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Abstract: DNA methylation in the human genome is largely programmed and shaped by 
transcription factor binding and interaction between DNA methyltransferases and histone marks 
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during gamete and embryo development. Normal methylation profiles can be modified at single or 
multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some 
cases stochastically or through interaction with environmental factors. For many developmental 
disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use 
of high-throughput assays investigating the whole genome has largely increased the number of 
diseases for which DNA methylation analysis provides information for their diagnosis. Here, we 
review the methylation abnormalities that have been associated with mono/oligogenic diseases, 
their relationship with genotype and phenotype and relevance for diagnosis, as well as the 
limitations in their use and interpretation of results. 

Keywords: DNA methylation; genetic testing; high-throughput analysis; epi-signatures; 
developmental delay/intellectual disability disorders; imprinting disorders; hereditary tumors; 
neuromuscular diseases; prenatal diagnosis 

 

1. Introduction  

DNA methylation is by far the most abundant modification of the human genome. It is mostly 
present at cytosines of CpG dinucleotides, and the resulting CpG symmetry on the complementary 
helices of DNA helps the process of DNA methylation maintenance through cell division by the 
methyltransferase DNMT1 [1–3]. In mammals, DNA methylation is largely reprogrammed during 
gametogenesis and early embryo development [4,5]. Two waves of extensive erasure involving both 
passive and active mechanisms occur in the primordial germ cells and pre-implantation embryo. De 
novo DNA methylation catalyzed by the methyltransferases DNMT3A, DNMT3B and DNMT3L 
occurs with differential kinetics and patterns during male and female gametogenesis and within cell 
lineage specification in post-implantation development [4,5]. The distribution of CpG methylation 
(mCpG) along the human genome is not uniform. While most of the genome is CpG-poor and 
methylated in differentiated somatic cells, several thousand of short interspersed CpG-rich sequences 
mostly corresponding with gene promoters are devoid of methylation. Methylation patterns are 
shaped by the transcription factor binding to DNA and interactions between DNMTs and histone 
marks [4,5]. In general, the level of methylation is low to intermediate at regulatory elements and 
high over gene bodies and intergenic regions. If established on promoters or enhancers, methylation 
can repress transcription by direct inhibition of transcription factor binding or indirectly through 
recruitment of methyl-binding proteins and chromatin modifiers. In contrast, methylation of gene 
bodies is not considered a repressive mark, but may be important to prevent spurious transcription 
initiation [6]. A number of genomic loci evade epigenetic reprogramming in embryo development. 
These include the Differentially Methylated Regions (DMRs) controlling the mono-allelic and gamete 
of origin-dependent expression of the imprinted genes and a subset of retroviral elements [7]. 
Methylation at these loci is maintained through interaction with specific KRAB-zinc finger proteins 
[8].  

Correct DNA methylation is required for normal human development [9]. In principle, 
alterations of normal methylation patterns can arise in absence of DNA sequence changes (primary 
epimutation) or secondary to genetic variants that can either occur in cis or in trans (secondary 
epimutation). Although the former can be difficult to demonstrate, there is evidence that DNA 
methylation can be influenced by environmental factors, especially in germ cells and during early 
embryogenesis [10]. Modifications of the normal DNA methylation patterns have been commonly 
demonstrated in cancer, for example as hypermethylation of tumor suppressor gene promoters [11]. 
More recently, methylated CpGs that correlate with chronological age and with risk of mortality or 
developing multi-factorial diseases have been demonstrated [12–14]. Specific DNA methylation 
patterns have been more rarely reported for monogenic diseases [7,9]. DNA methylation can be 
modified at a single locus generally as consequence of a variant occurring in cis, or at multiple loci 
possibly as consequence of a variant occurring in trans. In the latter case, genomic methylation 
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landscapes may be directly altered by variants in DNMTs or indirectly by mutations in chromatin 
modifiers or transcription factors [9]. The recent availability of high-throughput screening platforms 
has led to the identifications of specific methylation signatures associated with an increasing number 
of disorders, indicating that DNA methylation analysis may represent a valid tool for a better 
classification of diseases with overlapping clinical features and for sorting cases with ambiguous 
genetic variants [15].  

