P, and the curve $H \cap C_P$ is a cubic curve reducible into three lines. $H \cap C_P$ is an ACM scheme if and only if it is: a plane cubic given by three lines in generic position or passing through a point $(H \simeq \mathbb{P}^2)$ or a space cubic given by a rational comb $(H \simeq \mathbb{P}^3)$ or three lines passing through a point and spanning a 3-dimensional linear space $(H \simeq \mathbb{P}^3)$. The four possibilities give rise only to the previously described configurations.

In case *iii*) the cone C_P is given by the union of a quadric cone Γ having vertex at P and a plane passing through P. By lemma 3 and corollary 3 *iii*), the plane is not contained in $< \Gamma >$ so that it cuts $< \Gamma >$ only at P or along a line L passing through P. If $L \in \Gamma$, then $H \cap C_P$ is a space cubic $(H \simeq \mathbb{P}^3)$ given by a smooth conic and a line cutting the conic transversally at some point, a well known ACM scheme. In the other cases $H \cap C_P$ would be the disjoint union of a smooth conic and a line and this is not an ACM scheme.

4. The main results

In this section we will get a complete classification of reducible Veronese surfaces. First of all we will prove the following theorem.

Theorem 2. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$, and let us assume that all the irreducible components of X are planes. Then $X = \Sigma_n$.

Proof. By *ii*) of definition 1 we have that X is the union of n + 3 planes, say $X = \Pi_0 \cup \Pi_1 \cup \ldots \cup \Pi_{n+2}$. By theorem 1 we can assume that the planes are ordered in such a way that, for any $j \ge 1$, $\Pi_j \cap (\Pi_0 \cup \ldots \cup \Pi_{j-1})$ is a line. Let us call $L_{ij} := \Pi_i \cap \Pi_j$ when the intersection is a line and $Q_{ij} := \Pi_i \cap \Pi_j$ when the intersection on $n \ge 1$.

Step one. If n = 1, $X = \Pi_0 \cup \Pi_1 \cup \Pi_2 \cup \Pi_3$ and we have to prove that $X = \Sigma_1 \subset \mathbb{P}^5$. Let us consider Π_0 and Π_1 , by theorem 1 they intersect along a line L_{01} and $< \Pi_0 \cup \Pi_1 > \simeq \mathbb{P}^3$. Let us consider Π_2 , by theorem 1 we know that $\Pi_2 \cap < \Pi_0 \cup \Pi_1 >$ is a line L. By lemma 2 *ii*) we have that $\Pi_2 \cap \Pi_0 \neq \emptyset$ and $\Pi_2 \cap \Pi_1 \neq \emptyset$, hence $L \cap \Pi_0 \neq \emptyset$ and $L \cap \Pi_1 \neq \emptyset$.

Let us suppose that L intersects Π_0 only at a point $A \notin L_{01}$ and that L intersects Π_1 only at a point $B \notin L_{01}$, so that $\langle \Pi_0 \cup \Pi_1 \cup \Pi_2 \rangle \simeq \mathbb{P}^4$. Then $A = Q_{12}$ and $B = Q_{02}$ are singular points of X. By corollary 4 *i*) it is not possible that only two components of X pass through A and B, hence there is another component of X passing through A and there is another component of X passing through B. As X

has only four components we have that Π_3 passes through A and B, moreover, by theorem 1, $\Pi_3 \cap (\Pi_0 \cup \Pi_1 \cup \Pi_2)$ is a line, so that $\Pi_3 \cap (\Pi_0 \cup \Pi_1 \cup \Pi_2) = L$ and $A = Q_{13}, B = Q_{03}$. Now let us consider A, for instance, it is a singular point of X and Π_1, Π_2, Π_3 pass through it, but the configuration of these planes contradicts lemma 4 *ii*), so that this case is not possible.

