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Introduction

Recent years have witnessed a tremendous progress in the computation
of scattering amplitudes, which has been characterized by a recurrent
theme. Using cutting edge computational technology - and at times by
heroic efforts - some new amplitude is computed. Then one stares at the
answer and, sometimes, learns that it possesses unexpected properties
which were completely obscured in the intermediate steps of the com-
putation. This newly acquired knowledge usually inspires new compu-
tational techniques to get directly the final answer, which then allow to
obtain new “theoretical data” - i.e. previously intractable amplitudes -
where even more new features might be discovered.

A prime example of this virtuous loop is the celebrated scattering am-
plitude for n gluons, computed by Parke and Taylor in 1985. The textbook
Feynman diagram technique leads to a proliferation of terms which how-
ever collapse to the surprisingly simple result

AMHV(1+, 2+, . . . , i−, . . . , j−, . . . , n+) =
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉
,

when expressed using spinor helicity variables. The attempt of explain-
ing the origin of this compact result lead to new hindsights such as Wit-
ten’s Twistor String Theory or Berends-Giele, Cachazo-Svrcek-Witten and
Britto-Cachazo-Feng-Witten recursion relations. Using these new tech-
niques deriving the Parke-Taylor amplitude is now a matter of under-
graduate homework.

Another example of an unexpected structure unearthed in the study
of scattering amplitudes is the Amplituhedron [11], a generalization of a
polytope which was found out to be intimately connected with ampli-
tudes and integrands in planar N = 4 SYM theory. In this picture the
computation of amplitudes is translated in the geometrical problem of
finding a decomposition of the Amplituhedron into smaller pieces, some-
times simplifying dramatically the computation. An intriguing aspect of

ix



x Thesis overview

this formulation of the S-matrix is that the notion of Locality and Unitarity,
pillars of Relativity and Quantum Mechanics, are emergent from a deeper
- if somewhat still mysterious - concept, that of Positivity.

More precisely, in perturbative Quantum Field Theory locality and
unitarity are made manifest by the Lagrangian and Feynman diagrams,
since they represent amplitudes as a sum over local histories of particles
which interact at space-time points, the vertices of the graph, and propa-
gate freely along the propagators. The quantitative consequences of this
representation for the amplitudes are encoded in the famous formula

∂ = +

(1)

which is a precise statement on the analytical properties of the S-matrix:
scattering amplitudes have singularities when a subset of the external par-
ticles go on-shell and factorize into lower point amplitudes there. In addi-
tion, scattering integrands have poles when a virtual particle goes on-shell
and there reduce to a lower-loop integrand with two extra particles in
the forward limit. On the other hand, the Amplituhedron is defined by
a certain positivity requirement which has nothing to do with (1): very
roughly speaking it is the convex hull of the external kinematical data.
As a consequence of this definition the Amplituhedron develops an im-
portant boundary structure, in a sense the Amplituhedron solves (1) by re-
placing “singularities” with “boundaries”. In turn this implies the correct
singularity structure for the scattering amplitudes.

In the past couple of years, the idea that the Amplituhedron could
provide a new theoretical framework for the S-matrix has been put on a
more firm basis in [10] by introducing the concept of Positive Geometry, of
which the Amplituhedron represents a special instance. A positive geom-
etry is defined by a pair (X,Ω), X is a semi-algebraic variety - that is a
space defined by equalities and inequalities - and Ω a differential form,
called canonical form, defined by the requirement of having logarithmic
singularities at the boundaries of X . Furthermore, the residue of Ω along
a boundary ∂X of must be the canonical form of that boundary, so that
the pair (∂X,Res Ω) forms another positive geometry. It is worth men-
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tioning that this concept proved to be useful also beyond the world of
amplitudes: example of “Positive Physics” have been discovered in Con-
formal Field Theory, Effective Field Theory as well as Cosmology [4; 5; 6].
Going back to amplitudes, an important step forward made in [8] is that
also tree level amplitudes in the much simpler φ3 bi-adjoint scalar the-
ory admit the same description. Indeed, it was discovered that a positive
geometry - called Associahedron - lives in the kinematical space of these
amplitudes and allows their computation translating almost word-per-
word the original picture of N = 4 SYM and the Amplituhedron. In a
beautiful parallel between the two stories, the newly discovered Ampli-
tuhedron made manifest previously unknown properties of amplitudes
in φ3 and also inspired new methods to compute them.

It is becoming more and more evident that Amplituhedra exists hid-
den in plain sight even in the simplest quantum field theories, and it is
then a fascinating and pressing problem to understand whether this in-
creasingly applicable theory of the S-matrix has a deeper physical mean-
ing. In order to do so, and in light of the general wisdom of Amplitudeol-
ogy, it is desirable to gather more “theoretical data”: examples of positive
geometries with physically meaningful boundary structures and exam-
ples of amplitudes computed from them. This investigation is the main
topic of the present thesis.

As a start this exploration can be formulated as a purely geometrical
problem: are there positive geometries compatible with (1) and where can
they be found? When faced with this question, a mathematician comes up
immediately with an answer 1: the compactified moduli space of punc-
tured Riemann surfaces Mg,n. The space Mg,n is a rather fundamental
mathematical object: in its simplest incarnation, when the surface is a
sphere,M0,n can be thought of as the space of n complex variables up to
projective transformations. Furthermore,Mg,n plays an important role in
many fields of physics precisely because of its peculiar boundary struc-
ture, for example it is a natural space to describe CFT correlators - fa-
mously computed by prescribing appropriate factorizing and scaling be-
haviours - and therefore worldsheet formulations of perturbative string
amplitudes. For similar reasons it is important in worldsheet-like formu-
lations of field amplitudes, such as the CHY formalism or ambi-twistor
theory. Perhaps it is not too surprising, then, that Mg,n turns out to be
also an important example of positive geometry, as was first pointed out
in [8].

Despite its importance, the boundary structure of Mg,n is not made

1At least this was the case for the mathematician to whom I asked this question, Prof.
Gilberto Bini.
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manifest in the usual way physicists think about it. In the simplest case,
the bulk ofM0,n is a (n−3)-dimensional simplex and the boundary ∂M0,n

it is hidden at the vertices2 of this simplex: to probe it one has to “zoom-
in” at the vertices by performing a blow-up. This picture is a consequence
of the choice of coordinates used to chartM0,n, the locations of the punc-
tures on the sphere, which is well defined only when the punctures are
distinct. At the boundaries of M0,n, however, the punctures collide and
thus the patch of coordinate breaks down3. Since boundaries play such
a central role in our story, it would be desirable to have better coordi-
nates when thinking of Mg,n in connection with positive geometries. A
natural solution comes from hyperbolic geometry, using which one ob-
tains coordinates overMg,n that make completely manifest they way its
boundaries factorizes. We will offer a review of these ideas in Chapter 1,
which is partly based on [2] and successive investigations in collaboration
with Nima Arkani-Hamed and Song He. In particular, we will illustrate
simple examples of moduli spaces and their interpretation as positive ge-
ometries whose boundary structures “solve” (1) as it would be written in
the case a cubic scalar theory.

The study of the positive geometries living in moduli spaces is an in-
teresting problem on its own, however scattering amplitudes depend on
kinematical variables which are unrelated toMg,n. Therefore it is not im-
mediately clear how to make a connection between the two objects. This
was clarified in the seminal paper [8], where it was shown how the scat-
tering equations provide the missing link between the two worlds. In
the language of [10], the scattering equations are an isomorphism of posi-
tive geometries connecting the moduli space to a copy of it living directly
in kinematical space. Although it is very likely that this picture can be
generalized - perhaps even providing new inspiration for higher genera
scattering equations - we will not develop this idea much further here.
Instead, in Chapter 2 we will show how avatars of the new positive ge-
ometries found inMg,n can also be found in kinematical space in the form
of convex polytopes. As we will discuss, this fact is deeply connected with
the existence of a certain differential form called Scattering Form and with
the fact that this form enjoys a novel symmetry: it is projectively invari-
ant. This fact is very reminiscent of the familiar hidden dual conformal
invariance (DCI) of N = 4 SYM: amplitudes of this theory are DCI be-
cause a certain “infinity twistor”, representing an arbitrary choice of a
line at infinity in kinematical space, appears in intermediate computation

2More precisely, this happens at every boundary, of any dimension, of the simplex.
3In order to fix this problem one must rescale the coordinates by using the relative

velocities of the colliding punctures, which is in practice the meaning of the blow-up
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but ultimately drops out of the final result. Similarly, the projectivity of
the scattering form is equivalent to the absence of a pole at infinity which
appears term by term in the form.

Finally, in Chapter 3 we will discuss how the positive geometries pre-
viously discussed can be used to compute scattering amplitudes, even
more efficiently than one could expect from such a simple theory as φ3.
The general idea is that amplitudes are extracted from the scattering form,
which can be computed by triangulating the relevant Amplituhedron.
This yields recursive formulae with spurious poles which are reminis-
cent of BCFW. We will study the case of tree level amplitudes in φ3, where
a novel triangulation of the relevant Amplituhedron led us to a formula
which is even more efficient than the famous Berends-Giele recursive for-
mula. We will also present a number of interesting triangulations of the
Amplituhedra for the 1-loop integrand, which include a forward-limit for-
mula generalizing one discussed in [23].

To summarize, this thesis is organized as follows.

Chapter 1: Positive Geometries in the Moduli space A review of
the hyperbolic approach to the study of positive geometries living
in moduli spaces of Riemann surfaces. Using Fenchel-Nielsen coor-
dinates one is lead to the Associahedron, the Cyclohedron and the
Halohedron. Using Penner’s coordinates one is lead to cluster alge-
bras of finite type.
Chapter 2: Positive Geometries in Kinematical space Introduction
to projective Scattering Forms and their relation to polytopes. In
particular, description of the 1-loop scattering form and its gener-
alizations. Realization of the positive geometries previously found
in the moduli space as convex polytopes in the kinematical space of
amplitudes and integrands.

Chapter 3: Amplitudes from Geometry How to extract scattering
amplitudes from the Scattering Form, even in the presence of dou-
ble poles. Triangulations and recursive formulae: soft-limit formula
for tree level amplitudes, forward-limit formula for 1-loop integrands
and others.





CHAPTER 1

The Positive Geometry ofMg,n

1.1 Review of hyperbolic geometry

Here we review some elementary facts of plane hyperbolic geometry, Rie-
mann surfaces and their moduli. Further details can be found in [31; 32].

1.1.1 Hyperbolic Plane

The simplest and most fundamental Riemann surface is the hyperbolic
plane, which can be thought of in many ways. The first model of the
hyperbolic plane is the Poincaré disk, which is defined as the open disk
D ⊂ C of radius 1 centered at the origin. Its automorphism group AutD
is formed by the bi-holomorphic maps ψ : D→ D of the form

ψ : z 7→ ψ(z) =
az + b

b̄z + ā
,

where a, b ∈ C and |a|2 > |b|2. Among all the conformally equivalent
metrics which we can consider on D there is a privileged one which is
given by the infinitesimal distance

ρD =
2|dz|

1− |z|2
.

The Poincaré disk equipped with ρD is a Riemannian manifold called Hy-
perbolic plane. By definition, ρD is left invariant by all the elements of AutD,
and any other Riemannian metric of D compatible with this requirement
is obtained by a global scaling of ρD1. In terms of this privileged met-
ric we can define objects invariant under AutD, such as lengths, areas,
geodesics, circles and so on. Furthermore, we can use ρD to partition the

1The factor 2 in the numerator of ρD is chosen to normalize the curvature of D to −1.

1



2 1.1 Review of hyperbolic geometry

elements of AutD into parabolic, elliptic and hyperbolic transformations
as follows. For each ψ ∈ AutD define m(ψ) := infz∈D d(z, ψ(z)), where d is
the geodesic distance. Then we have the following table.

Parabolic One fixed point in ∂D m(ψ) = 0, Infimum not in D
Elliptic One fixed point in D m(ψ) = 0, Infimum in D
Hyperbolic Two fixed points in ∂D m(ψ) > 0

There are many other models of the Hyperbolic plane, one with an imme-
diate connection with the scattering amplitudes is the upper half plane
model. The upper half plane is the set H ⊂ C with Im(z) > 0. Since it is
simply connected, it must be bi-holomorphic to D, and, indeed, there is a
very well known map,

C : D→ H

z → σ =
i(z + 1)

1− z
,

called the (inverse) Cayley transform. C is a Moebius map which sends
the boundary of D to the real axis. The automorphism group AutH is
given by

φ : z 7→ φ(z) =
az + b

cz + d
,

with a, b, c, d ∈ R and with ac−bd > 0. We can identify AutH ≈ PSL(2,R) =
SL(2,R)/{±I}. The reader familiar with the scattering equations literature
will notice that the real section of the moduli space used in [8] to define
a positive geometry is very close to H. Indeed, there one considers punc-
tures on the real axis, up to the full SL(2,R) (see also [18; 12]).

A third model of the hyperbolic plane is the so called Hyperboloid model.
In a Minkowski space-time R1,2 of signature (−,+,+) and with coordi-
nates x = (x0, x1, x2), consider the upper branch of the hyperboloid H of
equation x2 = 1. We can induce a positive definite metric on it, which
turns it into a Riemannian manifold isometric to (D, ρD). We can con-
struct such isometry as follows. Put a disk of euclidean radius 1 at the
origin of the spatial plane x0 = 0, and map every point of H to the disk by
a projection through the point (−1, 0, 0), see Fig. 1.1.
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Figure 1.1: The projection sends a point on the hyperboloid to a point on the
disk.

Under this isometry, an element of SO↑(1, 2) is conjugated to an ele-
ment of AutD. Using the hyperboloid model, we can compute explicitly
the distance between two points P and Q corresponding to time-like vec-
tors lP and lQ, using the formula

cosh(d(P,Q)) = lP · lQ.

Moreover, many geometrical objects on the hyperbolic plane can be rep-
resented by planes in the hyperboloid model: if k, l and v are respectively
null, time, and space like momenta, define the planes w · k = 1, w · v = 1
and w · l = 0, w ∈ R1,2. The intersection of these planes with H yields
respectively a horocycle, a circle and a geodesic. Later, we will use this
fact to construct meaningful maps from the set of kinematical data of a
scattering process to the moduli space of Riemann surfaces.

1.1.2 Hyperbolic Riemann surfaces and their moduli

Recall that a Riemann surface is a topological surface X locally charted by
open sets homeomorphic to C and such that the transition functions are
holomorphic maps. Equivalently, one can define a Riemann surface to be
an equivalence class of Riemannian metrics on a differentiable manifold
X of real dimension 2, two such metrics are equivalent if related by a local
rescaling. The equivalence between the two definitions is a well known
classical fact.

The Riemann uniformization theorem establishes that, up to isomor-
phisms, there are only three simply connected Riemann surfaces: the Rie-
mann sphere CP1, the complex plane C and the Poincaré disk D.

A powerful tool in studying Riemann surfaces is the concept of a cov-
ering space: every Riemann surface X admits a universal covering sur-
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face X̃ which is simply connected and, therefore, must be one among the
three above. It turns out that almost every surface is covered by D, the
only exceptions being C, CP1 and a torus without punctures. The crucial
property of the universal covering space is that it allows to lift any con-
tinuous map f : X → X ′ to a map of covering spaces f̃ : X̃ → X̃ ′. In
particular, we can lift a loop on X by thinking of it as a map γ : [0, 1]→ X
with γ(0) = γ(1). The lift γ̃ is a path that connects preimages of the base
point γ(0), however γ̃ does not have to be a loop itself, and indeed it is
not unless γ is contractible to a point. Therefore if γ is not a trivial loop, γ̃
defines an element of AutD. This produces a representation of the funda-
mental group π(X) with values in AutD, the image of which is a torsion-
free discrete subgroup of AutD, such groups are called Fuchsian groups.
The knowledge of the covering map D → X yields a Fuchsian group,
but we can go in the opposite direction: given any Fuchsian group Γ the
quotient D/Γ yields a Riemann surface.

Using the above construction we can equip every Riemann surface2

with an hyperbolic metric: any open set U ⊂ X is bi-holomorphic to a
subset of D, thus we can induce the metric ρD on U , one then shows that
these locally defined metrics agree with each other. The resulting metric
on X is called its intrinsic hyperbolic metric and provides a characterisation
of the complex structure of X : X and X ′ equipped with their intrinsic
metrics are isomorphic as Riemannian surfaces if and only if they are bi-
holomorphic, i.e. isomorphic as Riemann surfaces3. Because of this, each
equivalence class of Riemann surfaces (a point in the moduli space) has
a canonical representative in the intrinsic hyperbolic metric. One can use
this metric to measure “topological landmarks” in the surface, which pro-
vide invariants of that class. In other words, the intrinsic metric provides
coordinates on the moduli space. There are two famous choices of land-
marks: arcs of a pants decomposition and arcs of a triangulations. The
first choice lead to the so called Fenchel-Nielsen coordinates, the second to
Penner’s coordinates (or λ-lengths). We will describe in some detail both
cases in the rest of this chapter.

There is one last subtlety: actually the coordinates obtained from the
intrinsic metric parametrize what is called Teichmüller space. The moduli
space is then obtained from Teichmüller by modding out the action of the
Mapping Class Group (MCG) of the surface [28], which is the group of
isotopy classes of orientation-preserving homeomorphisms of the surface.

2More precisely, this can be done for all the surfaces covered by D, which are also
called hyperbolic surfaces

3Picturing Riemann surfaces as equivalence classes of metrics, we can think of the
intrinsic metric as a canonical gauge fixing procedure.
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However, in the cases of the surfaces we will consider the MCG is trivial
and so we can neglect this fact.

1.2 Pants Decomposition

A classical result in the theory of borderless Riemann surfaces is that they
can be decomposed in smaller pieces called pairs of pants. This is done by
considering a system of closed loops in the surface such that by cutting
along these loops produces a collection of surfaces homeomorphic to a
thrice puncture sphere, see Fig. 1.2. Furthermore, one can deform each of
the loops without changing its homotopy class so that it is a geodesic in
the intrinsic hyperbolic metric of the surface. By construction, the lengths
of these geodesics are invariants of the surface and thus can be used to
parametrize the moduli space. Indeed, one can unambiguously recon-
struct the surface by specifying the gluings patterns of the pairs of pants
(a purely combinatorial data), the lengths of their loops and the relative
angles by which we attach them. Therefore, for each loop we have to spec-
ify two real numbers, a length 0 ≤ ` ≤ ∞ and an angle 0 ≤ θ ≤ 2π, which
together are called Fenchel-Nielsen coordinates. The angle is a priori de-
fined to be in the range 0 ≤ θ ≤ ∞ as well, it is another classical result that
to each loop is associated a generator of the mapping class group, called
Dehn Twist, whose action is to twist the surface by increasing this angle
by 2π. Because we are ultimately interested in modding out the mapping
class group, the angle can be safely restricted in the range 0 ≤ θ ≤ 2π.

Figure 1.2: Two pairs of pants are glued to form a sphere with four boundary
components. The length of the geodesic and the relative angle by which the
pants are glued are parameters over the moduli space.

Fenchel-Nielsen coordinates are particularly useful to study the bound-
ary structure of the moduli space. A boundary is obtained by setting
some length `α to zero, which corresponds to pinching the geodesic α
to a point. We obtain a nodal surface whose moduli space can be stud-
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ied again in terms of pants decompositions. Precisely those loops which
did not cross the pinched geodesic α can appear in a pants decomposi-
tion of the new surface. One can iterate the procedure and probe lower
dimensional boundaries of the moduli space by pinching several com-
patible geodesics. Finally, when a geodesic is pinched the twisting angle
there loses meaning therefore we do not have to specify it anymore.

As an example, consider a sphere with four punctures σi, i = 1, . . . , 4.
A pants decomposition is obtained by choosing a loop α that separates the
punctures in the two sets {σ1, σ2} and {σ3, σ4}, and loops of length zero
around each puncture. Since we only have to specifiy the length `α and
the angle θα, the moduli space has real dimension two as expected. Setting
`α = 0 we go on a boundary of the moduli space, which is now zero
dimensional since the twisting angle is lost in the process. Clearly there
are other two pants decompositions, corresponding to the separation of
the punctures in the sets {σ1, σ3},{σ2, σ4} or in the sets {σ1, σ4},{σ2, σ3}.
The corresponding Fenchel-Nielsen coordinates allow to access two other
boundary components, and putting everything together one recovers the
familiar moduli spaceM0,4 = P1 − {0, 1,∞}.

From this simple example we see that a single pants decomposition
is not enough to study the entire moduli space. We can think of a pants
decomposition as giving a patch of coordinates that allows to see some of
its boundaries, but then one has to consider the full sets of pants decom-
positions, known as pants complex, to see the remaining ones. To change
coordinates, we can perform a series of local elementary moves on a pants
decomposition to produce new pants decompositions. The simplest one
is to consider a pair of pants attached by a loop α, which form a sphere
with four boundary components similar to the example above, and re-
place α with another loop β picked from the two remaining choices. Un-
fortunately, the effect of this move on the Fenchel-Nielsen coordinates
is quite untractable. Let us introduce Li := cosh(`i/2), where `i is the
length of the i-th boundary component, and similarly Lα = cosh(lα/2)
and Lβ = cosh(lβ/2). We also replace twisting angles θ with distances τ
measured on the geodesical loop, so that τα increases by `α when θα in-
creases by 2π. Then we have [35]

Lβ(L2
α − 1) = L1L2 + L3L4 + Lα(L1L3 + L2L4)

+ cosh(τα)
√
L2
α + 2L1L4Lα + L2

1 + L2
4 − 1

√
L2
α + 2L2L3Lα + L2

2 + L2
3 − 1,

(1.1)
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• •
• • •

Figure 1.3: The double of a disk with marked points on its boundary is a sphere
with punctures aligned on a single circle. The pants decomposition of the lat-
ter descends to a system of arcs on the former. Note that the twisting angles
must always be zero in order to guarantee the alignment of the punctures on the
sphere.

and

cosh(τβ) =
(L2

β − 1)Lα − L1L4 − L2L3 − Lβ(L1L3 + L2L4)√[
L2
1 + L2

2 + 2L1L2Lβ + (L2
β − 1)

] [
L2
3 + L2

4 + 2L3L4Lβ + (L2
β − 1)

] .
(1.2)

The pants decomposition of a surface X is well defined when X is
compact, or it is obtained from a compact surface by removing a finite
number of points and disks. In order to extend the approach to other sur-
faces, such as a disk with punctures or an annulus with punctures, one
considers the complex double XC of the surface. Roughly speaking, this is
obtained by considering another copy of the topological surface underly-
ing X and endowing it with an atlas obtained from the original one by re-
placing its complex coordinate z with z. ThenXC is obtaining by gluingX
and its mirror image along the corresponding boundary components. For
example, the mirror copy of the upper half-plane H = {z ∈ C|Im(z) ≥ 0}
is the lower half plane H = {z ∈ C|Im(z) ≤ 0} and its double is the full
complex plane C = HC. The double of a disk is a sphere as shown in Fig.
1.3, the double of an annulus is a torus and so on. Further details of this
construction can be found in [31; 29]. By construction, the double XC is
always a borderless surface, possibly with punctures, and then one can
apply the pants decomposition method to it to construct coordinates for
the moduli space of X . The system of loops of pants decomposition of
XC descends to a system of loops and arcs on X , where by arc we mean a
non-closed geodesic joining different points on boundary components of
X . In practice, we can understand the boundary structure of the moduli
space of X without really picturing its double simply by pinching loops
and arcs. In the remaining part of this section we will study the simplest
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cases of moduli spaces using pants decompositions, the disk with n punc-
tures on its boundary, the disk with n punctures on its boundary and one
in the interior and the annulus with n punctures on its boundary.

1.2.1 The Disk and the Associahedron

We now unwind the pants decomposition method applied to the mod-
uli space of disks with n markings on the boundary, which we denote as
MD,n. Notice that the complex double of such a disk is a punctured Rie-
mann sphere, with punctures on a single circle. Therefore, it is natural
to expect a connection with the real section of the moduli space of genus
zero Riemann surfaces, where the Associahedron studied in [8] belongs.

Let X be a disk with markings and XC the sphere resulting from the
doubling procedure. Any pants decomposition ofXC consists of geodesics
that suitably partition the punctures: on the original copy of X these are
geodesic arcs that touch non adjacent boundary components. We can
consider an n-gon obtained substituting punctures and geodesic bound-
aries with edges and vertices. Using this picture it is then obvious that
the geodesic arcs are in bijection with the diagonals of the n-gon: this
establishes the combinatorial equivalence of MD,n with the Associahe-
dron An−3. As shown in Fig. 1.4, by contracting a diagonal we get two
nodal disks and therefore we recover the usual factorisationAn−3 ≈ Am×
An−m−3.

Figure 1.4: The contraction of a geodesic arc produces two nodal disks.

In principle, we should compute the intrinsic metric of XC by the
Fuchsian group Γ such thatXC ∼ D/Γ. However, to write the group Γ as a
function of the punctures is a notoriously difficult problem in mathemat-
ics. Instead we consider the geodesic convex hull Y of the points themselves,
i.e. the region delimited by the geodesics joining consecutive points shown
in Fig. 1.5. By construction the intrinsic metric of Y is the restriction of
the metric ρD of the Poincaré disk, therefore we can immediately compute
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the Fenchel-Nielsen coordinates of Y . Let α be a diagonal separating the
punctures in two sets zL = {zj, zj+1, . . . , zi} and zR = {zi+1, zi+2, . . . , zj−1},
as in Fig. 1.5.

j − 1j − 1j − 1

jjj

i+ 1i+ 1i+ 1iii

ααα

(j, i+ 1|i, j − 1)(j, i+ 1|i, j − 1)(j, i+ 1|i, j − 1)

Figure 1.5: The convex hull of several points is shown, the blue lines are its
geodesic boundaries and the green line is a geodesic arc.

