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Abstract Selecting the best structure and parameterization of rainfall–runoff models is not 

straightforward and depends on a broad number of factors. In this study, the “Modello Idrologico 

Semi-Distribuito in continuo” (MISDc) was tested on 63 mountainous catchments in the western Po 

Valley (Italy) and the optimal model parameters were regionalized using different strategies. The 

model performance was evaluated through several indexes analysing hydrological regime, high-flow 

condition and flow–duration curve (FDC). In general, MISDc provides a good fit behaviour with a 

Kling-Gupta Efficiency index greater than 0.5 for 100% and 84% of cases for calibration and 

validation respectively. Concerning the regionalization, spatial proximity approach is the most 

accurate solution obtaining satisfactory performance. Lastly, the predicted FDCs showed an excellent 

similarity with the observed ones. Results encourage to apply MISDc over the study area for flood 

forecasting and for assessing water resources availability thanks to the modest computational efforts 

and data requirements. 

Keywords ungauged catchments; parameter set regionalization; flow–duration curve; catchment 

descriptors; flood-risk management 
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1 Introduction 

Simulating reliable continuous streamflow has been an essential and common objective for the 

scientific hydrological community since the middle of the 20th century (Boughton and Droop, 2003, 

Brocca et al., 2011, Loukas and Vasiliades, 2014). Such an issue is of paramount importance for 

addressing engineering and environmental problems, which span from designing hydraulic structures 

to flood-risk assessment and stormwater management, from forecasting the climatic and 

anthropogenic effects on water resources to assessing economic benefits from hydropower 

production. Rainfall–runoff (RR) models are the most common tools for the prediction of discharge 

and estimation of water balance (Beven, 2012). The scientific literature contains a large number of 

RR models, characterized by different levels of complexity and data requirement (Chiew et al., 1993, 

Kampf and Burges, 2007a, Knapp et al., 1991, Singh and Woolhiser, 2002). Many authors proposed 

exhaustive classification schemes to sort through many existing mathematic models used in 

hydrology at the catchment scale (Clarke, 1973, Dawdy and O’Donnell, 1965, Refsgaard, 1990, 

Todini, 1988). One of the most comprehensive classifications was introduced by Kampf and Burges 

(2007b), who subdivided RR models according to the spatial structure (lumped, semi-distributed or 

distributed), the time representation (continuous or discrete event-based), or the hydrological 

processes description (physically meaningful or data driven). Despite significant advances in 

watershed science and hydrological modelling, the discussion regarding RR model accuracy and 

reliability is a topic of increasing research interest and remains a current challenge. Four key points 

could motivate this: (a) the difficulty to select the most appropriate and accurate RR model, (b) the 

data availability to calibrate and to validate the parameters, (c) the model predictive uncertainties, 

and (d) the computational time (Perrin et al., 2001, Sorooshian and Gupta, 1983, Todini, 2011).  

In addition, hydrologists have been facing a fundamental challenge in flood forecasting in 

ungauged and/or poorly gauged basins for many decades. Indeed, the International Association of 

Hydrological Sciences (IAHS) launched the Prediction in Ungauged Basins (PUB) initiative covering 

the decade 2003–2012 aimed to foster major advances in our capacity to make predictions in areas 

with poor coverage of hydrological data (Seibert and Beven, 2009, Sivapalan et al., 2003). In this 

respect, since the 1970s, experts in watershed science have been attempting to develop regionalization 

strategies to describe similar hydrological behaviours between catchments at different spatial scale 

(Abdulla and Lettenmaier, 1997, Brutsaert and Nieber, 1977, Egbuniwe and Todd, 1976, Jarboe and 

Haan, 1974, Klemeš, 1986, Tasker, 1989, Weeks and Ashkanasy, 1983). Later, the term 

“regionalization” identified mathematical and computational methodologies enable to transfer 

models parameters from hydrologically similar catchments to a catchment of interest (Blöschl and 

Sivapalan, 1995). In particular, in the case of ungauged catchments where measurements (i.e. 



streamflow time series) are not available and therefore it is not possible to calibrate only RR models, 

regionalization approaches remain the most low-cost and popular solutions for predicting continuous 

streamflow (He et al., 2011, James, 1972, Magette et al., 1976, Manley, 1978, Samuel et al., 2011, 

Wagener et al., 2004). Despite particular attention and scientific progress on this topic, there is no 

universal regionalization method for a given region (Samuel et al., 2011, Zhang and Chiew, 2009).  

A large variety of regionalization approaches has been proposed, developed and applied to 

catchments worldwide with different landscape, morphology, climate and size: each with its specific 

advantages and inherent drawbacks (Blöschl, 2013, He et al., 2011, Hrachowitz et al., 2013, J. Parajka 

et al., 2013, Razavi and Coulibaly, 2013, Zhang and Chiew, 2009). Such methods can be summarized 

in three main categories. The first category includes the regression-based analyses (Young, 2006) that 

consist in developing a posteriori relationships between catchment descriptors (physiographic and 

climatic) and model parameter values calibrated on gauged catchments. Despite regression-based 

analyses are simple to implement, they request an accurate knowledge of catchment attributes and 

RR data availability of several catchments inside the same region under investigation. The second 

category comprises the distance-based regional approaches, or spatial-proximity methods, that 

represent the earliest attempts to regionalize the parameters of a hydrological model (Egbuniwe and 

Todd, 1976, Merz and Blöschl, 2004, Oudin et al., 2008, Parajka et al., 2005). Such regionalization 

schemes consist in transferring parameter sets calibrated at the closest neighbour catchments to the 

ungauged target assuming that neighbouring catchments have a similar hydrological response. The 

performance of such methods mainly depends on the number and the spatial distribution of the donor 

catchments (Oudin et al., 2008). The last scheme of regionalization approaches combines a synthesis 

of the spatial-proximity approach and the regression-based approach. Indeed, these strategies are 

based on the similarity between an ungauged catchment and one or more gauged donor catchments 

in terms of physical attributes (Burn and Boorman, 1993, McIntyre et al., 2005). They essentially 

transfer the model parameters from gauged to ungauged catchments, which are not necessary spatially 

closer, based on a similarity measure of physiographic catchment characteristics. In this method, the 

catchment characteristics are similar to those of the regression approach, but the regionalization 

model structure is different as no assumption of linearity is made. In addition, the complete set of 

model parameters is usually transposed from one or more donor catchments to the catchment of 

interest in this approach, while in the regression case, the parameters are usually regionalized 

independently from each other.  

Against this background, combining an accurate RR model with a reliable regionalization 

method to accurately predict continuous streamflow, floods and water resource availability in 

ungauged catchments is a primary objective, in particular in those areas where flood-risk assessment 



and sustainable water resource management appear desirable (Burges, 1998). A typical example is 

the Upper Po River catchment located in northern Italy and including a flourishing agricultural, 

urbanized-industrialized plain and wide natural mountain areas. This large territory is prone to 

multiple natural hazards including floods (Mysiak et al., 2013), landslides (Guzzetti and Tonelli, 

2004), snow avalanches (Viglietti et al., 2010), land subsidence (Carminati and Martinelli, 2002) and 

seasonal drought (Strosser et al., 2012). Such hydrological hazards appear to be strongly correlated 

with the physiographic setting and mainly affect mountainous areas, alluvial plains and valley floors, 

with maximum values along Alpine valleys, where flood and landslide risks co-exist with a high 

urban density (Lari et al., 2009). This fact was highlighted by the Italy’s Regional Civil Protection 

Agencies as well as the integrated programme for the mitigation of natural hazard evaluations (years 

2007–2010). Specifically, since 1906, floods have caused 421 fatalities (Guzzetti, 2000); the 

hydrogeological risk mitigation costs for the period 2007–2010, incurred by public administrations 

in the Upper Po River basin, amounted to 500 million euros (mainly intended for the protection of 

urban areas from landslides, floods and avalanches). In this respect, recent actions, aimed to combine 

the detection of hazard-prone areas with smart low-impact urban planning, appear indispensable to 

prevent the damages caused by the ever more frequent extreme weather (Ercolani et al., 2018, Luino 

et al., 2012).  

Moreover, there are significant requirements from the agricultural, hydropower and drinking 

water management sectors. In particular, ggriculture needs roughly two-thirds of all the available 

water resource for irrigation and is the largest water user in Italy (Masseroni et al., 2017a). Meanwhile 

hydropower sector manages the regulated reservoirs and strongly influences the water availability 

over the plain (Giuliani et al., 2016, Ravazzani et al., 2015).  

On the basis of the above considerations, the application of a hydrological model over a large 

set of sub-catchments of the Po River Valley is strongly encouraged, especially by regional water 

protection authorities, in order to ensure a high level of flood-risk prevention and water allocation 

over the territory. In particular, hydrological modelling is an essential instrument to support the 

emergency activities during extreme meteorological events and to estimate the amount of water 

described by the flow–duration curve (FDC). FDCs are a widely used measure in various applications 

related to water resource management (e.g. hydropower generation, irrigation systems, monitoring of 

stream pollution, fluvial erosion) (Foster, 1934, Vogel and Fennessey, 1994, 1995, Wolman and 

Miller, 1960).  

