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We address the use of optical parametric oscillator (OPO) to counteract phase diffusion, and demonstrate
phase-noise reduction for coherent signals traveling through a suitably tuned OPO. In particular, we
theoretically and experimentally show that there is a threshold value on the phase noise, above which OPO
can be exploited to “squeeze” phase noise. The threshold depends on the energy of the input coherent state,
and on the relevant parameters of the OPO, i.e., gain and input-output and crystal loss rates.
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Introduction.—The phase of a harmonic oscillator is not
an observable in a strict sense, and this fundamental feature
makes it challenging to analyze phase manipulation,
amplification, and detection at the quantum level. At the
same time, the phase of an optical signal represents a basic
building block for several applications in quantum optics
and metrology [1–10], and protocols based on phase-shift-
keyed coherent signals are useful in those scenarios where
single-photon and entangled states may not be the optimal
choice, as it happens in free-space communication. In these
protocols, the major obstacle to fully exploit the advantages
of quantum measurements, e.g., beating the shot-noise
limit, is phase noise due to phase diffusion [11–17].
A question thus arises on whether, and how, it may be

possible to contrast and counteract the effects of phase
diffusion, and to decrease its detrimental effect on the
coherence of the signal. In this framework, a natural choice
to hamper phase diffusion is to use phase-sensitive ampli-
fication, as that provided by optical parametric oscillators
(OPOs) in the degenerate regime. Despite the simplicity of
the underlying idea the use of OPO to squeeze phase
diffusion did not receive much attention in the past. The
reason is twofold: on the theoretical side, the existence of
quantum limits to amplification suggests that no full
compensation of noise is possible [18–22]. In addition,
OPO is amplifying field quadratures and not the phase
itself, which is not an observable in a strict sense. On the
experimental side, seeding a quantum amplifier with a
phase-diffused state in order to compensate the noise is not
a trivial task, though there have been efforts in this direction
[23,24]. Likewise, achieving the necessary level of pump
phase stabilization is a fundamental issue and a challenging
task in itself.
Here, thanks to an active stabilization scheme of our

OPO and to a novel technique for pump stabilization, we
have been able to experimentally address the use of optical
parametric oscillator (OPO) to counteract phase noise, and
to demonstrate reduction of phase diffusion for coherent

signals. In particular, we theoretically and experimentally
show that there is a threshold value on the phase noise,
above which OPOs may be exploited to effectively squeeze
phase noise. As we will see, the noise threshold depends on
the amplitude of the input signal, and on the relevant
parameters of the OPO, i.e., gain and input or output and
crystal loss rates.
OPO and phase diffusion.—Let us consider a coherent

state jβeiφi, with β ∈ Rþ undergoing phase diffusion. The
evolved state may be written as [15,25]

ϱ ¼
Z

dϕgσðϕÞjβeiϕihβeiϕj; ð1Þ

where gσðϕÞ is a Gaussian distribution gσðϕÞ¼ð2πσ2Þ−1=2×
expf−1

2
ϕ2=σ2g. We refer to σ as to the amplitude of the

phase diffusion (see Fig. 1).
An estimate of the phase φ may be obtained from the

expectations of the two orthogonal quadratures x ¼ aþ a†

and y ¼ iða† − aÞ, where a and a† are the creation
and annihilation operators, ½a; a†� ¼ 1. By exploiting the
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FIG. 1. (Left panel): After the phase diffusion the noisy signal
enters an OPO characterized by the gain G and by the input γic,
output γoc, and crystal γcr loss rates. (Right panel): phase-space
representation of a coherent state jβi (blue) and its phase-diffused
counterpart (orange). We set β ¼ 2 and σ ¼ π=4. It is clear the
effect of phase noise on the uncertainty of the x and y
quadratures.
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stability of our setup, we estimate phase by two measure-
ments performed on two successive preparations, of the
input state [26], i.e., φ̂ ¼ arctan½hyi=hxi�, thus avoiding any
extra noise due to joint measurement of quadratures [27].
For the range of parameters we consider in our experiment
(i.e., φ̂ ¼ 0 and δϕ≲ 0.5), the uncertainty δϕ2 ≡ var½φ̂�
in the estimate φ̂ is thus given by δϕ2 ¼ fhyi2var½x� þ
hxi2var½y�g=Ξ4, where Ξ2 ¼ hyi2 þ hxi2. For a coherent
signal we have var½x�¼var½y�¼1 and thus δϕ2