We have to find the shortest geodesic in the homotopy class of α. In
order to do so we first perform a Moebius map to send (zi+1, zj−1, zj, zi) to
(−b,−a, a, b) on the real axis, then the geodesic in question (which we still
call α) is the line Re(σ) = 0, and the geodesic arc length is arcosh(1+ (b−a)2

2ab
).

We can write this result as

cosh(lα) = 1− 2 (j i+ 1|i j − 1), (1.3)

where

(ij|kl) =
(zk − zi)(zl − zj)
(zk − zj)(zl − zi)

,

is a cross ratio. It is evident that we can trade the geodesic lengths for
the cross ratios as moduli for Y . Geodesic lengths are obviously posi-
tive and as a consequence of (1.1) they also satisfy non-trivial inequalities.
Through (1.3) these constraints translate in imposing the cross ratios to
be negative and bounded by inequalities which guarantee that the cyclic
order of the particles is preserved. Notice that the cross ratios x appear-
ing in (1.3) are not the same as the cross ratios u considered in [8], and on
which we will elaborate more in Section 1.3. The two set of cross ratios
are related by

x =
u

u− 1
,

as one can easily see recalling that cross ratios satisfy the following rela-
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tions

(ab|cd) = 1− (ac|bd),

(ab|cd) =
1

(ba|cd)
, (1.4)

(ab|cd) = (ab|ce)(ab|ed) (cocycle condition).

Keeping in mind that the lengths of the arcs drawn on the disk are
half of the lengths of the pants decomposition of its double, it is possible
to recover (1.1) and (1.2) from (1.3) and the above cross ratios relations.
One should also keep in mind that the twist parameters τ are always 1,
since the punctures must always be aligned on a single circle.

Parametrizing the Fenchel-Nielsen coordinates in terms of cross ratios,
one recover the usual picture of the boundary of the moduli space in terms
of colliding punctures. Suppose that α is being contracted, then either the
punctures σj, σi or the punctures σi+1, σj−1 are collapsing and, because
of the cyclic order, this forces the punctures between them to collapse
as well. However this does not mean that the lengths of the remaining
diagonals have to vanish, neither on the left nor on the right side of α,
only that if we want to compute them in terms of puncture variables then
we have to introduce a new set of puncture variables for the nodal disks.
In contrast with this, the Fenchel-Nielsen coordinates directly factorize
into two sets of coordinates for each of the nodal disks.

1.2.2 The Annulus and the Halohedron

Consider an annulus with n marked points on one of his boundary com-
ponents, e.g. the outer one, and denote by MD,1;n its moduli space. As
described in [29] it turns out thatMD,1;n is a polytope, called Halohedron
and denoted Hn, which is a close kin of the Associahedron. Indeed, both
the Halohedron and the Associahedron fit in a very general combinato-
rial description in terms of marked tubings on a graph. This picture also
includes the Cyclohedron Bn−1 whose face lattice represents the possible
ways to associate particles on a circle rather than on a segment like in the
case of the Associahedron.
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333

111

222

111

333

222
333

111 222

333

111 222

Figure 1.6: The three dimensional Halohedron. There are three tadpole factorisa-
tion square facets, three factorisation pentagons, three cut pentagons and a Cyclo-
hedron.

The description of Hn relevant to scattering amplitudes is in terms of
arcs on a marked annulus. The arcs are obtained by the pants decomposi-
tion of the torus and unlike in the previous section can now be of different
types. Arcs carry an associated modulus, the length of the geodesic they
represent, if the modulus is zero then the arc is contracted and we obtain
nodal disks. As forMD,n, only those arcs that upon contraction produce
stable nodal components are admissible, but now we have a new kind of
stable lowest dimensional component: a disk with a marked point in the
interior and a marked point on the boundary, see Fig.1.7.

Figure 1.7: The smallest possible stable components that appear when contract-
ing arcs.

Facets of the Halohedron correspond to contracted arcs. As proved
in [29], the facets of Hn are exactly one Cyclohedron Bn−1, n Associahedra
An−1 and n2 − n facets of the form Am ×Hn−m for n ≥ m ≥ 0. In Table 1.1
are shown the possible arcs of the Halohedron and the corresponding con-
tractions, in Fig.1.6 the three dimensional Halohedron H3 is shown with
some of its facets labelled. The cyclohedral facet arises by the contraction
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Geodesical Arc Facet type Planar Variable

111

nnn

111

nnn

Cyclohedron Bn−1 X0

iii+ 1

iii

iii+ 1

iii

Tadpole Factorisation An−1 × H1 X(i+1,i+2,...,i)

iii

jjj

iii+ 1

jjj − 1

iii

jjj

iii+ 1

jjj − 1

Factorisation Am × Hn−m X(j,j+1,...,i)

iii+ 1

iii

iii+ 1

iii

+++

−−−

iii+ 1

iii

Cut Associahedron An−1 Xi

Table 1.1: List of the arcs contraction and corresponding facet of the Halohedron.
For future convenience, they are also labelled by dual planar variables.

of the loop geodetical arc, the effect of which is to shrink the internal circle
to a puncture. Therefore this facet represents the moduli space of a disk
with one internal puncture.

By comparison with (1) we see that some of the facets of Hn have an
immediate physical interpretation. Factorisation facets with m < n are in
1-1 correspondence with the possible factorisations of a 1-loop planar in-
tegrand, and their factorisation into Am × Hn−m mirrors the factorisation
of the integrand in a tree level amplitude and a lower point integrand.
Similarly, we have an associahedral facet for each possible cut of the in-
tegrand, and since Associahedra compute tree level amplitudes, we can
interpret these facets as reflecting the forward limit of a cutted integrand.
For this reason we will refer to these as the cut facets of the Halohedron.

On the other hand, there is no obvious interpretation for the cyclohe-
dral facet and the tadpole factorisation facets (those with m = n). How-
ever, we can find one by looking at the vertices of Hn. A vertex corre-
sponds to a maximal choice of arcs. It is easy to see that we can pick a
maximum of n non intersecting admissible arcs. To a maximal choice of
arcs we can associate a cubic Feynman diagram, essentially in the same
way as was done in [8]: the arcs partition the annulus in zones, to each
zone we associate a cubic vertex and then we contract the vertices with
propagators intersecting the arcs. As shown in Fig. 1.8, the result is a
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cubic 1-loop planar diagram.

111
222

333
444

111 111

Figure 1.8: Examples of Feynman diagrams (blue, dashed) dual to choices of arcs
(red). The middle and right figures show how tadpoles are created, we call these
“IR” and “UV” tadpole respectively.

Using this rule we can label all the vertices of Hn with Feynman diagrams,
this is done explicitly for H2 in Fig.1.9. We would like to stress that in gen-
eral one obtains diagrams with external bubbles and tadpoles. In particu-
lar, tadpoles are due to the cyclohedral facet and to tadpole factorisation
facets4. As it is clear from Fig.1.8, tadpoles always appear in pairs that we
called IR-UV for reasons that will be explained later in Section 2.4

111

222

111

222

Figure 1.9: H2 is shown with all of its vertices labelled by Feynman diagrams.
Note that tadpoles appear in IR-UV pairs (white-black), but also in pairs dictated
by the Cyclohedron (black arrows). The associahedral facets correspond to the
cyclic order α = (−, 1, 2,+) and α = (−, 2, 1,+) in the formula (1.5), but they do
not intersect at their tadpole vertices.

Before ending this section we would like to make some observations
on the combinatorics of tadpole vertices. To begin with, note that the

4Which explains their name.
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cyclohedral facet has only tadpole vertices. Moreover, when constructing
a maximal set of arcs for one of its vertices we are esentially building a
maximal set of arcs as we did in the case of the tree level Associahedra
with n + 1 particles,MD,n+1. The tadpole is inserted in a cubic vertex at
which we can unambiguously perform the move depicted in Fig.1.10. As
shown in Fig. 1.9, the result is a pairing on adjacent vertices of Bn−1.

iii jjj

i− 1i− 1i− 1 j + 1j + 1j + 1

iii jjj

i− 1i− 1i− 1 j + 1j + 1j + 1

Figure 1.10: A vertex of the Cyclohedron is represented by a nodal disk as in the
left figure. We can pair it with the vertex represented by the nodal disk in the
right.

Because of the IR-UV pairing, we can extend this cyclohedral pairing to
all the tadpole vertices of Hn. The emerging combinatorics is reminiscent
of a formula proposed by He et al [23] that builds the 1-loop integrands of
the bi-adjoint theory from the forward limit of tree level amplitudes. We
report this formula here

m1−loop
n (π|ρ) =

∫
dD`

(2π)D
1

`2
lim

k±→±`

∑
α∈cyc(π)
β∈cyc(ρ)

mtree
n+2(−, α,+|−, β,+), (1.5)

the inner sum is done over all cyclic permutations of the order π and ρ
and mtree

n+2(−α+ | −β+) is the tree level double-partial amplitude for n+ 2
particles, the two extra particles are labelled by ± and carry momenta
k± = ±` in the forward limit. Computing these tree level amplitudes as a
sum over Feynman diagrams one gets cutted tadpole diagrams, but these
come in pairs with opposite signs and cancel. In particular, in our case
with ρ = π = (1, . . . , n), for fixed α the sum over β produces the amplitude
mtree
n+2(−, α,+|−, α,+) plus the off diagonal elements that happen to cancel

the tadpoles of mtree
n+2(−, α,+|−, α,+). Thanks to the recent interpretation

[12] of tree level scattering amplitudes as intersection numbers of associ-
ahedra inMn(R), we can give a beautiful geometrical description of this
cancellation. Recall that for each of the ordering (−, α,+) there is an As-
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sociahedron living inMn−1(R). Associahedra corresponding to different
orderings touch precisely at those vertices whose dual Feynman diagrams
appear in the partial amplitude mtree

n+2(−, α,+|−, β,+). If we interpret the
particles − and + as coming from a cutted propagators, these diagrams
are tadpole diagrams. The cancellation explained above is then due to
the fact that any given tadpole appears both in the Associahedron for the
ordering (−, α,+) and for some other ordering (−, β,+). This means that
the cutted tadpole diagram, thought of as a tree level diagram, can be
drawn in such a way that is planar with respect to either ordering. If
we sew back the cutted propagator in both case, we obtain two different
1-loop tadpole diagrams precisely related by the flip of Fig. 1.10. It is
tempting to speculate that the tadpole facets of the Halohedron should
play a role in the cancellation of tadpoles for the 1-loop bi-adjoint inte-
grand in a CHY approach that does not use the nodal sphere, but is rather
formulated directly on the torus.

To summarise, in this section we saw that the moduli space MD,1;n

is naturally identified with the Halohedron Hn. We discovered that its
geometry encodes the factorisation and cut properties of a 1-loop double-
partial integrandm1−loop(1, . . . , n|1, . . . , n). However, it also possesses bound-
aries which are clearly connected to one loop tadpoles of which we should
get rid of somehow. Interestingly, the combinatorics of these facets seem
to be related to the cancellation of tadpoles in the forward limit represen-
tation of the 1-loop integrand.

1.2.3 Higher genera and non polytopality

It is natural to expect that the boundary structure of the moduli space of
a bi-annulus, i.e. with two internal circles, should be connected to higher
loop integrands. Similarly, the moduli space of an annulus with punc-
tures on both boundary component should be relevant for non planar 1-
loop integrands. However, it was shown in [29] that beyond the cases
studied discussed here, moduli spaces cease to be polytopal, i.e. cannot
be realised as convex polytopes in some space. The root of the problem
can be understood in the simplest case of a disk with two internal punc-
tures. Among the legal loops, there is one circling both punctures and
carrying two coordinates (`, θ) 5. As mentioned earlier, sending `→ 0 has
the effect that θ ceases to be a meaningful coordinate, therefore we reach
a codimension two boundary. It is impossible then, that the system of

5We recall that twisting angles did not make an appearance in the cases studied so far
because if punctures live on the boundary of the surface we cannot make a twist in the
double surface, or we would move them away from the boundary
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pants decomposition on this surface can be mimicked by the face poset of
a convex polytope. By pinching, any other type of surface will eventually
produce a nodal disk with two internal punctures so the problem propa-
gates to all surfaces but those described here. We also wish to emphasize
that the problem is intimately connected to having a non-trivial mapping
class group.

1.3 Triangulations and Cluster Algebras

We now illustrate a different approach to the studi of moduli spaces,
ideated by Robert Penner [28]. Instead of using a decomposition of the
surface into pair of pants and measuring the lengths and twisting angles,
Penner proposed to choose an ideal triangulation and measure the length
of the edges of the triangles. By ideal triangulation it is meant one whose
edges start and end at the punctures of the surface. However, in the in-
trinsic hyperbolic metric these punctures looks infinitely far away, so the
geodesical distance between them is infinite. To solve this problem, one
considers horocycles at the punctures and measure the distance between
them. If γ is a geodesic connecting a pair of punctures σi and σj , and `(γ)
is the signed hyperbolic distance between two horocycles at these punc-
tures6, one defines the λ-length:

λi,j = exp(`(γ)/2).

Clearly, λ-lengths depend not only on the surface and its punctures,
but also on the choices of horocycles decorating each puncture, thus λ-
lengths carry an extra redundancy that has to be modded away. Changing
an horocycle centered at σi has the effect of rescaling all the λ-lengths with
an index i, therefore we can make horocycle-independent quantities out
of ratios of λ-lengths. The situation is similar to what happens with pro-
jective spaces, and in this sense λ-lengths are homogeneous coordinates
for the moduli space. Also, note that λ-lengths are positive real numbers
by construction.

To any triangulation of a surface we can now associate a patch of ho-
mogeneous coordinates for the moduli space. The great advantage of
Penner’s approach is that, unlike changing pair of pants, changing tri-
angulation is easy. The basic move we have to consider is the so called
Whitehead move, also called “flip”: for a pair of triangles sharing an
edge, we remove that edge and replace it with the other diagonal of the
square formed by the two triangles. Crucially, under such transforma-

6positive if the horocycles intersect, negative otherwise
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tion λ-lengths transform in a simple way. If we denote the vertices of the
square as (1, 2, 3, 4) we have

λ1,3λ2,4 = λ1,2λ3,4 + λ1,4λ2,3, (1.6)

note that both sides are indeed homogeneous with respect to each index.
The rule (1.6) is called Ptolemy relation or, in more modern language, mu-
tation relation and is at the core of the connection with cluster algebras
[27].

In a series of seminal works [27], Fomin, Zelevinsky and Thurston de-
fined a rich world of cluster algebras associated to (almost) every type
of Riemann surface. In order to do so, they had to enrich Penner’s con-
struction introducing the concept of tagged triangulations. For the sake
of brevity, it suffices for us to know that this means to add λ-lengths
which have inverse scaling weight with respect to some of its indices.
Each (tagged) triangulation is then associated to a cluster, i.e. a set of
generators of the cluster algebra, and triangulation flips correspond to
mutation of clusters. The whole set of clusters form a connected complex
known as cluster complex, which in general is infinite. Perhaps not too
surprisingly, the simplest surfaces are related to the simplest finite type
cluster algebras: A,B, C and D. We will study these first cases in details
in the next sections and see how the factorizing boundary structure of the
moduli space is made manifest by the λ-lengths.

1.3.1 The moduli space of the disk and A

Consider a disk with n punctures on its boundary, we can think of it as an
n-gon with vertices corresponding to the punctures. Any triangulation
of this n-gon is composed by short arcs with associated λ-lengths λi,i+1,
i.e. the edges of the n-gon itself, plus n − 3 internal edges. Together, this
set of λ-lengths forms a patch of homogeneous coordinates on the mod-
uli space. Any two triangulations are related to each other by a sequence
of flips performed on the internal edges, by solving the associated clus-
ter mutations (1.6) we can express the λ-lengths of one triangulation in
terms of those of the other triangulation. Since the short arcs λi,i+1 are
never flipped, the corresponding λ-lengths are called frozen in the cluster
algebra literature, while the internal edges are called unfrozen. In this case
the cluster algebra defined by the λ-lengths is a finite algebra, i.e. with a
finite set of clusters, of type A. It is well known that its cluster complex is
an Associahedron, also called cluster polytope of type A. As an example,
when n = 5 there are 5 clusters, 5 frozen variables and 5 unfrozen vari-
ables. The clusters, labelled by triangulation of the 5-gon, correspond to
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Figure 1.11: The cluster polytopeA2, formed by the triangulations of a pentagon,
turns out to be a pentagon

the vertices of the pentagon in Fig. 1.11. If we start from the triangulation
with variables x := λ1,3 and y := λ1,4, the remaining variables are given by
{λ2,4, λ2,5, λ3,5} = {1+x

y
, 1+x+y

xy
, 1+y

x
}.

In order to build horocycle-independent quantities associated to the
disk we have to consider ratios of λ-lengths with zero weight in each of
the punctures indices. Although we can build several of such ratios, a
particularly convenient choice is

ui,j =
λi,j+1λi+1,j

λi,jλi+1,j+1

, (1.7)

for non-adjacent indices i and j. Note that indeed the RHS of (1.7) is inde-
pendent under rescaling of any horocycle, since the same indices appear
in the numerator and denominator. The advantage of the variables u is
that they make the boundary structure of the moduli space manifest, as
pointed out in [8], because they satisfy the equation

uI +
∏
J��−−I

uJ = 1, (1.8)

where the product is taken over all edges J of the n-gon crossing the
edge I . Note that the u variables are positive and therefore (1.8) implies
0 ≤ ui,j ≤ 1. A boundary of the moduli space is attained saturating these
constraints, but if ui,j vanishes then (1.8) forces the crossing variables to
become 1. Therefore the full set of u-variables factorizes into two sets, as-
sociated to the internal edges of the two polygons in which the original
n-gon is cutted into by the edge (i, j). Furthermore, the surviving vari-
ables now satisfy two independent set of equations (1.8) built directly by
looking at these two polygons, because the crossing variables have disap-
peared from the product in (1.8).
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Equation (1.8) naturally gives a notion of compatibility for the u vari-
ables, since not all of them can be set to zero simultaneously to probe
lower dimensional boundaries of the moduli space. Similarly as done for
the λ-lengths, we can then arrange the u variables in a complex where
each facet corresponds to a variable, and vertices to a maximal set of n−3
compatible variables. It is not difficult to see that the resulting complex is
combinatorially equivalent to the one of λ-lengths, i.e. is again an Associ-
ahedron.

Equation (1.8) is a consequence of the mutation relations satisfied by
the λ-lengths, as one can easily seen by plugging the definition (1.7) in
(1.8). Thus we can think of the map λ → u as a useful parametrisation to
solve the constraints (1.8). However, this can be done in a different way
[8] by writing

ui,j =
(σi − σj+1)(σi+1 − σj)
(σi − σj)(σi+1 − σj+1)

, (1.9)

for ordered punctures σi on the boundary of the disk, or on the real line.
Then the variables ui,j are identified as particular cross ratios known as
dihedral coordinates first introduced by Francis Brown. As we argued in
Section 1.2, the approach based on pants decomposition also leads to cross
ratios, albeit a different one. We see that in the particularly simple case of
the disk, many approaches to the study of the moduli space (puncture
coordinates, Fenchel-Nielsen coordinates, Penner coordinates) are easily
seen to be equivalent. Already in the next case we will study this will not
be the case anymore.

1.3.2 The moduli space of the punctured disk, D and B.

We now consider the moduli space of a disk with n punctures on its
boundary and an extra puncture in its interior. A triangulation of this
surface is composed by arcs joining pair of punctures on the boundary or
the internal puncture with a puncture on the boundary. In the first case, it
is no longer sufficient to specify the pair of punctures to label the arc, be-
cause we can draw two inequivalent arcs separated by the internal punc-
ture. We distinguish the two possibilities by using the labels λi,j or λj,i
based on the orientation of the arc with respect to the internal puncture.
In the second case we simply use the label λi, keeping in mind though
that this variable carry a weight with respect to the internal puncture σ0.
As mentioned earlier, in order to obtain a proper cluster algebra one has
to introduce the notion of tagged arcs and tagged triangulations. In this
simple case the extra tagged arcs join an external puncture to the internal
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one, but are distinguished from the previous ones so we denote them as
λ′i. The difference is that to such arcs we associate a λ-lengths which mea-
sure the distance from the horocycle at σi and the conjugated horocycle at
σ0, i.e. one with inverse length. For this reason, λ′i scales with inverse
weight with respect to λi upon rescaling of the horocycle at σ0.

The usual notion of compatibility of λ-lengths coming from the cross-
ing of arcs is extended to tagged triangulations. The tagged variables λ′i
are compatible with variables λi,j if the associated arcs do not cross and
are compatible with all the other tagged variables λ′j , but are compatible
with λj if and only if j = i7.

Finally, the original Ptolemy relations are extended to take into ac-
count tagged variables. Inside of a punctured bi-gon with vertices σi, σj
and edges λi,j and λj,i we can have a triangulation formed by the arcs λi
and λj . We can then mutate λi to λ′j , obtaining the relation

λiλ
′
j = λi,j + λj,i, (1.10)

note how both sides of the equation have the same weight with respect to
each of the punctures σi, σj , and σ0.

The cluster complex associated to the tagged triangulations of the punc-
tured disk and their mutations is again finite, and it is called generalised
Associahedron of type Dn. Furthermore, it is combinatorially equivalent
to the face lattice of a convex polytope.

As in the case of the disk, we can build moduli for the punctured disk
by building ratios of λ-lengths, with the novelty that we have to take into
account the different scaling of the variables λ′i. A judicious choice is the
following

ui,j =
λi,j+1λi+1,j

λi,jλi+1,j+1

j 6= i + 1 (1.11)

ui+1,i =
λi+1λ

′
i+1λi+2,i

λi+1,iλi+2,i+1

(1.12)

ui =
λi+1,i

λ′iλi+1

u′i =
λi+1,i

λ′i+1λi
. (1.13)

Note that we have an u variable for each of the unfrozen cluster variables
of Dn. However, implicit in their definition is the fact that ui = u′i, since

7To some extent, one can understand these compatibility relations by imagining that
the arc associated to λ′i starts and ends at σi, looping around σ0 and creating a self-folded
triangle with λi. However, this picture fails to capture that different λ′i are compatible.
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(1.10) implies
λiλ

′
i+1 = λi+1,i + λi,i+1 = λ′iλi+1.

Due to mutation relations, u variables satisfy equation that make manifest
the boundary structure of the moduli space:

uI +
∏
J��−−I

u
d(I,J)
J = 1, (1.14)

the product runs over all variables uJ associated to tagged and non-tagged
arcs J crossing the arc I , the novelty with respect to the previous case are
the exponents d(I, J) which are the number of intersections between arcs
I and J . In counting them we consider tagged and non-tagged arcs as in-
tersecting once, unless they are compatible. The boundaries are attained
when some variable u goes to zero, which forces non compatible variables
to go to 1 due to (1.14). The arc corresponding to a variable ui,j separates
the punctured disk into a smaller punctured disk and an unpunctured n-
gon, if ui,j → 0 the remaining variables factorize accordingly into a set of
variables for the two surfaces. Consider now a variable ui = u′i. Its van-
ishing forces all the remaining variables uj to go to 1. On the other hand,
both variables ui,j and uj,i survive the limit. We can interpret the leftover
set of variables and their new constraints as those satisfied by the moduli
of an unpunctured n+1-gon with a new puncture σ0 between σi and σi+1.
Arranging the u variables in a complex according to their compatibility,
as dictated by (1.14), we obtain a polytope combinatorially equivalent to
the Cyclohedron Bn−1. This is what we should expect, since we already
know from Section 1.2 that the moduli space of the punctured disk is a
cyclohedron.

It is interesting to remark that for the n-gon the map λ → u did not
change the combinatorics of the compatibility cluster, while in the case of
the punctured disk it changes from being Dn to being Bn−1.

1.3.3 Feynman diagrams and Triangulations

We have seen how to understand the boundary structure of simple mod-
uli spaces in terms of triangulations and cluster algebras. To make a con-
nection with scattering amplitudes we wish to understand this boundary
structure in terms of Feynman diagrams as well. This can be done using
a well known duality between triangulations of surfaces and cubic dia-
grams. In the case of a disk with no internal puncture this involve only
tree level planar diagrams, see Fig. 1.12, and is at the core of the relation
between An−3 and tree level amplitudes discovered in [8]. Note that flips
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Figure 1.12: Examples of triangulations of punctured surfaces and the dual Feyn-
man diagrams

of triangulation are dual to s/t-channel swaps. The duality extends to trian-
gulations of disks with an arbitrary number of punctures in the interior
and loop diagrams, however we now have a departure from the com-
binatorics of cluster algebras, which requires tagged triangulations. The
situation is less dramatic for Bn−1, because we can unambiguously inter-
pret a pair of plain and tagged arcs as a single self-folded triangle, which
is dual to a tadpole, see Fig. 1.13. In this picture not all the vertex adja-
cencies of Bn−1 can be understood as s/t-channel swaps, there is an extra
flip rule given by exchanging the two choices of pairs of tagged and plain
arcs inside of a bi-gon. Dually this rule translates to the same tadpole flip
pictured in Fig. 1.10. In any case, let us emphasize again that there is a
mismatch between the full set of 1-loop planar cubic diagrams and ver-
tices of Dn. This fact will later guide us to the definition of a new convex
polytope whose combinatorics will be in complete agreement with that of
1-loop diagrams, see Section 2.3.