Let us suppose that $L = L_{01}$. In this case for any point of L there pass three planes, components of X (this is the maximal number by corollary 3 i)) intersecting among them only along the line L. By corollary 4 ii), the three planes belong to the same 3 -dimensional linear space, or generates a 4-dimensional linear space. Let us consider the last plane Π_3 , it cuts $\Pi_0 \cup \Pi_1 \cup \Pi_2$ along a line L' by theorem 1, hence L' belongs to Π_0 or to Π_1 or to Π_2 so that in any case $L' \cap L \neq \emptyset$ and for any point in $L' \cap L$ there pass four components of X, but this is a contradiction with corollary 3 i).

Let us assume that $L \cap L_{01}$ is only one point $P = Q_{02} = Q_{12}$. Through P there pass three planes, components of X (this is the maximal number by corollary 3 *i*)), but the configuration of these planes contradicts lemma 4 *ii*), so that this case is not possible.

Therefore there is only one possibility: L belongs to one of the two planes Π_0, Π_1 and cuts L_{01} at one point $P = Q_{12}$. We can assume that $L \subset \Pi_0$ by reversing the role of Π_0 and Π_1 , if necessary (note that we can change the position of Π_0 and Π_1 in the ordering given by theorem 1) and we have $L = L_{02}$ and $< \Pi_0 \cup \Pi_1 \cup \Pi_2 >$ $\simeq \mathbb{P}^4$. By theorem 1, $\Pi_3 \cap < \Pi_0 \cup \Pi_1 \cup \Pi_2 >$ is a line L' and, by lemma 2, L' cuts every plane Π_0, Π_1, Π_2 , hence it cuts L at some point $A = Q_{03} = Q_{23}$ and it cuts Π_1 at some point $B = Q_{13}$. If $B \notin L_{01}$ then through B would pass only two planes, components of X intersecting only at B and this is a contradiction with corollary 4 ii). Then $B \in L_{01}$ and $L' = L_{03}$. Note that $B \neq P$ otherwise there would be four components of X passing through P, hence the three lines: $L_{01}, L = L_{02}$, and $L' = L_{03}$ are three lines of Π_0 in general position. Summing up: Π_1, Π_2, Π_3 cut Π_0 along the lines L_{01}, L_{02}, L_{03} , and they cut each other only at the three points $P = Q_{12} = L_{01} \cap L_{02}, B = Q_{13} = L_{01} \cap L_{03}, A = Q_{23} = L_{02} \cap L_{03}$, so that $X = \Sigma_1$ when n = 1.

Step two. Let us assume that $n \ge 2$ and let us define $Y := X \setminus \prod_{n+2}$. We want to prove that Y is a reducible Veronese surface in $\mathbb{P}^{n'+4}$, according to definition 1, for $n' := n - 1 \ge 1$. Let us check properties i, ..., v).

i) By theorem 1 we know that $\Pi_{n+2} \cap < \Pi_0 \cup ... \cup \Pi_{n+1} >$ is a line, hence $\Pi_{n+2} \cap < Y >$ is a line. As $n+4 = \dim(< X >) = \dim(< Y \cup \Pi_{n+2} >) = \dim(< Y >) + 2 - \dim(< Y > \cap \Pi_{n+2}) = \dim(< Y >) + 1$ (we are assuming that $\dim(\emptyset) = -1$), we get that $\dim(< Y >) = n+3 = n'+4$, so that Y is a nondegenerate, reduced, reducible surface of pure dimension 2 in $\mathbb{P}^{n'+4}$.

ii) $\deg(Y) = \deg(X) - 1 = n + 2 = n' + 3$, cod(Y) = n' + 2.

iii) dim $[Sec(Y)] \le \dim[Sec(X)] \le 4$.

iv) Y is a set of ordered planes $\Pi_0, ..., \Pi_{n+1}$ in $\mathbb{P}^{n'+4}$ such that:

 $- \langle \Pi_0 \cup ... \cup \Pi_{n+1} \rangle = \mathbb{P}^{n'+4}$ by the previous check of i),

- for any $j \ge 1$, $\dim(\Pi_j \cap < \Pi_0 \cup ... \cup \Pi_{j-1} > = 1$ by theorem 1 (recall that we have ordered all the components of X according to this theorem).

