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ABSTRACT: An innovative methodology for diagenesis characterization and quantification is presented. It includes different geostatistical modeling

workflows applied to a partially dolomitized carbonate platform.

The case study consists of a Lower Cretaceous (upper Aptian) shallow-water carbonate platform from the Basque–Cantabrian basin (northern Spain),

in which a widespread burial dolomitization occurs. Previous studies at basin scale suggested that the flow of dolomitizing fluids through the carbonate

succession was channeled by regional faults and that subsequently the dolomite distribution was partially controlled by depositional facies and their

modifications after early meteoric diagenesis. Here, at reservoir scale, several carbonate facies were differentiated and grouped in five depositional

environments. Two depositional sequences corresponding to transgressive–regressive cycles and three stages of the platform evolution were

distinguished.

The statistical data treatment indicated that the dolomitization is mainly concentrated in the regressive part of the first sequence, corresponding to the

second stage of the platform evolution. The most dolomitized environments are the inner platforms and the shoal. Facies from these shallower/proximal

depositional environments were more exposed to early meteoric diagenesis, possibly controlling later dolomitization.

The total macroscopic porosity is directly proportional to the degree of dolomitization: pores are most abundant in fully dolomitized portions of the

succession, particularly in the rudist-bearing and grain-dominated facies. Abundant aragonitic shells (rudists, corals), easily leached or recrystallized

during early meteoric diagenesis, could justify the higher moldic porosity in these facies.

For geostatistical modeling purposes, several statistical rules were elaborated in order to associate to each depositional environment, in each of the

three platform stages, different proportions of dolomitization and related pore abundance. A direct simulation of the distribution of depositional

environments, degree of dolomitization, and pore abundance was achieved using a bi-plurigaussian simulation (PGS) algorithm. A nested-PGS

algorithm was used to simulate the same parameters independently: dolomite and pore abundance were distributed within each depositional

environment, based on the statistical rules previously defined. These simulations allowed three-dimensional (3D) visualization of the original

depositional facies and textures affecting the distribution of dolomitization and pore abundance.

Modeling using both bi-PGS and nested simulations accounted for the 3D dolomite body extension: the dolomitized succession is thicker in the

north and thins toward the south, in agreement with evidence from mapping of the dolomite geobodies.
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INTRODUCTION

The quality evolution of carbonate reservoirs may strongly depend
on depositional environments and associated facies, with their
intrinsic textures and primary mineralogy (Moore 2001, Ali et al.
2010, Morad et al. 2012, Nader 2015). These syn-sedimentary
features may induce different early diagenetic evolutions, which in
turn are commonly reflected in the distribution of burial diagenetic
overprints. In particular, carbonate reservoirs are characterized by
significant complexity due to their high reactivity potential, which
may induce changes of the initial reservoir properties through various
diagenetic processes (i.e., Morrow and MacIlreath 1990, Moore
2001). Dolomitization is a common diagenetic process affecting
carbonate reservoirs, and numerous studies have focused on the origin
of dolomites in different settings (see Warren [2000] and Machel
[2004] for a review). Understanding the petrophysical changes
induced in the original lithologies by dolomitization is a crucial topic
in hydrocarbon exploration as a result of the possible development of
secondary porosity associated with the dolomitization process (i.e.,
Sun 1995, Saller and Handerson 1998, Morad et al. 2012).

Through the proposed workflows and the use of innovative
simulation methods, this study contributes to the need to develop
modeling approaches that take into account the interplay between syn-
sedimentary features and subsequent diagenetic events, aiming to
better predict the overall distribution of reservoir heterogeneities. In
order to acquire strong knowledge of the factors governing the
heterogeneities in dolomitic reservoirs, it is necessary to characterize
their properties at different scales (basin, reservoir, plug, thin section)
and with multiple approaches (characterization, quantification,
modeling). The geological uncertainty, particularly as it regards
petrophysical property distribution in dolomitic reservoirs, could
indeed be reduced using geological modeling, which implies
systematic treatment of the characterization data. Indeed, through
sensitivity analysis, quantitative diagenesis properties can be added to
the set of unknown parameters, allowing a better estimate of
uncertainties.

Presently, three different numerical approaches are mainly used to
simulate diagenesis in geological models: geometry-based, geochem-
ical, or geostatistical approaches (Nader 2017). Geometry-based
models provide geometric distribution of heterogeneities as karstifi-
cation or fracture-related diagenesis. Geochemical modeling uses
thermodynamic and kinetic rules to simulate fluid–rock interactions.
Finally, geostatistical methods may be used to provide possible
distributions of reservoir property heterogeneities. This work will
focus on the use of geostatistical methods in workflows consistent
with the data properties, interdependencies, proxies, and facies–
diagenesis relationships in order to provide pertinent distribution of
the petrophysical properties (here macroporosities) within reservoirs.

A wide range of geostatistical methods and algorithms dedicated to
lithotype simulations have been developed in the past; they can be
ranked from pixel-based (Sequential Gaussian, Truncated Gaussian,
Sequential Bayesian Simulations) to object- or process-based models
(Journel and Isaaks 1984, Matheron et al. 1987, Srivastava 1993, Galli
and Beucher 1997, Armstrong et al. 2011, Strebelle and Cavelius
2014 [among others]). Some of these methods have recently been used
to simulate sedimentary facies and associated diagenesis overprints
(Labourdette 2007, Pontiggia et al. 2010, Barbier et al. 2011, Doligez
et al. 2011, Blázquez-Fernández 2013, Gasparrini et al. 2015, Hamon
et al. 2015) and have shown how essential it is to account for
quantitative relationships between the depositional lithofacies and the
overprinting diagenetic phases (e.g., cements, dissolution, replace-
ments) in order to obtain a consistent distribution of petrophysical
properties in the reservoirs. Indeed, one key point for successful
reservoir modeling has been demonstrated to be the quantitative

integration of the diagenetic overprint in the sedimentary model
(Labourdette 2007, Pontiggia et al. 2010).

A Lower Cretaceous (upper Aptian) shallow-water carbonate
platform from the northwestern Basque–Cantabrian basin (northern
Spain), affected by widespread burial dolomitization, was chosen as
the case study. Previous diagenetic studies at basin scale (López-Cilla
2009; López-Cilla et al. 2009, 2013, 2016) suggested that regional
faults played a role in channeling the dolomitizing fluids through the
platform carbonate pile and that depositional facies and their
modifications after early meteoric diagenesis could have further
controlled the distribution of burial dolomitization. These working
hypotheses formulated at basin scale were tested at the reservoir scale
via a complete modeling workflow including field and subsurface data
acquisition, statistics of sedimentary–diagenetic properties, and their
geostatistical simulation (Fig. 1).

A manageable field-work area was selected in the studied basin,
where vertical and lateral relationships between dolomite and original
depositional facies can be observed and where shallow subsurface
mine cores, provided by the Instituto Geológico y Minero de España
(IGME) are available. The aim was to investigate the main controls on
the distribution of dolomitization and the effects on the reservoir
properties by testing an innovative methodology of diagenesis
characterization and quantification, as well as different geostatistical
approaches. The entire workflow included several tasks: from field
and subsurface data acquisition (stratigraphic logs and facies analysis)
to the construction of a geometrical model and from statistical
characterization of sedimentary and diagenetic properties (using a log
processing tool for well data treatment) to their geostatistical modeling
(using advanced geological property grid simulation algorithms).

GEOLOGICAL SETTING

Paleogeography and Tectonics

The study area is located in the northwestern margin of the Basque–
Cantabrian basin (Fig. 2), in the Cantabria Community of northern
Spain. Geologically, this region has been referred to as the North-
Cantabrian basin (Wilmsen 2000, 2005; Martı́n-Chivelet et al. 2002;
Najarro et al. 2007), which formed during the Mesozoic–Early
Cenozoic by continental rifting linked to the opening of the Bay of
Biscay and the North Atlantic Ocean (Le Pichon and Sibuet 1971, Rat

FIG. 1.—Schematic multidisciplinary modeling workflow used.
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1988, Malod and Mauffret 1990, Olivet 1996). As a result of the
extensional movements, the North-Cantabrian basin underwent strong
structural segmentation in a series of horsts and tilted blocks, mainly
outlined by syn-sedimentary NE–SW, and E–W oriented faults
(Najarro 2015; Fig. 2), which created subbasins and controlled
differential subsidence and variations in facies, thicknesses, and
stratigraphy over short distances during the Early Cretaceous. These
subbasins were filled by syn-rift continental and epicontinental,
transitional, and shallow-marine deposits. The studied sections form
part of the Lower Cretaceous succession of the Santillana block, a
depocentral area flanked by the Bustriguado and Peña Castillo fault
systems, with relatively less subsident paleo-highs in the La Florida
and Cuchı́a blocks (Najarro 2015; Fig. 2).