Therefore, the main purposes of this work are: (a) to evaluate the performance of a simple 

hydrological RR model applied over 63 Alpine and pre-Alpine catchments uniformly distributed in 



northwestern Italy; (b) to construct FDCs using streamflow predictions and compare them with those 

obtained by measured records; and (c) to adopt different regionalization strategies for predicting 

parameter sets for ungauged or poorly gauged catchments and, therefore, for simulating streamflow 

to compare regionalization approaches and determine their performance.  

 

2 Materials and methods 

2.1 RR model 

2.1.1 Model structure  

This study applies a lumped version of a simple RR model, named “Modello Idrologico Semi-

Distribuito in continuo” MISDc, developed by Brocca et al. (2010, 2011a). This conceptual model 

was originally designed as supporting instrument for the civil protection activities to predict flood 

events at an hourly time scale in central Italy (Brocca et al., 2013). Later, it was widely used in 

different contexts across Europe (Barbetta et al., 2017, Camici et al., 2011, 2014, Ciabatta et al., 

2016, Loizu et al., 2018, Massari et al., 2015a, 2015b, Masseroni et al., 2017b). The MISDc model 

incorporates a soil water balance model (Brocca et al., 2008), the Soil Conservation Service - Curve 

Number (Chow, 1959), and a routing module (RM) (Melone et al., 2001). The first two modules 

simulate the soil water content W(t) and, as a consequence, the surface runoff r(t), the saturation 

excess se(t) and the subsurface runoff sb(t). In addition, two packages simulating snowmelt and 

glacier melt are integrated the soil water balance model of MISDc. The last three components 

contribute to generate the discharge at the outlet through the simulation of transferring processes 

described by the geomorphological instantaneous unit hydrograph (GIUH; Gupta et al., 1980) and by 

a linear reservoir approach. Figure 1 shows a schematic representation and Appendix A reports a 

more detailed summary, including the main equations. 

 

2.1.2 Model parameters and calibration process 

The MISDc model includes 12 model parameters: the initial condition of soil water content, W(t0) 

(Appendix A1, Eq. (A1)); the maximum water capacity of the soil layer, Wmax (i.e. field capacity 

term; Eq. (A1)); the initial abstraction coefficient, λ (Eq. (A2)); the parameter of the relationship 

between the saturation degree and the soil retention, a (Eq. (A3)); the correction factor for actual 

evapotranspiration b (Eq. (A5)); the saturated hydraulic conductivity Ks (Eqs ((A6)) and (A7)); the 

exponent of drainage component, m (Eqs (A6) and (A7)); the fraction of drainage that transforms into 

subsurface runoff, ϑ (Eqs (A6) and (A7)); the degree-day coefficients, Cm-snowpack and Cm-glaciers for the 



melting process of snowpack and glaciers (Eqs (A11) and (A12)); the constant referring to the flow 

of water at the base of glaciers kglaciers (Eq. (A12)); and the coefficient of lag–area relationship, η (Eq. 

(A14)). Each model parameter can vary within a range of admissible values derived by other 

applications of MISDc over many catchments worldwide (Camici et al., 2018, Massari et al., 2015b, 

Masseroni et al., 2017b), as reported in Table 1. 

The calibration of the MISDc model parameters requires rainfall, air temperature and 

streamflow time series as input data. The calibration process consists in adopting a standard gradient-

based automatic optimization method implemented in the MATLAB software package (‘fmincon’ 

function; MATLAB R2016b, The MathWorks, Inc., Natick, Massachusetts, United States). This 

algorithm is particularly suitable and efficient for a limited number of model parameters and enables 

one to maximize an objection function. In this case, the objective function is the difference between 

the unity and the modified Kling-Gupta efficiency statistic dimensionless, KGE, proposed by Gupta 

et al. (2009) and later adjusted by Kling et al. (2012). Based on the decomposition of the Nash-

Sutcliffe efficiency coefficient (NS; Nash and Sutcliffe 1970) into three distinctive components 

represented by correlation, conditional bias and unconditional bias (Murphy, 1988, Wȩglarczyk, 

1998), it assumes the value of 1 when the models perfectly simulates the observed data. 

The KGE is easily formulated by computing the Euclidean distance of these three terms, as 

given by equation (1). 

𝐾𝐺𝐸′ = 1 −

√[
∑ (𝑄obs,𝑡−𝜇obs) (𝑄sim,𝑡−𝜇sim)𝑁

𝑡=1

√∑ (𝑄obs,𝑡−𝜇obs)
2𝑁

𝑡=1 (𝑄sim,𝑡−𝜇sim)
2

− 1]

2

+ (
𝜇sim

𝜇obs
− 1)

2

+ [
√∑ (𝑄sim,𝑡−𝜇sim)

2𝑁
𝑡=1

√∑ (𝑄obs,𝑡−𝜇obs)
2𝑁

𝑡=1

𝜇obs

𝜇sim
− 1]

2

 (1) 

In Eq. (1), Qobs,t and Qsim,t are the observed and simulated discharge, respectively, at time t and N is 

the total number of hourly observations, where μobs and μsim is the mean of the observed and simulated 

discharges. 

The KGE criterion offers interesting diagnostic insights, taking into account the temporal 

dynamics and the distribution of the streamflow time series (Camici et al., 2018, Dick et al., 2015, 

Massari et al., 2018, Thirel et al., 2015). 

 



2.1.3 Model performance of continuous stemflow predictions 

Three widely used indices were applied to determine the performance of the RR model. The first is 

NS, also known as the efficiency index, useful to evaluate differences in the continuous simulation 

of streamflow.  

NS = 1 −
∑ (𝑄obs,𝑡−𝑄sim,𝑡)

2𝑁
𝑡=1

∑ (Qobs,t−𝜇obs)
2𝑁

𝑡=1

   (2) 

The second index is the ANSE, an adapted version of NS, well-suited for high streamflow conditions 

(Guex, 2001, Hoffmann et al., 2004): 

ANSE = 1 −
∑ (𝑄obs,𝑡+𝜇obs) (𝑄sim,𝑡−𝑄obs,t)

2𝑁
𝑡=1

∑ (𝑄obs,𝑡+𝜇obs) (𝜇obs−𝑄obs,𝑡)
2𝑁

𝑡=1

  (3) 

The third criterion applied here is the absolute volume error, VE, commonly used to evaluate the RR 

model ability for simulating runoff volume (Merz and Blöschl, 2004): 

VE =
|∑ 𝑄sim,𝑡

𝑁
𝑡=1 −∑ 𝑄obs,𝑡

𝑁
𝑡=1 |

∑ 𝑄obs,𝑡
𝑁
𝑡=1

∙ 100 (4) 

Once the above performance scores were calculated, a framework for statistical interpretation 

of hydrological model performance developed by Ritter and Muñoz-Carpena (2013) was used to 

assess the goodness of fit and classify into four different performance classes. These are: 

‘unsatisfactory’ (KGE, NS, ANSE < 0.5), ‘satisfactory’ (0.5 < KGE, NS, ANSE < 0.65), ‘good’ 

(0.65 < KGE, NS, ANSE < 0.75) and ‘very good’ (KGE, NS, ANSE > 0.75). Moreover, the model 

performance was evaluated according to the volume differences, as follows: ‘unsatisfactory’ (VE > 

15%), ‘satisfactory’ (10% < VE < 15%), ‘good’ (5% < VE < 10%) and ‘very good’ (VE < 5%). 

 

2.1.4 Model performance of FDC predictions 

For a complete assessment of the MISDc model performance, observed and simulated long-term, 

FDCs are compared. The FDC is the cumulative frequency curve that shows the percentage of time 

during which the discharge is equalled or exceeded (Foster, 1934). The FDCs were computed 

considering all datasets of observations to overcome the problem related to gap filling (Castellarin et 

al., 2004, 2007). To verify the accuracy of the model (Yilmaz et al., 2008), three diagnostic signature 

measures were adopted: 

2.1.4.1 Percent bias in the FDC mid-segment slope, BiasFMS: 

BiasFMS =
[log (𝑞sim,𝑚1)−log(𝑞sim,𝑚2)]−[log (𝑞obs,𝑚1)−log(𝑞obs,𝑚2)]

log (𝑞obs,𝑚1)−log(𝑞obs,𝑚2)
∙ 100  (5) 



where qobs and qsim are the sorted time series of observed and simulated flows, whereas m1 and m2 

are the lowest and highest flow exceedance probabilities (0.2 and 0.7, respectively) within the mid-

segment of the FDC. 

2.1.4.2 Percent bias in the FDC high-segment volume, BiasFHV: 

BiasFHV =
∑ (𝑞sim,ℎ−𝑞obs,ℎ)𝐻

ℎ=1

∑ 𝑞obs,ℎ
𝐻
ℎ=1

∙ 100  (6) 

where h =1, 2, …, H is the flow index for flows with exceedance probability lower than 0.02. 