Figure 1.13: A pair of tagged and un-tagged arcs can unambiguously replaced
with a self-folded triangle, which in the dual picture yields a tadpole.

1.3.4 Other surfaces and cluster infinity

The combinatorics of the cluster algebra associated to a once punctured
n-gon is naturally tied to 1-loop diagrams, via the duality between trian-
gulations and cubic diagrams. The source of the loop is due to the internal
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puncture, therefore the picture begs to be extended at higher loop by sim-
ply adding extra punctures. However there is a formidable obstruction to
do so in a naive way. If we consider a twice punctured n-gon the associ-
ated cluster algebra becomes infinite, i.e. the process of mutating a cluster
never ends, but rather produces more and more cluster variables. The
origin of this phenomenon is that we can draw an arc joining an exter-
nal puncture σi to an internal puncture σA in infinitely many inequivalent
ways, by winding around the other internal puncture σB. Indeed, it is
possible to apply a sequence of mutations that given a triangulation pro-
duces a new triangulation where all arcs start and end in the same punc-
tures but the winding numbers of the ones going to the internal punctures
are changed.

Combinatorially, this annoying fact can be forgotten by either consid-
ering the quiver associated to the triangulation or by drawing the dual
Feynman diagram8, which are left invariate. The case of Feynman dia-
grams is particularly interesting. Let us label the momenta flowing in
the propagators using dual variables, and suppose to follow the path of
mutations that increase the winding number. It turns out that after the
sequence of mutations the net effect is to swap the variables associated to
the internal zones. Clearly this operation is physically meaningless, and
therefore the infinity associated to winding numbers should be modded
out.

As was the case for the non-polytopality of higher genera moduli spaces
in the Fenchel-Nielsen coordinates approach, the origin of the infinity in
the cluster algebra can be traced back to the presence of a non-trivial map-
ping class group. To a pair of punctures in the interior of the disk we can
associate a Dehn twist whose action on λ-lengths is precisely to change
winding numbers. It is a pressing question if the positive geometry of
the space obtained from the infinite cluster algebra after modding out the
mapping class group has the correct boundary structure to capture the
singularities of higher loop integrands.

8Obviously there is a finite number of cubic Feynman diagrams at a given order and
number of external legs





CHAPTER 2

Positive Geometries in Kinematical space

2.1 Projective Scattering Forms and Polytopes

2.1.1 The Scattering Form and Feynman Polytopes

In the previous chapter we discussed several examples of geometries with
meaningful boundary structures, in the sense that they reproduce the sin-
gular properties of amplitudes described by (1). However, all these ge-
ometries live in the auxiliary space Mg,n and at first glance it is not ob-
vious how to relate them to scattering amplitudes. A more natural ap-
proach would then be to look for avatars of these objects directly in the
space of kinematical variables on which amplitudes and integrands de-
pend on. More precisely, in most of this Chapter the kinematical space
will be taken to be the space of all propagators appearing in some set of
Feynman diagrams. In this space, following [8], we will seek to rediscover
the geometries we already found in the previous chapter in the form of
convex polytopes, which are the simplest examples of positive geometries.

A priori the existence of such polytopes is not guaranteed, since it is
not obvious from the Feynman diagrammatic representation of ampli-
tudes whether their singularities satisfy the appropriate combinatorical
and topological requirements to be compatible with a polytopal structure.
A first clue of their existence, however, is provided by one of the central
element of our story: the Scattering Form.

The scattering form is a differential form on the kinematical space
which is constructed as follows: first, label any Feynman diagram with
its dual variables 1, assign an arbitrary ordering to the propagators and

1This choice of labelling foreshadows that we will mainly be interested in planar di-
agrams, which are dual to the pants decomposition and triangulations we discussed in
Chapter 1. However, it is possible to build scattering forms for non-planar diagrams in
the same way.

25
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then sum over all diagrams the dlog forms built with these variables:

Ω =
∑

g∈diagrams

sgn(g)
∧

a∈propagators

dXa

Xa

, (2.1)

where we have not said yet how to fix the relative signs of the dlogs.
These signs are uniquely fixed by requiring the scattering form to be pro-
jective, i.e. invariant under local GL(1) rescaling of all the planar variables:
X → α(X)X . A priori, there is no guarantee that one can fix coherently
the signs in order to ensure projectivity of the scattering form. However,
the existence of a convex polytope whose face lattice reproduces the sin-
gularity structure of the corresponding amplitude implies that this can be
done. More precisely, there must be a one to one correspondence between
the various faces of the polytope and iterated residues of the amplitude,
so that codimension one facets correspond to propagators, codimension
two faces to pairs of compatible propagators and so on down to vertices
which must correspond to Feynman diagrams. Then one can recognize
(2.1) as a particular representation of the canonical form of such polytope,
obtained by a triangulation of its dual. Moreover, the projectivity of Ω
becomes equivalent to the cancellation of a spurious pole at infinity, in-
troduced term by term in the triangulation.

On the other hand, even if a convex realisation of the putatively as-
sociated polytope is not known, one can still try and build a projective
scattering form. Let us show by some examples how this works in prac-
tice, starting from the simplest case of a 4-point planar amplitude at tree
level. Suppose we start with an s-channel diagram; in planar variables
this means we have a contribution dlog(X1,3) to the scattering form. Un-
der local rescaling this is not invariant since it transforms as dlog(X1,3)→
dlog(X1,3) + dlog(α), but the extra term can be cancelled by adding a t-
channel with opposite sign:

Ω = dlog(X1,3)− dlog(X2,4)

→ dlog(X1,3)− dlog(X2,4) + dlog(α)− dlog(α) = Ω. (2.2)

Geometrically we can interpret Ω as the canonical form of the segment
depicted in Fig. 2.1. We could try to build a scattering form for the full
non-planar amplitude by adding an extra term dlog(u) to the scattering
form. However, it is now impossible to choose relative signs between the
three contributions so that the complete scattering form is projectively
invariant. This is a reflection of the fact that it is impossible to find a one
dimensional polytope with three vertices. We see then that the existence
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Figure 2.1: The simplest polytope is a segment, its boundary structure repro-
duces that of a planar four point scalar amplitude.

of a projective scattering form is a first check on the polytopal structure of
the singularities of a scattering amplitude.

A lesson to be learned from this simple example is that we can try to
build a scattering form by starting from a diagram of our choice and then
adding diagrams to compensate for the terms in its variation. The new
diagrams are obtained by doing a simple transformation on the original
one: in the example above it was the s/t-channel swap, but in general one
can expect different transformations and indeed this will be the case at 1-
loop. Of course the variation of the newly added diagrams will have to be
compensated as well, which will require to add more and more diagrams,
and it is highly non-trivial that the procedure will eventually stop.

We now turn to loop level, the simplest 1-loop diagram is the two
point bubble which is dual to a triangulation of the punctured bi-gon
with arcs X1 and X2. For reasons that will become clear immediately,
we choose to give a common internal mass to all propagators so that
Xi = `2i − m2. The bubble contributes to a putative 1-loop 2-point scat-
tering form with dlog(X1) ∧ dlog(X2), whose variation under rescaling is
dlog(α)[dlog(X2) − dlog(X1)]. In order to build a projective form, we are
thus forced to add two diagrams that compensate for the variation of the
two propagators X1 and X2. The simplest thing to do is to use again the
s/t-channel swap on the propagators of the bubble, its effect is to produce
two tadpole diagrams which we add to the scattering form. Let us call
X0 = −m2 the tadpole propagator, then the total scattering form is

Ω = dlog(X1) ∧ dlog(X2)− dlog(X0) ∧ dlog(X2)− dlog(X1) ∧ dlog(X0),

the reader is invited to check the projectivity of the above form, which
is guaranteed by the fact that we can arrange the bubble and tadpole di-
agrams on the vertices of a triangle (2.2). Note that not only tadpoles
compensate for the bubble variation because they are related to it by an
s/t-channel swap, they also compensate for each other’s variation of the
propagator X0 because they are related by a tadpole flip.

We now move to a three-point example. We can start building our
scattering form from the ring diagram, the s/t-channel swaps now create
external bubbles, if we consider the external legs on-shell then the bubble
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Figure 2.2: Examples of Feynman polytopes at 1-loop.

propagators are again Xi,i+1 = k2i −m2 = −m2 = X0. By adding the four
diagrams we get a projective scattering form (we omit the wedge signs
for compactness)

Ω = dlog(X1)dlog(X2)dlog(X3)− dlog(X0)dlog(X2)dlog(X3)

− dlog(X1)dlog(X0)dlog(X3)− dlog(X1)dlog(X2)dlog(X0). (2.3)

Once again the projectivity can be explicitly checked, and it is guaranteed
by the fact that the four diagrams can be arranged on the vertices of a
3-simplex as in Fig. 2.2. Note that tadpoles are not necessary, since the
bubbles compensate for each other.

Let us continue our exploration with some four point examples. Once
again we start from the ring diagram and perform s/t-channel swaps, but
now something new happens. The sequence of swaps bring us to a dia-
gram with an internal bubble and by momentum conservation the prop-
agators at both sides of the bubble are equal. Then the dlog associated
to the bubble is zero due to the wedge product. This is not a problem
however: the diagrams connected by swaps to the internal bubble com-
pensate for each other even without the internal bubble! Summing all
together and performing a bit of algebra we find the following projective
scattering form (we further suppress the dlog symbol)

Ω = (X1)(X2)(X3)(X4)− (X2,4)(X2)(X3)(X4)− (X1)(X1,3)(X3)(X4)

− (X1)(X2)(X2,4)(X4)− (X1)(X2)(X3)(X1,3)

+ [(X2,4)− (X1,3)] (X1)(X2)(X0) + [(X2,4)− (X1,3)] (X2)(X3)(X0)

+ [(X2,4)− (X1,3)] (X3)(X4)(X0) + [(X2,4)− (X1,3)] (X4)(X1)(X0). (2.4)

This is the simplest example of a projective scattering form for which it is
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not known a convex realisation of the putatively associated polytope. 2

Higher loop cases can be treated in the same fashion. One starts with
a specific diagram, labelled using planar variables or loop momenta, and
then adds diagrams obtained from it by s/t-channel swaps in order to
guarantee projectivity. At any given mutation, the variable labelling the
new diagram can be obtained simply by imposing momentum conserva-
tion. Diagrams with internal bubbles, eventually reached by such trans-
formations, do not contribute to the total scattering form due to the wedge
products combined with momentum conservation. Unfortunately, even
the simplest examples are quite cumbersome so we will not report them
here. After all, this approach to loop scattering forms encounters an ob-
stacle already at 1-loop since it is not clear how to realize the associated
polytopes.

There is another way to deal with internal bubbles and build a larger 1-
loop scattering form, which was first proposed in [1]. We can simply state
that the two propagators at the side of the internal bubble are labelled by
two different variables, say Xi,j and Xj,i. It is also convenient to consider
external particle to be off-shell so that the bubble propagators Xi,i+1 =
k2i −m2 are all different. By doing so, summing over all 1-loop diagrams
we find a projective scattering form. For example, for n = 3 we find the
one associated to the polytope in Fig. 2.3
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Figure 2.3: The polytope D3, whose vertices are labelled by all 1-loop 3-point
Feynman diagrams.

From a physical viewpoint introducing two different variables for the
propagators at the side of the internal bubble is tantamount to breaking
momentum conservation in the vertices of the graph, which is somewhat

2During the writing of this manuscript a convex realisation for the polytope was
found by Thomas and Karp, although higher points generalisation are still missing
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unsettling. Nevertheless, this deformation is necessary only to discover
the convex polytope associated to the form and will eventually be undone
in Chapter 3, where we will restore momentum conservation and recover
the physical integrand in full glory, double poles included. The projective
scattering form built this way is very close to the one associated to the
Halohedron, with the difference than the combinatorics of the Halohe-
dron introduce a doubling in the number of tadpole vertices (the IR/UV
pairing) and extra tadpole facets. In conclusion, the form introduced here
is the most natural to consider at 1-loop and we will devote Section 2.3.1
to the study of the positive geometry underlying it.

2.1.2 Projectivity and Polytopality

As we mentioned earlier, the projectivity of the scattering form is an im-
portant check on the existence of a polytope of which it should be the
canonical form: if such a polytope exists, then the form can be made pro-
jective. This is so because projectivity guarantees that Ω does not have
any other poles other than those made manifest by writing it as a sum of
dlogs. Let us give a simple example, consider the form

Ω′ =
dX1

X1

+
dX2

X2

, (2.5)

which is not projective due to the relative plus sign. Naively Ω could be
the canonical form of a 1-dimensional polytope with vertices in X1 = 0
and X2 = 0, which could be realised in some 1-dimensional subspace
obtained by setting X2 = a + bX1. However, if we pullback Ω to this
subspace we obtain

Ω′ = dX1

(
1

X1

+
b

a+ bX1

)
= dX1

a+ 2bX1

X1(a+ bX1)
,

which develops a pole at infinity, regardless of the choice of a and b 3.
Instead the projective form

Ω =
dX1

X1

− dX2

X2

, (2.6)

3Unless we chose b = 0 but in that case we do not have a convex realisation of the
polytope
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pulls back to

Ω = dX1

(
1

X1

− b

a+ bX1

)
= dX1

a

X1(a+ bX1)
, (2.7)

which is the correct canonical form of the interval with vertices in X1 = 0
and X1 = −a/b. More generally, consider a differential form Ω written as
in (2.1)

Ω =
∑
v∈V

sgn(v)
m∧
i=1

dXai

Xai

, (2.8)

for some set of “vertices” V, Xai represent a subset of m “facets” inter-
secting at the vertex v. If Ω is projective then it can be thought as a dif-
ferential form on a projective space PF+1 with homogeneous coordinates
Y = [M,X1, . . . , XF ], where Xa are all the variables on which it explicitly
depends andM an auxiliary variable. In order to give a convex realisation
of a m-dimensional polytope, we consider an m-dimensional projective
subspace given by equalities Xa = MW 0

a +
∑m

i=1XiW
i
a =: Y · Wa, with

homogeneous coordinates Y = [M,X1, . . . , Xm] and pullback Ω there. We
can further use the global rescaling to fix M = 1 thus we obtain a form
defined on the affine space Rm with poles along the hyperplanes Xa = 0
and no pole along the hyperplane at infinity Y ·W ∗ = M = 0. The absence
of this pole is clear from the fact that M never appeared in (2.8) in the first
place.

Another interpretation of this fact, following [8], is that we can com-
pute the canonical form of a polytope by triangulating its dual using sim-
plices with vertices {Wa1 , . . . ,Wam ,W

∗}. In homogeneous coordinates we
obtain

Ω = 〈Y dmY 〉
∑

v∈vertices

sgn′(v)
〈W∗Wa1 . . .Wam〉

Y ·W∗
∏m

i=1 Y ·Wai

, (2.9)

where the signs sgn′(v), dictated by the relative orientations of the sim-
plices of the triangulation, are a priori different from the signs sgn(v) dic-
tated by the projectivity of Ω. However, they are actually the same and
they make so that the pole at infinity, present term by term in (2.9), can-
cels in the sum. In conclusion, the projectivity of Ω is mandatory if it is to
be the canonical form of a polytope and is equivalent to the absence of a
pole at infinity.

We now wish to present a geometrical interpretation of the projectivity
of a differential form written as in (2.8). The following is based on an on-
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going collaboration with Hadleigh Frost. Let us begin with a single dlog
term,

ω =
dX1

X1

∧ ... ∧ dXm

Xm

,

and compute its transformation under local rescaling Xi → αXi

ω → ω +
m∑
i=1

(−1)i+1dα

α
∧ dX1

X1

∧ ... ∧ d̂Xi

Xi

∧ · · · ∧ dXm

Xm

,

we can write it more succinctly by stripping the factor dα
α

and define the
projective variation operator δ by

δ(ω) =
m∑
i=1

(−1)i+1dX1

X1

∧ ... ∧ d̂Xi

Xi

∧ · · · ∧ dXm

Xm

. (2.10)

This expression should be familiar from the usual boundary operator de-
fined in simplicial topology, one can define a simplex as an ordered col-
lection of vertices, ∆ = {X1, . . . , Xm}, and an operator ∂ that acting on ∆
produces a linear combination of lower dimensional simplices,

∂∆ =
m∑
i=1

(−1)i+1{X1, . . . , X̂i, . . . , Xm},

which are its facets. It is very natural to establish a correspondence be-
tween simplices and dlog forms,

∆↔ ω, (2.11)

under which the boundary operator ∂ and the projective variation oper-
ator δ are mapped into each other. In particular, we automatically obtain
that δ2 = 0. We caution the reader that this correspondence is not the
usual one between a polytope and its canonical form, and indeed ω is not
the canonical form of ∆. Nevertheless the two concepts are related, since
the canonical form of the dual simplex ∆∗ is given by Ω = δ(ω), note that
the projectivity of Ω is guaranteed by the fact that δ2 = 0. When dealing
with an operator that squares to zero, the first meaningful thing to do is to
study its homology. In our case we ask ourselves whether any projective
scattering form Ω is the projective variation of some form η. It turns out
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that this is always the case, we just have to introduce a new variable M :

δ

(
dM

M
∧ Ω

)
= Ω− dM

M
∧ δ(Ω) = Ω. (2.12)

Now suppose that Ω is given by a sum of dlog terms as in (2.8). We
can consider the simplicial chain c 4 defined by the purely combinatorical
data of the simplices corresponding to the dlog terms and their relative
orientations encoded in Ω. The projectivity of the latter translates, via
the correspondence (2.11), to the statement that this chain is actually a
cycle, that is ∂c = 0. Furthermore, because of (2.12) we know that c is
actually the boundary of another simplicial chain b which is given by a
sum of simplices sharing a common vertex M . By analogy with the ex-
ample of the simplex, we would like to claim that Ω is the canonical form
associated to the polytope of which b is the dual. However, we do not
know yet if b has the appropriate topological properties to be realisable
as a convex polytope. Since b is tautologically triangulated by the sim-
plices {M,Xa1 , . . . , Xam} appearing in M ∧ Ω we can at least compute its
homological groups Hi(b) by explicitly looking for cycles which are not
boundaries. In top dimension there is no trivial cycle, since every chain is
written as 5

cm =
dM

M
∧

( ∑
v∈U⊂V

dXa1

Xa1

∧ · · · ∧ dXam

Xam

)
,

but then ∂cm = 0 implies∑
v∈U⊂V

dXa1

Xa1

∧ · · · ∧ dXam

Xam

= 0

which implies that cm = 0. Therefore Hm(b) is trivially zero. Next con-
sider a generic k-dimensional chain, which we can write separating the
dependence on M as

ck = M ∧ ηk−1 + ηk,

where ηk are k-forms independent on the variable M . The boundary of
this chain is given by

δ(ck) = ηk−1 + δ(ηk)−M ∧ δ(ηk−1),

4By simplicial chain is meant a linear combination of simplices. They define a topo-
logical space obtained by gluing the simplices at the shared faces and the topological
properties of this space can be computed by the knowledge of the gluing patterns

5we make free use of the correspondence between simplices and dlog forms
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which can only be zero if ηk−1 = −δ(ηk), but then we can write ck as a
boundary

ck = −δ(M ∧ ηk).
Then we conclude that Hk(b) = 0 for all k > 0. Finally H0(b) = Z since b is
connected: all the simplices share the vertex M and then any two points
can be joined by a path through it. We conclude that b has the homology
groups of a ball.

To summarize, in this section we discussed how the projectivity of
the scattering form is a necessary requirement for the polytopality of the
corresponding positive geometry. This is a promising result, in light of
the plethora of projective scattering forms that have been found here and
elsewhere [36; 37; 38], going well beyond φ3 theory. Particularly exciting
is the fact that projective scattering forms associated to higher loop inte-
grands have already been discovered, which is then the first step in com-
pleting the Amplituhedral picture for φ3 at all loop order. Unfortunately,
the knowledge of the projective scattering form by itself gives no useful
indication on how to find an actual convex realisation of the polytope, in
order to do so we have to lean on some other ideas. In section 2.3.1, this
will be achieved for the scattering form of φ3 theory up to 1-loop exploit-
ing the fact that the factorisation properties encoded by (1) are easily seen
to be reproduced by the (1+1)-dimensional wave equation.

2.2 The Halohedron in Abstract space

In this section we define a convex realisation of the Halohedron in an
affine space X with coordinates (X1, . . . , Xn). We are going to do so by
defining a set of linear functions XI such that the region where they are
all positive cuts an Halohedron. These functions will be in 1-1 correspon-
dence with the facets of the Halohedron, and thus with propagators of
1-loop planar diagrams, and will be labelled as the planar variables listed
in Tab. 1.1. The Halohedron is then realised as the intersection of the re-
gion where all loop propagators are positive with the space X . We can
think of the space X as an abstraction of the natural kinematical space
of all planar variables, it is a subspace where the planar variables satisfy
relations that guarantee the realisation of the Halohedron, while they do
not satisfy other usual relations. For example, momentum conservation
is not enforced since the planar variables X(i,...,j) and X(j+1,...,i−1) - which
are dual to the propagators at the side of an internal bubble - will not be
equal on X . Indeed, this would not be possible since they correspond to
different facets of the Halohedron.

In order to find the correct form of the functionsXI , we implement the
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convex realisation of the Halohedron described in [29], which is obtained
by iterated truncations of an n-dimensional cube. We center one of the
corners of the cube at the origin of the space X , so that the coordinates
Xi become the face variables of n of the facets of the cube. Next, we in-
troduce functions X(i,i+1) = εi − Xi, for some positive constant εi. The
positive regions Xi ≥ 0 and X(i,i+1) ≥ 0 define the initial cube, which is to
be truncated at the intersection of the faces X(i,i+1) in order of increasing
dimensions. The first truncation happens at the vertex where all the facets
X(i,i+1) meet and it is implemented by considering the function

X0 =
n∑
a=1

X(a,a+1) − ε0, (2.13)

where ε0 is a new positive constant. Requiring X0 ≥ 0 shaves off the
vertex where all theXi,i+1 are zero, creating a new facet - which is a (n−1)-
simplex - at the end of all the truncations such facet will be cutted into the
cyclohedral facet of the Halohedron. Similarly one truncates all the one
dimensional faces given by the intersection of the faces Xa,a+1 for a ∈
(i, i+ 1, . . . , i− 1), by introducing functions

X(i,i+1,...,i−1) :=
i−1∑
a=i

X(a,a+1) − ε(i,i+1,...,i−1), (2.14)

and demanding them to be positive. The truncations easily generalize to
every dimension, for every subset I ⊂ (1, 2, . . . , n) of cyclically consecu-
tive indices we consider a function

XI =
∑
a∈I′

Xa,a+1 − εI , (2.15)

where I ′ is obtained from I by dropping the last element and εI is a posi-
tive constant. The variables Xi, Xi,i+1,X0 and XI together span the whole
set of facets of the Halohedron Hn, and the region where they are simulta-
neously positive gives a convex realisation of it, an example is shown in
Fig. 2.4. Finally, we remark the constants εI cannot be chosen arbitrarily.
The reason is that they modulate the depth of the truncations which must
not be too deep, for example ε0 must be smaller than ε(i,i+1) or the facet X0

created by the truncation will touch the facet Xi.
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Figure 2.4: The sequence of truncations that produces the 3-dimensional Halo-
hedron.

2.3 ABCD from the Wave Equation

In [8] it was discussed how the cluster polytope An−3, also known as As-
sociahedron, is related to tree level amplitudes of bi-adjoint scalar theory.
In particular, a convex realisation in the kinematical space of Mandelstam
variables was found for An−3. This so-called ABHY realisation, which
was previously unknown to mathematicians, was inspired by the simple
physical requirement of absence of spurious non planar poles. Later the
ABHY construction was extended to Bn−1/Cn−1 and Dn in [34], relying on
the connection with the cluster algebras. In this section we propose a new
way to rediscover the ABHY construction, building on a phenomenon
which is familiar to physicists: the factorisation properties of causal dia-
monds. Although the final result is equivalent to the one of [34], the new
framework has the advantage of making manifest certain properties of
ABHY polytopes which have gone unnoticed so far, as well as suggesting
natural ways of further generalisation.

2.3.1 From associahedra to the wave equation and back

Let us first review the ABHY construction of the Associahedron in kine-
matical space, as presented in [8]. The kinematic space is spanned by all
planar variables Xi,j which correspond to the n(n−3)

2
diagonals of an n-gon.

On the other hand the Associahedron is a (n−3)-dimensional polytope,
whose codimension-k faces are in one-to-one correspondence with col-
lections of k non-crossing diagonals of an n-gon, or equivalently k com-
patible planar variables, Xi,j . To obtain an Associahedron, we intersect
the positive region Xi,j ≥ 0 with a subspace 6 defined by the following
n(n−3)

2
− (n−3) conditions: for non adjacent i, j with 1 ≤ i < j ≤ n−1, we

6It is a well known results in the theory of convex polytopes, that any convex polytope
P can be obtained by intersecting a simplex with an affine space
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Figure 2.5: A mesh diagram for ABHY realization of associahedra

impose

Xi+1,j+1 −Xi+1,j −Xi,j+1 +Xi,j = ci,j. (2.16)

where ci,j are arbitrary positive numbers. The key feature of the Associa-
hedron An−3 is the factorization of its faces into lower dimensional asso-
ciahedra, for the ABHY realisation this means that

∂Xi,j
An−3(1, 2, · · · , n) = A(L)

nL−3(i, i+1, · · · , j)×A(R)
nR−3(j, j+1, · · · , i−1, i) ,

(2.17)

where ∂Xi,j
denotes the facet corresponding to the vanishing of the planar

variable Xi,j ,A(L) (resp. A(R)) is an ABHY polytope built using an nL-gon
(resp. an nR-gon) with vertices indicated in (2.17).