Postrift deposition occurred during the Late Cretaceous and formed
a transgressive ramp succession with mainly shallow to outer

carbonate platform deposition. Subsequently, basin inversion resulted
from convergence between the Iberian and European plates from
Santonian to Miocene times. According to the geological data, in the
North-Cantabrian basin, the first compressive phases were recorded in
the Upper Eocene (Hines 1985, Rat 1988).

General Stratigraphy

As a result of tectonics and eustasy, the North-Cantabrian basin was
flooded during the Early Aptian, transforming vast areas formerly
characterized by terrigenous deposition (Wealdean facies) into shallow
marine environments (Rat 1988). This transgression gave rise to the
development of widespread carbonate deposition during the Aptian,
resulting in the so-called ‘‘Urgonian complex’’ (Rat 1959, Garcı́a-
Mondéjar 1990). Carbonate rocks belonging to the Urgonian complex

FIG. 2.—Geological map of the North-Cantabrian basin, with the location of the study area represented by a black square (modified after Hines

1985). The line A-B-C-D indicates the trace of the stratigraphic cross section represented below, showing the restored geometry of the basin

(after Najarro et al. 2011). BF stands for the Bustriguado fault system.
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consist of shallow-water rudist and coral-dominated limestones with
lateral and vertical transitions to continental-transitional siliciclastics
and to deeper-water intraplatform basinal marlstones and other basinal
sediments (e.g., Rosales 1999).

In the Urgonian complex of the North-Cantabrian basin four main
carbonate platform episodes were recorded during the earliest Aptian
(Rábago and Umbrera formations [Fms.]; early Bedulian), late Early
Aptian (San Esteban Fm., late Bedulian), Late Aptian (Reocı́n Fm.,
middle Gargasian–Clansayesian), and Middle–Late Albian (Barcena-
ciones Fm.) (Hines 1985, Najarro et al. 2011, Najarro 2015,
Schlagintweit et al. 2016; Fig. 3). Each of these platform stages was
capped by subaerial unconformities followed by transgressive marly and
siliciclastic deposits. Major regression in the area during the Early
Albian, on the top of the Reocı́n Fm., resulted in widespread platform
exposure, with development of paleokart, and local progradation of
deltaic deposits of the Las Peñosas Fm. (Najarro 2015; Fig. 3). Detailed
lithological descriptions and age information for these stratigraphic
formations are given by previous authors (e.g., Garcı́a-Mondéjar 1982,
Hines 1985, Najarro et al. 2011, Najarro 2015, Schlagintweit et al. 2016).

Dolomite Bodies of the Reocı́n Fm

This work focuses on the late Aptian Reocı́n Fm. (7–300 m thick),
which consists mainly of shallow-marine wackestone and packstone
characterized by the occurrence of rudists, corals, miliolids,
orbitolinids, and other benthic foraminifers (e.g., Martı́n-Chivelet et
al. 2002, Najarro et al. 2007, Schlagintweit et al. 2016). The studied
sections are located in the depocentral Santillana block (Fig. 4). Here,
the Reocı́n Fm. shows a mean sedimentary thickness of about 210 m,
and it is internally subdivided into two carbonate platforms
transgressive–regressive sequences (Najarro et al. 2007, Najarro
2015). Only the first sequence and the lower part of the second
sequence have been analyzed in this study, which deals with burial, tan

to brown-colored, stratabound dolostone bodies, extending laterally

for several tens of kilometers. The dolomites preferentially replaced

the first carbonate sequence of the Reocı́n Fm. and particularly its

central part (Fig. 4). Previous diagenetic studies at basin scale

suggested that the dolomitizing fluids were channeled through the

carbonate succession by the main regional NE–SW and E–W oriented

faults. Subsequently, a control on the distribution of the burial

dolomitization was operated by depositional facies and their

modifications after early meteoric diagenesis (López-Cilla 2009;

López-Cilla et al. 2009, 2013, 2016). Detailed petrography,

geochemistry, and microthermometry suggested a burial genesis for

the massive dolomitization (e.g., López-Cilla et al. 2016). The

dolomites pervasively replaced matrix, grains, fossils, and early

cements. In the study area, however, the dolomitization is partly

fabric-retentive (mimetic), preserving the main depositional features,

such as textures, grain size, and fossil relics (rudists, orbitolinids, and

other bioclasts). At present, these dolostone bodies comprise the main

regional aquifer and represent analogues for good-quality oil and gas

reservoirs as a result of the presence of various amounts of

intercrystalline, moldic, and vuggy pores. Additionally, these pores

may host Mississippi Valley–Type Pb–Zn mineral deposits (Reocı́n

Mine District; Bustillo and Ordoñez 1985, Velasco et al. 2003).

DATABASE AND METHODOLOGY

In this study, prior to modeling the spatial distribution of carbonate

facies, amount of dolomitization, and reservoir properties, a

comprehensive characterization of the studied succession was

performed. The methodology included detailed logging and descrip-

tion of field sections and well-cores (both hereafter referred to as

‘‘wells’’), statistical analyses of the well attributes, and, finally, three-

dimensional (3D) geostatistical modeling of the different properties.

FIG. 3.—Lithostratigraphic framework of the pre-Cenomanian deposits of the Santillana block in the North-Cantabrian basin (modified after

Najarro et al. 2011).
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Field-work Database

Sedimentological and diagenetic descriptions that constitute the

database of this study have been made on six stratigraphic sections

logged along the first sequence and the transgressive part of the

second sequence of the Reocı́n Fm. (location map from satellite image

in Fig. 5): four outcrop sections (named, from W to E, Duña, Santa

Eulalia, Nieves Base, and Nieves Top) and two well-cores (named

SC1 and SC6bis) located north of the outcrop area and drilled by the

mine company Asturiana del Zinc S.A. The cores are stored in the
IGME core repository (Peñarroya).

A classical field and core description methodology for each section
has been followed: lithology, textures (sensu Dunham 1962),
sedimentary structures, fossil content, and surfaces were recorded.
The sections have been logged by including also the description and
visual quantification of diagenetic properties on hand specimen fresh
cuts (for outcrop sections) and on polished slabs (for core sections).
The degree of dolomitization and the dolomite crystal size, as well as
the type, size, and abundance of macroscopic pores, were also
reported. Diluted HCl and magnification lenses helped in this respect.
Intercrystalline, moldic, and vuggy pores were distinguished based on
the Choquette and Pray (1970) classification, while fractures (and
related porosity) were not reported in the logs. Sedimentological and
paleoenvironmental interpretations were based on these field obser-
vations. Fifty rock samples were collected with specific focus on
facies and diagenetic property changes. Conventional optical
petrography was accomplished on thin sections and used for a quality
check of the macroscopic visual estimations reported on the logs.

Statistical Analysis

The descriptive properties derived from the macroscopic observa-
tions (e.g., facies, dolomite abundance, pore size, etc.) of the six
logged sections (here also referred to as ‘‘wells’’) were converted into
numerical codes. These codes served as input in the EasyTracee

software in order to transform the original data set into quantitative
and semiquantitative data and to achieve the statistical analysis.

Using EasyTracee multivariate statistical analysis on the whole
data set has allowed us to highlight the links between depositional
facies and the diagenetic properties of interest and their mutual
relationships.

Geostatistical Modeling

Geostatistical modeling workflows have been used to simulate
sedimentary facies and associated diagenesis overprints (as proposed
by Doligez et al. 2009, 2011; Pontiggia et al. 2010; Hamon et al.
2015). The statistical analysis produced quantitative statistical

FIG. 5.—Satellite image illustrating the location of the outcrop

sections and well-cores investigated in this study.

