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We address the microscopic derivation of a quantum master equation in Lindblad form for the dynamics of
a massive test particle with internal degrees of freedom, interacting through collisions with a background ideal
gas. When either internal or center-of-mass degrees of freedom can be treated classically, previously established
equations are obtained as special cases. If in an interferometric setup the internal degrees of freedom are not
detected at the output, the equation can be recast in the form of a generalized Lindblad structure, which describes
non-Markovian effects. The effect of internal degrees of freedom on center-of-mass decoherence is considered
in this framework.
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I. INTRODUCTION

In recent times, major advances in experimental tech-
niques have led to the realization of experiments in which
quantum systems in a single-particle regime are studied
under their controlled interaction with some environment.
A paradigmatic example in this context is given by the
motion of a massive test particle in an interferometric setup,
which gives rise to interference fringes as typical quantum
signatures. When coupling with the environment becomes
relevant, such interference fringes are gradually washed
out, and a classical dynamics is eventually recovered. This
phenomenon goes by the name of decoherence [1–3]. Its
understanding and theoretical description require, on the one
hand, a control over the environment, and, on the other hand,
a microscopic model for the interaction and the ensuing
dynamics.

For the case of a tracer particle immersed in a dilute gas,
such a microscopic description has been obtained considering
the center-of-mass degrees of freedom only. The reduced
dynamics is given by a master equation in Lindblad form
which has been called the quantum linear Boltzmann equation,
since it provides the natural quantum counterpart of the
classical linear Boltzmann equation (see [4] for a recent review
and references therein). The microscopic input is given by
the complex scattering amplitudes describing the collisions
between gas and test particle, while the gas is characterized
by its density and momentum distribution. In this paper, we
consider an extension of this result, which includes internal
degrees of freedom of the tracer particle. The microscopic
derivation is performed along the lines of a general strategy
for the derivation of Markovian master equations, which relies
on a scattering description of the interaction events [5]. Besides
the gas properties, this approach takes as basic input the
multichannel complex scattering amplitudes, which describe
the influence of the internal states on the scattering events.
Indeed, when the scattering cross section depends not only on
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the relative motional state between tracer and gas particle, such
an extension becomes mandatory in order to correctly describe
the dynamics. According to the Markovian approximation, the
obtained master equation is in Lindblad form. This derivation
confirms the structure of the dissipative term, which was
heuristically obtained in [6], further determining the coherent
contribution to the dynamics due to forward scattering. The
latter becomes relevant in the determination of the index of
refraction for matter waves. When either type of degrees of
freedom can be described in classical terms, a Markovian
quantum classical master equation is obtained. Such a result,
corresponding to a classical treatment of the motional degrees
of freedom, was considered in [7]. In that context, the name
Bloch-Boltzmann was proposed for the equation, since for
a two-level system an extension of the optical Bloch equa-
tions to include a Boltzmann-like collision term is obtained.
In the same spirit, the name quantum Bloch-Boltzmann
can be used to indicate a master equation, which gives
a quantum description of both internal and center-of-mass
states.

An interesting situation appears when in the final detection
the internal state of the test particle is not resolved at the
output of the interferometer. In this case, the internal degrees
of freedom become part of the environment. Then a non-
Markovian dynamics for the motional state appears, which can
be described in terms of a coupled set of Lindblad equations
for the unnormalized statistical operators corresponding to
specific internal channels. This type of non-Markovian dynam-
ics can be considered a generalized non-Markovian Lindblad
structure. It arises as a mean over a classical index, which can
take place, for examples, as a consequence of the interaction
with a structured reservoir [6,8,9]. This situation is considered
here in the study of the loss of visibility of the interference
fringes in an interferometric setup. The ensuing decoherence
effect is generally not described as an exponential loss of
visibility depending on the strength of the interaction, as in the
usual Markovian case.

The paper is organized as follows. In Sec. II, we consider
the expression of the master equation, pointing to the main
steps necessary for its derivation and putting into evidence
the microscopic quantities determining its explicit form.
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A detailed microscopic derivation of the master equation is
performed in Appendix. The master equation is given in
terms of matrix elements of the statistical operator in the
momentum and internal energy eigenstates basis, as well as
an explicit operator expression, which makes its Lindblad
structure manifest. This also allows us to easily recover
under suitable limits previously considered master equations,
which describe either only one of the two kind of degrees of
freedom or a hybrid quantum classical description of both.
In Sec. III, we show how the interplay between internal and
motional states can influence the visibility in an interferometric
setup for the study of decoherence, leading to non-Markovian
behavior in the reduction of the visibility of the interference
fringes.

II. THE MASTER EQUATION FOR A TEST PARTICLE
WITH INTERNAL DEGREES OF FREEDOM

We first consider the key ingredients and steps that lead
to obtaining the master equation describing the collisional
dynamics of a test particle immersed in a structureless
background gas, taking the internal degrees of freedom of the
particle into account. The task of a full microscopic derivation
is accomplished in Appendix, relying on a method recently
introduced for the derivation of Markovian master equations,
which has been called the monitoring approach [5,10–12]. In
the monitoring approach, the reduced dynamics of a system
in contact with some environment is obtained describing
the interaction by means of scattering theory. The building
blocks in such a formulation of the open system dynamics
are therefore the S matrix characterizing the single-interaction
events and the rate of collisions. Both quantities are given
by operators on the tensor-product Hilbert space of system
and environment, which we denote by S = I + iT and �,
respectively. The operator nature of these quantities is crucial
in order to take the gas and test-particle state into account
in the dynamic description of the collisional interaction.
The Markovian master equation for the reduced dynamics is
obtained by assuming the various collisions are independent,
so their effect cumulates according to the state-dependent
scattering rate, and taking the trace over the environmental
degrees of freedom.

A. Expression of the master equation

The formal expression of the master equation reads [5]

d

dt
ρ = 1

ih̄
[H,ρ] + Lρ + Rρ, (1)

where H is the free Hamiltonian and ρ is the statistical operator
of the system. For the case at hand, the free Hamiltonian of
the system is given by

H = P2

2M
⊗

∑
i

h̄ωi |i〉〈i|, (2)

where P is the momentum operator of the test particle, M is
its mass, and {|i〉}i=1,...,n is the basis of energy eigenstates in
Cn. The superoperators appearing on the right-hand side (rhs)

of Eq. (1) are defined according to

Lρ = Trgas(T�1/2[ρ ⊗ ρgas]�
1/2T†)

− 1
2 Trgas(�1/2T†T�1/2[ρ ⊗ ρgas])

− 1
2 Trgas([ρ ⊗ ρgas]�1/2T†T�1/2) (3)

and

Rρ = iTrgas{[�1/2Re(T)�1/2,ρ ⊗ ρgas]}, (4)

respectively, where ρgas is the single-particle statistical oper-
ator describing the gas environment. Note that the operators
L and R arise by acting with an operator in Lindblad form
on a state of system plus gas in factorized form, further
taking the partial trace with respect to the gas. While this
operation is formally legitimate and guarantees preservation
of trace and hermiticity of the statistical operator describing
the test particle, it is generally not true that the resulting
dynamics for the reduced system only is given by a master
equation in Lindblad form, thus granting complete positivity
and describing a well-defined Markovian dynamics. Indeed
this step involves further approximations, which depend in
a crucial way on details of the system and interaction. It is
well known that by taking the partial trace with respect to
the unitary evolution of the overall system one can obtain
a Markovian dynamics only if further hypotheses hold. This
remains true for the case at hand, despite the fact that important
approximations have already been introduced in replacing the
Hamiltonian dynamics for system plus gas with a Lindblad
operator only specified by T and �. The actual proof that a
Markovian dynamics applies to the situation of interest and the
specific expression of the superoperators appearing in Eq. (1)
is obtained through the microscopic calculations performed in
Appendix.