It is convenient to arrange the set of relations (2.16) in the mesh diagram
shown in Fig. 2.5. Each condition (2.16) is represented by a diamond, with
the planar variablesXi,j ,Xi+1,j+1,Xi,j+1 andXi+1,j at its left, right, top and
bottom corners and the constant ci,j inside. The entire set of conditions
can be drawn simultaneously as a right triangle made of such diamonds,
with 45-degree lines representing the i and j axes. We will refer to these
as mesh relations, and for future convenience we also include the frozen
variablesXi,i+1 for i = 1, 2, · · · , n, which we define to be zero. In the mesh
diagram they are located at the bottom point (1, n), and points above the
top edge of the triangle, (1, 2), (2, 3), · · · , (n−1, n). A useful fact which is
completely manifest in the mesh picture is that, for any rectangle bounded
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by a ≤ i ≤ a′ and b ≤ j ≤ b′, the mesh relations (2.16) associated to the
diamonds contained in the rectangle telescopically sum to

Xa,b +Xa′,b′ −Xa,b′ −Xa′,b =
∑
a≤i<a′

∑
b≤j<b′

ci,j . (2.18)

We now turn to the new picture for ABHY polytopes. The basic obser-
vation is that the ABHY conditions can be viewed as a discretized version
of the (1+1)-dimensional wave equation. Indeed, imagine that the points
forming the mesh diagram of Fig. 2.5 become infinitely close, or equiva-
lently that the mesh becomes more and more dense. Then we can replace
the relation (2.16) with its infinitesimal version, obtained by interpreting
differences as derivatives along the two directions (u, v) of the mesh. We
obtain

∂u∂vX(u, v) = c(u, v) , (2.19)

which is the (1 + 1)-dimensional wave equation written in light-cone co-
ordinates u = t − x, v = t + x7, note that now c has the interpretation of
a source for the equation. It is clear that (2.18) is replaced by an integral
version: given any rectangular region a ≤ u ≤ a′, b ≤ v ≤ b′ contained in
the right triangle, the integral wave equation reads

X(a, b) +X(a′, b′)−X(a, b′)−X(a′, b) =

∫ a′

a

du

∫ b′

b

dv c(u, v) , (2.20)

where the integral of the source gives the total charge inside the rectangle.
At this stage the analogy between the ABHY conditions and the wave

equation might appear as a simple coincidence, but in fact it is the first
clue of a deeper connection. Perhaps not surprisingly the missing concept
we have to call into play is that of positivity. We will therefore focus on
the space of positive solutions of the wave equation, i.e. with X(u, v) ≥ 0,
which turns out to be a continuum version, or equivalently an infinite
n limit, of an ABHY Associahedron An−3. Before illustrating more pre-
cisely this statement, let us point out at some obvious facts about solu-
tions X(u, v) of the wave equation. To begin with, we should specify a
domain and choose boundary conditions for X(u, v). With the benefit of
hindsight, we choose the right triangle of Fig. 2.6. As boundary condi-
tions we impose X(u, v) = 0 at the origin (u, v) = (0, 0) and on the spatial
slice u + v = 2. Applying the integral equation (2.20) to the rectangle
shown in Fig. 2.6, we can express the value of X(u, v) in the bulk of the

7In (x, t) variables it would read (∂2t − ∂2x)X(x, t) = c(x, t) instead.
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Figure 2.6: The wave equation and general solution inside a right triangle.

domain in terms of the values at its boundaries

X(u, v) = X(u, 0) +X(0, v)−
∫ u

0

du′
∫ v

0

dv′ c(u′, v′) . (2.21)

The boundary condition at the origin implies that X(u, 0) = X(0, v) = 0,
while the vanishing boundary condition on the spacial slice u+ v = 2, i.e.
X(u, 2− u) = 0, implies

X(0, 2− u) =

∫ u

0

du′
∫ 2−u

0

dv′ c(u′, v′)−X(u, 0) , (2.22)

so that the entire solution X(u, v) is uniquely fixed by its values at the
boundary v = 0.

The above analysis makes manifest that the space of solutions S of the
wave equation is infinite dimensional and, furthermore, is parametrised
by the values X(u, 0) which can be chosen arbitrarily. However, because
of the signs in (2.21),(2.22), the same is not true for the space of positive
solutions S+. To study the latter, it is convenient to first reduce to an
(n−3)-dimensional subspace obtained by setting to zero X(u, 0) in all but
n− 3 points. The positive values X(ui, 0) at these points cannot be chosen
arbitrarily, because we might break the positivity ofX(u, v) in some of the
points related to X(ui, 0) by (2.21) and (2.22). These points are precisely
the vertices of the mesh obtained by casting light rays from (ui, 0) and
reflecting them at the slice u + v = 2, see Fig. 2.7. By comparison with
Fig. 2.5 it should be clear that then the (n − 3)-dimensional subspace of
S+ of the wave equation is nothing but an ABHY polytope An−3. The full
space of positive solutions is obtained by allowing more and more non
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Figure 2.7: The mesh of light rays cast from u1, u2, u3 and reflected at the top
boundary of the domain

zero values on the edge (u, 0). Interestingly, each time we add a new non
vanishing point X(uj, 0) this does not affect the values (and in particular
the positivity) of X(u, v) at the points of the original mesh. Instead, the
values of X(uj, 0) are only restrained by the positivity requirement on the
light ray cast from (uj). This simple fact will have important geometri-
cal and physical consequences later and thus will be explained in more
details.

2.3.2 Causal diamonds and factorization

We have seen how ABHY associahedra arise as a discrete version of the
space of positive solutions of the wave equation. As mentioned earlier,
the key feature of these associahedra is the factorization of their faces into
lower dimensional associahedra. It is natural to ask how this fact is en-
coded in the new language of the wave equation. Quite pleasantly, it turns
out to be a consequence of the casual structure of (1+1)-dimensional space
time, i.e. of the factorization of casual diamonds.

Let us study the structure of the boundary ∂S+ of the space of positive
solutions8. The values of X(u, v) ≥ 0 themselves are parameters over this
space thus the boundaries of S+ are reached when X(u, v) vanishes at at
some point, e.g. X(u1, v1) = 0. Imposing the vanishing at a single point
does not break positivity anywhere else, so it is always allowed and gives
a component of ∂S+. Next we study how these boundaries intersect each
other. Because of the integral mesh relation (2.20), X(u, v) cannot vanish
simultaneously at points (u1, v1) and (u2, v2) sitting at the left and right

8We are using a somewhat ill defined terminology here, since S+ is infinite dimen-
sional. Hopefully this should not cause much confusion in the reader.



Positive Geometries in Kinematical space 41

corners of a casual diamond, since we have

X(u1, v1) +X(u2, v2) = X(u1, v2) +X(u2, v1) +

∫
du′dv′ c(u′, v′) > 0.

(2.23)

Such incompatible points lie in the two shaded diamonds shown in Fig.
2.8, they are regions that are space-like separated but causally connected
to (u1, v1). In other words, X(u1, v1) and X(u2, v2) can be set to zero
simultaneously if and only if (u2, v2) is in the light cones of (u1, v1) or
causally disconnected from it. Let us continue and study how the bound-
ary X(u1, v1) = 0 looks like. Since the value of X(u, v) at the points in the
shaded diamonds can be reconstructed from the knowledge of X(u, v) at
the boundaries of the diamonds and since they cannot be used to reach a
boundary of ∂X(u1,v1)S+, we can simply forget about them using the “cut
and paste” move depicted in Fig. 2.8. On the other hand, we cannot for-

X(u1, v1) = 0

δ function sourcesfactorization

factorization

Figure 2.8: Causal diamonds and factorizations in the continuum

get about the charge c(u, v) contained there since it enters in the integral
mesh relation of the surviving variables. We can keep track of it by adding
a delta function source on the line of gluing. We now have two indepen-
dent right triangles, where the original boundary solution of the wave
equation gives two solutions to the wave equation in each triangle. This
means that the boundary X(u, v) = 0 is a product of positive solutions
spaces in two smaller triangles,

∂X(u,v)S+ = S+
top × S+

bottom, (2.24)
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Figure 2.9: A general legal region is bounded by curves C and C ′.

which is the continuum limit analogue of (2.17).
So far we have considered as domain for the wave equation a right tri-

angle, which was suggested by the mesh diagram of Fig. 2.5. However, it
is natural to expect that other choices of domains will give rise to spaces of
positive solutions satisfying factorization properties, by the same mech-
anism we just studied. It turns out that we can choose any region in the
rectangle R = {0 ≤ t ≤ 1, 0 ≤ x ≤ 1} and bounded by two non intersect-
ing time like curves C and C ′ from t = 0 to t = 1, related to each other
by the transformation (x, t) → (x + 1, 1 − t), see figure Fig. 2.9. We still
assume zero boundary conditions at t = 0 and t = 1, and arbitrary con-
ditions on C and C ′. The space S+ again factorises whenever X(u, v) = 0
at some point. Extremal cases occur for C being a single light ray, so that
R becomes the right triangle studied earlier, or when C is vertical, giving
the square of Fig. 2.10.

x

t

1

C C ′

Figure 2.10: Factorisation properties for the square region.
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There is another region which will play an important role later. Choose
a point (a, b) and consider the light cone emitted from here. Take for C the
points (u, v) which lies on the edge of this light cone and further satisfy
u ≤ a. The corresponding arrow-tail region is shown in Fig. 2.11. In the
case where (a, b) = (1, 0) we get back to the usual right triangle. By con-
structing the relevant diamonds we see that the region factorizes either
into a right triangle times another arrow-tail region, or into two arrow-tail
regions. This is interesting because we do not create arbitrarily different
shapes upon factorisation or in other words the space S+ on arrow-tail
regions is closed upon taking boundaries. Because of this it is tempting to
conjecture that this space must be connected with the Associahedron and
thus with tree level amplitudes. Indeed this is the case, as we will discuss
in Section 2.3.4.

X(a,b) X(a,b)

L

L

R

R

X(u,v)

X(a,b)

L

L

L
R

Figure 2.11: The arrow-tail region is a generalization of the usual right triangle
region. The boundary corresponding to X(u, v) = 0 factorizes in either a Left
arrow-tail times a Right arrow-tail, or a Left arrow-tail region times a Right tri-
angle, obtained after the gluing along the colored lines.

2.3.3 Projections and the Soft-limit Triangulation

We now describe a remarkable feature of the ABHY realisation of the As-
sociahedron An−3, namely that there exists a projection of any n-point As-
sociahedron onto an (n−1)-point one. Furthermore, this projection allows
us to build a new triangulation of the Associahedron which we will use in
Section 3.3.3 to obtain a surprisingly compact new recursion relation for
tree level amplitudes.

We begin by choosing a basis of n − 3 planar variables in terms of
which we express the others by solving the ABHY conditions. Although
there are many choices, the most natural basis is given (for the standard
ABHY realization of An−3) by the variables X1,i, with i = 3, . . . , n − 1,
i.e. those living in the leftmost edge of right triangle. The reason is that
they trivializes the problem of solving the ABHY conditions, which can
be done by casting light rays as described in Section 2.3.1 and in more
detail in Appendix B.
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Figure 2.12: Only the variables in the red light rays depend on X1,i, because we
can cast the blue light rays to find a causal diamond relating them to it.

There is a pattern which immediately strikes the eye in the way the ba-
sis element appears in the solutions of the other variables. As it is shown
in Fig. 2.12, after solving the ABHY conditions the variable X1,i appears
only in a subset of all the variables, those for which it is possible to draw
a causal diamond containing both.

As a consequence, we can project from the big space of all the pla-
nar variables to a small space obtained by forgetting the variables on the
red light ray. The remaining variables still satisfy ABHY relations among
them, because we can still draw causal diamonds involving them and not
the forgotten ones. Therefore the image of the projection of the original
Associahedron is another Associahedron and a rapid counting shows that
this Associahedron is of codimension one. In another words, we obtain a
projection of an n-point Associahedron onto an (n− 1)-point one.

Such a projection exists for any of the variableX1,i, but we will now fo-
cus on the particularly simple choice of X1,3 and study the corresponding
projection in more detail. Constructing the necessary causal diamonds,
one finds that the to-be-forgotten variables are given by

X2,a = X1,a −X1,3 +
a−1∑
i=3

c1,i, (2.25)

in order to forget aboutX1,3 we simply set it to 0. This defines a projection
π which sends any point Y of our kinematic space to a point π(Y ) in the
subspace where the facet X1,3 of the original Associahedron lives. Now
suppose that Y was inside of the original Associahedron An−3, which by
definition means that all the planar variables were positive when evalu-
ated at Y . As it is clear from the minus sign of X1,3 in (2.25), the forgotten
variables are even more positive on π(Y ). Furthermore, the remaining
variables are positive as well on π(Y ) since they do not depend on X1,3

which is the only basis element changed by π. We conclude that π(Y ) is



Positive Geometries in Kinematical space 45

inside the facet X1,3 and not merely on the plane X1,3 = 0. We conclude
that π projects An into its facet X1,3, which we recall is an (n − 1)-point
Associahedron.

Now imagine to go the other way around, i.e. take a point Ȳ in the
facet X1,3 = 0 and imagine turning X1,3 back on. As X1,3 increases, we
find a fiber of points which live in the original An−3 and above Ŷ . We
can not increase X1,3 arbitrarily because some of the variables X2,a will
eventually turn negative. Therefore, over each point in the facetX1,3 there
is a maximum height we can reach elevating in the X1,3 ≥ 0 direction,
which is dictated by the smallest of the forgotten variables at Ŷ . The facet
X1,3 is then divided into polytopes given by the minimization problem of
the forgotten variables. Said in other words, the cells of the triangulation
of the facet X1,3 induced by the minimization problem of the forgotten
variables X2,a are nothing but the shadows cast by the facets X2,a over
the facet X1,3 under π. Furthermore, each of these polytopes, together
with the fibers of points projecting onto them, gives a triangulation9 of
the larger Associahedron An−3.

We will refer to this decomposition as the soft-limit triangulation of
An−3, the choice of name is motivated by the analogy between the pro-
jection into a lower point Associahedron and the notion of forgetting a
particle by taking its momentum to be vanishing. We caution the reader,
however, that the projection itself is not equivalent to a soft-limit, unless
we further send the mesh constant c1,i → 0 for i = 3, . . . , n − 1. As was
argued in [8], this has the effect of squashing the Associahedron onto its
facet X1,3 = 0 and it is completely equivalent to the soft-limit kµ1 → 0.

Unlike previously known triangulations of An−3, the structure of the
soft-limit triangulation is very simple: each of the polytopes into which
An−3 is divided is a prism, i.e. a polytope with two distinguished “top”
and “bottom” facets and such that the remaining “side” facets meet at a
common point. This point can be used to define a projection which acts as
a diffeomorphism of positive geometries, as defined in [10], between the
top and bottom facets. In particular, this mean that the top and bottom
facets have the same combinatorical structure and their canonical forms
can be push-forwarded into each other by means of the projection.

Let us consider an explicit example. For n = 6 points the three facets
X2,4 = 0, X2,5 = 0, X2,6 = 0 of A3 project to the facet X1,3 = 0, their im-
age under the projection are combinatorially equivalent to, respectively,
A2,A1×A1 andA2 and triangulate the facet X1,3. Furthermore, the prism
built on each of them decomposeA3 as shown in Fig. 2.13. A quick count-

9More precisely, it is a decomposition of the polytope into smaller polytopes of known
shapes.
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Figure 2.13: The soft-limit triangulation for n = 5 (left) and n = 6 (right).

ing shows that the soft limit triangulation is extremely efficient: it only
requires n − 3 pieces, as opposed to the standard triangulation consid-
ered in [8], which consists in convex hulls based at a specific vertex and
thus require O(n2) pieces. Furthermore, due to the simple combinatorical
structure of prisms, the soft-limit triangulation allows to derive a partic-
ularly clearn recursive formula for tree amplitudes, as we will explain in
in Section 3.3.

Before ending this section, let us give a more projective description of
the projection. Using the coordinates Y = (1, X1,3, X1,4, . . . , X1,n−1) the
factorization facets which do not cast a shadow are given by Y ·Wi,j = 0,
with

Wi,j = ±(∗, 0, ∗, ∗, · · · , ∗)T,
and they all meet at a point at infinity

Z = (0, 1, 0, 0 · · · , 0)T,

since clearly Z ·Wi,j = 0. We can use this point to define a projection on
the facet X1,3 = 0, each forgotten facet X2,i = 0 together with its image
under this projection on the facet X1,3 = 0 define the upper and bottom
facet of the prisms appearing in the triangulation.

2.3.4 New realizations of associahedra

In Section 2.3.2 we argued that there are different possible choices of re-
gion R for which the space S+ of positive solutions of the wave equation
satisfy the crucial factorisation property. In particular, we described in
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some detail the arrow-tail region which factorizes into products of other
arrow-tail regions. We now wish to study the discrete version of this re-
gion and we will do so by exploiting again the projection property of S+,
i.e. that we can consider subspaces of S+ obtained by forgetting the val-
ues of X(u, v) on all but a finite number of points on the left edge C.

We pick a set of points on C, including also the special point (a, b)
where C has a cusp, and construct a mesh out of the light rays emitted
from this points, reflecting them if we hit the top and bottom edges of R.
To make connection with the usual notation, we name the points up to the
cuspX1,i with i = 3, . . . ,m, and the remaining onesXn,m, Xn−1,m, . . . , Xm+2,n.
In doing this we are following the convention that in the u direction we
increase the first index and in the v direction the second. By the same
rule we can label the remaining vertices of the mesh with planar variable
labels Xi,j , note that we produce labels Xj,i with j > i, in which case we
interpret them as Xi,j instead.

With these labellings, we can look again at the factorisation implied by
the wave equation and recognise again the formula (2.17). We conclude
that this subspace of S+ is an Associahedron. On the other hand, the mesh
relations read off the causal diamonds only partly match those of (2.16):
all those contained in the future cone of (a + 1, 1 − b) have been replaced
by those contained in the past cone of (a, b). Therefore, we see that the
arrow-tail region provides a new convex realisation of An−3. Indeed, us-
ing the language of [34], this corresponds to the initial quiver shown in
Fig. 2.14. It turns out that all the realisations described in [34] can be

... ...
Figure 2.14: The initial quiver corresponding to the ABHY realisation obtained
from the arrow-tail region, the node at which the orientation of the quiver
changes is in correspondence with the cusp of the curve C.

obtained by choosing the appropriate curve C and then considering the
discretised version of S+, a flip in the orientation of the quivers translates
in an inversion point for C. For example, the square region of Fig. 2.10
upon discretisation give rise to the realisation with the maximum number
of flips.

2.3.5 ABHY realizations for polytopes of type B/C and D

The ABHY convex realisation of the cluster polytope A was first gener-
alized in [34] for the remaining types. For the sake of self-containedness,
we will describe here the realisation in a minimalistic way, omitting in
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particular the proof of its correctness, for which we refer the reader to the
original paper [34]. We begin with D, whose cluster variables are labelled
by the variables Xi,j , Xj,i, Xi and X ′i, which represents (tagged) arcs of an
once punctured n-gon, see Fig. 2.15.

1 2

34

X1
X ′1 X1,2

X13 X13

X12

X24

X23

X31

X34

X2 X ′3X ′2 X3X ′1X1

X42

X41

X4 X ′4

Figure 2.15: The correspondence between some variables ofD4 and (tagged) arcs
of the punctured n-gon is shown on the left. The variables can be arranged in the
mesh diagram shown on the right.

As usual, we arrange these variables in a mesh diagram as in Fig. 2.15
each diamond of which correspond to an ABHY condition. There are two
novelties, firstly we have blue and red diamonds in the top of the diagram
which correspond to the conditionsXi+X

′
i+1−Xi,i+1 = ci andX ′i+Xi+1−

Xi,i+1 = c′i and secondly we have five-terms conditions

Xi,i+1 +Xi+1,i+2 −Xi,i+2 −Xi+1 −X ′i+1 = ci,i+1 i = 1, . . . , n− 1,

which do not correspond precisely to a diamond. For example, the mesh
diagram of Fig. 2.15 implies 12 conditions, the one coming from the left-
most part of the diagram are

X13 +X24 −X23 = c13, X12 +X23 −X13 −X2 −X ′2 = c12,

X1 +X ′2 −X12 = c1, X ′1 +X2 −X12 = c′1 ,

the others are obtained by cyclic shift. For general n the relations are given
by (we use the convention that Xi+1,i = 0)

Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j = ci,j , for |j − i| > 1, i 6= n

Xi,i+1 +Xi+1,i+2 −Xi,i+2 −Xi+1 −X ′i+1 = ci,i+1 , for 1 ≤ i < n

Xi +X ′i+1 −Xi,i+1 = ci , X ′i +Xi+1 −Xi,i+1 = c′i , for 1 ≤ i ≤ n.
(2.26)

The ABHY conditions define a subspace in the space of all the variables
X . As in the case of A, the intersection of this subspace with the positive
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region X ≥ 0 is a polytope combinatorially equivalent to the cluster poly-
tope Dn, see Fig. 2.16 for an example with n = 3. The ABHY realisation

X1


X12

X1

X2

X3

X23

X31

X2


X3


Figure 2.16: The ABHY D3 polytope. Its facets contains 3+3 ABHY A2 polytopes
(pentagons) associated with Xi and X ′i, plus three copies of D2 associated with
Xi,i+1.

of B comes for free with the ABHY realisation of D: it is obtained simply
by fusing the variables X ′i and Xi into a single variable X+

i = Xi +X ′i for
every i, and reading relations out of (2.26). We obtain

Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j = ci,j , for |j − i| > 1, i 6= n

Xi,i+1 +Xi+1,i+2 −Xi,i+2 −X+
i+1 = ci,i+1 , for 1 ≤ i < n

1

2
X+
i +

1

2
X+
i+1 −Xi,i+1 =

1

2
(ci + c′i), for 1 ≤ i ≤ n . (2.27)

Next, we turn to the continuum limit. Between the relations (2.26)
and (2.27), the latter are a better starting point to find an infinitesimal
version. The only problem is the last of (2.27) because it involves only
three terms and moreover has strange factors 1/2 all over the place, but
this begs to be interpreted as half of an ordinary mesh relation, which
can be done in an obvious way. First we consider a symmetric arrow-
tail region, i.e. one symmetric with respect to the transformation (x, t) →
(1 + x, 1 − t) as in Fig. 2.17, we also assume that the charge density has
the same symmetry, c(u, v) = c(1 + v, u− 1). Finally, we now consider the
space of positive solutions subjected to this symmetry, S+

sym. The reason
behind this construction is clear, when we write the integral relation for a
symmetric diamond we get

X(a,−a) +X(−b, b) +X(a, b) +X(1 + b, a− 1) =

∫ a

−a
du

∫ b

−b
dv, c(a, b)
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-

+

-

+

-

+

-

+

u+v=1

Figure 2.17: An arrow-tail region symmetric with respect to the line u + v = 1.
The mesh relations defining an ABHY realisation for Bn−1 originate from ordi-
nary causal diamonds, the special mesh relations correspond to symmetric dia-
monds.

which is equivalent to

1

2
X(a,−a) +

1

2
X(−b, b)−X(a, b) =

∫
T

dudv, c(a, b) (2.28)

where T is half of the original diamond, say the one with u+ v < 1.
Let us move to the study of the boundary structure of S+

sym. Because of
the symmetry we now have to setX(u, v) = 0 in pairs of points conjugated
under the symmetry and for each one draw diamonds as in Fig. 2.11. The
usual factorization of arrow-tail regions may produce pairs of conjugated
regions that intersect the line u+v = 1 in at most one one point, in this case
we can forget about one of the regions as the information about the solu-
tionX(u, v) is already encoded in the other region. Because of this, we see
that the space S+

sym factorises into itself times ordinary spaces S+ associ-
ated to arrow-tail regions. Obviously this is the continuum limit version
of the factorisation of Bn into copies of itself and Am. However, there is
a crucial novelty. When we impose the vanishing of X(u, v) along some
point of the symmetry line u + v = 1 the structure of the relevant casual
diamonds leave us with a single pair of conjugated regions and therefore
this boundary component of S+ does not factorise at all: it is a single copy
of S for an arrow-tail region. This is the continuum-limit manifestation of
the by now well known fact that ∂Bn−1 contains n copies of An−2, which
is vital to reproduce the cut properties of the 1-loop integrand.

To recover the convex realisation of B we apply the usual discretiza-
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tion procedure: once again S+
sym satisfy the projection property, i.e. we

can go to finite dimensional subspaces by projecting (or forgetting) most
of the points in the left-most edge of the arrow-tail region. Constructing
the mesh of light rays, and labelling them in terms of the planar variables -
with the notable difference that now we no longer identify Xi,j = Xj,i and
that we have variables X+

i along the symmetry line - one ends up in the
mesh diagrams such as in Fig. 2.15 and thus in the ABHY convex realisa-
tion of [34]. To obtain the realisation for D, we now double the variables
X+
i by writing them asX+

i = Xi+X
′
i and we impose the last two relations

of (2.26). At first sight this extra ad-hoc step is somewhat unpleasant, in
that one would like to see D automatically emerge from the discretisation
of some continuum wave equation problem. On the other hand, the most
important difference between the combinatorics of ∂Bn−1 and ∂Dn is that
the latter contains facets An−1 where the former contains facets An−2 and
this difference is clearly lost in the continuum, i.e. when n → ∞. More-
over this fusing/doubling mechanism foreshadows that there should be
a simple way to “forget” the extra structure of Dn and obtain Bn−1, a fact
which we will understand in more detail in Section 2.3.7.