FIG. 4.—Panoramic view of the studied succession of the Reocı́n Fm. in the Santa Eulalia outcrop (Santillana block). A large, brown-colored

stratabound dolomite body can be observed in the central part of the carbonate lithosome. The red lines (PT1 and PT2) represent

transgressive surfaces, which have served as correlation lines between the sections analyzed in this study.

134 M. GASPARRINI, I. LÓPEZ-CILLA, S. BLÁZQUEZ-FERNÁNDEZ, I. ROSALES, O. LERAT, J. MARTÍN-CHIVELET, AND B. DOLIGEZ

//titan/Production/s/sepb/live_jobs/sepb-16/sepb-16-02/sepb-16-02-07/layouts/sepb-16-02-07.3d � 5 April 2018 � 9:00 am � Allen Press, Inc. � Customer ID: 2016-complex_carb_res-062R1 Page 134
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/4535727/sepb-16-02-130-153.pdf
by UNIVERSITA DEGLI STUDI DI MILANO user
on 10 June 2020



distributions of properties within the different depositional facies and

environments. These statistics have been used to calibrate parameters

for the geostatistical simulations. In this work, we have used two

different workflows (using in-house advanced geostatistical property

simulation algorithms) to achieve the final goal of producing a

numerical model of the studied reservoir with consistent facies,

depositional environments, dolomitization, and macroporosity prop-

erties.

A first workflow (named ‘‘workflow1’’ or ‘‘double-nested work-

flow’’; Fig. 6) was built to better illustrate the distribution of

dolomitization and pore abundance in the studied area from

simulations of the distribution of depositional environments and

diagenetic property quantification. Each consecutive step of the

workflow is represented in Figure 6. Since depositional environments,

degree of dolomitization (i.e., amount of dolomite), and pore

abundance have been proven by the previously undertaken statistical

study to be three dependent properties, the workflow integrates three

main steps dedicated to the simulation of each of these properties

within each of the identified sedimentary units in a double-nested
approach, as follows:

� Step 1—Simulation of the distribution of depositional environments
using bi-plurigaussian simulation (PGS);

� Step 2—Simulation of the distribution of the amount of dolomite,
depending on the depositional environment, using a nested
approach (PGS simulation of the amount of dolomite within each
depositional environment); and

� Step 3—Simulation of the pore abundance, depending on the
amount of dolomite and the depositional environment, using a
second step of nested PGS simulation.

A second workflow (named ‘‘Workflow2’’ or ‘‘bi-PGS workflow’’;
Fig. 7) has been tested using combinations of two plurigaussian
simulations to co-simulate dependent properties (bi-PGS). The
general idea is to generate a model of the depositional environment
distribution that can be controlled by the conceptual geological
knowledge using a PGS method. The diagenetic imprint distribution
(degree of dolomitization in this case) is generated using the

FIG. 6.—Workflow1 or double-nested workflow with the following steps: Step 1—Simulation of the distribution of depositional environments

(ENV); Step 2—Nested simulation of the distribution of the amount of dolomite (D in each ENV); Step 3—Nested simulation of the

distribution of the pore abundance (U) within each couple ENV-D.

135GEOSTATISTICAL WORKFLOWS FOR DOLOMITIZED PLATFORMS

//titan/Production/s/sepb/live_jobs/sepb-16/sepb-16-02/sepb-16-02-07/layouts/sepb-16-02-07.3d � 5 April 2018 � 9:00 am � Allen Press, Inc. � Customer ID: 2016-complex_carb_res-062R1 Page 135
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/4535727/sepb-16-02-130-153.pdf
by UNIVERSITA DEGLI STUDI DI MILANO user
on 10 June 2020



quantified proportions between the initial rock textures and their
subsequent alteration (diagenesis) and a second PGS simulation, the
parameters of which are conditioned by the association rules
between depositional environments and diagenetic properties of
interest. Using this second plurigaussian simulation means that
continuity in the diagenetic property from one cell to another can be
obtained, even if the sedimentary facies changes between these cells
(which would not be possible with a nested approach; Doligez et al.
2011).

RESULTS OF SEDIMENTOLOGY AND
STRATIGRAPHY

Based on the information collected along the six detailed
sedimentological logs investigated, a facies analysis study was
performed, different conceptual depositional models were established,
and a sequential correlation was accomplished.

Facies Analysis

Sixteen depositional lithofacies plus two diagenetic lithofacies
(excluding dolomitization) have been distinguished throughout the
logged sections of the Reocı́n Fm. (18 lithofacies in total; see Table 1).
The 16 depositional lithofacies have been defined based on
macroscopic observations of lithology, texture, allochems, paleonto-
logical constituents, and sedimentary structures, along with additional
information obtained from microfacies analysis on thin sections.

Where the studied lithologies are dolomitized, the identification of
the original depositional lithofacies is more complex but is still made
possible by the relatively good preservation of original bedding,
depositional structures and textures, and specific fossil components
or molds. Thus, according to the preserved fabrics, six dolo-textures
have been distinguished: dolo-mudstone, dolo-wackestone, dolo-
floatstone, dolo-packstone, dolo-grainstone, and dolo-rudstone (Fig.
8). For instance, the dolo-rudstone is the dolomitized equivalent of

FIG. 7.—Workflow2 or bi-PGS-nested workflow with the following steps: Step 1—Co-simulation of the distribution of environments (ENV) and

amount of dolomite (D) using the new bi-PGS method; Step 2—Nested simulation of the distribution of pore abundance (U) within each

couple ENV-D.
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the rudist–boundstone facies. In the cores, two additional diagenetic
lithofacies have been distinguished, where the original limestone
texture could not be recognized: hydraulic breccias and dedolomite
(H and D in Table 1). The latter includes strongly dedolomitized and
weathered lithologies that could not be attributed to a specific
depositional lithofacies. These two diagenetic lithofacies (hydraulic
breccias and dedolomite) do not have any relationship to deposi-
tional lithofacies, and they have not been modeled. The limestone
facies and their dolomitized equivalents have been grouped into four
main classes based on the depositional or diagenetic fabrics: grain-
supported (GS), mud-supported (MS), boundstone (BS), and
diagenetic facies (D, H). The facies analysis information is
summarized in Table 1 and Figure 8.

Facies Associations and Depositional Environments

The 16 depositional lithofacies identified have been grouped into
five facies associations based on genetic facies relationships and
depositional environments, as follows: outer platform (OP), transi-
tional outer–inner platform (T), shoal (S), inner open platform (IO),

and inner restricted platform (IR). The main characteristics of the

lithofacies types comprising these facies associations are summarized

in Table 1 and Figure 9.

Outer Platform (OP): Bioturbated marlstones and argillaceous

nodular limestones (MS-5), laminated, fine grained peloidal–forami-

niferal packstone (GS-1), orbitolinid-rich packstone (GS-2), and coral

wackestone (MS-4) dominate this facies association. The most

common skeletal components are orbitolinids, small benthic foramin-

ifers, echinoderms, sponge spicules, oysters, and massive corals. This

facies association is interpreted as being deposited in outer parts of the

platform under low-energy hydrodynamic conditions. The presence of

corals suggests water depth within the photic zone.

Transitional Outer–Inner Platform (T): This facies association

consists of medium to fine grained packstone and grainstone with

peloids and micritized grains, bioclasts, miliolids, orbitolinids, small

benthic foraminifers, coral fragments, and sponges (GS-4). It is

interpreted as being deposited under moderate-energy hydrodynamic

TABLE 1.—Summary of the 18 lithofacies (depositional and diagenetic) identified from outcrops and cores and grouped according to the
depositional environment of provenance. The table also includes sedimentology and paleoecology information for each of these facies.
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conditions, in an open environment at the transition between the outer

and the inner platform.