2.1.4.3 Percent bias in the FDC low-segment volume, BiasFLV: 

BiasFLV =
∑ [log (𝑞sim,l)−log(𝑞sim,L)]𝐿

𝑙=1 −∑ [log (𝑞obs,l)−log(𝑞obs,L)𝐿
𝑙=1 ]

∑ [log (𝑞obs,l)−log(𝑞obs,L)𝐿
𝑙=1 ]

∙ 100  (7) 

where l = 1, 2, …, L is the index of the flow value located within the low-flow segment (0.7–1.0 flow 

exceedance probability of the FDC) and L represents the index for the minimum flow.  

 

In accordance with the literature (Herbst et al., 2009, Mendoza et al., 2015, Pfannerstill et al., 2014), 

the results are classified as ‘satisfactory’ when a bias value is less than 30%; conversely, a result is 

‘unsatisfactory’ when the bias is greater than 30%.  

 

2.2 Regionalization strategies 

In this study, different regionalization strategies were adopted to assess which one is the most suitable 

for a large and various area. Table 2 presents a summary of the selected methods and a brief 

description of each is reported below.  

2.2.1 Regionalization using spatial-proximity approaches 

The spatial-proximity methods consist in transferring model parameters from neighbouring 

catchments to the ungauged one. The main concept of this group of methods is that catchments that 

are close to each other will have a similar hydrological response as the climate and catchment 

conditions will only vary smoothly in space and the differences arise only from random factors (Merz 

and Blöschl, 2004, Parajka et al., 2005, Razavi and Coulibaly, 2013). Although such approaches are 

very attractive, they strongly depend on the spatial density of the gauged catchments (Oudin et al., 

2008). Several authors have proposed and developed different adjustments for this methodology 

(Drogue and Khediri, 2016). The most common are the inverse distance weighted (IDW) and the 

arithmetic mean (AM) techniques. The IDW method is a multivariate interpolation approach, which 



is based on the inverse spatial distance between catchment centroids (IDWC) or outlets (IDWO), as 

first proposed by Shepard (1968) and given by: 

𝑈𝑗 = ∑ 𝑊𝑗,𝑖𝑃𝑖
𝑀−1
𝑖=1 = ∑ (

gd𝑗,𝑖
−2

∑ gd𝑗,𝑖
−2𝑀−1

𝑖=1

)𝑀−1
𝑖=1 𝑃𝑖  (5) 

where Uj indicates the model parameters of the ungauged catchment j, Pi represents the calibrated 

model parameters of the gauged catchment i, Wj,i is the weighted function, M is the number of donor 

catchments and gdj,i is the geographical distance between two centroids/outlets of gauged to ungauged 

catchments.  

gd𝑗,𝑖 = √(𝑋𝑗 − 𝑋𝑖)
2

+ (𝑌𝑗 − 𝑌𝑖)
2
  (6) 

where Xj, Yj, and Xi, Yi are the geographical coordinates of the centroids/outlet of the of gauged to 

ungauged catchments.  

The AM method is an alternative approach, which evaluates the arithmetic mean of parameter 

sets calibrated for all the available input data time series of the gauged catchments (global mean, 

AMg) or only of those located in an area delimited by a circumference of a specific radius, for example 

25 or 50 km (Parajka et al., 2005), from the ungauged catchment centroid (AM25 or AM50).  

𝑈𝑗 =
1

𝐷−1
∑ 𝑃𝑖

𝐷−1
𝑖=1  (7) 

where D is the donor catchments inside a region or a portion of it.  

 

2.2.2 Regionalization using regression-based methods 

The regression-based techniques are the simplest and most popular methodologies in applied 

hydrology (He et al., 2011, Oudin et al., 2008, Razavi and Coulibaly, 2013). Regression is a statistical 

tool that enables one to relate the model parameters (dependent variables) to catchment attributes 

(independent variables). Although catchment attributes should be selected among the factors that 

drive the hydrological response of a catchment (Kokkonen et al., 2003), there is no standard set of 

them and they are largely different across numerous studies (Bocchiola et al., 2010, Cheng et al., 

2006, McIntyre et al., 2005, Merz and Blöschl, 2004, Post, 2009, Seibert, 1999, Wagener and 

Wheater, 2006). Such attributes include meteorological (e.g. mean annual precipitation, maximum 

daily annual precipitation, average temperature) and physiographic information (e.g. position of the 

catchment outlet or centroid, area, stream length, percentage of area covered by grass, forest, urban, 

roads, buildings or water, soil types, soil permeability). The methods belonging to the regression-



based regionalization can be grouped into linear multiple (‘level-level’) and nonlinear multiple 

regression (‘level-log’, ‘log-level’, ‘log-log’) according to the subdivision proposed by He et al. 

(2011). 

 

2.2.3 Regionalization using physical-similarity approaches 

The physical-similarity approaches are based on the concept that the model parameters can be 

transferred from gauged to ungauged catchments according to the similarity of their physical and 

climatic attributes. This perception implies that the model parameters reflect the hydrological 

behaviour of the catchment (Oudin et al., 2010, Sawicz et al., 2011). A wide variety of studies have 

used this type of regionalization (e.g. Oudin et al., 2008, Samuel et al., 2011, Zhang and Chiew, 

2009). In this study, two alternatives are applied.  

The first approach (PhyS), simple and immediate, provides the model parameters of ungauged 

basins using, directly, all the available datasets and defining a metric of physical similarity d, i.e. a 

weighted Euclidean distance between the catchment attributes of the ungauged site j and the other 

catchments i =1, …, M–1 (He et al., 2011) as follows: 

( )
2

1 ,,,  =
−=

m

k ikjkkij AAwd   (8) 

where wk is the weight associated with the kth normalized physical descriptor A. In fact, each attribute 

has to ensure the same importance regardless of its range. In the general case, in which all descriptors 

are considered to be equally important, wk is set to 1 (Garambois et al., 2015, Kay et al., 2006, Oudin 

et al., 2008, Parajka et al., 2005, Zhang and Chiew, 2009). Then, the model parameters are estimated 

replacing gdj,i with dj,i in Eq. (5).  

The second approach consists in catchment classification (CC, Di Prinzio et al., 2011). It 

includes, indiscriminately, all the calibrated model parameters for all the available gauged catchments 

into the regionalization procedure, dividing them into groups and subgroups, hydrologically similar, 

identified by the prominent physical characteristics (Di Prinzio et al., 2011). Different procedures 

have been developed within the topic of CC, but most hydrologists have adopted the clustering 

technique (e.g. Razavi and Coulibaly, 2013). In this study, the applied methodology is a two-level 

approach that combines a self-organizing map (SOM) and a hierarchical clustering (i.e. the inner 

squared distance Ward’s method). This allows one to deal with a high-dimensional dataset and to 

group it into the most appropriate number of classes, reducing noise and outliers (Ley et al., 2011, 

Vesanto and Alhoniemi, 2000). Such a CC is described in detail by Boscarello et al. (2016) and 



adopted to group catchments inside the Upper Po River basin. Once all study catchments have been 

grouped into a smaller number of classes according to their physical similarities, a regional set of RR 

model parameters for each class is estimated using an arithmetic mean of model parameters of the 

catchment of the same class, or, alternatively, using a similarity metric (combining Eqs (5) and (8)). 

For simplicity, such strategies are hereafter named as CC with arithmetic mean (CCpm) and CC with 

physical similarity measure (CCpd) respectively. 

 

2.2.4 Cross-validation and assessment of regionalization methods 

The performance of each regionalization approach was validated following the leave-one-out cross-

validation scheme, as described in many hydrological studies (e.g. Merz and Blöschl, 2004, Oudin et 

al., 2008, Parajka et al., 2005, Samuel et al., 2011). This validation technique consists in considering 

each catchment of the available dataset, in turn, as ungauged and in applying the regionalization 

approach on the remaining ones.  

 

3 Case study 

3.1 Hydro-geomorphological features 

The study area includes 63 basins and sub-catchments of the western Po Valley and covers 

approximately 16 000 km2 (Fig. 2 and Appendix B). The study catchments are predominantly located 

in the western chain of Italian Alps and pre-Alps, with areas ranging from 15 to 2300 km2 and an 

average elevation of between 210 and 2100 m a.s.l. Mountains cover half of this area, whereas the 

remaining part is characterized by a large plain. The particular morphology has created a typical 

torrential hydrographic system composed of numerous tributaries of the Po River. The annual regime 

of the western Po River is characterized by two different periods: a low-water phase in winter and 

summer and a high-water phase in autumn, when an intensification of rainstorms usually occurs, and 

spring, due to the contribution of the snowmelt processes, especially at high altitudes (Ravazzani et 

al., 2015). The precipitation regime according to the Köppen-Geiger climate classification (Kottek et 

al., 2006, Peel et al., 2007) belongs to the temperate/cool continental class, featuring seasonal 

continuous snow cover above 1000 m a.s.l. Mean annual precipitation ranges from 680 to 1700 mm, 

while the average annual temperature is about 8°C, with a minimum in January and a maximum in 

August.  