2.3.6 The polytope Dn
The facet structure of the Dn cluster polytope correctly reproduces the
factorizations of a 1-loop planar φ3 integrand. Furthermore, there is a
meaningful correspondence between the cuts of the integrand, which are
n + 2 tree level amplitudes, and the cut facets Xi = 0 and X ′i = 0, which
are associahedra An−1. However, this correspondence is less satisfactory,
because we do not have the right number of facets in Dn: we have twice
as many cut facets as we would like. Going to the other combinatorial
extreme, the problem can be understood in terms of vertices of Dn and
Feynman diagrams. The vertices involving only non tagged triangula-
tions correspond to 1-loop Feynman diagrams, the ones involving a pair
of tagged and plain radii to tadpole diagrams (by radius we mean an arc
going from a vertex of the n-gon to the internal puncture), but then there
are also vertices with only tagged radii which we do not know how to
interpret.

In a sense our problem is that D has a symmetry, given by exchanging
tagged and plain radii, which has no physical meaning and thus must be
modded out. As we discuss in the rest of this section, yet another magical
property of the ABHY realization of cluster polytopes is that it allows to
do so in an obvious way.

To begin with, we have to promote this symmetry from a purely com-
binatorial one to a geometrical one. This is done by requiring the mesh
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constants ci and c′i, which a priori are independent positive numbers to
be equal. As a consequence of this, all tadpole vertices now become co-
planar, as we will now prove. Firstly, after a moment’s thought one real-
izes that by solving the mesh relations in terms of the initial quiver vari-
ables, the variables Xi and X ′i (for i > 1) are given by

Xi = C −X ′1 +X , X ′i = C ′ −X1 +X , (2.29)

where C and C ′ are combinations of mesh constants which are sent into
each other under the swap cj ↔ c′j for all j, andX is a combination of vari-
ables X1,a. This is a consequence of the underlying combinatorial symme-
try of D, encoded in the structure of the mesh relations. It is clear then
that the quantity X0 = X ′i −Xi = X ′1 −X1 does not depend on i, if cj = c′j
for every j. Therefore the equation X0 = 0 defines a hyperplane on which
all tadpole vertices must lie, since any tadpole vertex sits at the intersec-
tion of pairs of facets Xi and X ′i. The plane X0 then cuts the polytope D
in half: on the plane itself we have the tadpole vertices, and on the half-
spaces given by X0 > 0 (resp. X0 < 0) we have the plain (resp. tagged)
vertices. The formerly purely combinatorial symmetry is now promoted
to a geometrical one: the linear map X1 ↔ X ′1 sends the two half-spaces
into each other and, more importantly, a vertex ofD into the one obtained
by swapping tagged and plain radii. To mod out this symmetry, we sim-
ply restrict ourselves to one of the half-spaces, say X0 ≥ 0. By doing
so we are led to consider a new polytope, which we call D, obtained by
adding X0 to the set of face variables. Note that D is one of the two pieces
in which D is cut into by the plane X0 = 0. The situation is pictured in
Fig. 2.18 for the case n = 3, the reader is invited to compare it with the
Feynman polytope depicted in Fig. 2.3.

X-

X-

X12
X1

X2

X3

X23

X31

Figure 2.18: Slicing D3 with the tadpole plane produces two copies of D3

The polytope Dn satisfies all the requirements implied by (1): there
is a 1-1 correspondence between its codimension-1 boundaries and the
poles of a 1-loop integrand. If we iterate this correspondence down to
vertices we find a correspondence between them and 1-loop diagrams,
such that adjacent vertices corresponds to diagrams related by a channel
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swap. Furthermore, the slicing created new adjacencies between vertices
which have a simple diagrammatical interpretation as a tadpole flip.

We end this section with a brief summary of the facets of D. The faces
Xi,j = 0 factorise intoA×D, and reproduce the factorisation of the 1-loop
integrand. In particular, the faces Xi,i+1 = 0 are given by An−3 × D and
allow the factorisation of an 2-point function from a tree level amplitude.
There are n cut facets Xi = 0 which are (n + 2)-point associahedra An−1.
These faces reproduce the cuts of the integrand, which are tree level am-
plitudes with an extra pair of particles in the forward limit, coming from
the cutted loop propagator. Finally, X0 = 0 is the cyclohedral facet Bn−1
on which all tadpole vertices lie. Because of this we will also refer to this
variable as the tadpole variable.

2.3.7 Projections and the Forward-limit Triangulation

It is not difficult to see that ABHY realization of cluster polytopes B, C,D
still enjoys the beautiful projection property we described in full detail for
A. Since the method to discover and prove such projections is virtually
identical to the tree level case, we will not repeat the derivation here. In-
stead, we will describe an entirely different projection for D, which we
will call forward-limit triangulation for reasons that will become clear later
in Chapter 3.

Among the facets ofDn there is an obvious distinguished one, the tad-
pole facet X1 = X ′1. It is therefore natural to ask ourselves what happens
if we project on this facet. To begin with, it is convenient to choose as
basis the variables (X1, X

′
1, X2,1, . . . , Xn−1,1): all other face variables are

expressed as linear functions of these basis variables and of the mesh con-
stants. However, the symmetry X ′1 ↔ X1 of D implies that if X1 appears
in the expression of some variable Xi,j then also X ′1 appears (with the
same sign), and vice versa. Therefore, the dependence of factorization
facets on X1, X

′
1 is only through the combination X+ = X1 + X ′1,. This is

not true for the variablesXi andX ′i, indeedXi (resp. X ′1) depends only on
X ′1 (resp. X1). It is therefore natural to introduce a new set of variables:{

X+ = (X1 +X ′1)
X− = (X1 −X ′1)

{
X1 = 1

2
(X+ +X−)

X ′1 = 1
2
(X+ −X−)

. (2.30)

Note that X− is nothing but the tadpole variable X0. Using these coordi-
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nates, we can define a projection

π− : D → C (2.31)

Y = (X−, X+, X2,1, . . . ) 7→ Ŷ = (0, X+, X2,1, . . . ),

which is a map onto the tadpole facet {X− = 0}. Crucially, only the cut
facets cast a shadow under the projection: the factorization facets are in-
dependent of X−, thus they are parallel to the direction of the projection
and their image is lower dimensional.

As in the case of the soft-limit projection discussed earlier for tree level
associahedra A, the projection described here suggests a natural triangu-
lation of D. Such triangulation is particularly easy to describe working in
the frame defined by X±: consider any point Ŷ lying on the tadpole facet
in the shadow of the facet Xi, in the coordinates (2.30) Ŷ is given by

Ŷ = (0, X+, X2,1, . . . , Xn−1,1), (2.32)

we can lift this point by taking all points of the form

Y = (X−, X+, X2,1, . . . , Xn−1,1), (2.33)

all these points Y lie in D, provided that Xi ≥ 0. Note that we do not
have to check Xi,j ≥ 0 as well, since they are independent of X−, and they
are already positive on Ŷ . As Ŷ moves in the shadow of the cut facet Xi

the points Y define a prism with a top facet given by Xi and a bottom
facet given by its projection on X−. Again, it is evident that the bottom
and top facet of the prism have the same shape because the projection π−
gives a diffeomorphism between the two. If we denote the i-th prism by
An+2,i × [0, Xi], we can schematically write (see Fig. 2.19).

Dn =
n⋃
i=1

An+2,i × [0, Xi]. (2.34)
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X1

X2

X3

π (X1)

π (X2) π (X3)

Y

π (Y)

Figure 2.19: The forward limit triangulation in the case n = 3. The cut facets Xi

and their projection π(Xi) define three prisms which triangulate D3.

Once more let us give a projective description of the triangulation.
Using the coordinates Y = (1, X ′1, X1, X2,1, . . . , Xn−1,1) the factorization
facets are given by

Y ·Wi,j = 0,

with
W = ±(∗, 1, 1, ∗, · · · , ∗)T,

and they all meet at a point at infinity

Z = (0, 1,−1, 0, · · · , 0)T,

since clearly Z ·Wi,j = 0. We can use this point to define a projection on the
facet X−, each cut facet Xi together with its image under this projection
on the tadpole facet X− define the upper and bottom facet of the prisms
appearing in the triangulation (2.34).

In Section 3.3.4 we will describe a representation of the 1-loop inte-
grand which is associated to the triangulation D described here. As the
reader might expect, all the action will be played by the cut facets which
define the prisms composing the triangulation: this explain why we call
this the forward-limit triangulation.

2.4 Curvy Amplituhedra in 1+2 dimensions

Before concluding this chapter we would like to describe interesting space-
time avatars of the geometries understood using the pants decomposition
approach to the moduli problem, the Associahedron and the Halohedron.
We let ourselves be inspired by the hyperboloid model of the hyperbolic
plane to discover these objects in 1+2 dimensional space-time. The hy-
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perboloid itself can be re-interpreted as a map relating the two positive
geometries, as we will argue. At least at tree level, this map is equivalent
to the scattering equations specialised to 1+2 dimensions. These kinemati-
cal positive geometries are more complicated than the analogous ones de-
scribed in the previous sections: they are not polytopes defined by linear
inequalities, but rather are curvy objects defined by non-linear constraints
analogous to the one satisfied by cross ratios. Because of this, it remains
an interesting open question how to compute their canonical differential
forms and connect them to scattering amplitudes. Let us stress once again
that, only in this section, by kinematical space we will not mean a space
of propagators, but rather the space of external and internal momenta.

2.4.1 The kinematical Associahedron

Let us begin with the most natural definition of the kinematical space,
namely the set of momenta (k1, . . . , kn), with

∑n
a=1 ka = 0 and k2a = 0, up

to a common Lorentz transformation. This space has natural boundaries,
given by the singular regions where some Mandelstam variable vanishes,
that is where k2I = 0 with kI =

∑
a∈I ka.

In view of the hyperboloid model, this kinematical space naturally
projects to MD,n. Explicitly, the projection map φ is constructed as fol-
lows: let li be a collection of time-like vectors such that li → k ∈ L+, then
the points li/

√
l2i on the hyperboloid are mapped by the projection dis-

cussed in Section 1.1 to a sequence of points that converge to z ∈ ∂D, put
φ(k) := z. Under φ the collection of momenta (k1, . . . , kn) is mapped to a
collection of points (z1, . . . , zn) on ∂D (the ones with negative energy are
first mapped to −ka). Note that another set of momenta k′a = Λka, with
Λ ∈ SO↑(1, 2) is sent to (z′1, . . . , z

′
n) with z′ = γ(z) for a suitable γ ∈ AutD.

Thus, φ defines a map from the kinematical space toMD,n.
However, note that both ka and λka are sent to the same point in ∂D:

the map φ, being projective in nature, forgets about the scale of the mo-
menta. Because of this, we re-define our kinematical space to be up to
single rescaling of the momenta 10. Note that the map φ does not de-
pend on the momentum conservation requirement, so we can relax this
assumption: any set of n null-momenta is a viable choice to represent n
light rays.

In summary, we have defined the kinematical space Kn to be the set of
n distinct light rays up to SO↑(1, 2), and definedd a map φ : Kn →MD,n

Note that Kn is not a compact space, since we removed the configu-

10When this does not create confusion we will simply write ka for its light ray {λk |λ ∈
R}
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rations of collinear light rays. We can compactify this space in a method
virtually identical to the moduli space compactification in terms of punc-
tures. Suppose some set of momenta ki∈L is becoming collinear, then
move to the reference frame comoving with kL =

∑
i∈L ki. In this frame

the momenta kj ∈ R = Lc may or not stay at fixed positions as k2L = 0. To
represent all possible situations we use a diagonal in the Poincaré disk:
a diagonal separating ka into subsets L and R represents a limit where
k2L = 0 and the particles in R fail to remain at finite positions in the center
of mass frame of kL but rather collapse to a unique light ray. If we stick in
the frame comoving with kR instead, we see the particles in L becoming
collinear, and thus we get a natural factorisation of the kinematical space
in K|L|+1×K|R|+1. Therefore the compactification of the kinematical space
is naturally identified with the Associahedron An−3. It is not difficult to
see that φ extends to a continuous map from the kinematical Associahe-
dron to the moduli space Associahedron.

We now relate the map φ with the scattering equations. We can choose
a specific Lorentz frame and write a null momentum k

k =

(
E
E~η

)
where ~η = (cos(θ), sin(θ)) is a unit norm vector and E may be positive or
negative. Such k is sent to z = exp(iθ), so we can write the Mandelstam
variables as

ka · kb = EaEb(1− cos(θa − θb)) =
1

2
EaEb|za − zb|2. (2.35)

The scattering equations for the kinematics ka and their images za in the
disk now are

Ea =
∑
b 6=a

ka · kb
za − zb

=
1

2

∑
b6=a

EaEb(z̄a − z̄b) = −1

2
(E2a z̄a − E2a z̄a) = 0, (2.36)

in the last passage we recognised zaEa as the spatial part of ka and used
energy and momentum conservation. Since changing Lorentz frame is
equivalent to perform a Moebius map on the punctures za and the scat-
tering equations are covariant under Moebius map, our initial choice of
frame was uninfluential. We conclude that our map lands in a solution of
the scattering equations when it acts on the subset of Kn where momen-
tum conservation holds 11. However we noted that the map φ is defined

11We would like to remark that the solution to the scattering equations provided by
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without requiring momentum conservation and thus, in a sense, extends
the map given by the scattering equations to other regions of the kine-
matical space. Moreover, it is guaranteed to land in the Associahedron
living inMD,n as long as the momenta ka are in the cyclic order (12 . . . n).
Finally, let us remark that for n > 5 there are in general other solutions to
the scattering equations other than the one provided by φ.

This is a good point to make a remark on the peculiarity of 1 + 2 di-
mensional kinematics. Recall from [29] that in MD,n the moduli carried
by diagonals are essentially cross ratios. Using the hyperboloid model,
we can quickly express the moduli of the surface X = φ(k1, . . . , kn), in
terms of the momenta ka. From (2.35) it is immediate to see that

(ab|cd) =

√
kackdb
kcbkda

, (2.37)

we call the quantity on the right hand side of (2.37) a space-time cross
ratio because of its similarity to a cross ratio. Note that the space-time
cross ratios are invariant under rescaling of each single momentum and
is thus a function of the light rays, as they should. Equation (2.37) allows
us to think of the null momenta ka as set of homogeneous coordinates for
the moduli spaceMD,n. As we discussed earlier, cross ratios have to sat-
isfy the identities (1.4) and because of (2.37) the space time cross ratios
have to satisfy these relations as well, which implies that the Mandelstam
variable have to satisfy further relations beyond those coming from mo-
mentum conservation. Indeed, for any set of 4 null momenta, the first of
(1.4) implies √

k12k34 −
√
k13k24 +

√
k14k34 = 0, (2.38)

the combinatorics behind this relation is not new in the world of scattering
amplitudes, it appears as Plücker relations in the Grassmannian Gr(2, 4),
in the Jacobi identities underlying the colour-kinematics duality and was
discovered in [8] to be a condition for the projectivity of a scattering form
with numerators. Note that in the particular case where

∑4
a=1 ka = 0,

the condition (2.38) simply reduce to momentum conservation. However,
any four momenta ki have to satisfy (2.38) for the mere reason of being
null and in 1 + 2 dimensions. Indeed, in three dimensions we can always

the map φ is equivalent to the one provided by the spinor helicity formalism.
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write

4∑
i=1

ciki = 0,

let us choose c4 = 1, then the massless condition implies

1

2
k4 · k4 = c1c2k12 + c1c3k13 + c2c3k23 = 0, (2.39)

but we can also express the coefficients ci in terms of Mandelstam vari-
ables,

−k14 = c2k21 + c3k13,

−k24 = c1k14 + c3k23,

−k34 = c1k13 + c2k23,

and together with the massless condition we get

k14 =
c2c3
c1

k23,

k24 =
c3c1
c2

k31,

k34 =
c1c2
c3

k12.

Using these, we can re-write (2.38) as

|k12|
√
c1c2
c3

+ |k23|
√
c2c3
c1
− |k13|

√
c1c3
c2

= 0,

if we multiply by
√
c1c2c3 we see that this is equivalent to (2.39), if we

correctly take into account the relative order of the momenta.

2.4.2 The kinematical Halohedron

We begin by defining the 1-loop kinematical space K1,n. In virtue of what
we saw at tree level, we define it to be the set of n light rays with homoge-
neous coordinates ka, together with a loop momentum l. We will restrict
l to be time-like and bounded in the region 0 < l2 < 1. Finally, all is taken
up to Lorentz transformations. The time-likeness of l has really no natural
justification for now a part the connection with the hyperboloid model.

Having defined our kinematical space, we now need to associate to the
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kinematical data (k1, . . . , kn; l) a unique bordered Riemann surface X =
φ(k1, . . . , kn; l). The time momenta has a very naive avatar in the Poincaré
disk: its projection. But this construction is too simple, because projecting
we loose any information about its mass, and it does not yield a bordered
Riemann surface. Another meaningful geometrical object associated to l
is a circle, defined by

Cl = {w ∈ H| l · w = 1}.

It is easy to see that this is indeed an hyperbolic circle of hyperbolic radius
cosh(r) = 1√

l2
. We can now can define a bordered Riemann surface simply

by cutting away this circle from the Poincaré disk. Of course to the null
momenta we keep associating their light-rays and thus the corresponding
points in the boundary of D. In conclusion, we have defined a map

φ : K1,n →MD,1;n

(k1, . . . , kn; l) 7→ D \ Cl.

Note that if the kinematical data (ka; l) are related to another set of kine-
matical data by an element η of SO↑(1, 2), the associated surfaces are bi-
holomorphic. Indeed the transformation of AutD corresponding to η re-
alises the bi-holomorphism. Interestingly the little group of l translates
to the automorphism group of the surface X : we can picture the surface
X = φ(k1, . . . , kn; l) in the frame comoving with l, where it looks like an
annulus, the little group of l are now rotations around the origin and these
are exactly the automorphisms of the annulus. The crucial point of the
map φ is that when l2 → 0 the circle Cl becomes a horocycle Hl

12, and
thus by normalisation of the surface D \ Hl we obtain a disk with two
extra punctures, thus mimicking a forward limit of a cutted integrand.

We now turn to the compactification of the kinematical space. A nat-
ural boundary occurs when l2 = 1, that is when l hits the cut-off. In this
case the circle Cl shrinks to a point and we get a natural extension of the
map φ that sends this boundary to the cyclohedral face of the Halohedron
Hn in moduli space. Recall that the Cyclohedron paired tadpoles in IR-UV
pairs, our choice of names originated from the avatar of the cyclohedral
facet in space time which occurs when l hits the cut-off l2 = 1.

The next really new ingredient is that the time-like momentum l can
become massless or can become asymptotical to a light ray. We have
to add meaningful boundaries to K1,n reflecting these limits. In space

12Recall from section 1.1 that a horocycle is defined by the condition Hl := {w ∈
H | l · w = 1}with l ∈ L+
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time picture, the redundance AutD is tantamount to choose a Lorentz
frame and we now have a new natural choice: the frame comoving with l.
Choosing this frame is equivalent to find the element Λl ∈ SO↑(1, 2) such
that

Λll =

 √l20
0

 .

This condition fixes Λl up to elements of the little group of l. Suppose now
that l → p ∈ L+, in the topology of R1,2, and without loss of generality
suppose that the light ray of p is between particles i and i+ 1 with respect
to the planar ordering. We can define a canonical Λl by

Λl := ηl ◦ γ1 ◦Rp,1,

where Rp,1 is a rotation around the origin that sends p to p1 = (p0, p0, 0),
γl is a parabolic element with fixed point in 1 that sends the center of Cl
to the geodetic joining 0 to 1 and finally ηl is an hyperbolic element with
fixed points ±1 that sends the center of Cl to 0. By construction Λl sends
l to a pure energy vector and the remaining kinematical data are sent to
some new positions Λlka. In the limit l→ p the light ray associated to Λlka
moves to the one associated to the vector

p−1 =

 1
−1
0

 .

Therefore, what l sees around him is a new light cone with a marked ray
corresponding to p−1. However the remaining kinematical data ka may
move as l → p, in such a way to compensate the infinite boost ηl, and in
this case lwould see light rays ka associated to some “surviving” particles.

We can label all these possible limits with exactly the same combi-
natorial object we needed to label the facets of the Halohedron, arcs on a
marked annulus, and thus compactifyK1,n adding factorised components
associated to the contraction of the relevant arc. For example to an arc
such as the one in the third row of Table 1.1 we associate the limit where
all particles from j to i fail to remain at a finite position when l → p, and
we add to the kinematical space a border of the form KnL+1 ×K1,nR+1.

A comment is in order for the subtle cut limit that corresponds to an as-
sociahedral facet of the kinematical space. This arc represents a situation
where all particles survive in the comoving frame of l and therefore we
cannot do the limit naively in this way. Accordingly the component that
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we have to add is not expressed as a factorisation, it is instead Kn+2,forward

which is defined as the set of n + 1 light rays - the extra light ray is asso-
ciated to p - up to transformation under the little group of the extra null
momenta. We now motivate this: first, suppose l → p and define l′ := λl.
In a frame comoving with l (and l′) the remaining kinematical data ka
tends to fixed position on the boundary of the disk. We have two surfaces
X = φ(ka, l) and X ′ = φ(ka, l

′) which can be represented as annuli with
the same punctures but different moduli. However, in the limit l2 → 0
they both degenerate to the same pinched annuli as shown in Fig. 2.20.

mmm

m′m′m′

Figure 2.20: On the left are shown two annuli with the same punctures but dif-
ferent moduli. They are equivalent to the strips with identifications depicted in
the middle, via the map σ → exp iσ

2πm . The strips both tend to the same surface
as the moduli diverge, which is the infinite strip with punctures on the right.

This explains why we consider the light-ray associated with p rather
than p itself. Next consider what happens if we take two surfaces with
the same l but kinematical data k′ = Λk with Λ an element of the little
group of l, which in the disk correspond to an elliptic element with fixed
point the center of Cl. If l → p, and we choose a frame where we see
Cl → Hp while the punctures remain at finite positions, Λ tends to an
ideal rotation centered at p, but X ′ and X are always bi-holomorphic and
thus they have the same limit: therefore we have to mod out by parabolic
elements of the new light ray.prov Note that Kn+2,forward is not the same as
the facet of Kn+2 labelled by the arc of Fig. 2.21, as a simple counting of
the dimensions proves.
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i+ 1i+ 1i+ 1

iii

+++
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Figure 2.21: These facets of and K1,n and Kn+2 are not equivalent.

In conclusion we defined a compactification K1,n of the kinematical
space which is combinatorially equivalent to an Halohedron, the map φ is
extended by continuity to a map from the kinematical Halohedron onto
the moduli space Halohedron.





CHAPTER 3

Amplitudes and Integrands from Positive
Geometries

3.1 From Scattering Forms to Scattering Amplitudes

In this section we illustrate the connection between the positive geome-
tries previously discussed and scattering amplitudes, we will for the mo-
ment not commit to a particular geometry since the general idea is the
same for all of them. At the heart of this connection is the scattering form
Ω which was introduced in Section 2.1 as a differential form living in the
space of all kinematical variables, i.e. the space of all propagators. More
precisely, we are interested in the pull-back of Ω to the m-dimensional
subspace H which defines the convex realisation of a specific polytope,
where we can write

Ω|H = 〈Y dmY 〉Ω(Y ) = dX1 ∧ · · · ∧ dXmΩ(X), (3.1)

where Y = (Y0, . . . , Ym) and X = (Y1/Y0, . . . , Ym/Y0) are homogeneous
and affine coordinates for H. After the pullback all the information about
Ω is then encoded by the rational function Ω and it is this function that
we ultimately recognize as a scattering amplitude or, at loop level, as an
integrand. Let us briefly comment on the reason of the partial retreat, at
loop level, from amplitude to integrand. It is well known that after loop
integration scattering amplitudes are expressed in terms of polylogarith-
mic functions, which have a complicated pattern of branch cuts. To this
day, little is known on the physical principles that constrain the nature
of these singularities, except in simple cases. On the other hand, an in-
tegrand is just a rational function of external and internal momenta and
thus can at most develop poles corresponding to some propagator going
on-shell. It remains a fascinating open problem to find a precise formula
such as (1) for the final amplitude and eventually to understand if and
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how the geometrical objects underlying the integrand leave a trace after
loop integration. For the sake of brevity, we will not henceforth make dif-
ference between tree level scattering amplitudes and loop level scattering
integrands and just refer to both as “amplitudes”.

After the pullback Ω can be interpreted as the canonical form of the
relevant polytope, i.e. is the unique differential form with simple poles
along its facets and regular elsewhere such that its residue on the facet F is
the canonical form of that facet. By definition it follows that Ω is a rational
function with at most simple poles, but then it seems implausible that it
could reproduce a 1-loop integrand. The reason is that due to diagrams
with internal bubbles an integrand can develop higher order poles, as we
already discussed in Chapter 2. Nevertheless, one can hope to include
rational functions with higher poles in the class of those obtained from
canonical forms by deforming these poles into simple ones. For example,
one can lift a double pole into a pair of simple poles by introducing a
deformation parameter such as in

1

z2
= lim

ε→0

1

z(z + ε)
.

A priori it is not obvious whether one can consistently define these defor-
mations in more complicated examples, e.g. when the rational function
depends on several variables. However the combinatorial structure of
the positive geometries we encountered so far suggests a natural way to
do so since variables already came in pairs Xi,j and Xj,i. Double poles
arise from the equality Xi,j = Xj,i which is a consequence of momentum
conservation at each vertex of a Feynman diagram, but the positive ge-
ometries are realized in a larger space where these variables are still dis-
tinguished and are attached to different facets. At this stage then, there
are no double poles in the rational function Ω.