Relying on the results of Appendix 1a, we write the
following expression for the contributions in Eq. (3) in the
momentum and channel basis {|P,i〉}:

〈P,i|Lρ|P ′,k〉
=

∑
j l

∫
d Q

[
〈P − Q,j |ρ|P ′ − Q,l〉Mjl

ik (P,P ′; Q)

− 1

2
〈P,j |ρ|P ′,k〉Mji

ll (P + Q,P + Q; Q)

− 1

2
〈P,i|ρ|P ′,l〉Mkl

jj (P ′ + Q,P ′ + Q; Q)

]
, (5)

where the complex rate functions M
jl

ik (P,P ′; Q) are given
by

M
jl

ik (P,P ′; Q)

= χ
jl

ik

∫
Q⊥

d pLij ( p,P − Q; Q) L∗
kl( p,P ′ − Q; Q), (6)

and χ
jl

ik is a notational shorthand to indicate that the con-
tribution is different from zero only for Eij = Ekl , where
Ekj = Ek − Ej denotes the difference in energy between
internal states, while the p integration is restricted to the plane
Q⊥ = { p ∈ R3 : p · Q = 0}. The functions Lij ( p,P ; Q) are
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defined according to

Lij ( p,P ; Q)

=
√

ngasm

m2∗Q

√
µ

[
p⊥ + m

M
P‖ +

(
1 + m

M

) Q
2

+ Eij

Q2/m
Q

]

× fij

(
rel( p⊥,P⊥) − Q

2
+ Eij

Q2/m∗
Q,

rel( p⊥,P⊥) + Q
2

+ Eij

Q2/m∗
Q

)
, (7)

where µ( p) denotes the stationary gas distribution, ngas is the
density of the gas, m is the mass of the gas particles, m∗ =
mM/(M + m) is the reduced mass, and fkj ( pf , pi) denotes the
multichannel complex scattering amplitudes, which depend on
the microscopic interaction potential and describe scattering
from an initial momentum pi and internal state j to a final
state with momentum pf and internal state k. Moreover, P⊥
and P‖ indicate the perpendicular and parallel components,
respectively, of the momentum P with respect to the vector Q;
rel( p,P) ≡ (m∗/m) p − (m∗/M) P is the relative momentum
between the gas-particle momentum p and the test-particle
momentum P .

Exploiting these results, we can easily write the master
equation, Eq. (1), directly in operator form. In fact, using the
functions Lij ( p,P ; Q), let us introduce the following family
of jump operators:

LQ, p,E = ei Q·X/h̄
∑

ij

Eij =E

Lij ( p,P; Q) ⊗ Eij , (8)

where X and P are position and momentum operators of the test
particle. The operators Eij = |i〉〈j | act on the internal degrees
of freedom only, since |i〉 denotes the energy eigenstate with
eigenvalue h̄ωi , and the exponential factor describes momen-
tum exchanges according to exp(iX · Q/h̄)|P〉 = |P + Q〉.
Note that the functions Lij ( p,P ; Q) essentially depend on
the scattering amplitudes and the momentum distribution of
the gas, thus taking into account all the details of the collisional
interaction. These expressions appear operator-valued in the
master equation, being evaluated for P → P, so as to take into
account the actual momentum of the colliding test particle. The
incoherent contribution L in Eq. (1) finally reads

Lρ =
∑
E

∫
d Q

∫
Q⊥

d p

×
(

LQ, p,EρL†
Q, p,E − 1

2
{L†

Q, p,ELQ, p,E ,ρ}
)

. (9)

The superoperator R of Eq. (4) on its turn according to
Appendix 1b amounts to the commutator with an effective
Hamiltonian given by

Hn = −2πh̄2 ngas

m∗

∑
ij

Eij =0

∫
d p0µ( p0)

× Re[fij (rel( p0,P),rel( p0,P))] ⊗ Eij . (10)

Using the alternative expression given by Eq. (A18) to define
Lij ( p,P ; Q), it is immediately seen that the incoherent term of
this master equation confirms the result heuristically obtained

in [6]. In the latter reference, this equation was also termed
the quantum Bloch-Boltzmann equation in that it provides a
quantum description of both motional and internal degrees of
freedom, thus extending the result of [13], where the center-of-
mass degrees of freedom were treated classically and the name
Bloch-Boltzmann equation was used. These names should not
confuse the reader. Indeed, only for the case of an atom in
a two-level approximation undergoing collisional dynamics
does this equation refer to an extension of the optical Bloch
equations with a Boltzmann collision term.

B. Limiting forms

As a compatibility check of the master equation derived in
Appendix, and in order to make contact with previous work,
we now show how in suitable limits it recovers already-known
equations. Since the equation describes the quantum dynamics
of a test particle with both internal and translational degrees of
freedom immersed in a dilute gas, natural limiting situations
appear when we consider a structureless test particle or an
immobile system. These situations correspond to the quantum
linear Boltzmann equation [12] and to the master equation
for an immobile system interacting through collisions with
a background gas [5,14]. Another natural limit consists of a
hybrid quantum classical description, in which either internal
or center-of-mass degrees of freedom are treated classically.
The master equation corresponding to this last case was already
considered in [13]. A classical treatment of both kinds of
degrees of freedom leads to the master equation for a classical
Markov process, with a probability density depending on both
a discrete and a continuous index.

1. Quantum linear Boltzmann equation

If the internal degrees of freedom can be disregarded, the
sum in Eq. (9) has a single nonvanishing contribution, so
instead of the multichannel scattering amplitudes fij ( pf , pi)
there is a single amplitude which can be indicated as f ( pf , pi).
The incoherent term in the master equation reduces to

Lρ =
∫

d Q
∫

Q⊥
d p

(
LQ, pρL†

Q, p − 1

2
{L†

Q, pLQ, p,ρ}
)
(11)

with

LQ, p =
√

ngasm

m2∗Q
ei Q·X/h̄

√
µ

(
p⊥ + m

M
P‖ +

(
1 + m

M

)
Q
2

)

× f

(
rel( p⊥,P⊥) − Q

2
,rel( p⊥,P⊥) + Q

2

)
,

while the Hamiltonian term reads H0 + Hn, where H0 =
P2/2M and

Hn = −2πh̄2ngas

m∗

∫
d p0µ( p0)Re[f (rel( p0,P),rel( p0,P))]

takes into account the energy shift due to forward scattering.
This result complies with the quantum linear Boltzmann
equation obtained in [12], whose properties were discussed
in detail in [4].
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2. Immobile tracer particle

We now consider the opposite situation, corresponding to
an infinitely massive test particle, so that the dynamics of the
translational degrees of freedom can be neglected. To consider
this limit it is convenient to come back to Eq. (5), the expression
of the quantum master equation in terms of the complex rate
functions M

jl

ik

(
P,P ′; Q

)
, which in the limit M → ∞ when

integrated over Q reduce to

M
jl

ik = ngas

m2
χ

jl

ik

∫
d p

∫
d p0δ

(
p2 − p2

0

2m
+ Ei − Ej

)
×fij ( p, p0)f ∗

kl( p, p0), (12)

where no dependence on the test particle’s momentum is left.
The matrix elements of the incoherent part of the quantum
Bloch-Boltzmann equation are therefore now given by

〈i|Lρ|k〉
=

∑
j l

(
〈j |ρ|l〉Mjl

ik − 1

2
〈j |ρ|k〉Mji

ll − 1

2
〈i|ρ|l〉Mkl

jj

)
, (13)

while the coherent part corresponds to a effective Hamiltonian
whose matrix elements in the energy eigenbasis are given by
E

ij
n = −2πh̄2(ngas/m∗)χjk

ik

∫
d p0µ( p0)Re[fij ( p0, p0)], thus

confirming the result obtained in [5] for the case of a
nondegenerate Hamiltonian.

3. Quantum classical description

The limiting expressions of the quantum Bloch-Boltzmann
equation, obtained when either the internal or the translational
degrees of freedom can be treated as a classical label,
correspond to hybrid quantum classical descriptions, which
naturally arise when decoherence affects the two kinds of
degrees of freedom on different time scales.