Concerning the lithological point of view, the plain is composed of different lithological units 

(Ravazzani et al., 2015): (a) a soil thickness of 20–50 m deep composed of alluvial deposits with 



gravelly-sandy texture where it is possible to detect an unconfined productive aquifer, (b) an 

alternation between silty-clayey and gravelly-sandy horizons (i.e. fluvial-lacustrine deposits), and (c) 

a marine origin sediment unit with fine texture. In the shallower unconfined aquifer, the groundwater 

level is variable, particularly under the plain and during the irrigation period. In many cases, the 

groundwater table can reach a few centimetres from the ground, especially where rice is cultivated or 

where the resurgences are operated (mainly between the Ticino and Adda rivers).  

Approximately 65% of the territory is devoted to agriculture, although urbanized areas have 

been expanding by about 45% since 1954 (Bocchi et al., 2012). The water in the agrarian lands is 

delivered by a network of artificial channels of different sections and order, which extends for over 

10 000 km across the plain, diverting water from the main rivers to the fields. Therefore, it is clear 

that there is a strong interdependence between irrigation requirements in the plain and water 

availability in the Alps and this affects the management of water resources in both contexts. 

 

3.2 Dataset 

Meteorological and hydrological data were collected at a half-hourly time step by the telemetric 

monitoring system managed by the Regional Agencies for the Protection of the Environment 

(ARPA). Available data included observations from more than 400 raingauges and thermometric 

sensors, and 63 hydrometric stations (see Fig. 2) from 1 January 2000 to 31 December 2010 (i.e. 10 

years of observations). The selected hydrometric stations are not influenced by artificial channels or 

other water management structures. The available data from five gauged stations, belonging to the 

meteorological network of ARPA Lombardy, cover the period from 1 January 2004 to 31 December 

2014. The water level in the rivers was converted to flow thanks to a stage–discharge relationship 

provided by the Regional Agency for each hydrometric station. The dataset was subdivided with 

approximately 50% of data for model calibration and validation respectively.  

The time series of data (i.e. precipitation, temperature, discharge) were analysed in order to 

verify their goodness and to detect missed values, malfunction of instruments, multiple change points 

and/or trends. A preliminary exploratory scan enabled us to verify the completeness of the time series. 

Furthermore, a particular procedure for the detection of multiple abrupt change points in daily time 

series (MAC-D; Rienzner and Gandolfi, 2013) was adopted to detect an unknown number of breaks 

and/or outliers.  



Concerning the RR modelling, input data of hourly precipitation and temperature measured 

by the meteorological station network were computed by the Thiessen polygon method (Thiessen, 

1911) for each analysed catchment.  

To implement the regression-based and physical-similarity regionalization strategies (Section 

2), a set of 27 catchment attributes was selected (Table 3). Topographic characteristics were derived 

from a digital elevation model (DEM) with a spatial resolution of 20 m, land-use properties from the 

Corine Land Cover map (downloaded from the European Environmental Agency, EEA1), soil 

properties from the regional lithological and geological maps, and climate indices from the available 

meteorological data. The data are freely available on the regional website of Piedmont2 and 

Lombardy3 region and on the Italian National Institute for Environmental Protection and Research 

(ISPRA) website 4. 

The choice of the most representative catchment descriptors is not easy because an extremely 

large set of physical properties is used in the hydrological literature and, in most cases, is led by 

empirical remarks (Carrillo et al., 2011, Sanborn and Bledsoe, 2006, Sawicz et al., 2011, Toth, 2013, 

Wagener et al., 2007, Yadav et al., 2007). Thus, to avoid redundancies in independent variables for 

the regression, several studies conducted a selection through correlation matrix, step-wise regression 

and principal component analysis (Sefton and Howarth, 1998). In this study, the procedure consisted 

in: (a) providing an exhaustive overview of physiographic, topographic (DEM-derived), land-use and 

soil property variables; (b) evaluating such catchment descriptors using the available data (Table 3); 

(c) building a correlation matrix between all pairs of catchment descriptors using the Pearson 

correlation coefficient ρ (Pearson, 1895); (d) grouping the catchment attributes that were found to be 

correlated with |ρ| > 0.70; and (e) selecting only one from each correlated group.  

 

4 Results 

4.1 Model performance of continuous streamflow predictions 

The application of MISDc provided good predictions of streamflow time series for the greater part of 

analysed catchments in the study area. For simpler comparison with the performance of other RR 

models given in the literature, the indicators were calculated using the daily averages from hourly 

streamflow time series. The best performance of the MISDc model shows values of KGE > 0.5 for 

 
1 http://dataservice.eea.europa.eu/ 
2 http://www.geoportale.piemonte.it/ 
3 http://www.geoportale.regione.lombardia.it/ 
4 http://www.isprambiente.gov.it/ 



100% of cases in calibration and for 84.1% of cases in validation (Fig. 3(a)). In particular, 90.5% and 

44.4% of catchments, respectively, fall into the best performing class, i.e. ‘very good’. The median 

value of KGE is 0.883 for the calibration period (range: 0.579 to 0.973), whereas for the validation 

period the median KGE is 0.715 (range: –0.295 to 0.886) (Fig. 3(b)). The MISDc model produced 

poor predictions in the validation period: only six out of 63 catchments were highlighted by the 

presence of outliers inside the boxplots in Fig. 3(b). 

The NS, ANSE and VE criteria were used as additional indicators of model performance. The 

NS values reflect the results achieved by the KGE scores. Only 11.1% and 22.2% of cases in the 

calibration and validation datasets, respectively, are in the worst performance class (Fig. 4). Likewise, 

the results in terms of ANSE are encouraging: for 95.2% and 88.9% of basins, an ANSE value of 

>0.50 was obtained in calibration and validation, respectively. In particular, 79.4% and 61.9% of 

ANSE values fall in the ‘very good’ performance class. The VE values partially agree with the other 

criteria: 90.5% and 52.4% of cases in calibration and validation, respectively, are in at least the 

‘satisfactory’ class. In fact, 30 cases show unsatisfactory results, with VE > 15%. Analysing the 

distribution of ANSE values, the accuracy and reliability of the MISDc model is confirmed (Fig. 

5(a)). The range of values varies from 0.356 to 0.996 in calibration and from –0.448 to 0.950 in 

validation (median: 0.854 and 0.736, respectively). In terms of NS, the median value is 0.760 in the 

calibration period (range: 0.219 to 0.968), whereas in the validation period the median NS is 0.639 

(range: –0.258 to 0.890) (Fig. 5(b)). In terms of VE, the results are promising (Fig. 5(c)). The median 

values of VE are 2.40% and 14.10% for calibration and validation, respectively (range: 0.05–49.92% 

and 0.21–92.00%, respectively). In particular, the worst VE, excluding the five outliers, was 44.25%.  

Figure 6 shows the model results for four river sections. The discrepancies between observed and 

modelled discharge are low, in both calibration and validation periods (see KGE values in Fig. 3). In 

particular, the model was found to be reliable in reproducing both the peak and the shape of the 

observed hydrographs, mainly during high-flow conditions that are of great interest for flood 

simulation events. 

 

4.2 Model performance of FDC predictions 

The assessment of the stream frequency regime was evaluated by constructing the mean annual FDCs. 

To estimate their accuracy and reliability, each FDC simulated using MISDc was compared to the 

observed one.  

The results are ‘satisfactory’, considering that the value of BiasFMS was 26.44% ± 14.76% 

for the complete dataset (Fig. 7). The best performance was obtained analysing the portion of FDC 



that describes the highest values of discharge, i.e. the floods for which the value of BiasFHV was 

11.52% ± 7.12%. Conversely, larger discrepancies were underlined in simulating the low streamflow 

and in particular the baseflow: the values of BiasFLV was over 41%. In Fig. 8, the comparisons 

between observed and simulated FDCs are shown for the same four gauged catchments as in Fig. 6. 

 

4.3 Comparison between regionalization strategies 

This section shows the model performance of MISDc coupled with the selected regionalization 

strategies, estimating a series of indicators (i.e. KGE, NS, ANSE and VE) of simulated daily 

streamflow, average of hourly predictions. Prior to applying several regionalization models (i.e. the 

spatial-proximity, regression-based and physical-similarity approaches), it was important to prevent 

possible error propagation due to a poor calibration process or an over-parameterization of the RR 

model. On this point, Goswami et al. (2007), mentioning the work of Andréassian et al. (2003), 

emphasized that over-parameterization, dependency on input data bias and lack of systematic link 

between parameter precision and model efficiency are the three main factors that complicate the 

regionalization of a conceptual RR model. For this reason, it was necessary to examine the calibrated 

parameter sets and to analyse the catchment descriptors to be included in the regionalization 

strategies. The correlation analysis between all pairs of the model parameters revealed a lack of 

correlation (|ρ| < 0.38), except for a weak correlation, with |ρ| = 0.44 between ϑ and Ks (shown in in 

the Supplementary Material, Table S1). In addition, a further correlation analysis was performed to 

verify that the model parameters were uncorrelated, while the procedure described in Section 2.3.2 

was carried out to identify a limited number of catchment descriptors, removing those that were 

highly correlated with other ones. Thus, the catchment descriptors were grouped into highly-

correlated classes with |ρ| > 0.70 and, for each group, only one of them were designated to be included 

in the regionalization techniques to avoid intrinsic redundancy. The correlation matrix is reported in 

the Supplementary Material (Table S2), whereas the 12 uncorrelated catchment attributes, as reported 

in Table 4, were: AREA (catchment landform), Zm (topographic index derived by DEM), CN and 

URB (land use), HIGHp and LOWp (catchment soils), MAP, Dstd, PVAR, MMA and RWD 

(climatic).  