As a consequence of the boundary structure of the involved geometry
the rational function Ω satisfies (1), which in turn proves it to be equal to
the amplitude. However, let us offer a more pedantic proof which also
helps in understanding how the aforementioned lift of double poles is
undone and how to get rid of external bubbles and tadpoles, in order to
obtain the integrand for the bi-adjoint scalar theory. To pull back Ω we
first choose a basis of m variables to parametrize the subspace H where
the polytope lives. A convenient choice is to use vertex coordinates of the
polytope itself, i.e. the face variables of m facets intersecting at any of its
vertices, which we arrange in a projective vector Y = (1, X1, . . . , Xm). In
terms of this basis all the remaining face variables become affine linear
functions on H which we can write introducing a dual projective vector
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Wf as
Xf = Y ·Wf ,

the pullback of Ω then reads

Ω|H = 〈Y dmY 〉
∑

v∈vertices

sgn(v)
〈W ∗Wa1 . . .Wam〉
Y ·W ∗

∏m
i=1 Y ·Wai

(3.2)

= ±dX1 ∧ · · · ∧ dXm

∑
v∈vertices

sgn(v)
〈W ∗Wa1 . . .Wam〉
Xa1 . . . Xam

, (3.3)

where we introduced the dual vector W ∗ = (1, 0, . . . , 0), which represent
the line at infinity Y0 = 0. The numerators 〈W ∗Wa1 . . .Wam〉 come from
the pullback of the dlog terms of Ω, they could be a priori arbitrary num-
bers but an important feature of all the convex realisations discussed in
Chapter 2 is that they are always ±1. Furthermore, the signs required for
the projectivity of Ω precisely balance those coming from the pullback, so
that from (3.3) we immediately read the rational function, up to an overall
sign, as

Ω =
∑

v∈vertices

1

Xa1 . . . Xam

. (3.4)

Keeping in mind the correspondence between vertices and Feynman dia-
grams, the RHS of (3.3) basically concludes the identification of Ω with an
amplitude. The only subtlety is that now the propagators Xf are written
as affine functions on H and they have to be translated back in terms of
usual loop and external momenta, we will explain in more details how
this is done in each case in the following sections.

3.2 The Halohedron and the integrand of φ3BA

We now specialize the discussion of the previous section to the case of the
bi-adjoint scalar integrand, which we will obtain from the Halohedron fol-
lowing [1]. More precisely, this 1-loop integrand is computed summing
over all planar 1-loop Feynman diagrams with the exclusion of tadpoles
and external bubbles. Recall that the interaction vertex of the theory is

fabcf
abc
φaaφbbφcc, the antisymmetry of the structure constants f implies

the vanishing of tadpoles. On the other hand, external bubbles contribute
with a term proportional to a tree level amplitude which can be removed
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from the definition of the integrand [23] 1. Also, amplitudes and inte-
grands of bi-adjoint are decomposed with respect to both color factors,
which defines the so called doubly color ordered amplitudes m(α, β) for
orderings α and β of the external particles. Considering all planar 1-loop
diagrams means that we are computing only the diagonal part of the ma-
trix m(α, β). While the off-diagonals elements were computed in [8; 24] at
tree level from the Associahedron, it remains an open question if this can
be done at loop level.

3.2.1 From the abstract space to the physical space

Following the general idea explained in the previous section, we extract
the 1-loop bi-adjoint integrand from the canonical form of the Halohe-
dron. First we show that indeed the numerators appearing on the RHS
of (3.3) after the pull back are all “+1”. By looking at the form of the face
variables defined in (2.15), it is immediately clear that these numerators
can only be ±1. Next, consider two adjacent vertices v and v′ of the Halo-
hedron and callX andX ′ the only two face variables which are not shared
by them. We claim that

dX ∧ (dXa1 . . . dXam−1) = −dX ′ ∧ (dXa1 . . . dXam−1), (3.5)

where in (dXa1 . . . dXam−1) we have gathered all the shared face variables,
in the same order. We prove this statement studying case by case the
various types of adjacencies.
Cut/Factorisation adjacency. Consider two diagrams such as in figure. The
corresponding measures are

i+ 1

i

i+ 1

i

dXi ∧ (. . . ),

1It is not a problem to generate this term as well from the Halohedron, but following
[1] we will just throw it away
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for the diagram on the left and

dX(i,i+1) ∧ (. . . ),

for the one on the right.
Again, (. . . ) denotes the shared variables. Since we haveX(i,i+1) = εi−Xi,
(3.5) trivially holds.
IR/UV adjacency. The situation is slightly more complicate for a pair of IR
and UV tadpoles. The two diagrams give

i i+ 1 i i+ 1

dXi ∧ dX(i+1,i+2,...,i) ∧ . . .
dX0 ∧ dX(i+1,i+2,...,i) ∧ . . . ,

this time we highlighted one of the shared propagators, which carries the
variable

dX(i+1,i+2,...,i) = −d(Xi+1 + dXi+2 + · · ·+ dXi−1).

Keeping in mind that we are under a wedge with this factor, we can write

dXi ∧ dX(i+1,i+2,...,i) = d(Xi + dXi+1 + · · ·+ dXi−1) ∧ dX(i+1,i+2,...,i)

= −dX0 ∧ dX(i+1,i+2,...,i)

Tadpole/Bubble adjacency. This adjacency involves two diagrams as in fig-
ure.

i

j

i− 1

j + 1

i

j

i− 1

j + 1

Note that, despite its name, the adjacency swaps a cut propagator Xj

with a tadpole propagator X(i,...,i−1). This time we have to focus on the
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two shared propagators at the sides of the bubble, whose variables are

dX(j+1,...,i−1) = −d(Xj+1 + · · ·+Xi−2)

dX(i,...,j) = −d(Xi + · · ·+Xj−1),

we have

dX(i,...,i−1) = −d(Xi + · · ·+Xj−1 +Xj +Xj+1 + · · ·+Xi−1)

= −dXj,

where in the last passage we used the fact that the overlined terms vanish
under wedge with the two shared propagators.
s-channel/u-channel adjacency. Finally, we have a adjacency involving tree
structures of the diagram. In the figure we drawn the loop part on the leg
I1 but its actual position is irrelevant, only that it is the same in both dia-
grams. All the four shared variables XIj have to be kept in consideration,
and in particular remember that dXI1 = −d(Xi + · · · + Xj−1)

2. For the
diagram on the left we have

i

l

k

j

I2

I3I4

i

l

k

j

I2

I3I4

· · · ∧ dXI1 ∧ dXI4 ∧ dXI2I3

= · · · ∧ dXI1 ∧ dXI4 ∧ d(XI2I3 +XI4 −Xk +Xk)

= · · · ∧ dXI1 ∧ dXI4 ∧ dXk,

we freely added a shared propagator and recognised the overlined term
as dXI1 .
Similarly, for the other diagram we get

· · · ∧ dXI3I4 = · · · ∧ dXl,

2We made a slight abuse of notation, as we should write X(I1)c rather than XI1
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finally we note that

· · · ∧ d(Xk +Xl) = · · · ∧ d(Xk +Xl +XI2 +XI3 +XI4) = · · · ∧ d(XI1) = 0,

thus proving (3.5) also in this case.
Since any two vertices of the Halohedron can be joined by a finite se-

quence of the above adjacencies, and at each step the sign produced by
the pullback balance the one required from projectivity, we conclude that
the canonical form of the Halohedron can be written as in (3.3). A con-
venient choice of “reference” vertex is the one corresponding to the ring
diagram, which is the intersection of the n variables Xi dual to the ring
propagators. Accordingly the rational function ΩHn

of the Halohedron is
given as in (3.4), i.e. is the sum over all 1-loop diagrams. However, in the
sum are involved also UV/IR tadpoles and diagrams with bubbles on ex-
ternal legs. Such unphysical contributions appear with terms X0, Xi,...,i+n

or Xi,...,i+n−1 in the denominator, which in turn are given by expressions
linear in the Xi and in the various εI . Therefore, we can kill the exter-
nal bubbles and the tadpoles by taking the limit εI → ∞ for I = 0 or
|I| = n, n − 1. Finally, we have to translate the remaining face variables
in term of the physical propagators. In order to do so we note that each
variable XI carries an εI term uniquely associated to it. Therefore, we can
first solve the εI for all the XJ and, then, the substitution XI → SI can be
done unambiguously, even if we have an expression for ΩHn

where the
constants εI and the variables Xi are not manifestly appearing in a com-
bination from which we can recognise a variable XI . Finally, we remark
that thinking projectively the effect of the limits εI →∞ is to send the cor-
responding facets at infinity, but in the process the polytope breaks down
because we violate the constraints that the constants ε have to satisfy.

3.2.2 Standard triangulation of the Halohedron

We understood how to extract the 1-loop integrand from the canonical
form of the Halohedron, reproducing the Feynman diagram representa-
tion. However, we can obtain new formulae by considering triangulations
of the Halohedron to compute its canonical form. In this section we pro-
vide an example of this, using a recursion formula for the canonical form
of a polytope that works by recycling the canonical forms of its facets. We
just sketch this construction here, further details can be found in full gen-
erality in [8] and in Appendix A. The idea is to triangulate the polytope
using a reference point Z∗ in its interior. For each facet F we take the con-
vex hull PF of its vertices with Z∗, together these polytopes triangulate P .
The canonical form of PF can be obtained by a suitable deformation of the
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canonical form of the facet F . In the case of the Associahedron and the
Halohedron, these canonical forms can be interpreted as lower points am-
plitudes, therefore we obtain a geometrically inspired recursion formula.

We will explicitly unwind this procedure for n = 4. We choose as refer-
ence point the intersection of the cut facets X∗ = (0, 0, 0, 0). Therefore, all
facets will contribute to the recursion, except for the cut facets for which
the convex hull with X∗ is 2 dimensional rather than 3 dimensional. The
recursion, written directly at the level of the rational functions, reads

ΩH4
=
∑
I

Ω̂XI
, (3.6)

where the sum is over all subsets I of (1, 2, 3, 4) made of cyclically consec-
utive indices, excluding the singletons I = {i}, and Ω̂XI

is a deformation
of the rational function of the facet XI obtained as follows. First, we write
XI = X0

I + X ′I , where in X0
I we gather the constants ε and in X ′I the ba-

sis variables Xi. The deformation is then defined by replacing each basis
variable appearing in ΩXI

with

Xi → X̂i = −X
0
I

X
′
I

Xi,

and multiplying by the overall factor (X0
I /X

′
I)

4. In other words we have
that

Ω̂XI
(ε|Xi) =

(
−X

0
I

X
′
I

)4 ΩXI
(ε| − X0

I

X
′
I

Xi)

XI

, (3.7)

where we emphasized that the rational function ΩXI
depends on both the

constants ε and the basis variables Xi. We are interested in the limits εJ →
∞, for J = 0 or |J | = 4, 3, and which we take in this same order. Recalling
the Feynman diagram representation for the rational functions ΩXI

, it is
easy to understand the effect of this limit on (3.7). If XI is not one of the
facet involved in the limit, i.e. it has |I| ≤ 2, then tadpoles and external
bubbles do not contribute to its rational function. Also, because of the
order of the limits, UV tadpoles do not appear in the rational function of
an IR tadpole facet, but internal bubbles do. Finally, if I is one of the facet
being sent to infinity one has to take into account the diverging pre-factor
X0
I in (3.7). A quick power counting shows that the net effect is that we
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are left with

Ω̂XI
(ε|Xi) =

ΩXI
(0|Xi)

X ′I
, (3.8)

i.e. we forget the dependence on the constants ε of the propagators ap-
pearing in ΩXI

/XI .
We now show explicitly the computation for each facet contributing to

(3.6), for the sake of brevity we will simply write εi instead of ε2(i,i+1).
UV facet. This facet is associated to the variable

X0 =
4∑
i=1

εi − ε0 −
4∑
i=1

Xi,

therefore

X0
0 =

4∑
i=1

εi − ε0 X
′

0 = −
4∑
i=1

Xi.

The rational function ΩX0
is given by a sum over all 20 UV-tadpole dia-

grams. If we group those associated with the same IR tadpole propagator,
say X(i,i+1,i+2,i+4), we obtain

1

X(i,i+1,i+2,i+4)

(
1

X(i,i+1)X(i+2,i+3)

+
1

X(i+1,i+2)X(i+1,i+2,i+3)

+

1

X(i,i+1)X(i,i+1,i+2)

+
1

X(i+1,i+2,i+3)X(i+2,i+3)

+
1

X(i,i+1,i+2)X(i+1,i+2)

)
. (3.9)

Since this facet is going to infinity, we forget the ε dependence of the pla-
nar variables appearing in (3.9), after which the terms in the bracket of
(3.9) sum up to

Xi +Xi+1 +Xi+2

XiXi+1Xi+2

,

the numerator cancels with the denominator outside the bracket leaving
us with

1

XiXi+1Xi+2

,

and summing over the four IR tadpole propagators we get

ΩX0
(0|Xi) =

X1 +X2 +X3 +X4

X1X2X3X4

, (3.10)
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plugging (3.10) back in (3.8) we finally get the contribution of the UV facet
to the recursion

Ω̂X0
= ± 1

X1X2X3X4

. (3.11)

Tadpole facet. We focus on the facet X(1,2,3,4), the remaining ones are ob-
tained through a cyclic shift. The rational function ΩX(1,2,3,4)

is given by
a sum over 10 IR and UV tadpole diagrams. However, the UV are killed
by the limit ε0 → ∞ which we take before the limit ε(1,2,3,4) → ∞. There-
fore we are left with 5 IR tadpole diagrams, whose contribution is almost
identical to (3.9) a part for the prefactor:

1

X4

(
1

X(1,2)X(3,4)

+
1

X(2,3)X(2,3,4)

+

1

X(1,2)X(1,2,3)

+
1

X(2,3,4)X(3,4)

+
1

X(1,2,3)X(2,3)

)
, (3.12)

again because of the limit the variables in (3.12) lose the ε dependence so
that X(i,i+1) → −Xi and X(i,i+1,i+2) → −Xi − Xi+1, after some manipula-
tions we get

ΩX(1,2,3,4)
(0|Xi) =

X1 +X2 +X3

X1X2X3X4

,

and then

Ω̂X(1,2,3,4)
= ± 1

X1X2X3X4

. (3.13)

Bubble facet. Again we consider a specific case, for instanceX(1,2,3) = 0. Re-
call that this facet factorises in HA×A1,A1 being a 4-point Associahedron.
Accordingly, we can write its rational function as

ΩX(1,2,3)
=

(
1

X(1,2)

+
1

X(2,3)

)
×
(

1

X3X4

+ . . .

)
,

where in . . . we gathered terms that vanish due to the limits ε0, εI → ∞
with |I| = 4, thus in the limit we have

ΩX(1,2,3)
(0|Xi) =

X1 +X2

X1X2X3X4

,
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and finally once again

Ω̂X(1,2,3)
= ± 1

X1X2X3X4

. (3.14)

Factorisation Facet. Consider X(1,2) = ε1 − X1 = 0, there are only two
diagrams surviving all the limits so the rational function is given by

ΩX(1,2)
=

(
1

X2X3X4

+
1

X2X4X(3,4)

)
which plugging into (3.7) gives

Ω̂X(1,2)
=

ε1
X1X2X4(ε1 −X1)

(
1

X3

+
ε1

X1ε3 − ε1X3

)
. (3.15)

Note that the denominator X1ε3− ε1X3 represents a spurious pole, it even-
tually cancels with a similar contribution coming from the facetX(3,4) = 0.

Putting the contributions from the various facets together, and paying
attentions to the signs involved, we find that each tadpole contribution
cancels with a corresponding bubble. We are left with the UV contribution
and the factorisation contributions.

Next, we need to translate back (3.15) into usual loop and external
variable. First have to rewrite the constants εi in terms of the planar vari-
ables XI and then substitute the corresponding propagators:

εi = X(i,i+1) +Xi → si,i+1 + `2i ,

where si,j = 2ki · kj and `µi is the momentum flowing between particles i
and i+ 1, e.g. `µ1 = `µ, `µ2 = `µ + kµ2 and so on. After this is done, with a bit
of algebra we get the following expression for the 4-point integrand

m1−loop
4 = − 1

`21`
2
2`

2
3`

2
4

+

(
(`21 + s12)(`

2
3 + s12)

s212`
2
2`

2
3`

2
4(`

2
3 − `21)

+ cyclical

)
, (3.16)

where the sum is over the remaining three cyclically shifted terms. Note
that (3.16) has double poles s12 = 0 and s23 = 0 coming from the internal
bubbles. If we expand around s12 = 0 we get

1

s212

1

`22`
2
4

+
1

s12

(
1

`21`
2
2`

2
4

+
1

`22`
2
3`

2
4

)
+ . . .

and from the coefficients of the expansion we read the internal bubble
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contribution and the two contributions to the residue s12 = s34 = 0.

3.3 ABCD and massive φ3

In the previous section we discussed how to compute amplitudes in bi-
adjoint theory using the Halohedron. In particular we learned that inte-
grands with double poles can indeed be treated within the context of pos-
itive geometries, by lifting them to pairs of simple poles which are repre-
sented by different facets of the polytope. Surprisingly, it is instead the ab-
sence of tadpoles and external bubbles which seems to be more in tension
with positive geometries since we could not find a polytope whose ratio-
nal function resembled a sum over Feynman diagrams excluding these
topologies. On the other hand, we already saw in Section 2.1 that this is
connected with projectivity, it seems impossible to build a 1-loop scatter-
ing form without incurring in either tadpoles or external bubbles to com-
pensate the projective variation of more “regular” Feynman diagrams.
We are then naturally lead to consider a theory where all such diagrams
appear, in order to regulate them we give a common internal mass to all
propagators and allow for external particles to be off-shell. By doing so
tadpole diagrams share a common propagator X0 := −m2, while an ex-
ternal bubble on the i-th leg comes with a propagator Xi,i+1 := k2i − m2.
We refer to this theory as the massive φ3 scalar theory. Once again we are
interested only in its planar limit and in particular we will compute tree
level amplitudes and 1-loop integrands using the cluster polytopesA and
D. Although there are strong evidences that the picture carries over to
all loop order, it remains an open problem to even fully understand the
relevant positive geometries. Finally, we note that the usual φ3

BA theory
can be recovered from the massive theory discussed here. This is trivial
at tree level, where one simply has to take the massless limit m → 0 and
k2i → 0. At 1-loop level the situation is slightly subtler since one also has
to subtract the diverging terms coming from tadpoles and bubbles. Quite
beautifully, however, the geometry ofD suggests a simple way to perform
the limit and in turn to obtain new results for bi-adjoint theory as well.

3.3.1 From mesh constants to physical space

We begin by proving that, also in the case of cluster polytopes, after the
pull-back (3.3) of the scattering form we obtain an expression with unit
numerators. We follow the same strategy used for the Halohedron, i.e.
we focus on an arbitrary pair of adjacent vertices v and v′ and inspect
the relation between the corresponding dlog terms. In the language of
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cluster polytopes two adjacent vertices correspond to mutated triangu-
lations. If the polytope has dimension d, v and v′ lie at the intersection
of d − 1 common facets, which we collectively call Xs, with two further
facets X and X ′, respectively. As a consequence of the mesh conditions,
on the subspace defining the convex realisation of the cluster polytope
these variables satisfy

dX + dX ′ = dXs,

from which is evident that expressing the dlog term of, say v′, in the vertex
coordinates of v we gain an overall minus sign which is balanced by the
one coming from projectivity, as expected. The result is generalized to an
arbitrary pair of vertices, since they are always connected by a sequence
of mutations. A convenient choice of vertex coordinates are those asso-
ciated to the left-most edge of the region for the wave equation, which
correspond to planar variables [X1,3, . . . , X1,n−1] for the standard ABHY
realization of An−3 or to the planar variables [X1, X

′
1, X1,2, . . . , X1,n−1] for

the standard ABHY realization of D and D. For these latter polytopes, we
will refer to their associated basis as tadpole basis since the basis variables
are dual to a tadpole. Another convenient choice is the ring diagram vertex
corresponding to the variables [X1, . . . , Xn].

We have now proved that the rational function of all cluster polytopes
is given by (3.4), that is as a sum over Feynman diagrams, each one con-
tributing with the inverse product of its dual variables. We now turn to
the translation of the planar variables, which at this stage are linear func-
tions of mesh constants and the chosen basis variables, to their usual rep-
resentation in terms of external and internal momenta. This will also have
the effect of undo the double poles deformation and restore momentum
conservation. As in the case of the Halohedron, this can be done by in-
specting the solution of the mesh relations, say in the tadpole basis, which
schematically can be written as

Xf = Cf +Xbasis.

One then invert these relations to express the constants Cf (which are
linear combinations of mesh constants) as a function of the planar vari-
ables Xf and the basis variables Xbasis, which are immediately expressed
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Basis Elements Mesh constants Effect

X1 → `2 −m2 ci → `2i + `2i+1 − k2i − 2m2 X0 → −m2

X ′1 → `2 − 2m2 ci,j → −2ki · kj Xi → `2i −m2

X1,2 → k21 −m2 ci,i+1 → −2`2i−2ki·ki+1+m
2 Xi,i+1 → k2i −m2

X1,j →
(
j−1∑
a=1

ka

)2

−

m2

ci+2,i → k2i+1−2ki ·ki+2−m2 Xi,j →
(
j−1∑
a=i

ka

)2

−m2

Table 3.1: Replacement rules for Dn an their effects on the planar variables

in terms of loop and external momenta as

Xi =

(
`+

i−1∑
a=1

ka

)2

−m2,

Xi,j = Xj,i =

(
j−1∑
a=i

ka

)2

−m2

X0 = −m2

X ′1 = X0 +X1 = `2 − 2m2. (3.17)

Clearly, at this step we restore the double poles by imposing Xi,j = Xj,i.
For future convenience, we also introduce the short-hand notation

`i =

(
`+

i−1∑
a=1

ka

)
.

In practice, it is easier to work with the mesh constants directly rather than
with their combinations Cf . One can read off the substitution of mesh
constants in terms of physical propagators directly from mesh relations.
For example, the typical relation

ci,j = Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j,

implies that we have to substitute ci,j →= −ki ·kj . For convenience, the set
of replacements when working in the tadpole basis (X1, X

′
1, X1,2, . . . X1,n−1)

is listed in table (3.1); a similar set of rules can be derived when working
in the ring basis (X1, . . . , Xn). In conclusion, we shown that amplitudes
and integrands of massive φ3 theory can be extracted from the rational
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function of ABHY polytopes by

mtree
n = ΩAn−3

(c(X)|X), m1−loop
n = ΩDn

(c(X)|X), (3.18)

using the rules of Tab. (3.1) for the constants c = c(X).
As anticipated we can also obtain the massless integrand for the bi-

adjoint theory from Dn. In order to do so, one first expresses all variables
in terms of the ring basis. In this basis the tadpole variable is given by
X0 = C0 − X1 − Xn, see (B.8), so that sending C0 → ∞ kills the tad-
pole contributions. In principle other planar variables might depend on
C0 when expressed in the ring basis, but in Appendix B we show that
this is not the case, thus the limit removes precisely the tadpole contribu-
tions. Depending on the definition of the integrand for bi-adjoint theory,
external bubbles can be removed in the same way. Finally one performs a
similar set of replacements as those described above, with the difference
that now we want massless propagators and thus we replace Xi → `2i .

Let us now see a few simple examples. The simplest case is the four
point tree level amplitude, which correspond to the cluster polytope A1.
We choose X1,3 as basis variable, there is a single mesh relation

X1,3 +X2,4 = c1,3, (3.19)

whose solution yields

X2,4 = c1,3 −X1,3. (3.20)

The rational function is therefore

ΩA1
=

1

X1,3

+
1

c1,3 −X1,3

. (3.21)

Following the prescription (3.18), we now substitute (3.19) in (3.21) ob-
taining

m4 = ΩA1
(c1,3|X1,3)

∣∣
c→c(X)

=
1

X1,3

+
1

X2,4

. (3.22)

At this point one might accuse us of being over pedantic: why we do not
simply call c1,3 − X1,3 = X2,4 and be done with it? The reason is that we
might get to expressions for the rational function where mesh constants
and basis variable do not appear in a way that makes manifest how to
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recognize them as other planar variables, such as in

ΩA1
=

c1,3
X1,3(c1,3 −X1,3)

,

however we can still follow (3.18) and obtain

m4 = ΩA1
(c1,3|X1,3)

∣∣
c→c(X)

=
X1,3 +X2,4

X1,3X2,4

. (3.23)

Indeed, this will be the case when we will compute the canonical form of
ABHY polytopes using triangulations.

Let us now move to a 1-loop example, the simplest case is D2 which
gives the 1-loop 2-point amplitude. Again there is a single mesh relation

X ′1 +X2 = c1, (3.24)

and therefore we find the replacement rule c1 → `21 + `22− 3m2, 3. Since D2

is just a triangle, we can immediately write down its rational function

ΩD2
(c|X1, X

′
1) =

c1
X1(c1 −X ′1)(X ′1 −X1)

, (3.25)

and applying (3.18) we get the 1-loop integrand

m1−loop
2 = ΩD2

(c|X1, X
′
1)
∣∣
c1=`21+`

2
2−3m2 =

`21 + `22 − 3m2

(`21 −m2)(`22 −m2)(−m2)

=
1

(`21 −m2)(`22 −m2)
+

1

(`21 −m2)(−m2)
+

1

(`22 −m2)(−m2)
.