Hence we can apply corollary 1 and we get that Y is connected in codimension 1.

VERONESE SURFACES

v) To prove that Y is locally Cohen-Macaulay we have to check all points of Y, obviously we have to check only the points of $Y \cap \prod_{n+2}$ because for all other points of Y the property follows from the fact that X is locally Cohen-Macaulay.

Let P be a point of $Y \cap \prod_{n+2}$ and let us assume that there exists only one component $\prod_i \subset Y$ such that $P \in \prod_i \cap \prod_{n+2}$. As X is locally Cohen-Macaulay at P, by corollary 4 i), we have that \prod_i intersects \prod_{n+2} along a line passing through P, so that when we delete \prod_{n+2} we have that P is a smooth point of Y.

Let us assume that there are two components $\Pi_i, \Pi_j \subset Y$ such that $P \in \Pi_i \cap \Pi_j \cap \Pi_{n+2}$ (two is the maximal number by corollary 3 *i*)). As X is locally Cohen-Macaulay at P, by corollary 4 *ii*), we have the following possibilities:

- the three planes intersect two by two along three lines passing through P; in this case when we delete Π_{n+2} we get that Π_i intersect Π_j along a line passing through P and Y is locally Cohen-Macaulay at P (see also the proof of corollary 4 ii));

- the three planes intersect along a unique line passing through P and they span a 3-dimensional or a 4-dimensional linear space; in these cases we can argue as in the previous case and Y is locally Cohen-Macaulay at P;

- Π_i (or Π_j) and Π_{n+2} intersect only at P and the third plane cuts the other ones along two lines, passing through P; in this case we can argue as in the previous cases and Y is locally Cohen-Macaulay at P;

- Π_i and Π_j intersect only at P and Π_{n+2} cuts the other planes along two lines, passing through P; in this case if we delete Π_{n+2} we have that Y is not locally Cohen-Macaulay at P, so we have to prove that this case is not possible; by contradiction, let us assume that the configuration of Π_i , Π_j and Π_{n+2} is as above; we can assume that $0 \le i < j < n+2$ in the ordering given by theorem 1, so that $\Pi_j \cap (\Pi_0 \cup ... \cup \Pi_i \cup ... \cup \Pi_{j-1})$ is a line L passing through P; note that L is contained in at least a plane Π_k among $\Pi_0, ..., \Pi_i, ..., \Pi_{j-1}$ and that $\Pi_k \neq \Pi_i$ because $\Pi_i \cap \Pi_j = P$ (this implies j > 1 because $\Pi_0 \cap \Pi_1$ is a line), then $P \in \Pi_k$, so that we would have four different components of X passing through P and we would have a contradiction with corollary 3 i).

Step three. Now let us proceed by induction on $n \ge 1$. If n = 1 theorem 2 is true by step one. Let us assume that the theorem is true for any X in $\mathbb{P}^5, \mathbb{P}^6, ..., \mathbb{P}^{n+3}$ and let us prove the theorem for $X \subset \mathbb{P}^{n+4}$. As in step two we can decompose $X = Y \cup \prod_{n+2}$ and we know that Y is a reducible Veronese surface in \mathbb{P}^{n+3} according to definition 1, by step two. By induction we can say that $Y = \Sigma_{n-1}$ so that $X = \Sigma_{n-1} \cup \prod_{n+2}$. By theorem 1 we have that $\Sigma_{n-1} \cap \prod_{n+2}$ is a line L and, as above, L is contained in at least a plane among $\prod_0, ..., \prod_{n+1}$.