Shoal (S): It consists of wavy and cross-laminated, medium- to

coarse-grained, bioclastic and intraclastic grainstone (GS-3). The main

components include intraclasts, echinoderm debris, micritized grains,

benthic foraminifers, bryozoans, crinoidal ossicles, bivalve and coral

fragments, and quartz sand grains. The sedimentary structures and

textures suggest a high-energy hydrodynamic environment above or

close to the fair-weather wave base, most likely representing sand

shoal complexes, with sand waves and sand channels, deposited in a

shallow subtidal platform margin setting.

Inner Open Platform (IO): It is mainly composed of packstone

and grainstone with miliolids (GS-5), corals (GS-6), Lithocodium–

Bacinella lumps (GS-7), and rudstone of Lithocodium–Bacinella
oncoids (GS-8). Frequent allochems in these lithofacies are branching
corals (fragmented or in live position), miliolids, benthic foraminifers,
and green codiacean and dasycladalean algae, as well as lumps and
ameboidal oncoids of the problematic Lithocodium–Bacinella calci-
fying cyanobacteria (Riding 1991). These lithofacies are stacked
aggradationally at the upper part of the studied succession.

The presence of branching corals and green algae suggests
shallow platform environments under normal-salinity seawater. The
microbial Lithocodium–Bacinella facies have been reported in a
wide range of water depth, from deep subtidal to shallowest subtidal

FIG. 8.—Textures identified from field and core observations. A, B)

Dolomudstone in outcrop and core views, respectively; C, D)

Dolo-floatstone, with rudist molds, in outcrop and core views,

respectively; E, F) Dolo-rudstone with large rudist molds, in

outcrop and core samples, respectively; G) Dolo-packstone, with

orbitolinid molds, in a core sample; H) Dolo-grainstone in outcrop

view with cross bedding.
FIG. 9.—Conceptual depositional models of the three stages of the

platform evolution. Stage 1 is a transgressive, mainly grain-

dominated open platform. Stage 2 is a regressive platform with

inner restricted and shoal marginal environments. Stage 3 is

characterized by transgressive open platform facies. Lithofacies

colors and codes as in Table 1.
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and even intertidal conditions, with maximum depth limited to the

photic zone (Neuweiler and Reitner 1992, Rameil et al. 2010). Their

proliferation has been associated with either shallow-water platform

environments with open marine conditions (Hamdan and Alsharhan

1991) or open lagoonal environments under specific paleoceano-

graphic conditions of high trophic levels (Immenhauser et al. 2005,

Huck et al. 2010, Bover-Arnal et al. 2011). Here, according to the

biotic assemblage, this facies association is interpreted as being
deposited in inner open platform environments.

Inner Restricted Platform (IR): It is formed predominantly by
muddy lithofacies that include foraminiferal wackestone–mudstone
(MS-1), bio- and peloidal wackestone (MS-2), rudist and Lithoco-

dium–Bacinella floatstone (MS-3), Lithocodium–Bacinella bound-
stone (BS-1), and rudist boundstone (BS-2). The rudist-dominated

FIG. 10.—Correlation diagram of the logged sections with interpretation of lateral and vertical distribution of depositional environments and

depositional (T–R) sequences: transgressive (T), regressive (R), peak transgression (PT), peak regression (PR). Lithofacies colors and codes

as in Table 1.
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floatstone and boundstone are volumetrically the most representative
lithofacies types. Rudist boundstone banks are one to several meters
thick and tens to hundreds of meters long, with the rudists bound
together mainly in life position. Rudist types include requieniids
(dominant), polyconitids, and radiolitids. The muddy carbonate
factory and the occurrence of requieniids mainly in life position
suggest deposition in a low-energy, muddy inner platform or lagoon
with restricted water circulation (e.g., Masse and Philip 1981, Masse
and Fenerci-Masse 2011).

Lithofacies Trends and Sequences

Based on vertical-deepening and shallowing-upward trends of
lithofacies and identification of some key stratigraphic surfaces, two
transgressive–regressive (T–R) sequences (Vail et al. 1991, Embry 1993)
have been recognized for the studied succession of the Reocı́n Fm. (Fig.
10). Below these two sequences (Sequences 1 and 2; Fig. 10), the most
regressive part of an older depositional sequence, corresponding to the
transition between the Rodezas and Reocı́n Fms., can also be observed.

Sequence 1 is approximately 85 m thick. It has a transgressive part
that measures approximately 31 m, composed mainly of marlstone and
marly limestone (MS-5) and orbitolinid packstone (GS-2), with sparse
interbedded meter-scale intercalations of bioclastic–intraclastic grain-
stone (GS-3). The peak transgression is placed on the top of the
thickest marly interval (PT1 in Figs. 4, 10). The regressive part is
about 54 m thick and is characterized by rudist-bearing lithofacies
(MS-3, BS-2) accompanied by nerineid gastropod, peloidal, and
foraminiferal wackestone (MS-1, MS-2, MS-6) and boundstone of
Lithocodium–Bacinella masses (BS-1).

As a result of the lack of evidence for subaerial exposure, the
boundary between Sequences 1 and 2 (PR in Fig. 10) is expressed by a
change from inner-platform rudist-dominated facies to open platform
orbitolinid-rich marlstones and coral and Lithocodium–Bacinella
limestones.

Sequence 2 is at least 60 m thick, and only the transgressive part of
the cycle is studied here (Fig. 10). These transgressive deposits are
characterized by the occurrence of aggradational, grain-dominated
deposits with extensive development of corals and Lithocodium–
Bacinella lumps and oncoids (GS-5, GS-6, GS-7, GS-8). The
maximum flooding zone (PT2 in Figs. 4, 10) has been placed within
a marly bed with orbitolinids that constitutes the upper datum for
correlation between the studied sections.

Three stages of platform evolution have been differentiated
(Blázquez-Fernández 2013; Fig. 9). Stage 1 occurs during the
transgressive phase of Sequence 1. It is characterized by T and OP
environments dominated by marly and grain-supported lithofacies.
Stage 2 characterizes the regressive phase of Sequence 1. It is
characterized by IR or lagoonal environments with proliferation of
rudist-bearing facies, and grain-dominated S environment toward
marginal settings. Stage 3 occurred during the transgressive phase of
Sequence 2. It is dominated by IO environments, deposited in a
transgressive setting, characterized by grain-supported textures with
coral and Lithocodium–Bacinella lumps (Fig. 10).

Using the whole facies analysis information, five paleoenviron-
mental maps were constructed: two for Stage 1, two for Stage 2, and
one for Stage 3 (Blázquez-Fernández 2013). They were used to better
constrain the modeling of the geological properties (see next sections).

RESULTS OF STATISTICAL ANALYSIS

The statistical analysis was accomplished to highlight relationships
and interdependence between the sedimentological and diagenetic
parameters described during field-work: principally facies, deposi-
tional environments, dolomite abundance, and pore abundance. In
order to enter the information from the field-work data set into the

EasyTracee software the classes established for each parameter were
expressed using numerical codes (Table 2).

The original limestone lithofacies (Table 1) and their dolomitized
counterparts have been distinguished for the statistical treatment in 21
facies classes (Table 2). These facies classes were grouped into five
broader classes (referred to as ‘‘Facies Groups’’ in the figures and
tables), mainly on the basis of the texture, grains size, and dominant
bioclast. These are muddy facies (code 1), fine grained facies (code 2),
medium-coarse grained facies (code 3), rudist-rich (or bearing) facies
(code 4), and diagenetic facies (code 5).

The different depositional environments (referred to as ‘‘Environ-
ment’’ in the figures and tables) were coded as follows (Table 2): OP
(code 1), T (code 2), IR (code 3), IO (code 4), and S (code 5).

For the amount of dolomite (referred to as ‘‘Dolo Quantity’’ in the
figures and tables), six classes were distinguished (Table 2): 0% of
dolomite (code 1), less than 10% of dolomite (code 2), dolomite in the
range of 10 to 25% (code 3), dolomite between 25 and 50% (code 4),
dolomite in the range of 50 to 75% (code 5), and dolomite between 75
and 100% (code 6). For geostatistical modeling purposes these initial
six classes were later grouped in three broader classes: undolomitized
lithologies (named D1) with dolomite in the range of 0 to 10%
(including codes 1 and 2); partially dolomitized lithologies (named
D2) with dolomite in the range of 10 to 75% (including codes 3, 4,
and 5); and fully dolomitized lithologies (named D3) with dolomite in
the range of 75 to 100% (including code 6).