Note that if we take the residue at X1 = 0 or equivalently at `21 −m2 = 0
we are left with a 4-point amplitude in the forward limit,

Res m1−loop
2

∣∣∣
`2=m2

=
1

−m2
+

1

(`+ k1)2 −m2
= mtree

4 (1,−,+, 2) (3.26)

We take advantage of this simple example to show also how the massless
limit works. The basis ring is just (X1, X2) and it is trivial to move to this
basis since the mesh relation tells us X ′1 = c1 − X2, therefore the tadpole
constant is just c1 becauseX0 = X ′1−X1 = c1−X1−X2. If we send c1 →∞

3This rule is slightly different from the general one of table (3.1) because in this simple
case the mesh relation does not have Xi,i+1 on the RHS, as it would be for general n.
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we get

ΩD2
(c|X1, X2) =

c1
X1X2(c1 −X1 −X2)

→ 1

X1X2

, (3.27)

the replacement rules are simply Xi → `2i and thus we get the two point
bi-adjoint function: 1

`21`
2
2
.

3.3.2 Standard Triangulation for Dn

We begin with the simplest possible triangulation, which works for any
polytope P , and that we already used for the Halohedron: choose any
point Z∗ ∈ P , for any facet Xf take its convex hull with Z∗, i.e. define the
polytope

X̂f = Conv(Z∗, Xf ),

the union of all such polytopes give a triangulation of P , i.e.

P =
⋃

f∈facets

X̂f , (3.28)

and all these polytopes interiors do not overlap. If facets are not simplices,
one simply has to iterate the procedure. Furthermore, if at each step we
choose the point Z∗ to be one of the vertices, there is no need to take
convex hulls with the facets intersecting at that vertex.

As first described in [8], this triangulation translates into a recursive
expression for the canonical form of P built up from the canonical form
of its facets. For the sake of self-containedness let us quickly review here
how this formula goes. To begin with, we send Z∗ to some vertex Z of
P and choose as basis the variables X intersecting at that vertex. Now
pick any facet f to which Z does not belong. Choose any vertex Zf ∈ Xf

and the variables χ intersecting there as a basis for the subspace Xf = 0.
The rational function of the facet Xf is a function of χ and of the various
constants cf appearing in the face variables,

ΩXf
= ΩXf

(cf |χ).

To get the canonical form of X̂f , one has to perform a pullback on the larger
space Xf 6= 0 which in practice requires to express the χ variables in the
X basis obtaining a new function which we denote by the same symbol
for sake of brevity

ΩXf
= ΩXf

(cf |X).
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Then one has to perform the replacement trick, which consists in introduc-
ing a deformation parameter εf read from the expression ofXf in the basis
X :

Xf = X0
f +X ′f ⇒ εf := −

X0
f

X ′f
,

where X ′f is a linear expression in X and X0
f is a constant. Then the ratio-

nal function of X̂f is given by

ΩX̂f
(c|X) =

(
X0

X ′

)d ΩXf
(cf | − εfX)

Xf

, (3.29)

where d is the dimension of P .

X

Y

c - a X + Y

Figure 3.1: A triangle with faces given by x = 0, y = 0 and c− ax+ y = 0.

To fix ideas, let us give a simple application of this formula to compute
the canonical form of the triangle in figure. We choose the origin as Z∗,
therefore only the facet Xf = c − ax + y = 0 contributes, it lives in a
subspace where we can use a coordinate 0 ≤ x ≤ c/a, in terms of which
the rational function of Xf = 0 is

ΩXf
(a, c|x) =

c/a

x(c/a− x)
,

the deformation parameter is εf = c
ax−by , therefore the canonical form of

the triangle as computed from (3.29) is

ΩXf
(a, c|−εfx) =

(
cx

ax− y

)2
c/a

cx
ax−y

(
c/a− cx

ax−y

)
(c− ax+ y)

=
c

xy(c− ax+ y)
,

which is what we would get from the usual formula for a simplex.
As was firstly discussed in [8] and studied in more detail in [22] the

triangulation can be used to set up recursion relation for tree level ampli-
tudes: indeed, as it should be clear from the example above, the formula
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works by recycling the information of the canonical form of the facets
and in the case of An polytopes these are lower point amplitudes, ex-
pressed as rational functions of planar basis and mesh constants. Note
that for the triangulation formula to work as a recursion formula it is cru-
cial the fact that ABHY realization of cluster polytopes is closed upon
taking boundaries, i.e. not only boundaries are again cluster polytopes,
but moreover they are ABHY-realized with effective charges as described
in Section 2.3.1. The recursion of the mesh constants has to be fed in the
recursion.

As it should be clear, the triangulation (3.28) does not rely on any par-
ticular geometrical or combinatorial property of P (other than being a
polytope), and it is therefore interesting that it is enough to learn some-
thing new about amplitudes, when applied to ABHY polytopes.. This is
even more striking when applied to Dn: send Z∗ to the “ring diagram”
vertex, which is in the intersection of the n cut facets. Thus we can set
up a recursion formula which does not require the knowledge of n + 2
tree level amplitudes, which is quite surprising from the point of view of
(1). Remember, however, the presence of the tadpole facet which gives an
extra term. Specifically, the recursion formula reads

ΩDn
(Xi) =

∑
i+1<j

(
X0
i,j

X ′i,j

)n
1

Xi,j

ΩAnL
(X̂L|ĉL)× ΩDnR

(X̂R|ĉR)

+
∑
j<i

(
X0
i,j

X ′i,j

)n
1

Xi,j

ΩDnL
(X̂L|ĉL)× ΩAnR

(X̂R|ĉR)

+

(
X0

0

X ′0

)n
1

X0

ΩBn−1(X̂B), (3.30)

where the various hats remind us that we have to use deformed basis
variables and effective mesh constants. One might argue that the pres-
ence of the tadpole facet make so that the above is not really a recursive
formula for the 1-loop integrand, however the tadpole facet is nothing
but an ABHY Bn−1 polytope, therefore we can set up the same recursion
formula to compute its rational function. However, no matter to which
vertex we send Z∗ in this recursion, we will not avoid the fact that some
n+ 1 tree level associahedra appears in the triangulation 4. Therefore, we
will need tree level amplitudes with up to n + 1 external legs to compute
the 1-loop integrand in this way. It is quite interesting that, in this rep-
resentation of the 1-loop integrand, the truly higher point contribution to

4These associahedra show up as the intersection of the previous cut associahedra,
which were (n+ 2)-pt tree, with the tadpole facet.
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the integrand originates from tadpoles.
For illustration purposes, in Fig. 3.2 is shown the triangulation for

n = 3. There are three pieces coming from the bubble factorization facets
Xi,i+1 which are just simplices and a pyramid whose hexagonal base is
the tadpole facet of D3. Notice how the three pentagonal cut facets do
not contribute: taking their convex hulls with the ring vertex does not
produce a three dimensional polytope. Before ending this section, let

Figure 3.2: D3 triangulated by taking convex hulls of its facets with the ring
vertex

us make a few further comments on the formula (3.30). To begin with,
note that the usual Feynman-diagrammatic expansion involves roughly
speaking n! terms, whilst (3.30) sum over roughly n2 terms. However,
when one tries to solve the recursion relation one ends up in a factorial
growth again. Moreover, (3.30) has spurious poles which have to cancel
in a very intricate way in order to give the correct results. As studied in
[22], these spurious poles become highly non-linear as n increases, a fact
reminiscent of BCFW recursion formula for tree level NMHV amplitudes
in N = 4 SYM.

3.3.3 Projection and soft limit formula for An−3

Recall that in Subsection 2.3.3 we described a remarkable property of
the tree level Associahedron An: there is a natural projection of the n-
point Associahedron onto the (n− 1)-point Associahedron. Furthermore,
this projection suggested a beautiful decomposition of An into prisms, i.e.
polytopes with “bottom” and “top” facets given by (product of) lower
point associahedra and “side” facets which are parallel to the direction of
the projection.
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We have a prism Pi for each of the facet X2,i = 0, with i = 4, . . . , n− 3.
We can compute its canonical form as described in Appendix A. In our
case the vertexZ is given byZ = (0, 1, 0, . . . , 0), Y ·WU = X2,i, Y ·WB = X1,3

and Z ·WB = −Z ·WU = 1. Putting all together we have

ΩPi
= 〈Y dnY 〉

(
1

X1,3

+
1

X2,i

)
ΩX2,i

(Y +X2,iZ) ,

the rational function ΩX2,i
is the lower data that we have to feed in the

recursion, given by a product of lower point amplitudes, and evaluating
in it Y + X2,iZ means that we first have to express the original variables
used to compute them (associated to the diagonals of the two smaller n-
gons) in terms of the new variables X1,3, . . . , X1,n−1 and then substitute
X1,3 → X1,3 + X2,i =

∑i−1
a=3 c1,a + X1,i. Summing over all prisms we can

compute the canonical form of the n point Associahedron,

ΩAn−3
(c|X) =

n∑
i=4

ΩAL
(cL|X̂L)ΩAR

(cR|X̂R)

(
1

X1,3

+
1

X2,i

)
, (3.31)

where the hats denote the deformations implied by the projection: trans-
late the coordinate basis of the lower point associahedra to X1,i with i =

3, . . . , n− 1, and then substitute X1,3 →
∑i−1

a=3 c1,a +X1,i.
The recursive formula (3.31) for the rational function ofAn−3 descends

to a recursive formula for tree level amplitudes, which is particularly sim-
ple when written directly in terms of planar variables rather than mesh
constants. Let us temporarily restore particles labels in amplitudes by
mn(1, 2, . . . , n), then the recursion is

mn(1, 2, . . . , n) =
n∑
i=4

(
1

X1,3

+
1

X2,i

)
m̂nL

(2, 3, . . . , i)m̂nR
(1, 2, i, i+ 1, . . . , n)

(3.32)

the deformations of (3.31) appear as a deformation of the amplitudes m̂
on the RHS of (3.32) which consists in the replacement X2,a → X2,a−X2,i.
Let us write this formula explicitly for the amplitude m5 from A2. The
basic building block is the 4-point amplitude which we write for generic
external particles as

m4(A,B,C,D) =
1

XA,C

+
1

XB,D

. (3.33)
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As shown in Fig. 2.13 we only have two prism. The first prism is given
by the top facet X2,4 which is the product of a left point-like Associahe-
dron and a right Associahedron built on the 4-gon with vertices (1, 2, 4, 5).
Therefore this prism contributes with the deformed amplitude

m̂4(1, 2, 4, 5) =
1

X1,4

+
1

X2,5 −X2,4

,

The second prism is given by the top facet X2,5 which is the product of
a left Associahedron built on the 4-gon with vertices (2, 3, 4, 5) and of a
right point-like Associahedron. For the left factor, we can use again the
basic formula (3.33), which after the deformation gives

m̂4(2, 3, 4, 5) =
1

X2,4 −X2,5

+
1

X3,5

. (3.34)

Putting all together we get

m5 =

(
1

X2,4

+
1

X1,3

)(
1

X2,5 −X2,4

+
1

X1,4

)
+

(
1

X2,5

+
1

X1,3

)(
1

X3,5

+
1

X2,4 −X2,5

)
.

Similarly we can write down the result for m6 from the triangulation of
A3. As shown in Fig.(2.13) there are three prisms, we recycle the results
from m5 and m4 to obtain

m6 =

(
1

X2,5

+
1

X1,3

)(
1

X2,6 −X2,5

+
1

X1,5

)(
1

X3,5

+
1

X2,4 −X2,5

)
+

+

(
1

X2,4

+
1

X1,3

)[(
1

X2,5 −X2,4

+
1

X1,4

)(
1

X2,6 −X2,5

+
1

X1,5

)
+

(
1

X2,6 −X2,4

+
1

X1,4

)(
1

X4,6

+
1

X2,5 −X2,6

)]
+

(
1

X2,6

+
1

X1,3

)[(
1

X3,5

+
1

X2,4 −X2,6

)(
1

X3,6 −X3,5

+
1

X2,5 −X2,6

)
+

(
1

X3,6

+
1

X2,4 −X2,6

)(
1

X4,6

+
1

X3,5 −X3,6

)]

Note that in general the soft-limit recursive formula requires to sum
over n − 3 terms and is therefore much more efficient than the standard
triangulation formula described in the previous subsection. Furthermore,
the spurious poles are always linear functions of planar variables and
mesh constants. Finally, it is not difficult to solve the recursion and ob-
tain a closed formula for the n-point amplitude which requires to sum
over (n-1)-th Catalan numbers of terms cleanly factorized in the various
height functions we get when we iterate the projections.

3.3.4 Projection and Forward-limit formula for Dn
In this section we describe how to use the triangulation described in Sub-
section 2.3.7 to derive a recursion formula strongly reminiscent of the for-
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mula (1.5), which was inspired by the forward limit properties of scatter-
ing integrands. The starting point is the triangulation (2.34), it is again a
triangulation built out of prisms and therefore we can derive from it an
expression for the canonical form using the results described in Appendix
A.

We use (A.5) working in coordinates Y = (1, X1, X
′
1, X2,1, . . . , Xn−1,1).

In our case the projection point is then Z = (0, 1,−1, 0, . . . , 0). We have a
prism for each cut facet Xi = X0

i − X ′1 = 0, where in X0
i we gathered all

terms independent on X ′1 5, obviously for the first prism the facet is given
by X1 = 0 instead. The projected vector appearing in (A.5) is then

YUi =

{
(1, X1 +X ′1 −X0

i , X
0
i , X2,1, . . . , Xn−1,1), i 6= 1

(1, 0, X1 +X ′1, X2,1, . . . , Xn−1,1) i = 1.
(3.35)

Applying (A.5) for each prism and summing over them we get the canon-
ical form of Dn:

ΩDn
= 〈Y dnY 〉

n∑
i=1

(
2

X ′1 −X1

+
1

Xi

)
ΩXi

(YUi). (3.36)

At this level (3.36) is a recursive formula where the seeds are given by the
canonical form of tree level, n + 2 points associahedra. Translating back
to physical propagators, it descends to the forward limit formula for the
1-loop integrand of massive φ3

m1−loop
n =

n∑
i=1

(
2

−m2
+

1

`2i −m2

)
m̂tree
n+2(1, . . . , i,−,+, . . . , n), (3.37)

where once again the hat represents the deformation dictated by the pro-
jection, which has a very simple interpretation in terms of planar vari-
ables. Any propagator Xa,b associated to a factorization facet is left in-
variant by the i-th deformation,

Xa,b = · · · − (X1 +X ′1)
deformation−−−−−−→ · · · − (X1 +X ′1 −X0

i +X0
i ) = Xa,b,

where the dots represent terms independent onX1, X
′
1 and thus untouched

by the deformation. On the other hand, a ring propagator Xa associated

5We caution the reader that unlike in the case of the standard triangulation X0
i is not

a constant
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to a cut facet is deformed to

Xa = X0
a −X ′1

deformation−−−−−−→ X0
a −X0

i = Xa −Xi,

finally the tadpole propagator becomes

X0 = X ′1 −X1
deformation−−−−−−→ 2X0

i −X ′1 −X1 = 2Xi +X0.

Let us also study the massless limit, by switching to the radii basis and
sending the tadpole constant C0 → ∞ (B.8). Both the ring and factor-
ization propagators, after the deformation, are still independent on C0

and therefore again survive the limit. On the other hand, both the non-
deformed and deformed tadpole propagator, when expressed in the radii
basis have C0 as constant and therefore go to infinity in the limit, which
therefore kills again all tadpole diagrams. After this limit, and translat-
ing back to the massless physical propagators, we obtain from (3.37) a
forward limit formula for the integrand of bi-adjoint theory

m1−loop
n =

n∑
i=1

(
1

`2i

)
m̂tree
n+2(1, . . . , i,−,+, . . . , n) , (3.38)

since tadpoles contributions disappeared from the tree level deformed
amplitude m̂tree

n+2(1, . . . , i,−,+, . . . , n), the only dependence on the loop
momenta ` is through the deformed ring propagators which now read

Xa −Xi =

(
`+

a−1∑
b=1

kb

)2

−

(
`+

i−1∑
b=1

kb

)2

=

(
`i +

a−1∑
b=i

kb

)2

− `2i (3.39)

therefore the amplitude is effectively computed as if we had a pair of
massless momenta±`i in positions “-” and “+”: the mass of `i is removed
by the subtraction in (3.39). Also, note that external cutted bubbles on leg
i and i+ 1 are still present and regulated by the massive momenta ki and

ki+1. Finally, if we perform a shift ` → ` −
(
i−1∑
b=1

kb

)
for each of the terms

of (3.38), we obtain precisely formula (13) of [23].
Let us see explicitly how these formulae look in the simplest case, n =

2. D2 is just a triangle and the two cut facets contributing to the recursion
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are 4-point tree level associahedra, we have

m̂tree(1,−,+, 2)4 =
1

X2 −X1

+
1

2X1 +X0

m̂tree(2,−,+, 1)4 =
1

X1 −X2

+
1

2X2 +X0

therefore (3.38) gives

m1−loop
2 =

(
2

X0

+
1

X1

)(
1

X2 −X1

+
1

2X1 +X0

)
+

(
2

X0

+
1

X1

)(
1

X1 −X2

+
1

2X2 +X0

)
,

or in terms of usual loop momenta, using Xi = `2i −m2 and X0 = −m2,

m1−loop
2 =

(
2

−m2
+

1

`21 −m2

)
`21 + `22 − 3m2

(2`21 − 3m2)(`22 − `21)

+

(
2

−m2
+

1

`22 −m2

)
`21 + `22 − 3m2

(`21 − `22)(2`22 − 3m2)
.

Finally we turn to the massless limit. From (3.38) we have

m1−loop
2 =

1

X1

1

X2 −X1

+
1

X2

1

X1 −X2

=
1

X1X2

(3.40)

then by substituting Xi → `2i we get the bi-adjoint integrand m1−loop
2 =

1
`21`

2
2
, if we also perform a shift in the loop momentum `µ → `µ − kµ1 in the

second term of (3.40) we get the same result in the representation given in
[23]

m1−loop
2 =

1

`2

(
1

`2 − (`− k21)
+

1

`2 − (`− k22)

)
.

In the same way it is also possible to prove a partial fraction identity that
represent the n point ring diagram as a sum of n tree level ladder dia-
grams, of which the above is the simplest example, [23]. Finally, we can
combine the forward limit formula with the soft-limit formula to compute
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a three point 1-loop integrand,

m
1−loop
3 =

(
1

X1

+
2

X0

)[(
1

X2 −X1

+
1

X0 + 2X1

)(
1

X1,2

+
1

X3 −X2

)
+

(
1

X3 −X1

+
1

X0 + 2X1

)(
1

X3,1

+
1

X2 −X3

)]
+

(
1

X2

+
2

X0

)[(
1

X3 −X2

+
1

−X2,3 + X0 + 2X2

)(
1

X2,3

+
1

X1 −X2

)
+

(
1

X0 + 2X2

+
1

X1 −X2

)(
1

X2,3 −X0 − 2X2

+
1

X1,2

)]
+

(
1

X3

+
2

X0

)[(
1

X2,3 −X2 + X3

+
1

X1 −X3

)(
1

X3,1

+
1

X2 −X3

)
+

(
1

−X2,3 + X2 −X3

+
1

X0 + 2X3

)(
1

X2,3

+
1

X3,1

)]



Conclusions

Summary

The central topic of this thesis was the pursuit of positive geometries of
interest for the physics of scattering amplitudes. Our guiding principle
has been that the boundaries of such geometries should solve the famous
equation (1), which encodes how Locality and Unitarity manifest in the
singularity structure of amplitudes and integrands. In other words, any
family of geometrical objects An which factorizes into itself upon taking
boundaries as in

∂An = AnL
×AnR

, (3.41)

is expected to be of relevance for tree level amplitudes. Starting at 1-loop,
in order to capture cuts of integrands, in addition to factorization mean-
ingful geometries should also allow for boundaries given by the geome-
tries found at lower loop level, as in

∂A1−loop
n = Atree

n+2.

The moduli space of Riemann surfaces, Mg,n, represents a natural
starting point for this exploration since, as it has been known for long
time, its boundary structure reproduces both factorization and cuts. In
Chapter 1 we described important examples of positive geometries which
live in various moduli spaces, some of which were already known, some
of which were not. We proposed hyperbolic geometry as the natural lan-
guage to study the connection of moduli spaces with positive geometries,
since it makes manifest the boundary structure ofMg,n. Accordingly, we
followed the two main approaches - pants decompositions and triangula-
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tion - and studied the simplest examples of surfaces. Using pants decom-
positions, the first new interesting geometry encountered is the Halohe-
dron which is of evident importance for 1-loop integrands. The triangula-
tions approach is deeply connected with cluster algebras, and leads to the
study of finite type cluster polytopes: A,B, C,D. The inherent simplic-
ity of cluster mutations, much easier than the corresponding change of
coordinates in the pants decomposition approach, allows to make man-
ifest the boundary structure of the simplest moduli spaces by means of
certain equations, which were first pointed out in the context of positive
geometries in [8] 6.

The study of moduli spaces puts into the spotlight two new positive
geometries relevant for 1-loop integrands, the Halohedron and Dn. How-
ever to make connection with amplitudes one either needs a map from
kinematical space to the moduli space, such as the scattering equations,
or a realisation of these geometries directly in kinematical space. In Chap-
ter 2 we focused on the latter. Firstly, we illustrated a convex realisation of
the Halohedron in an abstract kinematical space, following [29]. Secondly
we discussed the ABHY realization of all cluster polytopes. In particular,
we described a surprising connection with the wave equation in 1+1 di-
mensions. On one hand, this connection makes completely manifest the
origin of the factorization of the boundaries. On the other hand, it guided
us to the discovery of certain projection properties of ABHY polytopes
which can be used to triangulate them efficiently.

The results of the previous chapters found their ultimate justification
in Chapter 3, where amplitudes and integrands are finally computed.
The first interesting result is that, although at 1-loop integrands develop
higher order poles, one does not have to leave the world of positive ge-
ometries and logarithmic canonical forms to treat them. Indeed, the posi-
tive geometries we studied suggest a natural way to deform these double
poles into pair of simple poles. One can then compute canonical forms in
the abstract space where the geometries are realised, and then translate
back to ordinary kinematical space, restoring double poles and momen-
tum conservation in the integrands. We then provided a few examples
of new formulae, up to 1-loop integrand of bi-adjoint theory and of mas-
sive φ3 theory. These include a remarkably efficient formula for tree level
amplitudes, and forward-limit formulae for both integrands. Also, a by-
product of our construction is a regularised massless limit to connect mas-
sive φ3 theory and bi-adjoint theory.

6I am particularly grateful, for sharing their hindsights on this idea with me, to
Arkani-Hamed, Song He and his students.
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Future Directions

The present thesis opens a number of interesting questions, which hope-
fully will lead into new hindsights on scattering amplitudes in the near
future.

All loop φ3. The first and most pressing question is to complete the
amplituhedral formulation for the S-matrix in bi-adjoint, or massive φ3,
at all loop orders. As we elaborated in Chapter 1, a natural starting point
are either the moduli space of higher genera surfaces in the pants decom-
position approach, or of the disk with several interior punctures in the
triangulation-based approach. As we briefly mentioned, both strategies
face immediate obstacles: in the first case moduli spaces cease to be poly-
topes, in the second case we encounter the cluster algebra infinity. At the
origin of both problems seems to be the fact that these surfaces begin to
have a non-trivial mapping class group, whose action on pants and trian-
gulations has to be modded out. Interestingly, in terms of dual variables
this action translates into the permutation of the loop momenta, which
is physically meaningless. Could it be that, in the case of triangulations,
might be enough to tame the infinity and produce a well defined poly-
topal positive geometry at higher loop?

While we do not have yet an answer to this question, in an on-going
collaboration with Arkani-Hamed and Hadleigh Frost we did an encour-
aging step forward at the level of the scattering form. Using the infinite
cluster algebra associated to disks with several interior punctures, it is
possible to define a projectively invariant scattering form following the
usual sign rule. Obviously, this form is a rather formal object since it is
given by the sum of infinitely many dlog terms. However, upon identi-
fying those variables which are sent into each other by the action of the
mapping class group, we are left with a finite, projectively invariant, scat-
tering form. This is a very promising result, especially in light of the dis-
cussion of 2.1.2.

Loop Integration. Notwithstanding the fascinating connections dis-
covered between integrands and positive geometries, first in N = 4 SYM
and now in φ3, similar results at the level of the integrated amplitude are
still missing. It seems suspicious that such a rich interplay between ge-
ometry and physics may exists at the integrand level without leaving an
imprint of itself on the final answer. In order to address this question, a
first interesting observation is the analogy between volume formulae for
the canonical form of polytopes and the familiar Feynman trick. Namely
we can write the rational function of a polytope P as an integral over its
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dual

Ω(Y ) =

∫
P∗

〈WddW 〉
(Y ·W )d+1

,

which can be proven by first reducing by triangulations to the case of a
simplex, in which case the above integral can be recognized as the usual
Feynman trick. Therefore, using the results of this thesis we can use D∗

as a Feynman parameters polytope and perhaps learn something new about
the integrated amplitude.

Beyond φ3 By now there is more and more evidence that the S-matrix
of many other theories admits a formulation in terms of positive geome-
tries. A large class of polytopes called Stokes polytopes seems to be con-
nected with amplitudes in planar φ4 [36], and an even larger class of poly-
topes known as accordiohedra with φp [37] and even with general poly-
nomial interactions, such as λ3φ3 + λ4φ

4 [38]. Finally, also non-planar
amplitudes seem tractable [21].