By contradiction, let us assume that $L \subset \Pi_i$ for some i > 0 and let us consider the line L_{0i} . L can not contain any point $Q_{ij} \in L_{0i}$ $(j = 1, ..., n + 1, j \neq i)$ and a fortiori $L \neq L_{0i}$ otherwise we would have four different components of X passing through $Q_{ij} : \Pi_0, \Pi_i, \Pi_j, \Pi_{n+2}$, a contradiction with corollary 3 i). So that $L \cap L_{0i}$ is a point $P \neq Q_{ij}$ for any $j = 1, ..., n + 1, j \neq i$, and the point $P \in X$ belongs exactly to Π_{n+2}, Π_i, Π_0 , but this configuration contradicts corollary 4 ii) because $\Pi_{n+2} \cap \Pi_i = L, \Pi_{n+2} \cap \Pi_0 = P, \Pi_i \cap \Pi_0 = L_{0i}$ and $L \cap L_{0i} = P$.

Therefore $L \subset \Pi_0$ (i.e. $L = L_{0(n+2)}$) and to prove that $X = \Sigma_n$ we have only to show that the lines L_{0i} with i = 1, ..., n+1 and L are in general position on Π_0 i.e. that the curve given by their union has no triple points. But this curve has a triple point if and only if L passes through some point Q_{ij} for some i, j = 1, ..., n + 1 $i \neq j$, (recall that $Y = \Sigma_{n-1}$) and we have proved that this is not possible.

To classify reducible Veronese surfaces containing a quadric we need other lemmas.

Lemma 7. Let $V = V_1 \cup ... \cup V_r \subset \mathbb{P}^N$ be a non degenerate, reducible, reduced, surface of pure dimension 2, whose irreducible components are $V_1, ..., V_r$. Let $W \subset V$ be a proper subvariety of V such that $W = V_1 \cup ... \cup V_\rho$ with $1 \le \rho < r$. Assume that V and W are connected in codimension 1. Then there exists at least a component $V_i \subset V$ with $\rho < i \leq r$ such that $\dim(W \cap V_i) = 1$ and $W \cup V_i$ is connected in codimension 1.

Proof. If dim $(W \cap V_i) \leq 0$ for any irreducible component $V_i \subset V$ with $\rho < i \leq r$, then dim $[W \cap (V_{\rho+1} \cup ... \cup V_r)] \leq 0$, but this is not possible, otherwise $V \setminus [W \cap$ $(V_{\rho+1}\cup\ldots\cup V_r)$ would be not connected while we are assuming that V is connected in codimension 1. Hence, by changing the ordering of $V_{\rho+1}, ..., V_r$ if necessary, we can assume that $\dim(W \cap V_{\rho+1}) \ge 1$. It is not possible that $\dim(W \cap V_{\rho+1}) \ge 2$, otherwise the irreducible surface $V_{\rho+1}$ would be a component of W, so that $\dim(W \cap V_{\rho+1}) = 1$.

Now let us consider $W \cup V_{\rho+1}$. W is connected in codimension 1 by assumptions, $V_{\rho+1}$ is connected in codimension 1 because it is an irreducible surface; as dim $(W \cap$ $V_{\rho+1}$ = 1 we have that $W \cup V_{\rho+1}$ is connected in codimension 1 too.

Lemma 8. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$, and let X_1, \ldots, X_r be its irreducible components. Let us assume that X contains a quadric Q. Then:

i) r = n + 2;

ii) there exists an ordering $X_1, ..., X_{n+2}$ according to theorem 1 such that $Q = X_1.$

Proof. i) Recall that, by proposition 2, Q is the only component of X having degree ≥ 2 , so that $n + 3 = \deg(X) = 2 + r - 1$, hence r = n + 2.

ii) Let us put $X_1 = Q$. By lemma 7 there is (at least) another component $X_{\overline{i}} \subset X_{\overline{i}}$ X such that $\dim(Q \cap X_{\overline{i}}) = 1$ and $Q \cup X_{\overline{i}}$ is connected in codimension 1, moreover $X_{\overline{i}}$ is a plane. By corollary 2 $Q \cap X_{\overline{i}}$ is a line. If we put $X_2 = X_{\overline{i}}$ we have that $X_1 \cap X_2 = \langle X_1 \rangle \cap \langle X_2 \rangle$ and the intersection is a line.