0 ¼ ð4β2Þ−1,
i.e., shot-noise scaling. Let us now consider a coherent
signal with amplitude β ∈ Rþ undergoing phase diffusion
(see Fig. 1). In this case we have hxi ¼ 2βeð−1=2Þσ2 ,
hyi ¼ 0, var½x� ¼ 1þ 2β2ð1 − e−σ

2Þ2, and var½y� ¼ 1þ
2β2ð1 − e−2σ

2Þ, with var½x� ≤ var½y�. It is straightforward
to show that

δϕ2
σ ¼

coshðσ2Þ þ ð1þ 4β2Þ sinhðσ2Þ
4β2

≥ δϕ2
0: ð2Þ

Let us now assume that after the phase-diffusion process
the degraded state passes through an OPO as sketched in
the left panel of Fig. 1. The OPO is characterized by the
value of its gain, by the input or output parameters ηin and
ηesc, which summarize the effect of the transmissivity of the
input and output couplers, and of the internal losses [28].
The gain can be written as G ¼ ð1 − dÞ−2, where
d ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

P=Pth

p
, where P is the pump power and Pth the

OPO power threshold. The input and output parameters
depend on the loss rates at the couplers at the input (γic) and
the output (γoc), and also on the loss rate due to the OPO
crystal (γcr). Overall, we have

ηin ¼ γic=γ ηesc ¼ γoc=γ; ð3Þ

where the global loss rate is given by γ ¼ γic þ γoc þ 2γcr.
In the following, we will focus on the effect of the OPO on
the first and second moments of the quadratures.
Let us start by considering an input coherent state jβeiϕi

(without phase noise). By lengthy but straightforward
calculations we obtain X ≡ hxi ¼ αx cosφ, Y ≡ hyi ¼
αy sinφ (we choose the OPO pump phase such to amplify
the x quadrature), where αx=y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ηinηesc

p
2β=ð1 ∓ dÞ and

Σ2
x=yðηesc; dÞ≡ var½x=y� ¼ 1� 4dηesc=ð1 ∓ dÞ2 ≥ 1: ð4Þ

In Fig. 2 we show the effect of the OPO on a coherent state
for a particular choice of the involved parameters. Notice
that besides squeezing, the OPO reduces the phase shift of
the state.
If phase noise occurs during the propagation of the

coherent state before the OPO, the evolved state is given by
Eq. (1). The mean values of quadratures after the OPO and
their variances are now given by hxi ¼ αxeð−1=2Þσ

2

, hyi ¼ 0,
and

var½x=y� ¼ Σ2
x=y þ α2x=yð1� e−2σ

2Þ=2 − gx=y; ð5Þ

where gx ¼ e−σ
2

, gy ¼ 0, and the Σ2
x=y are given in Eq. (4).

In Fig. 3 we can see how a phase-diffused coherent state
is modified by the evolution through the OPO. In order to
assess the effects of OPO, and to quantify the possible
reduction of phase diffusion, we evaluate the phase
variance at the output. Using the above expressions for
the moments we have

δϕ2
OPO ¼ Σ2

y=α2xeσ
2 þ α2y=α2x sinh σ2: ð6Þ

Upon comparing the variance (6) to that before the OPO,
i.e., Eq. (2), we find a threshold value σth ≡ σthðβ; ηin;
ηesc; dÞ on the phase noise, above which phase diffusion is
reduced. More explicitly, we have that γσ¼δϕ2