The abundance of pores (referred to as ‘‘Pore Abundance’’ in the
figures and tables) was coded as follows (Table 2): absent pores (code
1), rare pores (code 2), rare to common pores (code 3), bimodal rare
and abundant pores (code 4), common pores (code 5), common to
abundant pores (code 6), and abundant pores (code 7). Code 4 (rarely
observed) refers to samples that contain two different types of porosity
(e.g., moldic and intercrystalline or moldic and vuggy), being,
respectively, rare and abundant. For geostatistical purposes, these
seven initial classes were later grouped into five broader classes by
merging together classes 3 and 4 and classes 5 and 6.

In the following histograms, representing the results of the
statistical treatment, the values reported as ‘‘777’’ correspond to
undefined, but not null, values in the log data set. This is because at
the same well depth information is not available for all properties.
These values were not taken into account when computing statistics
(mean, standard deviation, etc.).

TABLE 2.—Tables summarizing the codes attributed to each property
examined for statistics.
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In terms of dolomite abundance (‘‘Dolo Quantity’’), the analysis on
the complete succession, including the three platform stages, shows
that 44% of the total rock volume is fully dolomitized (75–100% of
dolomite; D3), 45% is not dolomitized or poorly dolomitized (,10%
of dolomite; D1), and 11% is partially dolomitized (10–75% of
dolomite; D2).

In terms of pore abundance (‘‘Pore Abundance’’) in the whole
succession, 60% of the total rock volume displays pores falling in the
‘‘absent’’ and ‘‘rare’’ classes (codes 1 and 2) and 22% is given by pores
in the ‘‘rare to common’’ and ‘‘common’’ classes (codes 3 and 5),
whereas only 17% of the rock volume displays pores in the ‘‘common
to abundant’’ and ‘‘abundant’’ classes (codes 6 and 7). Class 4 is
poorly represented in the succession.

With regard to the relative abundance of depositional environments
(‘‘Environment’’) in the whole succession, the IR is the best
represented, although some differences are highlighted when observ-
ing the facies distribution for each of the three platform stages
individually (Fig. 11). Moreover, the distribution of depositional
environments through the different stages of the platform is also
reflected in different proportions of dolomitization and associated
macroscopic pores. Indeed, in Stage 1 (Fig. 11A), which is dominated
by T (code 2) and OP (code 1) environments, the fully dolomitized
rock volume (code 6) represents less than 10%, and the pores are
dominantly (.70%) absent. In Stage 2 (Fig. 11B), the dominant
environment is the IR (code 3), with appearance of minor S (code 5).
This is the most dolomitized of the three stages, in which the fully

FIG. 11.—Frequency distribution of the ‘‘Environment,’’ ‘‘Dolo Quantity,’’ and ‘‘Pore Abundance’’ for the three stages of platform evolution. A)

Stage 1 (89 samples). B) Stage 2 (190 samples). C) Stage 3 (159 samples). See Table 2 for the code explanation.
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dolomitized rock volume (code 6) accounts for 60% of the total. Here

the pore abundance shows a more complex distribution: ‘‘absent’’ and

‘‘rare’’ classes (codes 1 and 2) account for about 38%, ‘‘rare to

common’’ and ‘‘common’’ classes (codes 3 and 5) account for 26%,

whereas ‘‘common to abundant’’ and ‘‘abundant’’ classes (codes 6 and

7) account for about 20%. Finally, in Stage 3 (Fig. 11C), the most

represented environments are IR (code 3) and IO (code 4), with 38%

of the total rock volume fully dolomitized (code 6). The pore

abundance is distributed as follows: ‘‘absent’’ and ‘‘rare’’ classes

(codes 1 and 2) account for about 48% and ‘‘rare to common’’ and

‘‘common’’ classes (codes 3 and 5) account for about 15%, whereas

‘‘common to abundant’’ and ‘‘abundant’’ classes (codes 6 and 7)

account for less than 15%.

The statistical analysis was also performed to evaluate the

abundance of dolomite (‘‘Dolo Quantity’’) and type of facies (‘‘Facies

Groups’’) in each depositional environment (Figs. 12, 13).

It turns out that in the OP environment only 11% of the rock

volume is fully dolomitized (Fig. 12A). Here the dominant facies

groups are the muddy and fine grained ones (codes 1 and 2), with

locally high proportions of marlstone.

The T environment contains 13% of fully dolomitized rocks (Fig.

12B). The most common facies groups are the muddy and the fine

FIG. 12.—Frequency distribution of the ‘‘Facies Groups,’’ ‘‘Dolo Quantity,’’ and ‘‘Pore Abundance’’ by highlighting (in black color) samples

falling in specific depositional environments. A) Outer platform (OP, 53 samples). B) Transitional outer–inner platform (T, 56 samples); C)

Inner restricted platform (IR, 255 samples). See Table 2 for the code explanation.
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grained types (codes 1 and 2). Deposits from this environment only
occur during Stage 1 of platform evolution (Fig. 10).

The IR boasts with more than 50% of the rock volume being fully
dolomitized and around 22% being undolomitized (Fig. 12C). This
environment is mainly composed of rudist-rich (or bearing) facies and
muddy facies (codes 4 and 1).

The IO lithologies are dominantly (47%) fully dolomitized, whereas
42% are not dolomitized (Fig. 13A). This environment consists
mainly of fine and medium-coarse grained facies (codes 2 and 3),
followed by muddy facies (code 1).

Finally, lithologies deposited in the S environment, which represent
only a limited rock volume, are always (100%) fully dolomitized and
are given only by fine and medium-coarse grained facies (Fig. 13B).
Deposits from this environment only occur during Stage 2 of the
platform evolution (Fig. 10).

The abundance of pores (‘‘Pore Abundance’’) is directly propor-
tional to the degree of dolomitization (‘‘Dolo Quantity’’) in the
succession. Indeed, pores mainly fall into the classes ‘‘absent’’ and
‘‘rare’’ (codes 1 and 2) in the undolomitized succession (where
dolomite is absent or less than 10%) corresponding to D1 (Fig. 14A).
In the partially dolomitized succession (where dolomite is in the range
of 10–75%), corresponding to D2 (Fig. 14B), pores of the ‘‘absent’’
and ‘‘rare’’ classes (codes 1 and 2) are still dominant, although pores
in the ‘‘rare to common’’ and ‘‘common’’ classes (codes 3 and 5) also
become important, with only minor pores in the ‘‘common to
abundant’’ and ‘‘abundant’’ classes (codes 6 and 7). Finally, in the fully
dolomitized lithologies (where dolomite is between 75 and 100%),

corresponding to D3 (Fig. 14C), pores are dominantly falling into the
‘‘common to abundant’’ and ‘‘abundant’’ classes (codes 6 and 7) and
secondarily into the ‘‘rare’’ class (code 2).

Interdependence also exists between degree of dolomitization
(‘‘Dolo Quantity’’) and pore abundance (‘‘Pore Abundance’’) within
the different types of facies (‘‘Facies Groups’’). In particular, muddy
and fine grained facies (codes 1 and 2) are mainly undolomitized and
are dominated by pores falling into the classes ‘‘absent’’ to ‘‘rare’’
(codes 1 and 2; Fig. 15A). On the other hand, medium-coarse grained
facies and rudist-rich (or bearing) facies (codes 3 and 4) are mainly
fully dolomitized and are characterized by more abundant pores
(codes 5, 6, and 7; Fig. 15B).

The main conclusions deduced from the statistical data treatment
are that:

1. Dolomitization is preferentially concentrated in Stage 2 of the
platform evolution, where 60% of the succession is dolomitized
(Fig. 11B);

2. The most dolomitized environments correspond to the IR and the S
environments, followed in importance by the IO environment
(Figs. 12, 13);

3. Rudist-rich (or bearing) facies, corresponding to textures ranging
from floatstone to rudstone to boundstone, are more commonly
dolomitized (Fig. 15); and

4. Macroscopic porosity shows a direct proportionality with the
degree of dolomitization and seems to be facies controlled: pores
are more abundant in fully dolomitized portions of the succession

FIG. 13.—Frequency distribution of the ‘‘Facies Groups,’’ ‘‘Dolo Quantity,’’ and ‘‘Pore Abundance’’ by highlighting (in black color) samples

falling in specific depositional environments. A) Inner open platform (IO, 77 samples); B) Shoal (S, 7 samples). See Table 2 for the code

explanation.
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(Fig. 14) and particularly in the rudist-rich and the medium-coarse
grained facies (Fig. 15).