As $n \ge 1$ we have $r \ge 3$, so that there exists at least another component. Now let us apply lemma 7 to $X_1 \cup X_2$, which is connected in codimension 1, and there is (at least) another component $X_{\overline{i}} \subset X$ such that $\dim[(X_1 \cup X_2) \cap X_{\overline{i}}] = 1$ and $X_1 \cup X_2 \cup X_{\overline{i}}$ is connected in codimension 1, moreover $X_{\overline{i}}$ is a plane, and so on. By applying lemma 7 a suitable number of times we get an ordering $X_1, ..., X_{n+2}$ such that $X_1 = Q$ and, for any $j \ge 2$, dim $[X_j \cap (X_1, ..., X_{j-1})] = 1$ and $X_1 \cup ... \cup X_j$ is connected in codimension 1.

Let us consider $\langle X_j \rangle \cap \langle X_1 \cup \ldots \cup X_{j-1} \rangle = X_j \cap \langle X_1 \cup \ldots \cup X_{j-1} \rangle$ for any $j \ge 2$ and we have $\dim(X_j \cap \langle X_1 \cup \ldots \cup X_{j-1} \rangle) \ge \dim[X_j \cap (X_1 \cup \ldots \cup X_{j-1})] = 1.$ Let us put $a_j := \dim(X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle)$ for any $j \ge 3$, so that:

 $\dim(\langle X_1 \cup X_2 \rangle) = 4$

 $\dim(\langle X_1 \cup X_2 \cup X_3 \rangle) = \dim(\langle X_1 \cup X_2 \rangle \cup X_3 \rangle) =$

 $= \dim(\langle X_1 \cup X_2 \rangle) + 2 - a_3$

 $\dim(< X_1 \cup X_2 \cup X_3 \cup X_4 >) = \dim(<< X_1 \cup X_2 \cup X_3 > \cup X_4 >) =$ $= \dim(\langle X_1 \cup X_2 \rangle) + 2 - a_3 + 2 - a_4$

$$\dim(\langle X_1 \cup X_2 \cup \dots \cup X_{n+2} \rangle) = \dim(\langle X_1 \cup X_2 \cup \dots \cup X_{n+1} \rangle \cup X_{n+2} \rangle) = \dim(\langle X_1 \cup X_2 \rangle) + 2 - a_3 + 2 - a_4 + \dots + 2 - a_{n+2} = 4 + 2n - \sum_{j=3}^{n+2} a_j = n + 4.$$

Hence $\sum_{j=3} a_j = n$. As $a_j \ge 1$ for any $j \ge 3$ we have in fact $a_j = 1$ for any $j \ge 3$, so that $1 = \dim(X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle) = \dim[X_j \cap (X_1 \cup ... \cup X_{j-1})]$ for any $j \ge 2$ (the case j = 2 was considered previously) and $X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle$ is

 $j \geq 2$ (the case j = obviously a line.

To prove lemma 8 *ii*) now we have to show that $X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle = X_j \cap (X_1 \cup ... \cup X_{j-1})$ for any $j \geq 2$. As above, the case j = 2 was considered previously, so we can assume $j \geq 3$ and recall that X_j is a plane. As $X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle \supseteq X_j \cap (X_1 \cup ... \cup X_{j-1})$ and $X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle$ is a line we have only to show that $X_j \cap (X_1 \cup ... \cup X_{j-1})$ is a line. As dim $[X_j \cap (X_1 \cup ... \cup X_{j-1})] = 1$ there exists at least one component X_i , with $1 \leq i \leq j - 1$, such that dim $[X_j \cap X_i)] = 1$, hence $X_j \cap X_i$ is a line L_{ij} by corollary 2. Moreover there are no other points $P \in X_j \cap (X_1 \cup ... \cup X_{j-1}), P \notin L_{ij}$, otherwise X_j would be contained in $\langle X_1 \cup ... \cup X_{j-1} \rangle$ and this is not possible as dim $(X_j \cap \langle X_1 \cup ... \cup X_{j-1} \rangle) = 1$. It follows that, for any $j \geq 3$, $X_j \cap (X_1 \cup ... \cup X_{j-1})$ is a line and we are done.