This review focuses on the role of DNA methylation in the molecular diagnosis of 
mono/oligogenic diseases. We discuss the different types of DNA methylation abnormalities, their 
relationship with genotype and phenotype, as well as their relevance for counselling. Furthermore, 
we report the main methods for detection, including in prenatal testing, and the limitations in the 
interpretation of results. Finally, we highlight research areas and technological advances that might 
extend the use of DNA methylation analysis in molecular diagnostics in the near future. The main 
features of DNA methylation abnormalities in human monogenic diseases are listed in Table 1. 
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Table 1. Description of DNA methylation abnormalities in mono/oligogenic diseases. 

Disease (OMIM) 
Chromosom

e 

DNA 
Methylation 

Defects 

Frequency of 
Methylation 

Defects 

Associated Genetic 
Defects 

Mosaicis
m Recurrence Risk Methods Refs. 

Fragile X syndrome 
(300624) Xq27.3 FMR1 GOM 100% 

Expansion of CGG 
repeat (>200) in the 

FMR1 5’-UTR 
Yes 50% for PM and FM 

mothers MS-MLPA [16–25] 

Claes–Jensen syndrome 
(300534) 

Multiple 
chromosome

s 

LOM of 1769 
CpGs 

(9 regions) 
100% KDM5C variants Yes 50% from female 

carriers to sons 

Illumina 
Infinium 
BeadChip 

[15,26–29] 

Sotos syndrome (117550) 
Multiple 

chromosome
s 

LOM of >7000 
CpGs 

(1300 regions) 
100% NSD1 variants Yes 50% 

Illumina 
Infinium 
BeadChip 

[15,29–31] 

Kabuki syndrome 
(147920, 300867) 

Multiple 
chromosome

s 

LOM of 856 
CpGs, GOM of 

648 CpGs 
100% KMT2D and KDM6A 

variants 
Yes 50% 

Illumina 
Infinium 
BeadChip 

[15,29,32,3
3] 

CHARGE syndrome 
(214800) 

Multiple 
chromosome

s 
1320 CpGs 100% CHD7 variants Yes 50% 

Illumina 
Infinium 
BeadChip 

[15,29,33] 

Alpha thalassemia/mental 
retardation X-linked 
syndrome (301040) 

Multiple 
chromosome

s 

1112 CpGs 
GOM of 11 

regions 
LOM of 5 
regions 

100% ATRX variants Yes 
50% from female 
carriers to sons 

Illumina 
Infinium 
BeadChip 

[15,29,34] 

Floating–Harbor 
syndrome (136140) 

Multiple 
chromosome

s 

1078 CpGs 
GOM of 19 

regions 
LOM of 9 
regions 

100% SRCAP variants Yes 50% in dominant 
cases 

Illumina 
Infinium 
BeadChip 

[15,29,35] 

BAFopathies (Coffin–Siris 
(135900, 614608, 614609), 

Nicolaides–Baraitser 
(601358) and 6q25 

microdeletion (612863) 
syndromes) 

Multiple 
chromosome

s 

135–146 CpGs 
(20–30 regions) 100% 

ARID1B, SMARCB1, 
SMARCA4, 

SMARCA2 variants, 
ARID1B deletions 

Yes 50% 
Illumina 
Infinium 
BeadChip 

[15,36] 
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ADNP syndrome 
(615873) 

Multiple 
chromosome

s 

LOM of ~6000 
CpGs 

GOM of ~1000 
CpGs 

100% ADNP variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[37] 

Autosomal dominant 
cerebellar ataxia with 

deafness and narcolepsy 
(604121) 

Multiple 
chromosome

s 

3562 CpGs 
(mostly LOM) 

GOM of 82 
regions 

100% DNMT1 variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[15,29,38] 

Hereditary sensory and 
autonomic neuropathy 

type 1 with dementia and 
hearing loss (614116) 

Multiple 
chromosome

s 

LOM of 5649 
regions  

GOM of 1872 
regions 

100% DNMT1 variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[39] 

Tatton-Brown–Rahman 
syndrome (615879) 

Multiple 
chromosome

s 

LOM of 388 
regions  

GOM of 1 
region 

100% DNMT3A variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[40] 

Heyn–Sproul–Jackson 
syndrome (618724) 