OPO=δϕ
2
σ<1

iff σ2 > σ2th, where σ2th¼1
2
logf2β2ðα2x−α2yÞ=½α2xþ2β2ðα2x−

α2y−2Σ2
yÞ�g. In Fig. 4 we plot the threshold σth as a function

of the OPO gain G ¼ ð1 − dÞ−2 for different values of the

FIG. 2. Phase-space representation of a coherent jβeiφi state
before (orange) and after the OPO (green). We set β ¼ 2 and two
values of the phase: (a) φ ¼ π=4 and (b) φ ¼ −π=4. We used
realistic OPO parameters d ¼ 0.40 (G ¼ 2.78), ηin ¼ 0.08, and
ηesc ¼ 0.87.
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FIG. 3. Phase-space representation of a coherent state after
phase diffusion (orange) and after the OPO (green). The initial
coherent amplitude is β ¼ 2 and φ ¼ 0. The phase-noise
amplitude is σ ¼ π=4, whereas d ¼ 0.4 (G ¼ 2.78). We used
the realistic OPO values (a) ηin ¼ 0.01, ηesc ¼ 0.93 and
(b) ηin ¼ 0.08, ηesc ¼ 0.87. Fluctuations of the y quadrature
are reduced after the evolution through the OPO.
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involved parameters. We can see that there always exists a
maximum value of G, above which the OPO always
reduces phase noise. For large gain G, or large amplitude
β (keeping in mind that β ∈ Rþ), we have γσ ≈G−1.
Experimental results.—Theoretical predictions have

been tested using the experimental scheme depicted in
Fig. 5. The setup allows us to generate and manipulate
displaced-squeezed states. In particular, we have control
not only of the amplitude and phase of the states, but also of
the gain G and the pump phase. The basic elements of the
setup are described in detail in [29]. Overall, it consists of
three blocks: a Laser source (LASER), a state generation
and manipulation stage (SG), and a homodyne detector
(HD). A homemade 1064 nm wavelength Nd:YAG laser
internally frequency doubled at 532 nm serves both as the
input seed and the pump beam for the optical parametric
oscillator (OPO). In particular, from the infrared output of
the laser we generate two different beams by a polarizing
beam splitter: one is used as the local oscillator (LO) for the
homodyne detection, while the other is sent to the SG.

Our OPO consists of a linear cavity with a free spectral
range of 3.270 GHz. A 10 mm-long MgO:LiNbO3 crystal
with antireflection coating is inserted inside the cavity. The
losses related to the crystal are Δ ¼ 2.42 × 10−3. We used
two different configurations A and B for the OPO. In
configuration A the input mirror has a reflectivity Ric;A ¼
0.999 with a radius of curvature of 10 mm, while the output
mirror has a reflectivity Roc ¼ 0.917 with a radius of
curvature of 25 mm, leading to ηin;A ¼ 0.008 and
ηesc;A ¼ 0.937, with a measured cavity total transmissivity
TA ¼ 0.029. In configuration B the input mirror has a
reflectivity Ric;B ¼ 0.9925, and the output mirror is the
same as A, both with the same radii of curvature of A,
leading to ηic;B ¼ 0.079 and ηesc;B ¼ 0.871, with a mea-
sured cavity total transmissivity TB ¼ 0.26 (the role of the
transmissivities will be clarified later on). The cavity is
actively stabilized using the Pound-Drever-Hall (PDH)
technique [30] by means of a phase modulator (PM) placed
along the SG beam, which generates two 116 MHz side-
bands around the laser frequency. Coherent states are
generated exploiting the combined effect of two optical
modulators (MOD1 and MOD2) placed before the OPO.
A proper choice of their modulations allows us to generate
an arbitrary coherent state on the sidebands at 3 MHz for
seeding the OPO [29,30]. Amplitude and phase values are
set on demand by a computer.
In order to effectively amplify a certain quadrature with