Now we can conclude this section with the following theorems.

Theorem 3. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$, and let $X_1, ..., X_r$ be its irreducible components. Let us assume that X contains a smooth quadric Q. Then n = 1, r = 3, $X = Q \cup X_1 \cup X_2$, where X_1 and X_2 are planes, and we have only two possibilities:

- a) Q, X_1, X_2 intersect transversally along a unique line $L = Q \cap X_1 \cap X_2$;
- b) X_1 and X_2 cut Q along two lines intersecting at a point $P = X_1 \cap X_2$.

Proof. By lemma 8 we know that $r = n + 2 \ge 3$ and there exists an ordering $X_1, ..., X_{n+2}$ given by theorem 1 such that $X_1 = Q$, X_i is a plane for any $i \ge 2$ and X_2 cuts Q along a line L. Now let us consider the plane X_3 cutting $Q \cup X_2$ and $\langle Q \cup X_2 \rangle \simeq \mathbb{P}^4$ along a line L' by theorem 1. We have some cases to consider.

1) Let us assume that $L' \subset X_2$ and $L' \neq L$ so that $L' \cap L$ is a point $\overline{P} \in Q$, then $\langle X_2 \cup X_3 \rangle \simeq \mathbb{P}^3$, $L = \langle X_2 \cup X_3 \rangle \cap \langle Q \rangle$, $\langle Q \cup X_2 \cup X_3 \rangle \simeq \mathbb{P}^5$. and $\overline{P} = Q \cap X_3$ so that $\langle Q \cup X_3 \rangle = \langle Q \cup X_2 \cup X_3 \rangle \simeq \mathbb{P}^5$. This case is not possible, in fact, let P be a generic point in $\langle Q \cup X_3 \rangle$; note that, in particular, this means that $P \notin \langle Q \rangle \cup X_3$ and $P \notin \langle T_{\overline{P}}(Q) \cup X_3 \rangle \simeq \mathbb{P}^4$. Let us consider the 3-dimensional linear space $\Lambda_P := \langle P \cup X_3 \rangle \subset \langle Q \cup X_3 \rangle \simeq \mathbb{P}^5$. We have that $\Lambda_P \cap \langle Q \rangle$ is a line L_P passing through \overline{P} and that there exists (at least) another point $P' \in Q$ on L_P with $\overline{P} \neq P'$; recall that $P \notin \langle T_{\overline{P}}(Q) \cup X_3 \rangle$ so that the line L_P is not tangent to Q. Now the line $PP' \in \Lambda_P$ cuts X_3 at some point $P'' \neq \overline{P}$ (otherwise $L_P = PP'$ and $P \in \langle Q \rangle$) so that $P \in Sec(Q \cup X_3) \subset Sec(X)$. It follows that the generic point of $\langle Q \cup X_2 \cup X_3 \rangle \simeq \mathbb{P}^5$ is contained in Sec(X), hence dim $[Sec(X)] \geq 5$ and we get a contradiction with *iii*) of definition 1.

2) Let us assume that $L' \subset X_2$ and L' = L. By contradiction let us assume that there exists another plane X_4 in X. Then $X_4 \cap (Q \cup X_2 \cup X_3)$ is a line L'', but L''can not be contained in X_2 or in X_3 otherwise we would have four components of X passing through a point and this is not possible by corollary 3 *i*), hence $L'' \subset Q$. Analogously we have $L'' \cap L = \emptyset$, but in this case X_4 must intersect X_2 at some point P by lemma 2 *ii*), so that $X_4 = \langle P \cup L'' \rangle$ would be contained in $\langle Q \cup X_2 \cup X_3 \rangle$ and this is not possible by lemma 8 *ii*). Hence there are only two planes in X and we get a).