The model performance results for the different regionalization techniques applied to the 

ungauged catchments showed a moderate worsening with respect to the results obtained for the 

gauged ones in the validation process, as expected. In terms of median values of KGE, the AM25, 

AM50, and MLR2 (i.e. level-log model) produced better results among the regionalization methods 

(Fig. 9), with a reduction in accuracy with respect to the results of the validation process of 13.4%, 



19.1%, and 20.9%, respectively. The range of median values of KGE was from 0.346 (for MLR3) to 

0.609 (for AM25). In particular, MLR3 showed the poorest model performance, with a median value 

of KGE that was approximately 50.8%. 

The distributions of NS values for the different regionalization strategies was similar to those 

obtained calculating the KGE scores. The range varied from 0.474 (for CCpd) to 0.559 (for MLR1) 

(Fig. 10). In contrast, all the regionalization procedures provided good performance on the prediction 

of high discharge time series (Fig. 11), with a reduction in accuracy of, at most, 10%. The median 

values of ANSE varied from 0.660 (for CCpd) to 0.732 (MLR1). Moreover, AM25 showed positive 

performance, with a median of ANSE equal to 0.724. Estimating the errors in streamflow volume, 

AM25 is clearly the most competitive, with the results of the validation process having a median of 

VE of 15.0% (Fig. 12). However, IDWc, PhyS, MLR3 and MLR4 obtained the worst results, with 

VE values that exceeded 20%.  

To assess the performance in constructing the FDCs, the three scores BiasFMS, BiasFHV and 

BiasFLV were evaluated (Table 5). All the regionalization strategies showed satisfactory results, with 

BiasFMS values for validation varying from 28.2% to 35.4% compared to 26.4% obtained through 

the calibration of the parameter sets. The ranges of BiasFHVs and BiasFLVs were 18.1–32.5% and 

52.7–69.5%, respectively. As expected, the best performance was obtained with AM25 and MLR1, 

while the worst was obtained using the physically-based and catchment classification approaches.  

 

5 Discussion 

5.1 Model performance 

Several studies have applied the hydrological RR model MISDc as an excellent predictor of 

streamflow time series for flood forecasting, water resource assessment, climate change and impact 

projection (Barbetta et al., 2017, Camici et al., 2014, Loizu et al., 2018, Massari et al., 2015a). This 

model provided robust and accurate results with relatively slight differences between observed and 

simulated discharge at the gauged outlet sections of investigated catchments. In a recent review, 

Masseroni et al. (2017b) underlined how in 25% of tested catchments, the MISDc model performance 

was excellent, with values of NS greater than 0.85. In particular, the median NS calculated on all 

tested catchments was 0.6, whereas 70% of basins provided NS greater than 0.5.  

This is consistent with our results, which show satisfactory achievements in the majority of 

gauged catchments, i.e. MISDc obtained NS > 0.5 in 77.8% of the validation dataset. Moreover, this 

work verifies a particular propensity of the MISDc model for flood forecasting (Barbetta et al., 2017, 



Brocca et al., 2013, Masseroni et al., 2017b). This accuracy has been demonstrated by applying the 

hydrological model on a large number of study catchments in the Upper Po River basin, a 

mountainous area often subject to hydrogeological hazard, and by adopting a particular performance 

score for high flows, i.e. ANSE.  

However, it is possible to note a moderate degree of uncertainty in terms of volume, as already 

discussed in Masseroni et al. (2017b). Indeed, the results emphasize quite a wide range of VE (1–

92%), showing difficulty in predicting streamflow during periods without precipitation. This 

probably depends on a less accurate simulation of the baseflow, or of the snow and glacier melting 

processes. Moreover, such a problem was emphasized by analysing the FDCs and calculating the 

index BiasFLV (Fig. 7).  

These results emphasize that the MISDc model is competitive in relation to more complex 

hydrological models. In particular, similar results have been produced by many authors adopting fully 

distributed hydrological models (e.g. Ercolani and Castelli, 2017, Montaldo et al., 2007, Rabuffetti 

et al., 2009). In addition, a significant advantage of MISDc is the excellent ratio between the accuracy 

in predicting streamflow time series and the computational time.  

This makes it suitable for long simulations to evaluate the impact of climate change, for 

evaluating differences in discharge according to weather forecasts and for implementing a risk 

management database to extend over large areas, as proposed by Brocca et al. (2013). 

5.2 Spatial distribution of model performance 

Following suggestions by Boscarello et al. (2016), the evaluation of a potential spatial trend of model 

performance is an interesting analysis, which might reveal if there are catchment characteristics that 

provoke poor results. The gauged catchments were grouped into the four performance classes 

according to KGE values, and the results are reported on the map in Fig. 13. It is clear that there is 

no evidence of a spatial trend: the worst performance was uniformly distributed over the study area. 

All correlations (ρ) between KGE and catchment descriptors reported in Table 3 showed, on average, 

a value of |ρ| < 0.25 in validation. Moreover, there is an equal distribution among catchments with 

low performance in the Piedmont and Lombardy regions (about 83.0% and 87.5 respectively).  

 

5.3 Comparison between regionalization performance 

In this study, the differences among the regionalization strategies are not so evident. The results show 

that the spatial proximity approaches, in particular the arithmetic mean approaches, performed best. 

In particular, the first was clearly AM25 (i.e. the arithmetic mean method applied to a portion of a 



region within a radius of 25 km). This method obtained the best results in terms of all the performance 

indices: 58.7% of cases with KGE, 61.9% with NS, 85.7% with ANSE and 52.4% with VE were 

classified as, at least, satisfactory. Considering the KGE values as a measure of comparison, AM50 

and MLR2 (level-log) produced the next best results, with 60.3% of them satisfactory. Instead, the 

regression-based models MLR3 (log-level) and MLR4 (log-log) showed the poorest predictions, with 

approx. 60% of cases classified as unsatisfactory. Moreover, the spatial-proximity approaches based 

on the inverse distance and physical similarity achieved inaccurate results: only one out of two cases 

provided satisfactory performance. This situation is certainly motivated by the construction of 

MISDc, which can be classified as a physically meaningful approach, but not as physically- and 

spatially-distributed model. Another clear indication is given by the performance of the combination 

between MISDc and regionalization strategies on the prediction of high streamflow: indeed, ANSE 

was greater than 0.5 in at least 74.6% of cases for the worst performance of regionalization approach 

(i.e. MLR4).  

Although many hydrologists mainly investigated the various regionalization approaches, their 

studies did not reach a shared conclusion and clearly indicate that there is not a universal procedure 

(e.g. McIntyre et al., 2005, Merz and Blöschl, 2004, Oudin et al., 2008, Razavi and Coulibaly, 2017, 

Zhang and Chiew, 2009). However, several regional investigations have shown favourable 

performance using the spatially-based regionalization models, such as IDW or kriging, an advanced 

geo-statistical procedure; three examples of these are the studies of Oudin et al. (2008), Samuel et al. 

(2011) and Swain and Patra (2017). The first authors calibrated a 10-parameter RR model with a large 

set of data consisting of streamflow time series of 913 French catchments (10–9390 km2). Samuel et 

al. (2011) coupled the 11-parameter RR model (HBV, Bergström, 1976) with the 3-parameter lumped 

conceptual RR model (MAC) and regionalized them for 111 large catchments (100–100 000 km2) 

located in Ontario (Canada). Finally, Swain and Patra (2017) used the 18-parameter SWAT  model 

on 32 large catchments (728–23501 km2) in eastern and southeastern India. Such evidence is 

supported also by our results, which achieved the best performance using the local arithmetic mean 

strategy belonging to the spatial-proximity class, although our study was conducted using a different 

RR model and tested on catchments covering an overall area of approx. 16 000 km2. In addition, the 

indications of our study confirm the pioneering study of Merz and Blöschl (2004), who simulated the 

water balance dynamic using the HBV model on 308 catchments (3–5000 km2) in Austria. They 

obtained good results using the average model parameters of the nearest upstream and downstream 

gauged catchments and adopting kriging, and poor results using multiple regression-based strategies. 

A similar outcome was obtained by Parajka et al. (2005) and Jin et al. (2009) using the HBV model 



on 320 Austrian catchments (10–9770 km2) and on 13 nested natural sub-catchments of the Dongjang 

basin in South China (100–1000 km2), respectively.  