For the following modeling purposes, several association rules have
been obtained from statistical analysis in order to summarize
quantitative information that allow us to associate to each depositional

environment, in each of the three platform stages, different
proportions of dolomitization and related pore abundance. Tables of
association rules were constructed (Table 3).

The left part of Table 3 shows the quantitative relationship (in
percentages) between the depositional environments (OP, T, IR, IO,
and S) and the degree of dolomitization (D1, D2, and D3) for each
stage of the platform evolution (Stages 1, 2, and 3). For instance, rocks
from the OP in Stage 3 of the succession are fully dolomitized (D3),
partially dolomitized (D2), and undolomitized (D1) in the respective
amounts of 33%, 22%, and 45%.

The right part of Table 3 illustrates the distribution of the five pore
abundance classes (U1, U2, U3,4, U5,6, and U7) in each ‘‘Environment–
Dolo Quantity’’ couple previously established (see left part of Table
3), for each stage of the platform (Stages 1, 2, and 3). For instance,
rocks from the OP of Stage 3 will always display (100%) absence of
pores (U1) when they are undolomitized (D1) or partially dolomitized
(D2). On the contrary, when these rocks are fully dolomitized (D3),
33.3% of them will be characterized by absent pores (U1), 33.3% by
rare pores (U2), and 33.3% by rare to common pores (U3,4).

The overall information from statistical analysis was used to
establish the methodology for the geostatistical simulations (nested
properties) and to obtain quantitative parameters (proportions and
probabilities) with which to run the algorithms.

RESULTS OF GEOSTATISTICAL MODELING

The final objective of the geostatistical modeling is to populate a
3D grid representing the studied geological reservoir with petrophys-
ical properties (porosities in this study), the values for which vary
spatially. Prediction of the distribution of depositional facies and/or
facies associations is based on hard data (wells, seismic), but also
takes into account the conceptual geological model (paleoenviron-
mental maps, structural heterogeneities, stratigraphy, etc.). The
subsurface geologist can also infer some sedimentological information
from outcrop analogs (e.g., Koehrer et al. 2010). This is not the case
for the petrophysical properties, which can be altered by diagenesis
after deposition and for which distribution may be more difficult to
predict. In the present study, the focus has been placed on the
characterization, quantification, and simulation of dolomitization and
pore abundance distribution. Facies, environments, dolomite abun-
dance, etc., are only known at the sections and cores. Geostatistical
methods are used to fill the space between the hard data, using
parameters computed from these data (distributions laws, quantitative
relationships between properties) via the statistical analysis previously
described.

Data and Grid

The first step of the modeling approach was to build a geological
grid, which represents the studied platform succession in terms of
geometry and stratigraphy. Five stratigraphic units corresponding to
the three evolutionary stages of the platform development and two
subunits have been created to account for some differences in terms of
depositional environments within Stages 1 and 2, resulting in a total of
five units. The entire block size is 3200 m (X) by 4300 m (Y) by 196
m (Z), and the horizontal cell size is 50 by 50 m.

The layering of the units has been defined to represent the
depositional model, and a proportional layering was chosen for all
units to account for the syn-tectonic deposition of the sediments (Fig.
2).

The six wells (four field sections and two cores) have been
imported into the grid with their three property logs (depositional
environments defined by facies, dolomite quantity, and pore
abundance) and resampled on the grid cells crossed by their
trajectories (assignment of the property with the highest proportion

FIG. 14.—Frequency distribution of the ‘‘Pore Abundance’’ for

different ‘‘Dolo Quantity’’. A) Not dolomitized (D1, 188 samples).

B) Partially dolomitized (D2, 45 samples). C) Fully dolomitized

(D3, 255 samples). See Table 2 for the code explanation.
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in each cell, computed from data within the cells). Figure 16 displays
the global vertical stacking of the five units painted with the
proportions of depositional environment in each layer computed
from the six wells (vertical proportion curve).

Plurigaussian Simulation Method and Parameters

In the proposed workflows (double-nested and bi-PGS), the
geostatistical simulations of the property distribution (depositional
facies, degree of dolomitization, pore abundance, etc.) on the
geological grid were done using the nonstationary PGS method (Galli
et al. 1994). This method allows one to take into account the lateral
and vertical changes of facies, dealing with complex spatial
relationships between ‘‘lithotypes,’’ as well as to include constraints
from geological information (Doligez et al. 2003, 2015; Lerat et al.
2007; Barbier et al. 2011; Hamon et al. 2015).

The main geostatistical parameters for this method are the Vertical
Proportion Curves (VPC), the Matrix of Proportions (VPC Matrix),
the variogram models, and the lithotype rules (similar to a facies
substitution diagram; Homewood et al. 1992). The VPC represents the
relative distribution of facies in the main vertical facies succession of
the geological unit (Doligez et al. 1999, Ravenne et al. 2002),
computed from the well facies and related to a reference paleo-
horizontal surface. It also corresponds to the evolution of the

proportions of each lithofacies as a function of the depth (Fig. 17),

which are quantitative data needed in the PGS algorithm. In most

practical cases a 3D grid of proportions is needed instead of average

values at each depth to account for geological lateral changes in facies

distribution. This matrix of proportions consists of a 2D grid

representing a partitioning of the studied reservoir (Fig. 17), each

cell being associated with a local VPC of the sedimentary facies

(Armstrong et al. 2011).

In this study, the matrixes of proportion were built with the

delimitation of areas assigned by VPC and geological paleoenvir-

onmental maps defined from the geological data. An example of a

paleoenvironmental map is shown in Figure 17, in which IO platform

and IR platform environments are shown. The PGS simulation process

consists of generating Gaussian Random Functions (GRF) using

defined variogram models. The algorithm then computes in each cell

of the grid truncation values of the GRF from the local proportions

given by the 3D matrix of proportions to partition the field of

Gaussian values and to assign a facies in each cell.

Workflow1: Double-Nested Simulations

The main steps of this workflow (presented in Fig. 6) were followed

for the different units. The simulation hypotheses, parameters, and

FIG. 15.—Frequency distribution of the ‘‘Facies Groups,’’ ‘‘Dolo Quantity,’’ and ‘‘Pore Abundance’’ by highlighting (in black color) samples

from specific ‘‘Facies Groups.’’ A) Muddy facies (code 1, 179 samples) and fine grained facies (code 2, 104 samples); B) Medium-coarse

grained facies (code 3, 33 samples) and rudist-rich (or bearing) facies (code 4, 97 samples). See Table 2 for the code explanation.
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results of the 3D modeling of properties are presented here only for
Unit 3.

Step 1: Simulation of the Distribution of Depositional Environ-
ments (‘‘Environment’’): The five depositional environments (OP, T,
IO, IR, and S) have been taken into account. For each modeled unit
and subunit the matrix of proportions (Fig. 17) was built based on the
six VPCs of the six wells (Nieves T, Nieves B, Santa Eulalia, Duña,
SC6Bis, and SC1) interpolated level by level with a kriging method
and using a partition of the studied area from five paleoenvironmental
maps.

Figure 18 displays one layer and one cross section in the 3D model
resulting from PGS simulations of the depositional environments
using two Gaussian variogram models with range values between 350

and 450 m along X direction, 500 to 700 m along Y direction, and 3 m
along the vertical (Z) direction (values inferred from the continuity of
the geological bodies on outcrop). Inner platform environments
dominate this unit. The IR environment is located in the southwestern
part of the unit, including the Duña and SC6Bis wells. The rest of the
unit consists of the IO environment.