When the center-of-mass degrees of freedom can be treated
classically, it is convenient to introduce the classical rates

M
jl

ik (P + Q; Q) := M
jl

ik (P + Q,P + Q; Q) (14)

with M
jl

ik (P,P ′; Q) as in Eq. (6), so that the semiclassical
Bloch-Boltzmann equation reads

d

dt
ρ(P) = 1

ih̄

[∑
i

h̄ωi |i〉〈i| + Hn(P),ρ(P)

]

+
∑
ijkl

∫
d Q

[
M

jl

ik (P ; Q)Eij ρ(P − Q)E
†

kl

−1

2
M

jl

ik (P + Q; Q){E†

klEij ,ρ(P)}
]
, (15)

where Hn(P) is obtained from Eq. (10) with the replacement
P → P , and ρ(P) denotes a collection of trace class operators
in Cn normalized according to

∫
d PTrCnρ(P) = 1.

If the classical approximation applies for the internal
degrees of freedom, the incoherent term of the master equation
giving a quantum description of the translational dynamics

only takes the form

d

dt
ρi = 1

ih̄

[
P2

2M
+ Hi

n,ρi

]
+

∑
j

∫
d Q

∫
Q⊥

d p

×
[
ei Q·X/h̄Lij ( p,P; Q)ρjLij ( p,P; Q)†e−i Q·X/h̄

− 1

2
{Lij ( p,P; Q)†Lij ( p,P; Q),ρi}

]
. (16)

Here

Hi
n = −2πh̄2 ngas

m∗

∫
d p0µ( p0)Re[fii(rel( p0,P),rel( p0,P))],

(17)

and ρi denotes a collection of trace class operators in L2(R3)
normalized according to

∑n
i=1 TrL2(R3)ρi = 1.

For the case in which all the off-diagonal elements with
respect to momentum and internal energy eigenvalues vanish
(that is to say, 〈P,i|ρ|P ′,k〉 = 0 if P �= P ′ or i �= k), the
motional state of the test particle is fully characterized by
the distribution of the diagonal terms fi(P) = 〈P,i|ρ|P,i〉,
which is a classical probability density obeying the classical
Markovian master equation

d

dt
fi(P) =

∑
j

∫
d Qfj (P − Q)Mjj

ii (P ; Q)

− fi(P)
∑

j

∫
d QMii

jj (P + Q; Q), (18)

where the positive quantities M
jj

ii (P ; Q) defined in Eq. (14)
can actually be interpreted as the transition rates from an initial
momentum P − Q and internal state j to a final momentum P
and internal state i. This classical Markovian master equation
provides the natural generalization of the classical linear
Boltzmann equation to a particle with internal degrees of
freedom [15].

III. EFFECT OF INTERNAL DEGREES OF FREEDOM ON
CENTER-OF-MASS DECOHERENCE

The quantum linear Boltzmann equation has proven useful
in the description of collisional decoherence, as well as in
the evaluation of the index of refraction for matter waves
[4,12,16–18]. We now consider the effect of internal degrees of
freedom, affecting the collisional interaction between massive
test particle and background gas, on the visibility of the
interference fringes in a interferometric setup. In particular,
we show that the visibility can exhibit oscillations due
to non-Markovian effects. The effect of the entanglement
between internal and center-of-mass degrees of freedom for
the visibility of quantum interference experiments was already
considered in [19], in the absence, however, of decoherence
effects.

A. Generalized Lindblad structure

The quantum master equation, Eq. (1), is in Lindblad form:
the dynamics of the test particle is Markovian when both
translational and internal degrees of freedom are described and
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detected. A different situation emerges if the translational or
the internal degrees of freedom, even though they influence the
collisional dynamics, are not revealed during the measurement
process. In this case, they must be averaged out from the
description of the system by means of the partial trace,
thus becoming part of the environment. As is well known
in the classical case, a non-Markovian dynamical regime
becomes Markovian by suitably enlarging the set of degrees
of freedom and vice versa. Indeed, a unitary Markovian time
evolution for both system and reservoir generally gives a
non-Markovian reduced dynamics for the system; the degree
of non-Markovianity of the description also depends on
where we set the border between system and environment,
which ultimately depends on the physical quantities actually
measurable by the experimenter. A smaller set of observed
degrees of freedom, with respect to those actually involved in
the dynamics, can lead from a Markovian to a non-Markovian
regime. A general mechanism describing this passage in
quantum systems is presented in [6]: a Lindblad structure
on a bipartite system can generate a generalized Lindblad
structure in the two reduced subsystems, typically describing
a non-Markovian dynamics.

In the situation we are considering, the bipartite system is
formed by the translational and internal degrees of freedom
of the test particle. If the measurements at the output of the
detector cannot probe the internal degrees of freedom, the only
experimentally accessible quantities are expectations or matrix
elements of the statistical operator given by

�(t) = TrCn {ρ(t)} =
∑

i

〈i|ρ(t)|i〉 =:
∑

i

ρi(t), (19)

where ρ(t) is the statistical operator describing the full
dynamics of the test particle. It is easy to see that, if the free

Hamiltonian is nondegenerate, the diagonal matrix elements
in the energy basis with respect to the internal degrees of
freedom of the master equation lead to Eq. (16), that is, a
coupled system of equations for the collection {ρi(t)}i of trace
class operators on L2(R3). This system of equations has a
generalized Lindblad structure [9] and, therefore, it can also
describe highly non-Markovian dynamics for the statistical
operator �(t) given by Eq. (19). Indeed, there is generally no
closed evolution equation for �(t), but from the knowledge of
the initial collection {ρi(0)}i the generalized Lindblad structure
allows the collection {ρi(t)}i to be obtained at time t ; therefore,
through Eq. (19), �(t) is also obtained. In the next paragraph,
we explicitly point out non-Markovian behavior described by
the generalized Lindblad structure, which express the effect
of correlations between internal and translational degrees of
freedom on the visibility of interference fringes for super-
positions of motional states. A complementary situation was
considered in [20], where the effect of collisional decoherence
on internal-state superpositions of a cold gas was studied in
detail.

In typical interferometric experiments, the test particle is
much more massive than the particles of the background gas.
The dependence on the momentum operator in the Lindblad
operators describing the collisional dynamics and in the
Hamiltonian part determining the energy shift can therefore
be replaced by a fixed value P0, which represents the initial
momentum of the test particle entering the interferometer.
Taking the diagonal matrix elements of the general form
of the master equation given by Eq. (1) and specified by
Eqs. (10) and (9) and assuming nondegeneracy of the internal
energy eigenvalues, one finally obtains for the collection of
operators ρi(t) = 〈i|ρ(t)|i〉 the following coupled system of
equations:

d

dt
ρi(t) = 1

ih̄

[
P2

2M
,ρi(t)

]
+

∑
j

(
�

ij

P0

∫
d QP ij

P0
( Q)ei Q·X/h̄ρj (t)e−i Q·X/h̄ − �

ji

P0
ρi(t)

)
, (20)

where P ij

P and �
ji

P are probability densities and transition rates
defined by

P ij

P ( Q) := M
jj

ii (P ; Q)∫
d QM

jj

ii (P + Q; Q)
(21)

and

�
ij

P :=
∫

d QM
jj

ii (P + Q; Q), (22)

respectively. Note that, at variance with Eq. (16), we are now
not assuming a classical dynamics for the internal degrees of
freedom; instead we focus on the diagonal matrix elements of
the internal states only since the latter are enough to determine
the non-Markovian dynamics of the motional state according
to Eq. (19). The fact that the positive quantities M

jj

ii (P ; Q)
are transition rates implies that P ij

P ( Q) can be interpreted as
the probability distribution function for a test particle with

momentum P and internal energy eigenstate j to exchange
a momentum Q, and to go into the internal state i due to
a collision with the gas. On the same footing, �

ij

P can be
interpreted as the total transition rate for a test particle with
momentum P and internal state j to go to a fixed final internal
energy eigenstate i.