the OPO, the pump phase Θ must be stable over the whole
time of the measurement. To this aim, a novel technique for
pump phase stabilization (PPS) has been developed [31],
which will be briefly described in the following. In our

stabilization technique, the field EðtotÞ
r reflected by the OPO

can be exploited as an error signal for the stabilization ofΘ.
We note that the field EðtotÞ

r is the sum of the field Er,
directly reflected by the input mirror, and the field Et
transmitted by the cavity through the input mirror. The laser
and the field generated by down conversion by the pump
interact inside the cavity and their interaction leads to
constructive or destructive interference depending on the
pump phase Θ. Since Er and Et are π shifted, in the first

case Et increases and EðtotÞ
r decreases, while in the second

case Et decreases and EðtotÞ
r increases. This can be sum-

marized as EðtotÞ
r ¼ EðtotÞ

r ðΘÞ, thus in order to access the
information about Θ we measure the corresponding power

PðtotÞ
r with the dc output of the detector D4 (see Fig. 5). In

order to improve the performances of the stabilization
system, the amplitude noise of the laser is removed from the
PPS error signal by means of detectorD3 (i.e., a laser power
monitor) and of dedicated electronics. Finally, the obtained
error signal is properly manipulated with a proportional-
integral-derivative controller, and applied to a piezoelectric
actuator which may tune Θ. The total bandwidth of the PPS
in our setup is about 1 kHz and, in turn, we may

FIG. 4. Threshold value σth on the phase noise as a function of
the OPO gain G ¼ ð1 − dÞ−2 for different values of the input
coherent state β: if σ > σth the OPO reduces the phase noise. The
input and output parameters are the following: ηin ¼ 0.01 and
ηesc ¼ 0.93 (left panel) and ηin ¼ 0.08 and ηesc ¼ 0.87 (right
panel). We cut the vertical axis in order to have σth ≲ 0.5, where
our analysis based on the error propagation holds.

FIG. 5. Schematic diagram of the experimental setup. The main
source is the Nd:YAG laser internally frequency doubled, while
OPO is in the state generation stage (SG). States are revealed by a
homodyne detector (HD). Generation and detection are fully
controlled by a computer. See the text and Ref. [29] for further
details.
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compensate pump phase fluctuations of at most that
frequency. Notice that the PPS has been performed using
the career frequency of the seeding beam. This enables one
to prepare a coherent state with arbitrary amplitude and
phase on the sidebands at 3 MHz, independently of the PPS
scheme.
The effect of the OPO on a phase-diffused coherent state

has been tested directly by generating a rapid sequence of
three coherent states: one with no phase shift, and two with
a �40° phase shift. Since after the OPO we have
hyi=hxi ¼ ð1 − dÞ=ð1þ dÞ tanφ, the mean phase θd after
the OPO may be found from the value θ before the OPO by
the relation

tan θd ¼ tan θð1 − dÞ=ð1þ dÞ: ð7Þ

We performed homodyne detection on every state, with and
without the OPO. Results are shown in the upper panels of
Fig. 6. In order to highlight the effect of the OPO on the
phase shift, we used two different amplitudes for the cases
with and without the OPO since. As it follows from Eq. (7)
this is irrelevant, since the reduction of the phase shifts does
not depend on the βs. In particular, in configuration A we
had β ¼ 4.5 without OPO and βOPO ¼ 2.0 with OPO; the
gain was G ¼ 3.1, leading to d ¼ 0.43. Results show that
the phase shift is reduced from θ ¼ 40° to a measured
θd;ex ¼ 20°, while the theoretical value is θd;th ¼ 18.4°.
In our experiments, we generated the phase-diffused

coherent states by modulating their phases with a suitable
Gaussian distribution [32] and evaluated var½φ̂� of Eq. (6)
with and without OPO for different values of the phase
diffusion σ in both configurations A and B. In order to
preserve stability and reproducibility, in the measurements
without OPO we did not physically remove it from the
setup, but rather we increased the amplitude of the coherent
state by a factor of 1=