3) Let us assume that $L' \subset Q$ and that $L \cap L' = \emptyset$. Then $X_3 \cap X_2$ would be a point P by lemma 2 *ii*) and we would get a contradiction by arguing as above: $X_3 = \langle L' \cup P \rangle$ would be contained in $\langle Q \cup X_2 \rangle$.

4) Let us assume that $L' \subset Q$ and that $L \cap L'$ is a point P and, by contradiction, let us assume that there exists another plane X_4 in X. Then $X_4 \cap (Q \cup X_2 \cup X_3)$ is a line L''. If $L'' \subset Q$, $L'' \neq L$, $L'' \neq L'$ then $X_4 \cap X_2 = \emptyset$ or $X_4 \cap X_3 = \emptyset$ and this is not possible by lemma 2 *ii*), on the other hand if L'' = L or L'' = L' we would have four components of X passing through a point and this is not possible by corollary 3 *i*). So that $L'' \not\subseteq Q$ and $L'' \subset X_2$ or $L'' \subset X_3$. Now let us suppose that $L'' \subset X_2$ (the other case is similair), if $P \notin L''$ then $X_4 \cap X_3 = \emptyset$ and this is not possible by lemma 2 *ii*), on the other hand if $P \in L''$ we would have four components of Xpassing through a point and this is not possible by corollary 3 *i*). Hence there are only two planes in X and we get *b*).

To complete the proof of theorem 3 now we have to prove that the surfaces X in cases a) and b) are reducible Veronese surfaces according to definition 1: i), ii) and iv) are obvious; for iii) let us remark that Sec(X) is the union of a finite number of linear spaces of dimension ≤ 4 ; for v) we can apply lemma 1.

Theorem 4. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to definition 1, for some $n \geq 1$, and let $X_1, ..., X_r$ be its irreducible components. Then none of the components of X can be a quadric cone.

Proof. By contradiction, let us suppose that X contains a quadric cone Γ of vertex P_{Γ} . By lemma 8 we know that $r = n + 2 \geq 3$ and there exists an ordering $X_1, ..., X_{n+2}$ such that $\Gamma = X_1$, the other components are planes and $X_2 \cap \Gamma$ is a line L passing through P_{Γ} . Let us consider the plane X_3 ant let us remark that $P_{\Gamma} \notin X_3$, in fact the union of the tangent spaces to Γ and X_2 at P_{Γ} spans the 4-dimensional linear space $\langle \Gamma \cup X_2 \rangle$ and $X_3 \notin \langle \Gamma \cup X_2 \rangle$ by theorem 1, so that, if $P_{\Gamma} \in X_3$, we would get a contradiction with lemma 4 for $P = P_{\Gamma}$.

On the other hand we know that $X_3 \cap (\Gamma \cup X_2)$ is a line L' by theorem 1. As $P_{\Gamma} \notin X_3$ we have that $L' \nsubseteq \Gamma$, so that $L' \subset X_2$ and it cuts Γ only at a point $\overline{P} \in L$, $\overline{P} \neq P_{\Gamma}$. Hence X_3 and Γ are in the same configuration as X_3 and Q in case 1) of theorem 3, so that we can argue as above and we can prove that this case is not possible. Therefore X_3 does not exist and we get a contradiction as $r \ge 3$.