Conversely, our results are in disagreement with many works that adopted one of the most 

extensively used hydrological model, IHACRES (the acronym for Identification of unit Hydrographs 

And Component flows from Rainfall, Evapotranspiration and Streamflow data), developed by the 

Institute of Hydrology and the Australian (National University) Centre for Resource and 

Environmental Studies (Jakeman et al., 1990). In fact, the regression-based approaches, including 

linear, nonlinear or multiple models, seem to provide accurate estimation of model parameters (Croke 

et al., 2004, Kokkonen et al., 2003, Post, 2009, Post and Jakeman, 1999, Sefton and Howarth, 1998, 

Young, 2006). Moreover, other studies support the application of the combination of different 

regionalization techniques. McIntyre et al. (2005) observed an improvement in the established 

procedure of regressing parameter values against numeric catchment descriptors, using a conceptual 

RR model on 127 catchments in the UK (1–1700 km2). Viviroli et al. (2009a, 2009b) developed a 

12-parameter conceptual process-based hydrological system for 49 catchments (10–1000 km2) in 

Switzerland and adopted a combination among the classical regionalization models (spatially-based, 

physical-similarity and regression). Bao et al. (2012) coupled a meso-scale land surface model and 

different regionalization strategies on 55 large Chinese catchments (2582–121 972 km2). An 

alternative solution was presented by Razavi and Coulibaly (2017), who combined diverse 

regionalization strategies and two hydrological RR models and applied them to 90 catchments (85.5–

91 802 km2) in Ontario (Canada), classified with non-linear data-driven classification techniques. 

They indicated the feed-forward neural network as the best regionalization method, and very 

competitive with the spatial-proximity methodologies. 

According our results and the background literature, it is clear that the reliability of the 

hydrological regionalization approaches for flow assessment in ungauged catchments by regional 

analysis depends on: (a) the choice of RR model, (b) the quality and quantity of available data at 

gauged stations, and (c) the knowledge of the physiographic characteristics of the catchments under 

study. Despite the fact that, currently, there is not a universal procedure and common consensus, we 

suggest that regionalization approaches remain the key solution that can enable us to apply 

hydrological RR models to derive streamflow time series from rainfall and temperature data over any 

catchment without a hydrological station.  

6 Conclusions 

Appropriate and reliable streamflow knowledge is a key-issue for correctly addressing a wide range 

of applications, from flood prevention to water resource management, from engineering design of 



hydraulic structures to restoration of ecosystem services. Especially in the western Po River basin, in 

northern Italy, the application of RR models for accurate flow assessments over a large set of 

catchments is strongly encouraged by the regional water protection authorities to ensure a high level 

of flood prevention and rational water allocation over the territory. To address these issues, in this 

work, the lumped MISDc rainfall–runoff model was applied over 63 uniformly distributed Alpine 

and pre-Alpine basins located in the northwestern part of the Upper Po River basin. The performance 

of the model was promising: almost the 85% of catchments produced values of KGE greater than 0.5 

and 45% produced values greater than 0.75, while approximately 62% of cases gave an ANSE greater 

than 0.75 the in validation period. The performance in terms of volume error (VE) was satisfactory, 

even if around the 90% and 52% of tested catchments in calibration and in validation, respectively, 

revealed a VE of less than 15%.  

In general, the analysis carried out on available time series shows good performance in terms 

of reproducing the FDCs: on average, the indices used to assess the performance on the mid-segment 

slope and the high-segment volume of FDC were below 30% and 10%, respectively. Conversely, 

poorer performance was found in analysing the low-segment volume of FDCs, with a bias of approx. 

41%. 

Lastly, the local arithmetic mean regionalization offered a reliable solution for ungauged 

catchments, providing good performance in all indices, with KGE, NS, ANSE and VE being satisfied 

in 58.7%, 61.9%, 85.7% and 52.4% of cases.  

Further developments will focus on the improvement of the performance of the MISDc model 

in predicting low streamflow and dry periods for the management of irrigation water resources, 

changing the error criterion in calibration (for example using VE or BiasFLV), even if this is at the 

expense of the prediction of floods. Moreover, a customization of MISDc will integrate the proposed 

model, especially improving the simulation of the snow and glacier melting processes. In particular, 

if the present version includes the degree-day method and predicts the behaviour of the accumulation 

and the melting of the snowpack and the melting of glaciers, further elaboration can address the use 

of a more specific approach using snow maps captured by automatic measuring stations.  

Further works on this topic will be dedicated to systematically applying the MISDc model over 

those mountainous areas, as sources of water, to enable us to determine the availability of water 

resources for the irrigation requirements of the plain, in accordance also with future precipitation and 

temperature change scenarios.  
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Table 1. Description, unit and range of the model parameters that have to be calibrated in MISDc. 

Model parameters Description Unit Range 

Soil water balance (SWB) 

W(t0) Initial condition of soil water content   

Wmax Maximum water capacity of the soil layer mm 100-1000 

Ks Saturated hydraulic conductivity mm h-1 0.01-20 

M Exponent of drainage component - 5-60 

Θ Fraction of drainage versus interflow - 0-1 

B Correction factor for actual evapotranspiration - 0.4-2 

Cm-snowpack Degree-day factor for snowpack mm h-1 °C-1 0.1-3 

kglacier Constant factor for glaciers melting mm h-1 0-0.0002 

Cm-glacier Degree-day factor for glaciers mm h-1 °C-1 0.1-3 

Soil Conservation Service – Curve Number (SCS-CN) 

λ Initial abstraction coefficient - 0.0001-0.2 

a Parameter of S(t) versus W(t) relationship - 1-4 

Routing module (RM) 

η Lag-time parameter - 0.5-6.5 

 

Table 2. List of regionalization approaches compared in this work. 

Regionalization 

strategy 

Method Approach Abbreviation 

Spatial-proximity Inverse spatial distance From the centroid IDWc 

From the outlet IDWo 

Arithmetic mean technique Global mean AMg 

Local mean (50 km) AM50 

Local mean (25 km) AM25 

Regression-based Linear multiple regression level-level model MLR1 

Nonlinear multiple 

regression 

level-log model MLR2 

log-level model MLR3 

log-log model MLR4 

Physical-similarity Distance inside the n-

dimensional space of the n 

physical attributes 

Euclidean distance PhyS 

Catchment classification Using arithmetic mean CCpm 

Using physical similarity measure CCpd 

 

  



Table 3. Overview of geographic, physiographic, climatic and geological variables used in previous 

catchment classifications and/or regionalization studies. 

Descriptor Abbreviation Unit  Source Min Max 

Longitude (WGS 84 / UTM zone 

32N) 

Xs - Gauged station 

information 

346505 612401 

Latitude (WGS 84 / UTM zone 32N) Ys - Gauged station 

information 

4885566 5130276 

Curve Number CN - Combination of 

available data 

66.0 80.8 

Area AC km2 DEM 15.9 2335.4 

Stream length L km DEM 5.52 112.74 

Mean elevation  Zm m DEM 241.6 2104.5 

Minimum elevation Zmin m DEM 72.8 950.5 

Maximum elevation Zmax m DEM 377.6 4427.3 

5th percentile elevation Z5 m DEM 104.28 1189.43 

95th percentile elevation Z95 m DEM 336.69 3152.88 

Average slope SL deg DEM 0.70 33.99 

Topographic wetness index (details in 

Raduła et al., 2018) 

TWI - DEM 5.54 13.03 

Percentage of catchment covered by 

mountains (Z > 600 m) 

MOUN - DEM 0.00 1.00 

Percentage of catchment covered by 

arable land and permanent crops 

AGR % Corine land cover 

map 

0.96 92.48 

Percentage of catchment covered by 

forested land 

WOOD % Corine land cover 

map 

6.57 99.00 

Percentage of catchment covered by 

artificial areas 

URB % Corine land cover 

map 

0.00 40.84 

Mean cumulated annual precipitation MAP mm Meteorological data 518.5 2007.4 

Standard deviation of cumulated 

annual precipitation 

Dstd mm Meteorological data 111.8 637.9 

Coefficient of variation in annual 

precipitation 

PVAR - Meteorological data 0.117 0.593 

Number of days with precipitation NP - Meteorological data 81 241.5 

Mean annual maximum 1-hour 

precipitation  

MMA mm Meteorological data 7.21 51.35 



Ratio of precipitation in wettest month 

to that of the driest 

RWD - Meteorological data 17.38 

 

164.31 

Average monthly temperature Tmo °C Meteorological data 3.10 13.23 

Percentage of soil with high 

permeability within the catchment 

(sand and loamy sand) 

HIGHp % Lithological and 

geological maps 

0.00 98.65 

Percentage of soil with median 

permeability within the catchment (silt 

loam and silty clay loam) 

MEDp % Lithological and 

geological maps 

0.60 100.00 

Percentage of soil with low 

permeability within the catchment (silt 

clay and clay) 

LOWp % Lithological and 

geological maps 

0.00 85.91 

Mean field capacity FC mm Lithological and 

geological maps 

0.164 0.76 

 

  



Table 4. Grouping of catchment descriptors according to the procedure described in Section 2.3.2. 