Step 2: Simulation of the Distribution of ‘‘Dolo Quantity’’
within ‘‘Environment’’: As anticipated in the ‘‘Statistical Analysis’’
section, the six initial classes of dolomite abundance have been
merged into three classes from the six wells (D1, D2, and D3; Table
2). The dolomite abundance (‘‘Dolo Quantity’’) property has been
simulated from three PGSs nested in the three depositional
environments (‘‘Environment’’) occurring in this unit. The ‘‘Dolo
Quantity’’ simulation parameters (proportions from Table 3, vario-
grams, truncation rules) are specific for each depositional environ-
ment. Figure 19 displays a layer map (for level 41) and a cross section
in the 3D grid after one nested simulation of the two parameters
(dolomite abundance and depositional environments) performed for
Unit 3. In this unit, the three represented environments are affected by
the dolomitization process with close proportions (Table 3), which is
what the simulation reproduced.

Step 3: Simulation of the Distribution of ‘‘Pore Abundance’’
Related to the Combination of ‘‘Environment–Dolo Quantity’’
Couples: As anticipated in the ‘‘Statistical Analysis’’ section, the
seven initial classes of pore abundance have been merged into five
classes from the six wells (U1, U2, U3,4, U5,6, and U7; see Table 2).
The results obtained from the statistical analysis (Table 3) have then
been used to fix the parameters (proportions and variograms) for the
simulations of the distribution of the five ‘‘Pore Abundance’’ classes

TABLE 3.—Tables of association rules between depositional
environments (OP, T, IR, IO, S), degree of dolomitization (D1, D2,

D3) and macroscopic pore abundance classes (U1, U2, U3,4, U5,6, U7)
for the three stages of platform evolution (Stage 1, 2, 3). Left:

Quantitative relationship between the depositional environments and
the degree of dolomitization (‘‘Environment–Dolo Quantity’’). Right:
Quantitative relationship between ‘‘Pore Abundance’’ in each of the

‘‘Environment–Dolo Quantity’’ couples established.

FIG. 16.—Vertical stacking of the five units and layering, painted with

the proportions of depositional environment in each layer

computed from the six wells (vertical proportion curve).
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(Table 3) within each ‘‘Environment–Dolo Quantity’’ couple. The
presented results come from a second nested approach of PGS
simulation of the pore classes within the mixed property. Figure 20
displays the final grid (stacking of the five units) informed with the
three properties from Workflow1 (double-nested).

Workflow2: Bi-PGS-nested Simulations

The main steps of the bi-PGS workflow (presented in Fig. 7) were
followed for the different units. The simulation hypotheses,
parameters, and results of the 3D modeling of properties are presented
here for Unit 3.

Step 1: Computation of the Matrix of Proportions of ‘‘Dolo
Quantity’’ from the Matrix of ‘‘Environment’’: In this workflow, the
link between the two PGSs is given through the proportions of all the
associations of one ‘‘Environment’’ with ‘‘Dolo Quantity’’ properties.
This is done through the computation of the matrix of proportions of
dolomite abundance from the matrix of proportions of depositional
environments, using in this case the data from statistical analysis. The
resulting grids of proportions are displayed in Figure 21.

Step 2: Bi-PGS Simulations of ‘‘Dolo Quantity’’ and ‘‘Environ-
ment’’: Each physical property (‘‘Environment’’ and ‘‘Dolo Quantity’’)

simulation is associated with a complete PGS, possibly using two
underlying Gaussian random functions with their own variogram
model, its specific truncation rule (Fig. 7), and its matrix of
proportions (Fig. 21). The double nonstationary PGS simulations
are processed together.

Step 3: Simulation of the Distribution of ‘‘Pore Abundance’’
Related to the Combination of ‘‘Environment–Dolo Quantity’’

Couples: At last, the simulations of the distribution of the five ‘‘Pore
Abundance’’ classes (U1, U2, U3,4, U5,6, and U7) within each
‘‘Environment–Dolo Quantity’’ couple have been performed using a
nested approach. Figure 22 displays the final grid (stacking of the five
units) informed with the three properties from Workflow2 (bi-PGS-
nested).

DISCUSSION

This project was designed as an integrated study of a carbonate
reservoir field analogue affected by widespread burial dolomitization
that, according to macroscopic observations, enhanced reservoir
properties of the precursor carbonates. A data set was produced from
characterization of depositional facies and environments, quantifica-
tion of dolomitization and pore abundance, and their statistical
treatment. This multidisciplinary data set provided the basis for the

FIG. 17.—Depositional paleoenvironment map and vertical proportion curves (VPCs) for Unit 3 (left), with matrix of proportions of

‘‘Environment’’ (right) computed using the paleoenvironment map to partition the space. Inner platform environments (IO and IR) dominate

the whole unit.
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development of a quantitative reservoir study and 3D geostatistical

modeling by applying different workflows.

Controls on Dolomitization and Reservoir Properties

The aim of the sedimentological, diagenetic and statistical analysis

accomplished during this survey was to test at reservoir scale some

hypotheses related to the controls of burial dolomitization, issued from

previous conceptual studies at basin scale (López-Cilla 2009; López-

Cilla et al. 2009, 2013, 2016). According to these authors, the

dolomitizing fluids were channeled by regional faults through the

carbonate succession during burial, and the type of precursor

carbonate facies encountered by the fluids further controlled the

distribution of dolomitization and the associated macroporosity. In

FIG. 18.—Layer map (level 41) and cross section in the 3D grid after plurigaussian simulation of one parameter (‘‘Environment’’), performed for

Unit 3.

FIG. 19.—Layer map (level 41) and cross section in the 3D grid after nested simulations of the ‘‘Dolo Quantity’’ parameter within each

‘‘Environment,’’ honoring the proportions defined by the statistical data analysis, performed for Unit 3.
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particular, they suggested that dolomitization is more abundant in
facies from the proximal depositional environments and that porosity
is better developed in rudist- and coral-rich facies. These authors
suggested a possible role played by aragonitic bioclasts, which could
have been selectively affected by the early meteoric diagenesis
experienced by the platform carbonates during periods of relative sea-
level fall and platform subaerial exposure. Such early meteoric
modification undergone by specific aragonitic shells would have
controlled the development of the porosity during burial dolomitiza-
tion (López-Cilla 2009; López-Cilla et al. 2009, 2013, 2016).

According to the characterization data set produced during this
survey, the dolomitization is preferentially concentrated in the
regressive part of the first depositional sequence of the Reocı́n Fm.
(T–R Sequence 1) and the earliest stage of transgression of the second
depositional sequence (T–R Sequence 2) corresponding with the
second stage of the platform evolution (Fig. 11). It seems to be
controlled by the facies associations (corresponding to paleoenviron-
ments) and the original depositional textures: the most dolomitized
facies are encountered in the inner-restricted platform with marginal
shoals, followed by the inner open platform (Figs. 12, 13). Facies from
these shallower and more proximal depositional environments were
indeed more exposed to early meteoric diagenesis.

At basin scale, the pore abundance of the Reocı́n Fm. carbonates

is variable and was reported to be higher in the dolomitic bodies

than in the precursor limestone facies, which are predominantly

tight and only rarely exhibit open voids (López-Cilla 2009,

Blázquez-Fernández 2013). At reservoir scale, the dolomite bodies

studied during this survey exhibit a wide range of macroscopic pore

abundance, with pore types classified as intercrystalline, moldic,

and vuggy. Macroscopic voids have sizes that range from

submillimetric up to several centimeters (Fig. 8). The visual

evaluation of the macroscopic pores allowed the definition of seven

pore abundance classes (grouped in five classes in the geostatistical

modeling), from absent to abundant (Table 2). Statistical analysis

indicated that, in a general way, total macroscopic porosity is

directly proportional to the degree of dolomitization (Fig. 14).

Further relationships were observed between different carbonate

textures (facies groups) and the abundance of macroscopic pores

(Fig. 15), with the rudist-rich facies (dolo-floatstone and dolo-

rudstone) and the sand shoals (dolo-grainstone and dolo-packstone)

showing the highest pore occurrence. Abundant aragonitic shells

(rudists, corals), easily leached or recrystallized during early

diagenesis, could justify the higher moldic porosity in these facies.

FIG. 20.—Final grid (stacking of the five units) informed with the three properties (‘‘Environment,’’ ‘‘Dolo Quantity,’’ and ‘‘Pore Abundance’’)
from the double-nested workflow for the complete succession.