Remark 3. The above theorems 2, 3 and 4, taking into account proposition 2, give a complete classification of the reducible Veronese surfaces according to definition 1. It follows that the generic surfaces S_n , embedded in \mathbb{P}^{n+4} , introduced by Floystad in [F], are in fact surfaces Σ_n for any $n \ge 2$. If n = 2 the proof was made in §2. If $n \ge 3$ we have only to check that any generic S_n satifies definition 1: in [F] it is proved that S_n is non degenerated and that iii) and v) hold; from v) it follows that S_n is reduced, of pure dimension 2, and that iv) holds (see Remark 1); ii) follows from direct calculation as in §2; to have i) it suffices to show that S_n is reducible, if not, from the classification of irreducible, reduced surfaces of minimal degree (see the beginning of the proof of proposition 2) it would follow $\deg(S_n) \le 4$, while $\deg(S_n) \ge 6$ as $n \ge 3$. **Remark 4.** Reducible Veronese surface X are not locally complete intersections. In fact let us consider any triple point $P \in X$ and let Y_p be any generic hyperplane section of X passing through P. If X is locally complete intersection at P then Y_p is locally complete intersection at P too (see for instance [B-H] Th. 2.3.4). If $X = \Sigma_n$ then Y_p is the union of 3 lines passing through P, spanning a 3-dimensional linear space. If X is one of the cases a), b) of theorem 3 then Y_P is the union of a smooth conic and two lines passing through P, spanning a 4-dimensional linear space. In any case Y_P is not locally complete intersection at P.

Remark 5. Reducible Veronese surfaces are not even locally Gorenstein. Let X, P, Y_P be as in remark 4. If X is locally Gorenstein at P then the dualizing sheaf ω_X is free at P and it has rank 1 (see [E] p.532). By adjunction we have that $\omega_{Y_P} = (\omega_X + H)_{|Y_P}$ where H is the Cartier divisor of X corresponding to Y_P (see lemma 1.7.6 of [B-S]), so that ω_{Y_P} is free at P and it has rank 1 too. But this is not possible: let $f : \overline{Y_P} \to Y_P$ be the normalization of Y_P, note that f is a triple unramified covering locally at P. The conductor sheaf C of $\mathcal{O}_{\overline{Y_P},P}$ in $\mathcal{O}_{Y_P,P}$ is the maximal ideal of $\mathcal{O}_{Y_P,P}$, hence $\dim_{\mathbb{C}}(\mathcal{O}_{Y_P,P}/\mathcal{C}) = 1$, on the other hand $\dim_{\mathbb{C}}(\mathcal{O}_{\overline{Y_P},P}/\mathcal{O}_{Y_P,P}) = 2$ and this is a contradiction because $\dim_{\mathbb{C}}(\mathcal{O}_{\overline{Y_P},P}/\mathcal{O}_{Y_P,P}) =$ $\dim_{\mathbb{C}}(\mathcal{O}_{\overline{Y_P},P}/\mathcal{C}) + \dim_{\mathbb{C}}(\mathcal{O}_{Y_P,P}/\mathcal{C}) = 2 + 1 = 3.$

References

- [B-S] M.C.Beltrametti-A.J.Sommese: "The adjunction theory of complex projective varieties" Walter de Gruyter, Berlin, 1995.
- [B-H] W.Bruns-J.Herzog: "Cohen-Macaulay rings" Cambridge studies in advanced math. 39, Cambridge Univ. Press 1993.
- [E] D.Eisenbud: "Commutative Algebra with a View Towards Algebraic Geometry" G.T.M. 150, Springer, New York, 1995.
- [F] G.Floystad: "Monads on projective spaces" Comm. Algebra 28 (12) (2000), p. 5503-5516.
- [E-G-H-P] D.Eisenbud-M.Green-K.Hulek-S.Popescu: "Small schemes and varieties of minimal degree" Amer. J. Math. 128 (6) (2006), p. 1345-1389.
- [H] R.Hartshorne: "Complete intersections and connectedness" Amer. J. Math. 84 (1962), p.497-508.
- [X] S.Xambò: "On projective varieties of minimal degree" Collectanea Math. 32 (2) (1981), p.149-163.

DIPARTIMENTO DI MATEMATICA UNIV. DI MILANO, VIA C. SALDINI 50 20133-MILANO (ITALY) E-mail address: alzati@mat.unimi.it

DIPARTIMENTO DI MATEMATICA UNIV. DI TRENTO, VIA SOMMARIVE 14 38050-POVO (TN) (ITALY)

E-mail address: ballico@science.unitn.it