Multiple 
chromosome

s 

GOM of 1140 
regions  

LOM of 738 
region 

100% DNMT3A variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[41] 

Immunodeficiency-
centromeric instability-

facial anomalies 
syndrome 1 (242860) 

Multiple 
chromosome

s 

LOM of 6942 
CpGs 

GOM of 1921 
CpGs 

100% DNMT3B variants Yes 25%  
Illumina 
Infinium 
BeadChip 

[42,43] 

Immunodeficiency-
centromeric instability-

facial anomalies 
syndrome 2 (614069) 

Multiple 
chromosome

s 

LOM of 8414 
CpGs 

GOM of 2661 
CpGs 

100% ZBTB24 variants Yes 25%  
Illumina 
Infinium 
BeadChip 

[42] 

Immunodeficiency-
centromeric instability-

facial anomalies 
syndrome 3 (616910) 

Multiple 
chromosome

s 

LOM of 9623 
CpGs 

GOM of 2166 
CpGs 

100% CDCA7 variants Yes 25%  
Illumina 
Infinium 
BeadChip 

Immunodeficiency-
centromeric instability-

facial anomalies 
syndrome 4 (616911) 

Multiple 
chromosome

s 

LOM of 8708 
CpGs 

GOM of 4120 
CpGs 

100% HELLS variants Yes 25%  
Illumina 
Infinium 
BeadChip 
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Genitopatellar syndrome 
(606170) 

Multiple 
chromosome

s 
~700 CpGs 100% KAT6B variants Yes 50% 

Illumina 
Infinium 
BeadChip 

[15,29] 

Say–Barber–Biesecker–
Young–Simpson 

syndrome (603736) 

Multiple 
chromosome

s 
~800 CpGs 100% KAT6B variants Yes 50% 

Illumina 
Infinium 
BeadChip 

[15,29] 

Werner syndrome 
(277700) 

Multiple 
chromosome

s 

LOM of 614 
CpGs 

GOM of 511 
CpGs 

100% WRN variants Yes 25%  
Illumina 
Infinium 
BeadChip 

[15] 

Williams syndrome 
(194050) 

Multiple 
chromosome

s 

1413 CpGs 
(mostly GOM) 100% 7q11.23 deletions Yes 50% 

Illumina 
Infinium 
BeadChip 

[15] 

7q11.23 duplication 
syndrome (609757) 

Multiple 
chromosome

s 

508 CpGs 
(mostly LOM) 100% 7q11.23 duplications Yes 50% 

Illumina 
Infinium 
BeadChip 

[15] 

Progressive supranuclear 
palsy (601104) 

Multiple 
chromosome

s 

GOM of 6110 
CpGs 

LOM of 2818 
CpGs 

100% MAPT variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[15] 

Frontotemporal dementia 
(600274) 

Multiple 
chromosome

s 

LOM of 387 
CpGs 

GOM of 142 
CpGs 

100% MAPT variants Yes 50% 
Illumina 
Infinium 
BeadChip 

[15] 

Cornelia de Lange 
syndrome (122470, 

300590, 610759) 

Multiple 
chromosome

s 

GOM of 563 
CpGs 

LOM of 361 
CpGs 

100% NIPBL, SMC1A, 
SMC3 variants 

Yes 50% 
Illumina 
Infinium 
BeadChip 

[44] 

SETD1B-related 
syndrome 

Multiple 
chromosome

s 

3340 CpGs 
(mostly GOM) 100% 

12q31.24 
deletions/SETD1B 

variants 
Yes 50% 

Illumina 
Infinium 
BeadChip 

[45] 

Prader–Willi syndrome 
(176270) 15q11.2 SNURF GOM 99% 

• pat deletion 
of 15q11q13 

• UPD(15)ma
t 

Yes 

<1% for primary 
epimutations or 

UPD, 
50% for pat 

deletions 

MS-MLPA 
MS-

pyrosequencin
g 

[46–50] 
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Angelman syndrome 
(601623) 15q11.2 SNURF LOM 80% 

• mat 
deletion of 15q11q13 
• UPD(15)pat 

Yes 

<1% for primary 
epimutations or 

UPD, 
50% for mat 

deletions 

MS-MLPA 
MS-

pyrosequencin
g 

[47,49,51–
55] 