B. Explicit solutions in position representation

We now describe the visibility reduction predicted by the
generalized Lindblad structure in Eq. (20) obtained from the
quantum Bloch-Boltzmann equation, Eq. (1), in the limit of
a very massive test particle. To obtain the formula describing
the fringe visibility in an explicit way, we need to solve the
equation of motion in the position representation. Starting from
Eq. (20) and omitting for simplicity the explicit dependence
on the classical label P0 denoting the momentum of the test
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particle, we obtain

d

dt
ρi(X,X ′,t) = 1

ih̄
(�X − �X ′)ρi(X,X ′,t)

+
∑

j

(�ij	ij (X − X ′)ρj (X,X ′,t)

−�jiρi(X,X ′,t)), (23)

where ρi(X,X ′,t) denotes the matrix element 〈X |ρi(t)|X ′〉 and
	ij

(
X − X ′) is the characteristic function of the probability

density P ij ( Q) [21], that is, its Fourier transform

	ij (X − X ′) =
∫

d Qei(X−X ′)· Q/h̄P ij ( Q). (24)

We now consider a few cases in which Eq. (23) can be solved
analytically, so as to obtain an exact expression for the visibility
and to show different possible qualitative behavior.

1. N-level system

When the collisions are purely elastic, so that they do
not lead to transitions between different internal states, the
scattering rates satisfy �ij = δij�

ii . This is the case when
the energy exchanges involved in the single collisions are
much smaller than the typical separation of the internal energy
levels [13]. The equations for the different ρi then become
uncoupled and take the following form:

d

dt
ρi(X,X ′,t) = 1

ih̄
(�X − �X ′ )ρi(X,X ′,t)

−�ii(1 − 	ii(X − X ′))ρi(X,X ′,t). (25)

The preceding equation can be conveniently solved by intro-
ducing the function [22]

χi(λ,µ,t) := Tr{ρi(t)e
i(λ·X+µ·P)/h̄}, (26)

where X and P as usual denote position and momentum
operators of the test particle. In such a way, Eq. (25) leads
to

∂tχi(λ,µ,t) =
[

λ

M
· ∂µ − �ii(1 − 	ii(µ))

]
χi(λ,µ,t), (27)

which is an equation of first order solved by

χi(λ,µ,t) = χ0
i (λ,λt/M + µ)e−�ii

∫ t

0 (1−	ii (λ(t−t ′)/M+µ))dt ′ ,

(28)

where the function χ0
i (λ,λt/M + µ) obeys the free equation

∂tχi(λ,µ,t) = (λ/M) · ∂µχi(λ,µ,t). Inverting Eq. (26) by
taking the Fourier transform with respect to λ,

ρi(X,X ′,t) =
∫

dλ

(2πh̄)3
e−iλ·(X+X ′)/2h̄χi(t,λ,X − X ′), (29)

we obtain the exact solution

ρi(X,X ′,t) =
∫

dsdλ

(2πh̄)3
e−iλ·s/h̄e−�ii

∫ t

0 (1−	ii (λ(t−t ′)/M+X−X ′))dt ′

× ρ0
i (X + s,X ′ + s,t)

expressed in terms of an integral of the freely evolved
subcollections ρ0

i (X,X ′,t) with a suitable kernel, where we

have set

ρ0
i (X,X ′,t)

=
∫

dλ

(2πh̄)3
e−iλ·(X+X ′)/2h̄χ0(λ,X − X ′,t)

= 〈X| exp

(
− i

h̄

P2

2M
t

)
ρi(0) exp

(
+ i

h̄

P2

2M
t

)
|X ′〉 (30)

and ρi(0) = 〈i|ρ(0)|i〉. The evolution of the statistical operator
given by Eq. (19) is obtained by summing the different
ρi(X,X ′,t) over the discrete index i. For an initial state given
by a product state between the translational and the internal
part, so that ρi(0) = pi�(0), we finally obtain

�(X,X ′,t)

=
∑

i

pi

∫
dsdλ

(2πh̄)3
e−iλ·s/h̄e−�ii

∫ t

0 (1−	ii (λ(t−t ′)/M+X−X ′)) dt ′

× �0(X + s,X ′ + s,t). (31)

This result reduces to the standard Markovian situation, when
either only one value of pi is different from zero (and therefore
equal to 1), or the rates are all equal. This limiting cases
describes situations in which the initial state is in a specific
internal state or the collisions do not depend on the internal
state of the tracer particle.

2. Two-level system

For the case of a two-level system, a natural situation
corresponds to inelastic scattering taking place only when
the test particle gets de-excited, so that only one of the two
scattering rates is different from zero. This case can still
be treated analytically. Assuming �21 = 0, the equation for
χ2(t,λ,µ) gets closed and is solved by

χ2(λ,µ,t) = χ0
2 (λ,λt/M + µ)e−�12t

× e−�22
∫ t

0 (1−	22(λ(t−t ′)/M+µ))dt ′ . (32)

The equation for χ1(λ,µ,t) then reads

∂tχ1(λ,µ,t) =
[

λ

M
· ∂µ − �11(1 − 	11(µ))

]
χ1(λ,µ,t)

+ �12	12(µ)χ2(λ,µ,t) (33)

and its solution is given by

χ1(λ,µ,t)

= e−�11
∫ t

0 (1−	11(λ(t−t ′)/M+µ))dt ′
{
χ0

1 (λ,λt/M + µ)

+�12
∫ t

0

[
e�11

∫ t ′
0 (1−	11(λ(t−t ′′)/M+µ))dt ′′

×	12(λ(t − t ′)/M + µ)χ2(t ′,λ,λ(t − t ′)/M + µ)
]
dt ′

}
.

(34)

This formula explicitly shows that χ1(λ,µ,t) depends on the
function χ2(λ,µ,·) evaluated over the whole time interval be-
tween 0 and t , a typical signature of non-Markovian dynamics.
Assuming once again that the initial state is characterized
by ρi(0) = pi�(0), the statistical operator describing the
translational degrees of freedom of the test particle is given
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at time t by the expression

�(X,X ′,t) =
∫

dsdλ

(2πh̄)3
e−iλ·s/h̄�0(X + s,X ′ + s,t)

×
{
p2e

−�12t e−�22
∫ t

0 (1−	22(λ(t−t ′)/M+X−X ′))dt ′

+p1e
−�11

∫ t

0 (1−	11(λ(t−t ′)/M+X−X ′))dt ′

+p2�
12e−�11

∫ t

0 (1−	11(λ(t−t ′)/M+X−X ′))dt ′

×
∫ t

0

(
e−�12t ′e−�22

∫ t ′
0 (1−	22(λ(t−t ′′)/M+X−X ′))dt ′′

× e�11
∫ t ′

0 (1−	11(λ(t−t ′′)/M+X−X ′)) dt ′′

×	12(λ(t − t ′)/M + X − X ′)
)
dt ′

}
. (35)

C. Nonexponential visibility reduction

We can now explicitly present the visibility reduction
predicted by the generalized Lindblad structure obtained from
the quantum master equation for a test particle with internal
degrees of freedom. Our aim is to obtain an exact expression for
the loss of visibility in a double-slit arrangement as a function
of the time of interaction with the environment, and to illustrate
by means of example how the presence of the various scattering
channels, corresponding to the different internal states, can
actually lead to non-Markovian behaviors. In particular we
consider the situation of purely elastic collisions in full
generality, also allowing for inelastic scattering in the case of
a two-level system. While the experimental setting is always
taken to be the same, the different number of internal degrees
of freedom involved and the presence or absence of inelastic
scattering events lead to more or less marked nonexponential
behaviors in the reduction of the visibility fringes.