The catchment descriptors with a high linear correlation (|ρ| > 0.70) are grouped. Numbered 

brackets show the correlated groups, while the asterisk indicates lack of correlation with the other 

attributes. Underlined response characteristics were selected for the regionalization.  

Correlated group Catchment descriptors 

[1] AREA, L 

[2] Zm, Zmin, Zmax, SLOPE, MOUN, TWI, Z5, Z95, WOOD, AGR, FC, NP, Tmo, Xs 

[3] HIGHp, MEDp 

[4] MAP, Ys 

[*] CN, URB, LOWp, Dstd, PVAR, MMA, RWD 

 

Table 5. Comparison of three performance indicators (BiasFMS, BiasFHV and BiasFLV) estimated 

for the ungauged catchments using the investigated regionalization techniques.  

 
IDWc IDWo AMg AM50 AM25 MLR1 MLR2 MLR3 MLR4 PhyS CCpm CCpd 

BiasFMS (%) 33.1 34.1 28.9 31.5 28.2 31.7 29.8 34.6 32.6 32.2 35.4 32.2 

BiasFHV (%) 25.9 25.0 31.1 25.5 19.2 18.1 24.4 23.2 24.6 32.5 27.9 31.2 

BiasFLV (%) 63.9 64.2 57.1 62.4 52.7 55.3 57.8 55.3 58.2 59.9 62.3 69.5 

 

 

Figure captions 

Figure 1. Schematization of the lumped version of MISDc incorporating the Soil Water Balance 

Model, the Soil Conservation Service Curve Number, and the Routing module.  

 

Figure 2. Locations of gauged hydrological and meteorological stations in the western Po Valley, 

Italy.  

 

Figure 3. KGE values in calibration (KGEcal) and in validation (KGEval): (a) frequency of the four 

performance classes and (b) statistical distribution.  

 



Figure 4. Distribution of gauged catchments into the four performance classes considering ANSE, 

NS and VE as scores in calibration (subscript cal) and validation (subscript val) periods. 

 

Figure 5. Boxplots of model performances in terms of ANSE, NS and VE values in calibration (cal) 

and validation (val) periods. The value in bold (red) text is the median of each boxplot. 

 

Figure 6. Comparison between the observed Qobs, and simulated Qsim, discharge (lower panel) for 

calibration and validation periods at four different gauged river stations: (a) San Martino (no. 25), 

(b) Villafranca (no. 31), (c) Passobreve (no. 36), and (d) Carrù (no. 44). The upper panel shows the 

temporal pattern of rainfall rate. 

 

Figure 7. Boxplots of model performance in terms of BiasFMS, BiasFHV and BiasFLV. The value 

in bold (red) text is the median of each boxplot. 

 

Figure 8. Observed (grey line) and simulated (blue line) FDCs for four gauged river stations: (a) 

San Martino (no. 25), (b) Villafranca (no. 31), (c) Passobreve (no. 36), and (d) Carrù (no. 44). 

 

Figure 9. Comparison of KGE values of ungauged catchments using the investigated regionalization 

technique. The value in bold (red) text is the median of each boxplot. 

 

Figure 10. Comparison of NS values of ungauged catchments using the investigated regionalization 

technique. The value in bold (red) text is the median of each boxplot. 

 

Figure 11. Comparison of ANSE values of ungauged catchments using the investigated 

regionalization techniques. The value in bold (red) text is the median of each boxplot. 

 

Figure 12. Comparison of VE values of ungauged catchments using the investigated regionalization 

techniques. The value in bold (red) text is the median of each boxplot. 



 

Figure13. Spatial distribution of model performances in terms of KGE index values.  

 

 

  



Appendix A 

Here, we provide a brief description of the lumped version of the semi-distributed continuous RR 

model Modello Idrologico Semi-Distribuito in continuo, MISDc, developed by Brocca et al. (2011a). 

MISDc consists of three principal components: the soil water balance (SWB), the Soil Conservation 

Service - Curve Number method (SCS-CN) and the routing module (RM). The SWB is based on 

equation (A1). 

{
d𝑊(𝑡)

d𝑡
= lp(𝑡) − 𝑟(𝑡) − 𝑒(𝑡) − [𝑔(𝑡) + bf(𝑡)] + swesnowpack(𝑡) + sweglacier(𝑡) 𝑊(𝑡) ≤  𝑊max

𝑊(𝑡) = 𝑊max otherwise
 

 (A1) 

In equation (A1), W(t) is the soil water content at time t, lp(t) is the liquid precipitation, r(t) is the 

effective rainfall (i.e. the superficial runoff), e(t) is the evapotranspiration rate, g(t) and bf(t) indicate 

the drainage rate due respectively to interflow and deep percolation, swesnowpack(t) is the melting of 

snowpack, sweglacier(t) is the melting of glaciers, and Wmax the maximum water capacity of the soil 

layer. 

The model assumes that the surface soil layer is a spatially-lumped system with the following 

characteristics:  

• r(t) is calculated through the SCS-CN method (Chow, 1959), as follows: 

𝑟(𝑡) =
[lp(𝑡)−𝜆 𝑆(𝑡)]2

lp(𝑡)−𝜆 𝑆(𝑡)+𝑆(𝑡)
 (A2) 

where λ is the initial abstraction coefficient and S(t) is the soil potential maximum retention. 

• S(t) and the saturation degree, i.e. the difference between Wmax and W(t), are related by a linear 

relationship: 

𝑆(𝑡) = 𝑎[𝑊max − 𝑊(𝑡)] (A3) 

• e(t) mainly controls the soil moisture temporal pattern without precipitation and is represented 

by a linear relationship depending on the potential evapotranspiration ETp(t) and the soil 

saturation through the empirical formulation (Doorenbos and Pruitt 1977): 

 

𝑒(𝑡) = ET𝑝(𝑡)
𝑊(𝑡)

𝑊max
 (A4) 



ET𝑝(𝑡) = −2 + 𝑏{𝜉[0.46𝑇𝑎(𝑡) + 8.13]}   (A5) 

where Ta(t) is the air temperature, b is the correction factor for actual evapotranspiration and ξ is 

the percentage of total daytime hours; 

• g(t) is the percolation that is a percentage of the drainage term described by the relationship 

(Famiglietti and Wood 1994): 

𝑔(𝑡) = 𝜃 𝐾s [
𝑊(𝑡)

𝑊max
]

𝑚

  (A6) 

where Ks is the saturated hydraulic conductivity, m is the exponent of the drainage component, 

and θ is the fraction of drainage that percolates. 

• bf(t) is the subsurface runoff, i.e. the interflow: 

bf(𝑡) = (1 − 𝜃)𝐾s [
𝑊(𝑡)

𝑊max
]

𝜃

  (A7) 

• swe(t) indicates the snowmelt package that was specifically added to the original version of 

MISDc developed by Brocca et al. (2010, 2011a) in this study. The snowmelt model includes the 

melting of the snowpack, the melting of glaciers and snow accumulation dynamics on both the 

snowpack and the glaciers (Tarboton, 1994, Tarboton et al., 1995). It starts partitioning the total 

precipitation in the liquid Pliq(t) and solid Psol(t) components: 

{
𝑃liq(𝑡) = 𝛼𝑃 𝑃(𝑡)

𝑃sol(𝑡) = (1 − 𝛼𝑃) 𝑃(𝑡)
  (A8) 

where αP is a coefficient computed by: 

{

𝛼P = 0
𝛼P = 1

𝛼P =
𝑇a−𝑇inf

𝑇sup−𝑇inf

𝑇a ≤ 𝑇inf

𝑇a ≥ 𝑇sup

𝑇inf ≤ 𝑇a ≤ 𝑇sup

 (A9) 

 

where Tinf and Tsup are the calibration parameters that are set to 0°C, as suggested by Corbari 

et al. (2009). 

 



The melting process is based on the degree-day concept (Martinec, 1960), which assumes a 

melt rate proportional to the difference between Ta(t) and a predefined threshold temperature Tb(t), as 

follows: 

{
𝑠acc(𝑡) = 𝑠acc(𝑡 − 1) + 𝑃sol(𝑡)                                                                    𝑇a ≤ 𝑇sup

𝑠acc(𝑡) = 𝑠acc(𝑡 − 1) − swe(𝑡) = 𝑠acc(𝑡 − 1)[1 − Cm (𝑇𝑎 − 𝑇sup)] 𝑇a > 𝑇sup

 (A10)  

where sacc is the accumulated snow layer and Cm is the degree-day coefficient. 

This methodology is applied separately for the melting processes of the snowpack and the 

glaciers, as follows: 

swesnopack(𝑡) = 𝑠acc−snowpack(𝑡 − 1)Cmsnowpack(𝑇a − 𝑇sup)  (A11) 

sweglaciers(𝑡) = 𝑘glaciers + 𝑠acc−glaciers(𝑡 − 1)Cmglaciers(𝑇a − 𝑇sup) (A12) 

where the subscripts indicate the type of melting process and kglaciers is a constant referred to the flow 

of water at the base of glaciers. 