Temple syndrome 
(616222) 14q32 MEG3/DLK1 

LOM 100% 

• UPD(14)ma
t 

• pat deletion 
of MEG3/DLK1 IG-

DMR 
• chromosom

al rearrangements 

Yes 

<1% for primary 
epimutations or 

UPD, 
50% for pat 

deletions 

MS-MLPA [56–60] 

Kagami–Ogata Syndrome 
(608149) 14q32 

MEG3/DLK1 
and/or 

MEG3 GOM 
100% 

• UPD(14)pat 
• mat 
deletion of 

MEG3/DLK1 IG-
DMR 

• chromosom
al rearrangements 

Yes 

<1% for primary 
epimutations or 

UPD, 
50% for mat 

deletions 

MS-MLPA [60–63] 

Beckwith–Wiedemann 
syndrome (130630) 

11p15.5–
11p15.4 

IC2 LOM 

80% 

• UPD(11)pat 
(up to 10% with 

whole genome pat 
UPD) 

• mat IC1 
deletion or SNVs   

• mat SCMC 
SNVs (see MLID) 

• chromosom
al rearrangements 

Yes 

<1% for primary 
epimutations or 

UPD, 
50% for mat IC1 

deletions or SNVs, 
increased for mat 

SCMC SNVs 

MS-MLPA 
MS-

pyrosequencin
g 

[64–69] 

IC2 LOM 
+ 

IC1 GOM 

IC1 GOM 

Silver–Russell syndrome 
(1800860) 11p15.5 

IC1 LOM 

50% 

• pat deletion 
of IC1 

• UPD(11)ma
t (rarely whole 

genome mat UPD) 
• mat SCMC 
variants (see MLID) 
• chromosom

al rearrangements 

Yes 

<1% for primary 
epimutations or 

UPD, 
50% for pat IC1 

deletions, 
increased for mat 

SCMC SNVs 

MS-MLPA 
MS-

pyrosequencin
g 

[66,70–82] IC2 GOM 
+ 

IC1 LOM 
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7 
MEST GOM 

+ 
GRB10 GOM 

4–10% 
UPD(7)mat (rarely 
whole genome mat 

UPD) 
<1% 

Pseudohypoparathyroidis
m 1b (603233) 20q13.32 GNAS LOM 100%  

• mat 
deletions/duplicatio
ns of GNAS DMRs 
• UPD(20)pat 

Not 
reported 

<1% for primary 
epimutations or 

UPD, 
50% for mat 

deletions/duplicatio
ns 

MS-MLPA [83–91] 

Transient neonatal 
diabetes mellitus (601410) 

6q24 PLAGL1 LOM 70% 

• UPD(6)pat 
• chromosom

al rearrangements 
• ZFP57 

variants (see MLID) 

unknown 

<1% for primary 
epimutations or 

UPD, 
25% with parents 
carrying ZFP57 

variants 

MS-MLPA [92–94] 

MLID 
Multiple 

chromosome
s 

LOM of 
multiple DMRs 

• 50%
–75% of 

TNDM cases 
with PLAGL1 

LOM 
• 20%
–50% of BWS 

cases with 
IC2 LOM 

• 9.5%
–30% of SRS 
cases with 
IC1 LOM 

• 0%–
6.3% of PHP-
1b cases with 
GNAS LOM 

• Maternal-
effect SCMC variants 
• Zygotic 
ZFP57 variants 

Yes 

<1% for primary 
epimutations, 

Increased in case of 
maternal-effect 

SCMC variants or 
zygotic ZFP57 

variants 

MS-MLPA [95–118] 

Retinoblastoma (180200) 13q14 RB1 GOM 13% Not reported Yes <1% MS-MLPA [119–124] 

Lynch syndrome (609310) 3p22.2 MLH1/EPM2AI
P1 GOM up to 3% 

deletions or c.-
27C>A and c.85G>T 

substitutions 
Yes 

<1% for primary 
epimutations, 
50% in case of 

genetic alterations 

MS-MLPA [125–134] 