1. Visibility formula

We first derive a formula for the visibility reduction in the
case of a double-slit experiment in the far-field approximation.
A beam of particles moves toward a grating perpendicular to its
direction of propagation, and with two identical slits separated
by a distance d, finally reaching a detector where the fringes
of interference are observed. During the flight through the
interferometer, the beam particles interact through collisions
with the environment in the background, thus undergoing
decoherence. We consider an initial product state, so that
in the notation of Eq. (20) one has ρi(0) = pi�(0), where
�(0) describes the translational degrees of freedom. If after
the passage through the collimation slits the test particle is
described by ρsl, then the double-slit grating prepares the initial
state [23]

�(0) = 2 cos

(
P · d
2h̄

)
ρsl cos

(
P · d
2h̄

)
. (36)

Setting

�(X,X,t) = 〈X|U(t)[�(0)]|X〉 := I (X) ,

we consider the quantity

V = Imax − Imin

Imax + Imin
,

which describes the reduction of the interference pattern with
respect to the free case. Exploiting the fact that the time
evolution generated by Eq. (31) is covariant under translations
[4,24], so that

U(t)[eiP·a/h̄�e−iP·a/h̄] = eiP·a/h̄U(t)[�]e−iP·a/h̄, (37)

one has, using Eq. (36),

V = 2
∣∣〈X − 1

2 d
∣∣U(t)[ρsle

−iP·d/h̄]
∣∣X − 1

2 d
〉∣∣〈

X − 1
2 d

∣∣U(t)[ρsl]
∣∣X − 1

2 d
〉 + 〈

X + 1
2 d

∣∣U(t)[ρsl]
∣∣X + 1

2 d
〉 , (38)

where t is now the time employed by the test particle to reach
the detector. Indeed this result remains true for any translation-
covariant time evolution.

For an initial factorized state of the test particle, we can
exploit Eq. (31) to obtain a closed formula for the time
evolution operator U(t) depending on the initial internal state,
that is, on the coefficients pi appearing in ρi(0) = pi�(0): the
numerator of Eq. (38) then reads

2

∣∣∣∣∣
∑

i

pi

∫
dsdλ

(2πh̄)3
e−iλ·s/h̄

〈
X − d

2
+ s

∣∣∣∣U0(t)[ρsle
−iP·d/h̄]

×
∣∣∣∣X − d

2
+ s

〉
e−�ii

∫ t

0 (1−	ii (λ(t−t ′)/M))dt ′
∣∣∣∣∣ ,

where U0(t) is the free evolution operator of the translational
degrees of freedom, so that〈

X − d
2

+ s

∣∣∣∣U0(t)[ρsle
−iP·d/h̄]

∣∣∣∣X − d
2

+ s
〉

=
〈

X − d
2

+ s

∣∣∣∣U0(t)[ρsl]

∣∣∣∣X + d
2

+ s
〉
. (39)

The latter expression can also be written〈
X − d

2

∣∣∣∣U0(t) [ρsl]

∣∣∣∣X + d
2

〉

=
(

M

t

)3

e−iMd·X/(h̄t)
∫

dYdY ′

(2πh̄)3
eiM(Y 2−Y ′2)/(2h̄t)

× e−iM X ·(Y−Y ′)/(h̄t)eiMd·(Y+Y ′)/(2h̄t)〈Y |ρsl|Y ′〉, (40)

assuming, due to symmetry, Tr (Xρsl) = 0.
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This formula enables us to implement the far-field approx-
imation. In fact, let σ be the width of the two slits, so that the
integrand is negligible if Y takes values outside the support
of ρsl (and similarly for Y ′), then MY 2/ (h̄t) � Mσ 2/ (h̄t)
and therefore, for a time long enough such that h̄t/M  σ 2,
the first exponential can be disregarded. The same applies
for the last exponential if h̄t/M  σd. For times longer
than max{Mσ 2/h̄,Mσd/h̄}, corresponding to the far-field
approximation, we get******〈

X − d
2

∣∣∣∣U0(t) [ρsl]

∣∣∣∣X + d
2

〉

≈
(

M

t

)3

e−iMd·X/(h̄t)ρ̃sl

(
M

t
X

)
, (41)

where ρ̃sl (·) is the distribution function for the momentum of
the particle in the state ρsl,

ρ̃sl

(
M

t
X

)
=

∫
dYdY ′

(2πh̄)3
e−iM X ·(Y−Y ′)/(h̄t)〈Y |ρsl|Y ′〉.

The equivalence between the assumption h̄t/M  σ 2 and
the far-field approximation L  σ 2/λ, where λ = h̄/Pz

is the wavelength associated with the test particle and L is
the distance between grating and detector, is easily seen from
the relation L = pzt/M , where pz is the component along the
z direction of the massive particle, assumed to be constant.
Substituting Eq. (39) in the numerator of Eq. (38) and using
the approximation ρ̃sl(M(X + s)/t) ≈ ρ̃sl (M X/t) which is
valid because of the localization of the state ρsl, we can easily
perform the integrals over s and λ, thus finally obtaining

2

(
M

t

)3
∣∣∣∣∣ρ̃sl

(
M

t
X

)∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pie
−�ii

∫ t

0 (1−	ii (d t ′−t
t

))dt ′
∣∣∣∣∣ .

For the denominator of Eq. (38), one can proceed in an
analogous way, using〈

X ± 1

2
d + s

∣∣∣∣U0(t) [ρsl]

∣∣∣∣X ± 1

2
d + s

〉

≈
(

M

t

)3

ρ̃sl

(
M

t
X

)
and performing the integral over λ, further observing that
	ij (0) = 1 for the normalization of P ij ( Q).

2. Nonexponential behaviors

The desired expression for the visibility in the absence of
inelastic scattering and for an arbitrary number of channels, n,
thus reads

V =
∣∣∣∣∣

n∑
i=1

pie
−�ii

∫ t

0 (1−	ii (d t ′−t
t

)) dt ′
∣∣∣∣∣ , (42)

where we recall that the probabilities pi give the weight of
the different internal states in the initial preparation. The
dependence on t in this formula can be easily made explicit
with the change of variable t ′/t = s so that one has

V =
∣∣∣∣∣

n∑
i=1

pie
−�ii (1−∫ 1

0 	ii (d(s−1)) ds)t

∣∣∣∣∣ . (43)

From Eq. (43) one can easily see the difference between
the Markovian situation, corresponding to n = 1, and the
general case. If there is just one term in the sum, the modulus
simply picks out the real part of the characteristic function
in the exponential and Eq. (43) describes an exponential
decay in time with a rate �(1 − ∫ 1

0 Re{	[d(s − 1)]}ds). This
can happen if only one internal energy state is populated in
the initial preparation or the scattering events are actually
independent of the internal state. If there are at least two terms,
the modulus can generate oscillating terms as a consequence
of the interference of the different phases arising since the
functions 	ii are generally complex valued. Even if the
imaginary parts of the characteristic functions are zero (i.e.,
the distribution functions of the exchanged momenta are even),
Eq. (43) can describe highly nonexponential behavior. In this
case in fact it reduces to

V =
n∑

i=1

pie
−�ii (1−∫ 1

0 	ii (d(s−1)) ds)t , (44)

that is, the sum of different exponential functions. As shown
in [6,25], this kind of relations can describe behavior very
different from the exponential one.

Let us consider in more detail the case of a two-level system.
Introducing the notation

αi := Re
∫ 1

0
{	i i[d(s − 1)]} ds

βi := Im
∫ 1

0
{	ii[d(s − 1)]} ds, (45)

the visibility reduction is explicitly given by

V = {
p2

1e
−2�11(1−α1)t + p2

2e
−2�22(1−α2)t + 2p1p2e

−�11(1−α1)t

× e−�22(1−α2)t cos[(�11β1 − �22β2)t]
}1/2

. (46)

This formula describes a decrease modulated by the oscilla-
tions produced by the cosine function. To illustrate this behav-
ior, in Fig. 1(a) we plot the visibility as a function of time, con-
sidering by means of example two Gaussian distributions. Note
that the appearance of the oscillations depends on a nonvanish-
ing mean value for the distribution functions P ii( Q) given by
Eq. (21), which describe the state-dependent momentum trans-
fers. This feature corresponds to a preferred direction in the net
momentum transfer between test particle and environment, as
happens, for example, by the interaction with a laser beam [26],
where the asymmetry in the single interaction channel is
determined in this case by the direction of propagation.