The direct runoff hydrograph H(t) at the outlet station is given by the convolution of r(t) and 

the instantaneous unit hydrograph (IUH), h(t), as follows: 

𝐻(𝑡) = 𝐴𝐶 ∫ 𝑟(𝜏) ℎ(𝑡 − 𝜏) 𝑑𝜏
𝑡

0
 (A13) 

where AC is the catchment area and τ is an auxiliary variable for time  

The geomorphological IUH is derived according to the methodology proposed by Gupta et al. 

(1980) and through a linear reservoir approach for the sub-catchments, assuming a lag time that can 

be evaluated by (Melone et al. 2002):  

𝐿 = 𝜂1.19𝐴𝐶
0.33 (A14) 

where L is the lag time and η is the coefficient of lag time relationship. 

Finally, the direct runoff hydrograph, Q(t) is calculated through a diffusive routing approach 

(Troutman and Karlinger, 1985), which takes all the contributions of the streamflow at the catchment 

outlet. 

𝑄(𝑡) = ∑ ∫ 𝑟(𝜏) ℎ(𝑡 − 𝜏) d𝜏
𝑡

0
 (A15) 



 

 



 

Appendix B 

Table B1. Details of the 63 basins and sub-catchments of the western Po Valley used in the study. 

Gauge station River Province Code Longitude Latitude Area (km2) Elevation (m a.s.l.) Average slope (°) MAP (mm) 

Gavardo Chiese BS 1 612401 5049768 386.63 706.73 (169-2000) 26.02 1356.484354 

Gera Lario Adda CO 2 531834 5110833 2335.4 1809.8 (179-4023) 28.28 1412.380883 

Lozza Olona VA 3 489790 5069162 66.43 423.25 (265-992) 9.11 1353.678106 

Castellanza Olona VA 4 492782 5050408 141.06 360.49 (190-992) 5.88 1345.836099 

Cantù-Asnago Serenza CO 5 507810 5062779 46.37 340.87 (261-610) 4.58 1340.856098 

Peregallo Lambro MB 6 523311 5053559 300.62 439.39 (184-1457) 11.11 1398.242161 

Caslino d'Erba Lambro CO 7 518045 5075784 76.97 713.3 (257-1457) 22.91 1586.57 

Brembate di Sopra Brembo BG 8 545718 5062020 772.56 1154.81 (199-2916) 26.89 1476.450365 

Bovegno Mella BS 9 598193 5070535 88.32 1300.09 (525-2201) 28.95 1325.455737 

Darfo Boario Terme Oglio BS 10 589758 5080335 1329.41 1649.04 (176-3539) 28.36 1150.054545 

Lambrugo Lambro CO 11 519380 5067757 223.03 492.15 (199-1457) 13.84 1409.574734 

Camerata Cornello Brembo BG 12 551077 5082983 408.37 1440.27 (376-2916) 30.08 1714.486159 

Ponte Cene Serio BG 14 563859 5070401 463.3 1325.74 (342-3049) 28.1 1424.471552 

Gandellino Serio BG 15 573384 5095337 102.47 1884.4 (731-3049) 33.99 2007.414286 

Molteno Bevera LC 16 523871 5069985 42.61 381.85 (246-879) 7.89 1373.323174 

Chiavenna Mera SO 17 528981 5130276 192.37 1956.78 (296-3280) 28.25 1770.542936 

Brandizzo Malone TO 20 409800 5003812 312 464.75 (192-1965) 4.13 1130.802 

Front Malone TO 21 395359 5015296 153.05 667.59 (271-1965) 5.58 1295.519 

Germagnano Borgo Stura di Vi? TO 22 377061 5011309 232.07 1764.91 (647-3334) 13.48 1208.35 

La Loggia Chisola TO 23 395185 4980749 444.21 352.99 (223-1346) 1.87 924.196 

Lanzo Stura di Lanzo TO 24 380981 5013880 635.15 1752.85 (491-3346) 13.5 1281.709 

Moncalieri Sangone TO 25 395894 4983882 252.1 733.65 (226-2389) 4.92 1036.6 

Parella Chiusella TO 26 405964 5030308 158.05 1301.49 (280-2517) 10.41 1406.646 

Perrero Germagnasca TO 27 355060 4978655 195.05 1914.36 (767-2817) 12.46 1034.73 

San Martino Chisone TO 28 364405 4971649 574.15 1721.23 (458-2980) 12.39 1035.444 



Pont Soana TO 30 390595 5030737 218.05 1922.28 (666-3039) 13.99 1294.095 

San Benigno Orco TO 31 406312 5011060 874.22 1545.16 (210-3646) 11.49 1227.847 

Santena Banna TO 32 403909 4977517 373.23 288.53 (232-516) 0.7 717.688 

Torino-Stura di Lanzo Stura di Lanzo TO 35 398252 4996118 927.27 1346.83 (216-3346) 10.43 849.211 

Torino-Dora Riparia Dora Riparia TO 36 399093 4992176 1328.29 1634.22 (225-3376) 12.58 1233.321 

Trana Sangone TO 37 375548 4988109 133.04 1115.13 (381-2389) 8.35 1101.385 

Villafranca Pellice TO 38 381345 4963168 1016.34 1475.88 (254-2980) 10.91 1081.357 

Carisio Elvo VC 41 437994 5029760 257.11 605.2 (177-2320) 4.83 1279.9 

Cossato Strona BI 42 436246 5046480 57.02 643.82 (265-1375) 5.61 1575.803 

Pray Sessera BI 43 439375 5058122 121.04 1161.18 (444-2294) 8.57 1756.883 

Quinto Vercellese Cervo VC 44 451011 5025503 996.44 511 (138-2320) 3.6 1281.222 

Passobreve Cervo BI 45 425025 5053441 80.03 1502.24 (666-2276) 12.39 1730.268 

Varallo Mastallone VC 46 442188 5075482 145.04 1306.06 (583-2217) 9.39 1774.76 

Vigliano Cervo BI 47 430619 5044911 160.06 1148.42 (310-2276) 9.39 1643.049 

Candoglia Toce VCO 48 455208 5091406 1589.27 1723.39 (203-4427) 15.47 1571.15 

Momo Agogna NO 49 464707 5046499 161.07 328.5 (209-715) 1.25 1378.548 

Novara Agogna NO 50 467980 5030915 221.1 285.97 (142-715) 0.97 1276.212 

Busca Maira CN 51 379303 4930201 596.29 1667.5 (488-3096) 10.1 734.5753 

Camerana Bormida CN 52 432986 4920844 268.27 769.87 (397-1283) 4.54 995.048 

Carrù Pesio CN 53 411139 4924109 334.28 825.95 (300-2483) 5.47 1067.402 

Farigliano Tanaro CN 55 412708 4929896 1540.7 943.97 (248-2483) 6.09 1052.156 

Fossano Stura di Demonte CN 56 398627 4930852 1339.92 1598.48 (329-2936) 10.34 1122.081 

Garessio Tanaro CN 57 421307 4894775 156.44 1581.9 (932-2437) 9.46 1123.39 

Piantorre Tanaro CN 58 418166 4918796 545.82 1068.22 (371-2437) 7.48 1080.444 

Mondovì Ellero CN 59 406019 4915890 178.16 1089.75 (428-2428) 6.02 1135.993 

Monterosso Grana CN 60 366583 4918710 109.07 1561.76 (785-2454) 9.87 777.2961 

Polonghera Varaita CN 62 389173 4961955 626.32 1354.54 (244-3468) 8.12 857.741 

Rocchetta Belbo CN 64 434523 4942717 94.08 589.19 (325-787) 2.82 518.532 

Castelnuovo Belbo AT 65 454038 4960719 372.32 336.1 (120-787) 2.21 725.215 

Mombaldone Bormida AT 67 447204 4935282 440.44 496.55 (209-1145) 3.32 951.102 

Arquata Scrivia AL 69 490563 4947691 328.33 684.97 (318-1371) 4.89 1310.63 

Basaluzzo Orba AL 70 474018 4957174 739.73 479.47 (126-1243) 3.36 1176.784 



Cartosio Erro AL 71 454038 4935729 207.21 530.39 (248-1163) 3.42 1066.278 

Casal Cermelli Orba AL 72 470870 4964453 826.8 444.28 (100-1243) 3.06 1132.212 

Cassine Bormida AL 73 463785 4955435 1586.53 496.59 (116-1283) 3.51 896.475 

Guazzora Scrivia AL 74 490257 4986144 977.92 542.2 (72-1568) 4.07 1034.28 

Volpedo Curone AL 75 498652 4970401 170.15 626.13 (184-1493) 4.66 720.7034 

Serravalle Scrivia AL 76 488987 4952418 665.65 693.24 (218-1568) 5.25 586.2606 

Murialdo Bormida di Millesimo SV 77 432869 4905986 139.15 890.83 (599-1283) 5.28 1008.38 

 

 