Another immediate direction of investigation is offered by a class of
polytopes known as graph cubeahedra and graph associahedra [29], [30]
which further generalize the Halohedron and the Associahedron. The
boundary structure of these polytopes satisfy interesting factorization and
cut properties, but so far it is not clear whether they can be understood as
factorizations and cuts of integrands. Amusingly, the only real obstacle in
this investigation is purely combinatorial: it is unclear whether it is pos-
sible to translate the language of tubings used to defined these polytopes
in terms of familiar Feynman diagrams.

Another, somewhat indirect, clue that many other theories should ad-
mit a positive geometry formulation is the vast plethora of theories which
can be treated within the CHY formalism. At the heart of this formal-
ism are the scattering equations, which were given a new interpretation
in [8] as a map between the kinematical Associahedron and the moduli
space Associahedron In particular, the CHY formula for bi-adjoint theory
was understood as a pushforward of the corresponding canonical forms.
Is it possible to extend this picture to other theories, and is it possible to
find “scattering equations” between the moduli space positive geometries
described here and their kinematical counterparts? For advances in this
direction, see also [19], [3] and [20].

New results for φ3. Somewhat more straightforward questions are
still open in the domain of φ3 and its positive geometries. In Chapter 3 we
focused on representation of amplitudes which can be obtained upon tri-
angulation of the corresponding polytopes. However, using the volume
formula mentioned earlier one can obtain entirely different formulae by



triangulating the duals of these polytopes. This produce local representa-
tion, i.e. without spurious poles, since one does not introduce spurious
boundaries in the interior of the direct polytopes. These representations
are especially interesting at loop level, where spurious poles present a
problem for the integration over loop momenta. Finally, when consid-
ering 1-loop bi-adjoint theory we only focused on its diagonal part, i.e.
assuming the same ordering for both color factor. It would be desirable
to complete the picture including different orderings, also in connection
with [12].
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APPENDIX A

Projections, Triangulations and canonical form
of a Prism

We review here some facts about projective geometry and canonical forms
of polytopes.

One of the most natural geometrical construction in projective geom-
etry is the projection to a plane through a point. Let Z be a point in P and
H an n− 1 dimensional hyperplane given by Y ·W = 0. Given any point
Y , consider the unique line L that passes through Y and Z and call Ȳ its
intersection with H : this point is the projection of Y to H through Z. We
can think of Y as giving a coordinate on H , at the cost of introducing a
GL(1) redundancy, since many points Y belong to the same line L. This
GL(1) is the “little group” of the line. Concretely we can write

Y = Y − Y ·W
Z ·W

Z, (A.1)

note that the right hand side of (A.1) indeed has a newGL(1) redundancy:
Y → Y + αZ.

Suppose that Ai ∈ H are the projections of certain points Ai, then we
have the basic formula:

〈A1 . . . An−1〉 =
〈ZA1 . . . An−1〉

Y ·W
=
〈ZA1 . . . An−1〉
〈ZZ1 . . . Zn−1〉

, (A.2)

where Z1, . . . Zn−1 is any generic set of points in H . This formula can be
proven by first picking a chart where Y ·W = Y0 and then exploiting the
variance of determinants and covariance of W .

Projections play a central role in the computation of the canonical forms
of polytopes. The basic fact is that if a polytope P lives inH and its canon-
ical form is given by

ΩP = 〈Y dn−1Y 〉ΩP
(
Y
)
,
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then the canonical form of

P̂ = Conv(Z,P)

is given by

ΩP̂ = 〈Y dnY 〉Z ·W
Y ·W

ΩP

(
Y − Y ·W

Z ·W
Z

)
, (A.3)

this fact is easily proven for the case of a simplex using (A.2) and then
generalized by triangulation for any polytope P . In the case of physical
applications, the polytope P is associated to some lower loop/point com-
putation and the convex hull P̂ is part of a triangulation of some higher
level computation. Formula (A.3) then allows to set up recursive rela-
tions, since the only non trivial part is given by ΩP replacing Ω(P) which
has supposedly been already computed.

In this paper we encountered a remarkable kind of triangulation which
involved prisms, i.e. a polytope P characterized by an Upper facet, a
Bottom facet and a collection of Side facets that meet at a common ver-
tex Z. Such a prism is easily triangulated by taking the convex hull B̂ =

Conv(Z,B) and removing the convex hull Û = Conv(Z,U). We apply
(A.3),

ΩX̂ = 〈Y dnY 〉Z ·WX

Y ·WX

ΩX

(
Y − Y ·WX

Z ·WX

Z

)
, (A.4)

where X = U ,B. The projection through Z also gives a diffeomorphism
π of positive geometries between the two polytopes U and B, therefore it
relates their canonical forms by pullback 1:

π∗(ΩB) = ΩU .

We can give an explicit proof of this fact in the case where both U and B
are simplices with vertices ZB and ZU ; the general case follows again by
triangulation. The canonical form of the bottom facet in this case is given
by

〈YBdn−1YB〉〈ZB1 . . . ZBn〉n
n∏
i=1

(−1)i〈YBZB1 . . . ẐBi . . . ZBn〉
,

1One usually push-forward rather than pull-back canonical forms of positive geome-
tries, but since π is linear the two are equivalent
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we write
YB = YU −

YU ·WB
Z ·WB

Z,

and repeatedly use (A.2):

〈YBdn−1YB〉 =
〈ZYBdn−1YB〉

Z ·WB
=
〈ZYUdn−1YU〉

Z ·WB
=
Z ·WU
Z ·WB

〈YUdn−1YU〉,

we get a factor Z·WU
Z·WB

in converting the remaining determinants but they
cancel overall, so we are left with the canonical form for the upper sim-
plex. Therefore the canonical form of the prism is given by

ΩP = 〈Y dnY 〉
(
Z ·WB
Y ·WB

− Z ·WU
Y ·WU

)
ΩU

(
Y − Y ·WU

Z ·WU
Z

)
. (A.5)





APPENDIX B

Solution of the mesh relations

In this appendix we describe the solutions of the mesh relations in a closed
form valid for arbitrary n.

B.1 Type A

For the right triangle region, which is equivalent to the standard ABHY
realisation of An−3, the mesh diagram of Fig. (2.5) makes immediate to
solve every variable Xi,j in terms of the basis given by the variables X1,i,
i = 3, . . . , n − 1. Given any variable Xi,j , construct the causal diamond
with variables X1,i, X1,j, Xi, j and Xj−1,j at its left, bottom, right and top
corners. All the mesh relations in the small causal diamonds contained in
the larger diamond sum up telescopically to

X1,i+1 +Xi,j −X1,j = Ci,j,

whereCi,j is the total charge of this region. We can therefore easily express
Xi,j in the basis, and explicitly we get

Xi,j =

a=i−1
b=j−1∑
a=1
b=i+1

ca,b +X1,j −X1,i+1. (B.1)

It is straightforward to generalize this construction to other domains, such
as the arrow-tail region.

B.2 Type D

The same strategy used at tree level extends to type D and D. The natural
basis to use is the “tadpole basis” given by variablesX1, X

′
1, X1,2, . . . , X1,n−1.
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We also recall that in the main text we introduced a new set of variables,

X±,i := X ′i ±Xi, (B.1)

in terms of which the original variables are given by

Xi =
1

2
(X+,i +X−,i) , (B.2)

X ′i =
1

2
(X+,i +X−,i) . (B.3)

The advantage of these variables is that they satisfy a set of ABHY condi-
tions similar to the tree level one. Indeed, we have

X+,i +X+,i+1 − 2Xi,i+1 = 2ci, (B.4)
(B.5)

so if we rescale all the remaining variables, and the mesh constants, by a
factor of two we can arrange all the variables in a causal diamond. Vari-
ables at the vertices of smaller diamonds satisfy ABHY relations with the
usual signs see Fig. B.1. Note that for diamonds with a vertex on the

++

-

-

+

-

+

--

+

-

+

X+n
X+,1

2X1,i

X+,i

2Xba

2Xab

Figure B.1: Some examples of diamonds, with the signs for the relevant ABHY
condition indicated. On the leftmost line live the variables X+,1, X1,2, . . . , on
the bottom one the variables X+,i, on the red line the variables Xj,n and in the
dashed line the variables X+,n, Xn,1, . . . . The picture is not in scale.

lower line, we need a factor of “-2” in the corresponding ABHY relation,
as indicated by the double minus in the figure. Also note that the vari-
ables X−,i actually do not depend on i, because by taking the difference
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of the original ABHY conditions we get

X−,i = X ′i −Xi = X ′i+1 −Xi+1 = X−,i+1,

we can therefore forget the index “i” and call this quantity simply X−: as
described in Section 2.3.6 it is the face variable of the tadpole facet. Now we
can devise for any variable X a system of light rays that make manifest
its solution in terms of the tadpole basis. The three possible situations are
described in Fig. B.2 and Fig. B.3, from which it is clear that we get

++

-

X+,iX+,1

2X1,i

2Xij

2X1 j

--

+

-

+

2cA

2cB

X+ j

+

-

+
2cC

X+n

Figure B.2: System of light rays for
variables X+,i and Xi,j below the
red line

++

-

X+,i+1X+,1

2X1,i+1 2Xi+1 j

2X1 j

--

+

-

+

2cA

2cB

X+ j

+

-

+
2cC

2X ji

2Xi+1,i = 0

+

-

+

--

2cD

X+n

Figure B.3: System of light rays for
variables on and above the red line

(B.6)
X+,j = 2cA + 2X1,j −X+,1 ⇔ Xi = cA +X1,j −X ′1,

2Xi,j = 4cA + 2cB + 2X1,j + 2X1,i − 2X+,1 ⇔ Xi,j = 2cA + cB +X1,i +X1,j −X1 −X ′1
2Xj,i = 2cD + 2cC +X+,j −X+,i+1 ⇔ Xj,i = cD + cB + 2cC +X1,j −X1,i+1,

and (B.6) together with X ′i −Xi = X− = X ′1 −X1 is sufficient to solve for
all the variables of Dn.

Let us now make a few comments on Dn. From (B.6) we see that each
face variable, including the tadpole variableX− = X ′1−X1, is expressed as
a linear function of the tadpole basis elements with a specific combination
of mesh constants, uniquely associated to that facet. This guarantees that
one can perform the shifts described in Section 3.3.1 which convert face
variables to physical propagators. One first rewrites X ′1 as X− + X1, then
rearrange (B.6) so that the constants are on the right hand side and the
face variables on the left hand side. Because the combinations of mesh
constants are unique to each facet, we can solve these equations for the
mesh constants in terms of all the face variables. Since the latter have
an immediate meaning as physical propagators, this give meaning to the
mesh constants as well.
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Finally we turn to the massless limit, which allows to obtain the 1-loop
integrand for the bi-adjoint scalar theory. It is convenient to switch to
the basis given by the planar variables Xi, for i = 1, . . . , n. Dually, these
variables correspond to the propagators of the ring diagram, therefore we
will refer to this as the ring basis. To express the planar variables in terms
of the ring basis we first find the expression for the tadpole basis elements
and then plug it into (B.6). We can use the first of (B.6) with n = i to find

X ′1 = C0 −Xn, (B.7)

where C0 is the total charge on the left of the red line of figures (B.2) and
(B.3). Note that this is also the constant of the tadpole variable in the ring
basis:

X0 = X ′1 −X1 = C0 −X1 −Xn. (B.8)

Sticking to the notation of such figures, if we plug (B.7) in the remaining
equations of (B.6) we get

X1,i = C0 − CA +Xi −Xn

X1,j = C0 − CA − CB − CC +Xj −Xn

}
⇒ Xi,j = (C0 − CC)−Xn −X1 +Xi +Xj,

(B.9)

and

Xj,i = CC + CD +Xj −Xi+1. (B.10)

From the rational function of Dn expressed in the ring basis, one can ob-
tain the 1-loop integrand for the bi-adjoint theory by first sending C0 →
∞, which has the only effect of killing the contribution of the tadpole
vertices. Then one translates to the massless propagators by replacing

Xi → `2i , Xi,j, Xj,i →
(
j−1∑
a=i

ka

)2

and Xi,i+1 → k2i , and inverting (B.9),(B.10)

to read of the physical meaning of the surviving face constants, in the
same way as done before for the full massive integrand.

Note that while the original ABHY constants were subjected only to
the positivity constraint, the face constants in the ring basis satisfy non
trivial equalities. Let us denote Ci,j the constant for the variable Xi,j , an
obvious consequence of (B.9),(B.10) is that Ci,j > 0 for any face variable
(including C0). In addition, we also see that

C0 < Ci+1,j + Cj,i,
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therefore it is impossible to sendC0 →∞without either breaking the pos-
itivity requirement for someC or sending it to infinity as well. This means
that, although the limiting procedure at the level of rational function is
well defined and reproduces the massless integrand after the translation
to physical propagators, the final result can no longer be interpreted as
the canonical function of a polytope, since the positivity requirement has
been violated. A similar phenomenon happens in the case of the Halohe-
dron when eliminating external bubbles and tadpoles.





APPENDIX C

Graph Associahedra and Cubeahedra

In this Appendix we describe two large families of polytopes called Graph
Associahedra and Graph Cubeahedra and their realisations as convex poly-
topes. These polytopes were introduced in [29], where their convex reali-
sations were also provided. We report this construction here for the sake
of self-containedness and to provide explicit details which are useful for
the computation of amplitudes.

C.1 Graph Associahedra

Graph Associahedra are a family of polytopes labelled by connected graphs,
they include the classical Associahedron A and the Cyclohedron B which
correspond to the graph being a path or a cycle respectively. More gener-
ally, to each connected graph G we can associate a graph Associahedron
AG . At the combinatorical level the Associahedron AG is the poset of tub-
ings of G, which we now define. A tube on G is a proper connected subset
T of G which we represent as a yellow tube around some nodes of G as in
Fig. C.5. We say that two tubes T and T ′ are adjacent if they are disjoint
and their union is another tube on G. We define two tubes to be compat-
ible if either 1) one is a subset of the other or 2) they are disjoint and not
adjacent. Finally, we define a tubing on G to be a (possibly empty) col-
lection of pairwise compatible tubes and a partial ordering on the set of
tubings given by the usual set-theoretical inclusion ⊂.

When G is a path withm nodes the corresponding AssociahedronAG is
just the classical AssociahedronAm−1, instead if G is a cycle with m nodes
one obtains the cyclohedron Bm−1, in Fig. C.1 are shown two-dimensional
examples. The proof is entirely combinatorical and it boils down to trans-
lating the language of tubings to that of triangulations or pants decompo-
sition, it can be found in [29].
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( a ) ( b )

Figure C.1: The Associahedron A2 (a) and Cyclohedron B2 (b) as particular in-
stances of graph associahedra AG . The picture is a courtesy of Prof. Satyan De-
vadoss and it is taken from [29].

Graph associahedra constitute a family of polytopes which are closed
upon taking boundaries, i.e. every face 1 of a graph associahedra is com-
binatorially equivalent to a product of graph associahedra. This factoriza-
tion is conveniently described in terms of the underlying graph: suppose
that T is a tube on G, and let G ′a for a = 1, . . . N denote the connected com-
ponents of G ′ = G \ T , i.e. of the subgraph of G obtained by removing all
the nodes contained in T together with the edges incident on them. Then
the face of AG corresponding to T is given by

∂TAG = AT ×AG′1 · · · × AG′N . (C.1)

The mechanism behind this factorization is straightforward: all tubes con-
tained in T are compatible with it and thus they are responsible for the
first factor in the RHS of (C.1). If a tube contained in some component
G ′a is adjacent to T then we can make it compatible with T by taking its
union with T , so the tubes of G ′a give rise to the corresponding factor in
(C.1).

Next we turn to the convex realisation of a graph associahedra AG
for an arbitrary graph G with m nodes. The realisation is based on the
truncations of a simplex and was first presented in [30]. The truncation
can be defined in many ways, we present here a particularly simple one.
In a projective space is Pm−1 we consider an (m − 1)-simplex ∆G defined
by the positivity of m functions X(i) with i = 1, . . . ,m. Note that, in order

1We slightly abuse notation in referring to “boundaries” and “faces” since at this level
the discussion is purely combinatorical, hopefully this will not generate confusion
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for these functions to define a simplex, they have to satisfy∑
i∈G

X(i) = εG > 0, (C.2)

where εG is an arbitrary non-vanishing constant. Implicitly, in (C.2) we
thought of the facets X(i) = 0 of ∆G as labelled by tubes (i) around the
i-th node of the graph. We can similarly label all the lower dimensional
faces of the ∆G by the subset S of nodes whose associated facets X(i) in-
tersect there. We stress that S may or may not be a tube depending on the
connectivity of G. The simplex ∆G is then truncated by shaving off those
faces which are labelled by tubes, in order of increasing dimensions. Con-
cretely, if a face of ∆G is labelled by a tube T we intersect the original
simplex with the half-space defined by

XT =
∑
a∈T

X(a) − εT ≥ 0, (C.3)

where εT is a positive constant. We claim that the polytope

AG = {Y ∈ Pm−1|XT (Y ) ≥ 0, ∀T ∈ tubes of G}

is the graph Associahedron of G, provided that the constants ε appearing
in (C.3) satisfy the conditions

(i) εT < εG for all T .

(ii) εT + εT ′ < εT ∪T ′ + εT ∩T ′ for all T , T ′ such that T ∪ T ′ is a tube.

Before proving this claim let us point out that, indeed, intersecting ∆G
with the half-space defined by (C.3) has the effect of truncating the face as-
sociated to T , since XT is negative there, and creating a new facet XT = 0.
The constants ε modulate the depths of all these cuts and they have to
satisfy i) and ii) to guarantee that none is too deep and they are taken in
order of increasing dimension of the faces, as shown in Fig. C.2 We now
prove the correctness of the convex realisation ofAG , in order to do so we
will first prove that non compatible tubes are associated to non intersect-
ing facets and then show that each facet of AG factorizes accordingly to
(C.1). Let T and T ′ be non compatible tubes, i.e. either adjacent or such
that T ∩ T ′ 6= 0. In both cases, T ∪ T ′ is a tube and so it is associated to
a face variable XT ∪T ′ , on the other hand we define XT ∩T ′ = 0 if they are
adjacent. Recalling (C.3) we have

XT ∪T ′ +XT ∩T ′ −XT −XT ′ < εT + εT ′ − εT ∪T ′ − εT ∩T ′ < 0, (C.4)
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Figure C.2: Sequence of truncations producing A3. From the leftmost to the
central figure two vertices are truncated, from the central to the rightmost three
edges.

from which it is clear that XT and XT ′ cannot be simultaneously zero
without breaking the positivity of either XT ∪T ′ or XT ∩T ′ , in other words
the corresponding facets do not intersect. Next, consider a tube T and
for simplicity assume that G ′ = G \ T is connected (the general case is
a straightforward generalization), then we wish to prove that the facet
XT = 0 factorizes into AT ×AG′ . On this facet, the variables associated to
the nodes of T define a smaller simplex ∆T , since

XT = 0⇒
∑
i∈T

X(i) = εT , (C.5)

which should be compared with the condition (C.2), note that the latter
also implies that ∑

i∈G′
X(i) = εG − εT > 0. (C.6)

Recall that the factor AG′ is due to tubes on G ′ which, if they are adjacent
to T as tubes on G, have to be united to T . Accordingly, we associate to a
tube T ′ in G ′ either the function XT ′ = XT ′ or the function XT ′ = XT ∪T ′ .
Keeping in mind this fact we see that the variables associated to the nodes
of G ′ define a simplex ∆G′ , too. We have∑

a∈G′
X(a) = εG − εT +

∑
b adjacent to T

εT ∪(b) − εT > 0,

where we used both (C.5) and (C.6). The original truncation of ∆G de-
scends to truncations of the simplices ∆T and ∆G′ in agreement with the
connectivity of the corresponding graphs. This is trivial to see for T and
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for any tube T ′ of G ′ not adjacent to T as a tube on G. On the other hand,
if T ′ is adjacent to T then we have

XT ′ =
∑

(a) not adjacent to T

X(a) +
∑

(b) adjacent to T

X(b) +
∑
i∈T

X(i) − εT ∪T ′

=
∑

(a) not adjacent to T

X(a) +
∑

(b) adjacent to T

X(b) + εT − εT ∪T ′

=
∑

(a) not adjacent to T

X(a) +
∑

(b) adjacent to T

(X(b) + εT ∪(b) − εT ) + εT − εT ∪T ′

=
∑

(a)∈T ′
X(a) − ε′T ′ ,

and it is not difficult to see that the total constant ε′T ′ is negative, by using
the conditions i) and ii).

Before concluding this section we wish to establish a connection be-
tween the ABHY realisation of An−3 and the one provided by the graph
AssociahedronAG in the case when G is a path with n− 2 nodes. The two
combinatorical languages of tubings and planar variables are related to
each other by the simple rule depicted in Fig. C.3, so that tubes of equal

X1,3 X2,4 X3,5 X4,6 X5,7 X6,8 X7,9 X8,10 X9,11 X10,12

X5,10

X2,5 X3,6 X6,9

Figure C.3: Correspondence between tubes and planar variables, note that the
single-node tubes correspond to variables Xi,i+2

length are mapped to equal-time points in the right triangle of the stan-
dard ABHY realisation. Furthermore, using the light rays shown in Fig.
C.4 it is easy to express every variable Xa,b in term of the one associated
to single-node tubes obtaining

Xa,b =
b−1∑
i=a

Xa,a+1 − εa,b, (C.7)

where εa,b is the total charge contained in the future light-cone of the point
(a, b). By comparison of (C.7) with (C.3) we see that the two convex reali-
sation of An−3 are actually the same. In particular, we see that the condi-
tions i) and ii) which must be satisfied by the constants εT are automati-
cally satisfied by the identification of εT with a total charge, see Fig. C.4.
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Figure C.4: Left: Any planar variable Xa,b can be expressed in term of the vari-
ables Xa,a+1 and the total charge εa,b in its future light-cone. Conditions i) and
ii) easily follows considering four-tuples of variables arranged on a diamond.
Right: starting with all constants but c1 set to zero one obtains a simplex. Pro-
gressively switching on the constants ci according to the index i reproduces the
sequence of truncations in order of increasing dimension of the faces.

Upon this identification, i) and ii) are trivialized to the positivity of the
mesh constants ci,j > 0. It is interesting to see how the series of trunca-
tions of the simplex are described in the mesh picture. Let us temporarily
adopt the convention of Fig. C.4 in order to label the mesh constants, and
suppose that all the mesh constants ci with i > 1 are vanishing. Upon
telescopically summing over all mesh relations we obtain

n−2∑
a=1

Xa,a+2 = c1,

which we recognise as the condition for the variables Xa,a+1 to define a
simplex. Now suppose that the mesh constants c2 are turned on, then we
also obtain

X1,n−1 =
n−2∑
a=1

Xa,a+1 − c2 and X2,n =
n−1∑
a=2

Xa,a+1 − c2,

which mean that we now truncate two vertices of the original simplex.
Similarly, by turning on the remaining mesh constants we recognize the
sequence of truncations in increasing order of dimension that defines graph
associahedra.

Finally, let us remark that graph associahedra and ABHY polytopes
are only partly overlapping: choosing different regions for the wave equa-
tion, such as the arrow-tail or the square region, give rise to realisation of
An−3 which are not equivalent to graph associahedra. Conversely, if the
graph G is a cycle with n nodes one obtains a cyclically symmetric realisa-
tion of a cyclohedron Bn−1. On the other hand, the ABHY realisations for
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these polytopes break the cyclical symmetry and is therefore not the same
as the graph associahedral one.

C.2 Graph Cubeahedra

We now turn to graph cubeahedra which are described in terms of de-
sign tubings on a graph G, and realized by truncation of a cube. We begin
with the definition of a design tubing, on G we now allow the ordinary
round tubes introduced in the previous section and new square tubes, a
square tube is a single-node tube which we draw as in Fig. (C.5) to dis-
tinguish it from single-node round tubes. We now also allow the round
tube covering the entire graph. We extend the notion of compatibility of
tubes by declaring any pair of square tubes compatible, a square tube S
and a round tube T are compatible if S is not contained in T . A design
tubing is a collection of pairwise compatible square and round tubes, the
poset of design tubings is defined by the usual set theoretical inclusion⊂.
The graph cubeahedron associated to G is combinatorially defined as the
poset of design tubings on G, we denote it by CG

Figure C.5: Example of ordinary and design tubings. The picture is a courtesy of
Prof. Satyan Devadoss and it is taken from [29].

The boundary structure of a graph cubeahedron is a straightforward
generalization of the one familiar from graph associahedra, in addition to
the factorization (C.1) we have boundaries corresponding to square tubes
which are the graph cubeahedra associated to the graph obtained by re-
moving the square tube. In other words, if S = [v] is a square tube at the
node v and G ′ = G \ v then we have

∂[v]CG = CG′ .

It is not difficult to see that when G is a path with m nodes the corre-
sponding graph cubeahedron CG is an Associahedron Am. When G is a
cycle with m nodes instead CG is an m-dimensional Halohedron.

The convex realisation of a graph cubeahedra is obtained from the
truncation of a cube rather than a simplex: to any graph G we associ-
ated a cube where pair of opposite facets are given by pair of square and
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round tubes centered at the same nodes, in such a way that all square tube
facets meet at a common vertex of the cube. Then one truncates the cube
at the intersections of the round tubes in the same way already discussed
for graph associahedra, see Fig. C.6.

Figure C.6: Sequence of truncations producing A3 from truncations of a cube.
From the leftmost to the central figure a single vertex is truncated, from the cen-
tral to the rightmost two edges.

It is natural to ask whether graph cubeahedra CG , in the case when G
is a path with m nodes, are related to ABHY associahedra Am for some
choice of region for the wave equation. However it is easy to see that this
is not possible by checking the pairs of parallel facets appearing in each
construction.
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