The behavior described by Eq. (43) for an n-level system
is illustrated in Fig. 1(b), where we show how the increased
number of levels can strongly suppress the oscillations and
lead to a reduction of the visibility. The dashed lines represent
the exponential decays pertaining to the Markovian situation
arising if only one of the internal energy states is initially
populated, where the one with the highest or lowest deco-
herence rate corresponds to the lower or upper dashed line,
respectively. It appears that with growing n the interference
between the contributions of the different channels to Eq. (43)
rapidly determines a decay of the visibility sensibly faster than
that occurring for the corresponding Markovian single-channel
dynamics. Indeed, Figs. 1(a) and 1(b) correspond to the same
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FIG. 1. (Color online) Plot of the visibility in a double-slit arrangement as a function of the interaction time with the environment, in
arbitrary units, for the case of elastic scattering events only, according to Eq. (43) and with number of channels increasing from left to right. The
dashed lines represent the Markovian exponential decays occurring if a single elastic channel prevails on the others, the ones with the highest
and lowest decay rate corresponding to lower and upper line, respectively. (a) Visibility for n = 2 elastic channels, according to Eq. (46). It
appears as a nonmonotonic decay as a consequence of the interference between the contributions of the two different elastic channels. The
coefficients αi and βi defined in Eq. (45) are calculated for two Gaussian distributions P11( Q) and P22( Q) of the exchanged momenta. Taking
d = dẑ as the direction of propagation inside the interferometer, we only need to specify the mean and the variance of the exchanged momenta
along this axis, µii and σii (i = 1,2), respectively. The plot is for p1 = p2 = 1

2 , while �11 = �22 = 10, d = 1, σ11 = σ22 = 0.1, µ11 = −0.2,
and µ22 = 0.3 in a.u.. (b) Visibility for n = 8 elastic channels according to the general expression of Eq. (43). The characteristic functions 	ii

are calculated starting from Gaussian distributions, assuming equal rates �ii = 10 and equal variances σii = 0.1 in arbitrary units as in (a). The
pi are uniformly distributed and the means µii are equally spaced in the range from −0.2 to 0.3 in a.u..

interaction strength but differ in the number of involved
degrees of freedom, ranging from n = 2 to n = 8.

Relying on the results of Sec. III B 2, one can also obtain
an expression of the visibility in the presence of inelastic
scattering for a two-level system. Indeed starting from Eq. (35)
and following the same procedure as before, one obtains

V =
∣∣∣∣∣e−�12t + �12e−�11t

∫ 1
0 (1−	11(d(s−1))ds

×
∫ t

0

(
e−�12t ′e+�11

∫ t ′
0 (1−	11(d(t ′′−t)/t))dt ′′

× 	12

(
d

t ′ − t

t

))
dt ′

∣∣∣∣∣, (47)

where for simplicity p2 = 1, and we have taken �22 = 0, so
that the oscillations in the visibility cannot be traced back to
interference among different components. An illustration of
the behavior of the visibility in this case has been plotted in
Fig. 2, and we always assume, for the sake of generality, a
Gaussian distribution of momentum transfers. In this case,
the dashed line corresponds to the exponential Markovian
decay occurring if only the elastic channel is involved in
the dynamics. It immediately appears that a nonmonotonic
behavior in the loss of visibility is also observed in this case
due to the multiple time integration in Eq. (35).

We have considered the visibility reduction as a function
of time. However, in typical interferometric experiments the
time of flight is fixed, and it is more natural to study the loss of
visibility as a function of the strength of the interaction with
the environment. In collisional decohrence, for a fixed time
of flight, this depends on the number of collisions, which

is directly proportional to the gas density or equivalently
to its pressure. As in the Markovian case, we can thus
express the visibility as a function of the pressure of the
background gas, which is the physical quantity directly tunable
in actual experiments [16]. Introducing the effective cross

2 4 6 8 10 12
t

0.2

0.4

0.6

0.8

1.0

V

FIG. 2. (Color online) Plot of the visibility in a double-slit
arrangement as a function of the interaction time with the environ-
ment, in arbitrary units, for the case in which one of the internal states
also undergoes inelastic scattering, according to Eq. (47) with n = 2.
It clearly appears a non monotonic decay of the visibility as a con-
sequence of the multiple time integration describing the contribution
of the inelastic channel. The distributions of momentum transfers are
assumed Gaussian, with σ11 = 1,σ12 = 3,µ11 = 1,µ12 = 5 in a.u.;
moreover �11 = 0.75 and �12 = 1.75. The dashed line corresponds
to the Markovian dynamics determined by the channel undergoing
elastic scattering only.

042111-9



ANDREA SMIRNE AND BASSANO VACCHINI PHYSICAL REVIEW A 82, 042111 (2010)

section σeff(P0,i) according to the relation [4]∑
j

∫
d QMii

jj (P + Q; Q) = ngas
P

M
σeff(P,i),

where the lhs denotes the classical loss term appearing in
Eq. (18), one has for an ideal gas

�ii
P0

= ngas
P0

M
σeff(P0,i) = p

MkBT
P0σeff(P0,i), (48)

where p is the pressure of the gas and T its temperature.
One can thus introduce a family of reference pressures
depending on the initial internal state of the particle entering
the interferometer:

pi
0 = MkBT

P0σeff(P0,i)t
, (49)

where t is the time of flight. Then Eq. (43) can equivalently be
written as a function of the pressure in the interferometer,

�ii
P0

t = p

pi
0

. (50)

This simply implies that the behavior of the visibility as a
function of time is equivalent to its behavior with respect to
the pressure and therefore the disturbance of the environment.

IV. CONCLUSIONS

We have derived the master equation describing the dy-
namics of a test particle with both translational and internal
degrees of freedom, interacting through collisions with a
low-density background gas. This was done by building on
the so-called monitoring approach [5] and confirms a previous
heuristic argument put forward by one of us in [6]. The
present microscopic derivation further allows the energy shift
to be determined. As we have checked, the result reduces
to known equations in suitable limits: the quantum linear
Boltzmann equation if the internal degrees of freedom are
neglected [4], the master equation for an immobile test particle
if the translational degrees of freedom are not relevant [5,14],
and quantum classical Markovian master equations if one or
both kinds of degrees of freedom can be treated as classical.
Note that the natural bases in the derivation were given by
momentum for the motional degrees of freedom and energy
for the internal ones, the latter corresponding to the channel
basis of scattering theory. In these cases, different channels
are only coupled through the collision term. If another internal
basis can be of interest, coherent tunneling effects also appear.

We have further focused on the situation in which the
internal degrees of freedom, in spite of influencing the
collisional scattering cross section, are not probed by
the measuring apparatus and therefore have to be averaged
out from the set of the observed dynamical variables, thus
effectively becoming part of the environment. The equation
obtained in this situation is no longer of Lindblad type but
rather takes the form of a generalized Lindblad structure [6,9].
It can therefore describe behavior quite different from that
characterizing a Markovian dynamics. Solving these equations
in the position representation for an initial factorized state,
we have obtained an explicit expression for the visibility
reduction in interferometric experiments when internal degrees

of freedom are involved. The behavior of the visibility
can indeed be quite different from the exponential decay
corresponding to a Markovian dynamics, showing up, for
example, as oscillations and revivals.