Genes 2020, 11, 355 9 of 34 

Lynch syndrome (120435) 2p21-p16 MSH2 GOM 1%–3% EPCAM 3’deletions 

Yes, 
limited to 
epithelial 

tissues 

50% MS-MLPA 

Myotonic dystrophy type 
1 (160900) 19q13.3 DMPK GOM 

• 100
% in the 

congenital 
forms 

• 16%
–50% in non-

congenital 
forms 

Expansion of CTG 
repeat (>50) in the 

DMPK 3’-UTR 
Yes 

50% for FM and PM 
mothers  

MS-HRMA 
bisulphite 

sequencing 
[135–140] 

Amyotrophic Lateral 
Sclerosis (105550) 9p21.2 C9orf72 GOM 10%–30% 

Expansion of 
GGGGCC repeat in 
the C9orf72 5’UTR 

Yes 50% bisulphite 
sequencing [141–144] 

Facioscapulohumeral 
Muscular Dystrophy 

(158900, 158901) 
4q35 D4Z4 LOM 100% 

• Deletion of 
D4Z4 repeats 

(FSHD1) 
• SMCHD1 

and DNMT3B 
variants (FSHD2) 

Yes 50% for FSHD1, 
lower for FSHD2 

bisulphite 
sequencing [145–154] 

Loss of methylation (LOM); gain of methylation (GOM); uniparental disomy (UPD); full mutation (FM); premutation (PM); methylation-specific (MS); multiplex 
ligation probe-dependent amplification (MLPA); paternal (Pat); maternal (Mat); Beckwith–Wiedemann syndrome (BWS); Silver–Russell syndrome (SRS); Transient 
Neonatal Diabetes Mellitus (TNDM); pseudohypoparathyroidism 1b (PHP1b); Multi-Locus Imprinting Disturbances (MLID); Facioscapulohumeral Muscular 
Dystrophy (FSHD). 
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2. DNA Methylation Defects and Testing  

2.1. Developmental Delay and/or Intellectual Disability Disorders (DD/ID) 

2.1.1. Fragile X Syndrome 

Fragile X syndrome (FXS, OMIM#300624) is the leading inherited form of intellectual disability 
(ID), characterized by poor language development, hyperactivity, impulsivity, as well as other 
manifestations typical of an autism spectrum disorder. The estimated frequency of affected males in 
the general population is approximately 1 in 7000, and that of affected females 1 in 11000 [16]. The 
prevalence of carrier females at high risk of having an affected child is 1 in 250 or higher.  

The majority of affected individuals present an unstable mutation of >200 repeats (full mutation 
(FM)) of the CGG motif located at the 5’ untraslated region (UTR) of the FMR1 gene (in Xq27.3). This 
structural variation arises from a smaller maternal allele with 56–200 CGG repeats known as 
premutation (PM) during maternal meiosis. FM (usually not PM) undergoes methylation of cytosines 
within the repeat itself and in the CpG island in the upstream promoter region (methylated full 
mutation (MFM)) [17]. The epigenetic changes (DNA methylation and accompanying histone 
modifications) block transcription, preventing the production of the FragileX mental retardation  
protein (FMRP, loss-of-function effect), although the coding sequence of the FMR1 gene remains 
intact. All male carriers of methylated FM are affected by FXS, compared to only 30%–50% of carrier 
females. Rare male carriers of unmethylated FM alleles and with apparently normal intelligence have 
been described indicating that structural expansion and epigenetic changes are determined by 
different mechanisms [18–21]. More than 40% of FXS individuals present with either size or 
methylation mosaicism or both, and the percentage of methylation is negatively correlated with 
expression of the FMR1 locus and the severity of ID in males [22,23].  

The molecular diagnosis of FXS and carrier status is based on CGG repeat sizing and DNA 
methylation analyses. To date, the triplet repeat-primed PCR method represents a fast and precise 
approach to amplify expanded alleles into the FM range [24]. To analyze the methylation status of 
expanded alleles, a locus-specific Methylation-Specific Multiple Ligation-Dependent Probe 
Amplification (MS-MLPA) should be coupled to the PCR. Alternatively, triplet repeat-primed 
methylation-specific PCR may be used, combining allele-specific methylation PCR using a 
methylation-sensitive restriction enzyme and capillary electrophoresis. The latter method enables 
high throughput, high resolution and semiquantitative methylation assessments, as well as CGG 
sizing [25]. The sensitivity and specificity of these techniques are over 99%.  