ffiffiffiffi
T

p
with respect to the case of

squeezed coherent, in order to compensate the effect of the
cavity transmissivity T. This is why we carefully measured
transmissivities. Of course, pump was turned off during
these measurements. In order to obtain var½φ̂�, we measured
hxi, hyi, var½x�, and var½y� and calculated δϕ2. We made
measurements for different values of the phase diffusion σ.
The theoretical expectation has been obtained directly
using Eq. (6), where we considered the experimental values
for Σy, β, and G, from which we calculated αx and αy
and then threshold σth. Both the experimental points and
the theoretical previsions are shown in the lower panels
of Fig. 6 for the two configurations. In particular, in
configuration A we have βA ¼ 5.70 and GA ¼ 2.75,
with a theoretical threshold σth ¼ 14.8° perfectly compat-
ible to experimental points. In configuration B we have
βB ¼ 2.05, GB ¼ 3.12 and there is no threshold, so the use
of the OPO is convenient for every phase-diffusion
amplitude.

Discussion.—In order to reduce phase noise we are
operating our OPO in the deamplification regime and this
means that besides noise also the mean value of the phase is
reduced, see, e.g., Eq. (7). As a consequence, the signal-to-
noise ratio is not necessarily increased at the output of the
OPO, and a question arises on whether our device may be
exploited in practical scenarios. As a matter of fact,
squeezing and phase-noise reduction are not expected to
be useful to build receivers, i.e., in an interferometer or in
the detection stage of a communication scenario. Rather, it
finds applications in the preparation stage, to contrast and
counteract the effect of phase diffusion. In particular, if we
consider a phase estimation (or communication) protocol in
which a phase shift is applied to a phase-diffused seed
coherent state, i.e., phase diffusion affects the generation
stage of the protocol (before the phase encoding), we
expect that squeezing may counteract the detrimental
effects of phase noise. In turn, it improves the overall
performance of the seed state in the phase estimation
scheme and preliminary results confirm our prevision
[33]. The full analysis requires analysis of the problem
by quantum estimation theory and it will be thoroughly
addressed in a forthcoming work [33]. On the other hand, it
should be noticed that if the squeezing is used in the
detection stage, namely, it is applied after the encoding
stage (and, thus, also after phase diffusion), it may be no
longer useful, since the resulting reduction of the phase

FIG. 6. (Upper panels): Homodyne traces for (left) three
coherent states with θ ¼ −40°, 0°, and þ40° and (right) the
corresponding states after the OPO. The reduction of the phase
shift is marked by the arrows. The amplitudes are β ¼ 4.5 and
βOPO ¼ 2.0 with G ¼ 3.1. (Lower panels): Phase variance as a
function of the phase diffusion for the configurations A (left)
and B (right). Theoretical curves (lines) fit well the experi-
mental points. Notice the presence of the threshold at 14.8° in
configuration A.
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variance, due to squeezing, is vanished by the modification
occurring also to the phase mean value.
Conclusions.—In conclusion, using our innovative OPO

scheme we have been able to exploit phase-sensitive
amplification to counteract phase noise. In particular, our
results demonstrate the reduction of phase diffusion for
coherent signals traveling through a suitably tuned OPO.
More generally, we have shown that there is a threshold
value on the phase noise, above which OPO can be
exploited to squeeze phase noise. The threshold depends
on the energy of the input coherent state, and on the
relevant parameters of the OPO. Our results may be
exploited for state preparation in quantum metrological
schemes and to enhance quantum phase communication
channels, e.g., using adaptive schemes [10] exploiting the
reduction of phase noise, as well as the reduction of phase
signal.

Useful discussions with M. G. Genoni and G. Carrara are
kindly acknowledged. This work has been supported by
UniMI, Project No. PSR2017-DIP-008, and by MAECI,
Project No. PGR06314-ENYGMA.
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