The interplay between different degrees of freedom in a
bipartite system is a natural source of non-Markovian behavior
when either of the degrees of freedom cannot be controlled,
thus acting as an environment. The scenario here has been
studied in a concrete setting, assuming a factorized initial state
and describing the dynamics in terms of a generalized Lindblad
structure. Such a choice of initial conditions is relevant for the
considered interferometric setting; however, it would be of
great importance to consider initially correlated states, which
naturally appear when considering a non-Markovian dynamics
in a strong-coupling regime. It would further be of interest
to study whether, instead of using this generalized Lindblad
structure, one can obtain a closed description of the reduced
system dynamics in terms of a master equation with a memory
kernel, at least in some simplified situations. We plan to address
these topics in future research work.
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APPENDIX: MICROSCOPIC DERIVATION
OF THE MASTER EQUATION

Here we address the derivation of the Markovian master
equation for the description of the dynamics of the test particle
starting from the general expressions of Eqs. (3) and (4). The
scattering and rate operators appearing in these equations are
best expressed using the factorization of the total Hilbert space,
Htot = Hsys ⊗ Hgas =Hc.m.⊗Hrel, according to

|P,i〉〈P ′,j | ⊗ | p〉〈 p′|gas = |rel( p,P),i〉〈rel( p′,P ′),j |rel

⊗ |P + p〉〈P ′ + p′|c.m., (A1)

where the Hilbert spaceCn associated with the internal degrees
of freedom is part of Hrel [27], and the notation is the same as
in Sec. II. In fact both operators act in a trivial way on center-
of-mass coordinates: � = Ic.m. ⊗ �0 and T = Ic.m. ⊗ T0. The
operator �0 is given by

�0 = ngas

m∗

∑
j

|rel(p,P)|σtot(rel(p,P),j) ⊗ |j 〉〈j |, (A2)

where σtot(rel( p,P),j) is the total cross section depending
on the initial relative momentum and internal state. The
relation [27]

〈 pf ,k|T0| pi ,j 〉 = 1

2πh̄m∗
δ

(
p2

f − p2
i

2m∗
+ Ekj

)
fkj ( pf , pi)

(A3)

links the operator T0 to the multichannel complex scattering
amplitudes fkj ( pf , pi), referring to scattering from an
initial momentum pi and internal state j to a final state
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with momentum pf and internal state k. According to
standard usage in scattering theory, we call channels the
asymptotically free internal energy eigenstates of the system.
The differential cross section is given by σkj ( pf , pi) =
(| pf |/| pi |)|fkj ( pf , pi)|2, so the total cross section appearing
in Eq. (A2) reads σtot( pi ,j ) = ∑

k

∫
d pf σkj ( pf , pi).

1. Evaluation of the Lindblad structure in momentum and
internal state basis

a. Incoherent contribution

We now first concentrate on the evaluation of the contri-
bution given by Eq. (3), which under suitable approximations
can be cast in Lindblad form, closely following [12], which
dealt with the special case of a test particle without internal
structure. To this end, we consider the matrix elements ofLρ in
the momentum and channel basis {|P,i〉} of the Hilbert space
L2(R3) ⊗ Cn associated with the test particle. Denoting by
µ( p) the stationary gas momentum distribution and exploiting
Eqs. (A2) and (A3) for the relevant operators, we can express
the result as in Eq. (5), where the complex rate functions

M
jl

ik (P,P ′, Q) := (2πh̄)3

|�|
∫

d p0µ( p0)〈rel( p0 − Q,P),i|

× T0�
1/2
0 |rel( p0,P − Q),j 〉

× 〈rel( p0,P ′ − Q)|�1/2
0 T†

0rel( p0 − Q,P ′)〉
(A4)

have been introduced, and |�| denotes the volume in which
the gas is confined. Note that M

jj

ii (P,P ; Q) can be interpreted
as classical rates for scattering of the test particle with
momentum P − Q and internal energy eigenstate j to a final
state with momentum P and internal energy eigenstate i. The
contributions on the rhs of Eq. (5) therefore play the role of
quantum gain and loss terms, also depending on the internal
degrees of freedom involved.

Relying on Eq. (5), we can now deal just with the complex
rates M

jl

ik (P,P ′; Q) defined in Eq. (A4). To proceed, it is
helpful to introduce the following functions of p0:

pi = rel

(
p0,

P + P ′

2
− Q

)
,

(A5)

pf = rel

(
p0 − Q,

P + P ′

2

)
,

which denote the mean of the pairs of initial and final relative
momenta appearing in M

jl

ik (P,P ′; Q) and which are related
by pi − pf = Q. Introducing also q = rel(0,(P − P ′)/2),
the complex functions M

jl

ik (P,P ′; Q) can be expressed as an
average over the gas distribution function µ of a complex
density in the center-of-mass frame

M
jl

ik (P,P ′; Q) =
∫

dp0µ( p0)mjl

ik( pf , pi ; q) (A6)

with

m
jl

ik( pf , pi ; q) = (2πh̄)3

|�| 〈 pf + q,i|T0�
1/2
0 | pi + q,j 〉

× 〈 pi − q,l|�1/2
0 T†

0| pf − q,k〉. (A7)

Evaluating this formula with Eqs. (A2) and (A3) for �0 and
T0, respectively, we obtain

m
jl

ik

(
pf , pi ; q

)
= 2πh̄

m∗|�|�
1/2
0 ( pi + q,j )�1/2

0 ( pi − q,j ′)

×δ

(
p2

f − p2
i

2m∗
− ( pf − pi) · q

m∗
+ Ekl

)

×δ

(
p2

f − p2
i

2m∗
+ ( pf − pi) · q

m∗
+ Eij

)

× fij ( pf + q, pi + q)f ∗
kl( pf − q, pi − q), (A8)

where �0( pi ,j ) = ngas| p|σtot( p,j )/m∗ is the eigenvalue of the
operator �0 relative to the state | p,j 〉.

The expression given by Eq. (A8) loses its meaning in the
infinite-volume limit due to the appearance of the arbitrar-
ily large normalization volume. This point was extensively
discussed in [12]. It is to be traced back to the fact that the
operator �, in order to provide the actual rate of collisions,
should involve a projection on the subspace of incoming wave
packets, which is not accounted for in Eq. (A7). To do this,
we now evaluate the operator � on a properly modified state
of the relative motion.

Before that, it is convenient to focus our attention on the
two δ functions appearing in Eq. (A8): employing the relation
δ(a)δ(b) = 2δ(a + b)δ(a − b), we can rewrite them as the
product

1

2
δ

(
p2

f − p2
i

2m∗
+ Eij + Ekl

2

)
δ

(
( pf − pi) · q

m∗
+ Eij − Ekl

2

)
.

These two constraints ensure that the scattering amplitudes
appearing in Eq. (A8) are evaluated on shell. The function
m

jl

ik

(
pf , pi ; q

)
gives a significant contribution to the integral

in Eq. (A6) when the two energy differences are approxi-
mately equal, so that Eij = Ekl , leading otherwise to rapidly
oscillating phases. This condition is actually necessary in
order to obtain a completely positive time evolution [13]. This
implies in particular that, integrating the generalized function
m

jl

ik

(
pf , pi ; q

)
with a function g(q), the contributions deriving

from the parallel component of q vanish:

m
jl

ik( pf , pi ; q)g(q) = m
jl

ik( pf , pi ; q⊥)g(q⊥). (A9)

We now therefore evaluate m
jl

ik

(
pf , pi ; q⊥

)
with a properly

modified state of relative motion, which takes into account the
restriction of the expression to states that actually describe a
colliding pair. To this end, we write the complex rate m

jl

ik as

m
jl

ik( pf , pi ; q⊥)

= 〈 pf + q⊥,i|T0�
1/2
0 exp

(
i
xrel · q⊥

h̄

)
ρ pi

⊗ |j 〉〈l|

× exp
(
i
xrel · q⊥

h̄

)
�

1/2
0 T†

0| pf − q⊥,k〉,
where ρ pi

denotes an improper state of relative motion,

ρ pi
= (2πh̄)3

|�| | pi〉〈 pi |. (A10)
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Since the rate operator � should have a vanishing expectation
value for those states of the relative motion that are not of the
incoming type, we make the replacement

ρ pi
⊗ |j 〉〈l| → ρ ′

pi
⊗ |j 〉〈l|

=
∫

� pi

dx‖ pi

|� pi
|
∫

� pi

dx⊥ pi

|� pi
|

∫
dweix·w/h̄

×
∣∣∣∣ pi − w

2
,j

〉〈
pi + w

2
,l

∣∣∣∣. (A11)

This corresponds to a restriction of the Wigner function asso-
ciated with the improper state of relative motion [Eq. (A10)]
from the entire normalization volume |�| to a cylinder
pointing in the direction pi , with base surface � pi

and height
� pi

. As in the case without internal degrees of freedom,
� pi

is approximately the distance traveled by the particle
between two subsequent collisions, while � pi

can now be
taken as the geometric mean of the total cross section of the
involved channels [5], that is to say |� pi

| = √
σ ( pi ,j )σ ( pi ,l)

and |� pi
| = (| pi |�t)/m∗, with �t the typical time interval

between two subsequent collisions.
Putting the new state, Eq. (A11), into Eq. (A7) and using

the expressions of the matrix elements of T0 and �0, we get

m
jl

ik( pf , pi ; q⊥)