FIG. 21.—Computation of the matrix of proportions of ‘‘Dolo Quantity’’ from the matrix of ‘‘Environment.’’
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At the present stage it is not possible to say which modification the
early diagenesis really caused (preferential dissolution or recrystalli-
zation of the aragonitic shell portions only?) in these facies to facilitate
the development of porosity during burial dolomitization. However,
this hypothesis deserves to be further investigated, since subsurface
reservoirs in Urgonian-type platforms elsewhere could display similar
porosity patterns. Future perspectives for this survey would therefore
include applying and possibly validating the formulated hypothesis on
a subsurface reservoir case study, in which detailed petrophysical
measurements could also be accomplished.

3D Modeling

In carbonate reservoirs, heterogeneity is usually driven by the
interplay of both depositional environments and diagenetic patterns
(i.e., Morrow and MacIlreath 1990, Moore 2001, Ali et al. 2010). In
this survey, characterization data from the sedimentology and
diagenesis study (facies, environments, dolomitization, pore abun-
dance) were translated into quantitative parameters and rules to
distribute simultaneously the different classes of properties (‘‘Envi-
ronment,’’ ‘‘Dolo Quantity,’’ ‘‘Pore Abundance’’) in the numerical
models.

In particular, this study proposed an innovative strategy, allowing us
to integrate conceptual sedimentological models through the use of
paleoenvironmental maps in the computation of depositional envi-
ronment (‘‘Environment’’) probability distribution. Moreover, a
realistic 3D sedimentary model and associated diagenetic overprints
have been generated through simulation of the distribution of only one
diagenetic modification (e.g., the massive dolomitization [‘‘Dolo
Quantity’’]), which mainly controls porosity enhancement (López-
Cilla et al. 2016). Finally, petrophysical property distribution (e.g., the
macroporosity [‘‘Pore Abundance’’]) has been constrained and
simulated with the combination of the double property given by the
‘‘Environment–Dolo Quantity’’ couples.

The two alternative workflows used (double-nested and bi-PGS)
allowed us to simulate the distribution of properties by taking into
account different parameters. Both methods illustrate the distribution
of dolomitization and pore abundance as a function of the distribution
of the precursor depositional facies, which in turn are linked to the
evolution of the depositional environments and relative sea-level
changes.

The presented 3D reservoir models account for the thickening
toward the north (cores area) and thinning toward the south (outcrops
area) of the dolomitized succession. This kind of dolomitization
‘‘gradient’’ from north to south (Figs. 20, 22) fits with evidence for
dolomite body mapping and with the proximity of the cores area to the
major regional Bustriguado–Peña Castillo fault system (Fig. 2), which

could have controlled the initial flush of the dolomitizing fluids
through the carbonate succession.

The overall results of the workflows used are the distribution of the
property ‘‘Pore Abundance’’ (U) controlled by the ‘‘Dolo Quantity’’
and by the ‘‘Environment’’ (Figs. 20, 22). The final models show that
U1 (absent pores) is the main class of porosity in the whole reservoir.
Unit 1 is dominantly represented by U1. Unit 2 is mainly represented
by U3,4 (rare to common pores), with intercalations of other U classes.
Unit 3 is represented by U1 in the southeastern part of the study area
and by U5,6 (common to abundant pores) and U7 (abundant pores) in
the remaining areas. The models also reproduce the higher pore
abundance to the north and in the stratigraphic central part of the
geological model, which also correspond with the most dolomitized
platform areas.

The two workflows used lead to very similar results, which is to be
expected, as the input data are the same for both approaches and as the
same parameters (grids of proportions, variograms, truncation rules,
etc.) were used for the geostatistical simulations. However, each
workflow has its benefits and drawbacks and could be more
appropriate than the other, depending on the geological data available
and the objectives of the survey. When using a double-nested
approach a high number of variables is requested, which can be
laborious for practical use. A first set of parameters for the first PGS
of the first property (here depositional environment) is needed. Then a
second set of parameters for the second property distribution has to be
defined for each class of depositional environment. On the other hand,
it offers significant flexibility linked to these possible choices of
parameters for the simulations. The bi-PGS workflow allows one to
work with heterotopic data (when the second property is not present in
each sample for which the first property is known), and it also allows
one to maintain the continuity of each variable, though the definition
of the relationships between the parameters to co-simulate is the most
critical step of this approach. The main purpose of the study was to
focus on workflows and methods by which to integrate quantitatively
the diagenetic overprint in the sedimentary model. In a subsurface
field case modeling study, multiple realizations and sensitivity
analyses to uncertain parameters should have been carried out.

Both modeling approaches presented in this contribution require a
preliminary step of characterization of prime importance. Acquisition,
analysis, and interpretation of relevant data to define sedimentary
facies, diagenesis, and petrophysical properties should be planned to
identify and quantify their distributions and dominant relationships.
Keeping in mind the opportunity to use advanced methods, such as
nested or bi-PGS, should dictate the characterization workflow since
the beginning of the study in order to improve the predictability of the
model.

FIG. 22.—Final grid (stacking of the five units) informed with the three properties (‘‘Environment,’’ ‘‘Dolo Quantity,’’ and ‘‘Pore Abundance’’)
from the bi-PGS-nested workflow for the complete succession.
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CONCLUSIONS

This study contributes to the need to develop modeling approaches
that take into account the interplay between depositional-sedimentary
features and subsequent diagenetic modifications in order to better and
more realistically distribute the heterogeneities in carbonate reservoirs.
It focused on a field analogue, which consists of an Early Cretaceous
shallow-water carbonate platform in the Basque–Cantabrian basin,
where widespread burial dolomitization took place. The workflow
used (Fig. 1) includes field and subsurface data acquisition and
interpretation, statistical characterization of sedimentary and diage-
netic parameters, and geostatistical modeling using bi-PGS and nested
simulations. The whole data set allows us to draw the following
conclusions:

� Eighteen carbonate lithofacies were distinguished and grouped into
four groups: muddy, fine grained, medium-coarse grained, and
rudist-rich (or bearing) facies. They were associated with five
depositional environments: inner restricted platform, inner open
platform, shoal, transitional inner–outer platform, and outer
platform.

� The succession was organized into two depositional transgressive–
regressive (T–R) sequences. Three successive stages of platform
evolution were distinguished, which are characterized by a different
distribution of facies and depositional environments.

� An innovative methodology of diagenesis characterization and
quantification has been tested to investigate main controls on the
distribution of dolomitization and the effects on macroporosity.

� Massive burial dolomitization increases toward the middle of the
studied succession, corresponding to the phase of regression of the
first depositional sequence and the earliest phase of transgression of
the second depositional sequence (second stage of the platform
evolution).

� The dolomitization is controlled by the paleoenvironments and the
original depositional facies: the most dolomitized are the inner-
restricted platform with marginal shoals, followed by the inner open
platform. Within these paleoenvironments, the most dolomitized
lithofacies are rudist-rich floatstone, rudstone, and boundstone and
sand shoals grainstone.

� Pores are most abundant in fully dolomitized portions of the
succession and particularly in the medium-coarse grained and
rudist-rich (or bearing) lithofacies. Abundant aragonitic shells,
easily leached or recrystallized during early diagenesis, could
justify the preferential development of porosity in these facies
during later dolomitization.

� Two different geostatistical modeling workflows were developed
using bi-PGS and nested approaches to simulate the interdepen-
dence between original depositional facies, degree of dolomitization
(i.e., amount of dolomite), and pore abundance.

� The two simulation workflows lead to similar results. These
methods require advanced quantitative characterization of the
different classes of properties but also offer a high level of
flexibility and possibilities of constraints for the simulations.

� Each workflow could be more appropriate than another depending
on the geological data available and the aim of the survey.

� Future perspectives should include the application of these work-
flows to subsurface reservoirs, for which detailed petrophysical and
production data are available, in order to evaluate to what extent the
quality of reservoir modeling is affected by integrating (or not) the
effects of diagenesis.
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Cilla (IGME). Elisabeth Bemer (IFPEN), head of the ‘‘fluid–rock
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