=
∫

� pi

dx‖ pi

|� pi
|
∫

� pi

dx⊥ pi

|� pi
|

∫
dw exp

(
− i

x · w

h̄

)
1

(2πh̄m∗)2

× ngas

| pi |
δ

( p2
f − p2

i

2m∗
− w2

8m∗
− q⊥ · w

2m∗
+ Eij + Ekl

2

)

× δ

(
pi · w

| pi |
+ m∗

| pi |
(Ekl − Eij )

)

× fij

(
pf + q⊥, pi + q⊥ + w

2

)

×f ∗
kl

(
pf − q⊥, pi − q⊥ − w

2

)

×
√∣∣∣∣ pi + q⊥ + w

2

∣∣∣∣
∣∣∣∣ pi − q⊥ − w

2

∣∣∣∣
×

√
σ

(
pi + q⊥ + w

2
,j

)
σ

(
pi − q⊥ − w

2
,l

)
,

where we have once again exploited the relation δ(a)δ(b) =
2δ(a + b)δ(a − b). We now first perform the integral over
w‖ pi

, which denotes the component of w parallel to pi , thus
evaluating the second δ function on the rhs of the previous
equation, so that the dependence on x‖ pi

only appears in the
term ∫

� pi

dx‖ pi∣∣� pi

∣∣ exp

[
− i

h̄
x‖ pi

·
(

m∗
| pi |

(Eij − Ekl)

)
p̂i

]
,

where the hat symbol denotes the versor. The phase of the
integrand varies very quickly for (Eij − Ekl)  h̄/�t , where
�t is the typical time elapsing between collisions, so that, as
already discussed, its contribution vanishes unless Eij = Ekl ,
corresponding to a rotating-wave approximation, assuming a
separation of time scales between internal and translational

dynamics [3]. Further considering the integral over x⊥ pi
as an

approximate expression for δ(w⊥ pi
), we are led to

m
jl

ik( pf , pi ; q⊥)

= ngas

m2∗
χ

jl

ik fij ( pf + q⊥, pi + q⊥)

× f ∗
kl( pf − q⊥, pi − q⊥)δ

(
p2

f − p2
i

2m∗
+ Eij

)

×
√| pi + q⊥|| pi − q⊥|

| pi |

√
σ ( pi + q⊥,j )σ ( pi − q⊥,l)√

σ ( pi ,j )σ ( pi ,l)
,

where the χ
jl

ik act like a Kronecker’s delta factor, defined
according to

χ
jl

ik =
{

1 if Eij = Ekl,

0 otherwise.

In the last two terms, we can disregard the dependence on
q⊥ because we expect that a q⊥ integration will average out
the “far off-diagonal” contributions with large modulus |q⊥|,
where the phases of the two scattering amplitudes are no longer
synchronous. In conclusion, we have

m
jl

ik( pf , pi ; q⊥)

= ngas

m2∗
χ

jl

ik δ

(
p2

f − p2
i

2m∗
+ Ei − Ej

)

×fij ( pf + q⊥, pi + q⊥)f ∗
kl( pf − q⊥, pi − q⊥). (A12)

This relation determines the complex rate functions
M

jl

ik (P,P ′; Q) through Eq. (A6) and, therefore, the dissipative
part of the master equation according to Eq. (5).

b. Energy shift

As a last step in the determination of the structure of the
master equation, we need to evaluate the contribution given
by Rρ. In the same notation as above, and within the same
approximations, we directly obtain

〈P,i|Rρ|P ′,k〉
= 〈P,i|i Trgas{[�1/2Re(T)�1/2,ρ ⊗ ρgas]}|P ′,k〉
= 1

ih̄

∑
j

(
Eij

n (P)〈P,j |ρ|P ′,k〉 − Ejk
n (P ′)〈P,i|ρ|P ′,j 〉),

(A13)

with

Eij
n (P) = −2πh̄2 ngas

m∗
χ

jk

ik

∫
d p0µ( p0)

× Re[fij (rel( p0,P),rel( p0,P))]. (A14)

It is worth noting that, for the case of a nondegenerate free
internal Hamiltonian, this formula reduces to

〈P,i|Rρ|P ′,k〉 = 1

ih̄

(
Ei

n(P) − Ek
n(P ′)

) 〈P,i|ρ|P ′,k〉
with

Ei
n(P) = −2πh̄2 ngas

m∗

∫
d p0µ( p0)

× Re[fii(rel( p0,P),rel( p0,P))]. (A15)
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A. Operator expression of the master equation

We now recast the master equation, Eq. (1), whose
matrix elements are given by Eqs. (5) and (A13), in a way
that allows us to express it in a representation-independent
form. The key point is to show that M

jl

ik (P,P ′; Q) =∫
d p0µ( p0)mjl

ik( pf , pi ; q) can be factorized into two terms,
one depending on P and the other on P ′.

Changing the integration variable from p0 to pi and using
Eq. (A5) to obtain p0 = pi + ( pf + P)m/M + qm/m∗ =
pi + ( pf + P ′)m/M − qm/m∗, we have

M
jl

ik (P,P ′; Q)

= m3

m3∗

ngas

m∗
χ

jl

ik

∫
d piδ

(
p2

f − p2
i

2m∗
+ Eij

)

×µ1/2

(
pi + m

M
( pf + P) + m

m∗
q⊥

)

×µ1/2

(
pi + m

M
( pf + P ′) − m

m∗
q⊥

)

× fij ( pf + q⊥, pi + q⊥)f ∗
kl( pf − q⊥, pi − q⊥),

where we replaced q by q⊥ in the arguments of µ1/2, in
accordance with Eq. (A9). Remembering that pi − pf =
Q and q = m∗(P − P ′)/(2M), we consider the change of
variable

pi → m

m∗
pi + m

M

P⊥ + P ′
⊥

2
− m

m∗

Q
2

− Eij

Q2/m
Q (A16)

to obtain the desired factorization. If we further consider
that the δ function δ( p · Q/m) restricts the p integration
to the plane Q⊥ = { p ∈ R3 : p · Q = 0}, we finally arrive
at Eq. (6), with Lij ( p,P ; Q) as in Eq. (7), which allows
us to obtain the operator expression of the master equation
given by Eqs. (9) and (10). If the gas distribution function

µ is given by a Maxwell-Boltzmann probability density
µβ( p) = 1/(π3/2p3

β) exp(− p2/p2
β), where pβ = √

2m/β is
the most probable momentum at temperature T = 1/(kBβ),
these functions can be expressed in terms of the dynamic
structure factor for a Maxwell-Boltzmann gas [28,29],

SMB( Q,E) =
√

βm

2π

1

Q
exp

(
− β

8m

(Q2 + 2mE)2

Q2

)
. (A17)

In fact, using the relation

m

Q
µβ

(
p⊥ + m

M
P‖ +

(
1 + m

M

) Q
2

+ Eij

Q2/m
Q

)

= µβ( p⊥)SMB( Q,E( Q,P) + Eij ),

with E( Q,P) =: (P + Q)2/2M − P2/2M , the energy trans-
ferred to the center of mass in a collision changing the
momentum of the test particle from P to P + Q, Eq. (7)
can be written as [6]

Lij ( p,P ; Q) =
√

ngas

m2∗
µβ( p⊥)

√
SMB( Q,E( Q,P) + Eij )

×fij

(
rel( p⊥,P⊥) − Q

2
+ Eij

Q2/m∗
Q,

rel( p⊥,P⊥) + Q
2

+ Eij

Q2/m∗
Q

)
.

(A18)

In the latter expression for the Lindblad operators, the dynamic
structure factor appears to be evaluated for an energy transfer
corresponding to the sum of the contributions for center of
mass and internal state, as naturally expected. As discussed
in [4], the dynamic structure factor describes momentum and
energy transferred to the test particle when scattering off a
macroscopic system, thus allowing for a more transparent
physical understanding of the structure of the Lindblad
operators.
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