Concerning recurrence risk, alleles in the normal range (<45 CGG repeats) do not involve a risk 
to offspring, despite positive family history. PM alleles are highly unstable during maternal 
transmission and tend to expand to FM in one generation. Expansions may also occur in paternal 
transmission, although remain within the PM range. All daughters of a PM male are obligatory PM 
carriers. Likewise, all daughters of rare unmethylated FM individuals are obligate carriers, due to 
inheritance of a PM allele. On the other hand, rare cases of methylated PM have the same recurrence 
risk of PM carriers. All FXS children have a PM or FM carrier mother, who has a 50% risk of passing 
on the expanded allele.  

2.1.2. Chromatin-Related Disorders 

Chromatin-Related Disorders (CRDs) are caused by genetic alterations of components of the 
epigenetic machinery and represent 5%–10% of developmental disorders [155]. These defects alter 
the balance of proteins controlling the expression of many genes by modifying DNA, histones and 
chromatin structure. According to the literature, 82 human conditions associated with mutations in 
70 epigenetic machinery genes are described [156]. Although these diseases may be distinguished by 
ancillary features and characteristic facial dysmorphisms, clinical and molecular overlap (including 
intellectual disability, growth retardation and immune dysfunction) likely resulting from convergent 
pathways is often reported. 
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The molecular diagnosis of CRDs is currently based on exome- and/or gene-targeted sequencing. 
Recently, blood-derived DNA methylation signatures (epi-signatures) have been identified as highly 
specific marks in an increasing number of CRDs, regardless of the primary chromatin alteration (i.e., 
histone methylation, histone acetylation, etc.) [15]. These epi-signatures are detected by interrogating 
whole-genome methylation arrays, such as the Illumina Infinium MethylationEPIC BeadChIP, and 
have proved to be a valid tool for distinguishing affected and unaffected individuals, as well as 
pathogenic and non-pathogenic variants [15]. The first example of the clinical utility of whole-genome 
epi-signatures has been reported for Claes–Jensen syndrome (CJS), an intellectual disability caused 
by mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 (H3K4me3) demethylase 
[26]. The use of a more extended methylation array has recently allowed researchers to demonstrate 
1769 differentially methylated CpGs, mostly within nine genomic regions in the peripheral blood of 
CJS-affected males and (with intermediate level) carrier females [27]. Consistent with the inverse 
correlation between DNA methylation and H3K4me3, most of these CpGs overlapping protein-
coding genes are located close to CpG islands and are hypomethylated in patients relative to controls 
[28]. 

An even more striking example of extensive methylation defect is provided by Sotos syndrome 
(SS), which is caused by mutations in the histone H3K36 methyltransferase NSD1 gene [30]. In this 
case, >7000 CpG were found hypomethylated in patients versus controls, consistent with the 
demonstrated interaction between H3K36me3 and de novo DNMTs [30]. Significantly, blood SS epi-
signatures allowed researchers to discriminate between pathogenic NSD1 mutations and benign 
NSD1 variants [30]. As part of their methylation defect, an acceleration of the Horvath’s epigenetic 
aging clock was also demonstrated in SS patients [31]. 

Another epi-signature detectable in peripheral blood was reported for Kabuki syndrome (KS) 
[32]. In this case, a similar methylation pattern was observed for both Type 1 (KS1, OMIM #147920) 
and type 2 (KS2, OMIM #300867) Kabuki syndrome variants, which are caused by mutations in the 
histone methyltransferase KMT2D and histone demethylase KDM6A genes, respectively. The 
methylation disturbance is complex, with 856 hypomethylated and 648 hypermethylated CpGs, and 
the most differentially methylated regions overlap with protein-coding genes and CpG islands, 
including the MYO1F gene and the HOXA5 and HOXA-AS3 promoters. This epi-signature allowed 
researchers to distinguish KS resulting from KMT2D loss of function mutations from KS-like 
phenotypes with other etiologies. Moreover, the comparison of the KS-specific epi-signature with 
that of healthy controls allowed researchers to re-classify variants of unknown significance (VUS) 
into benign and likely pathogenic variants. A similar result has been obtained for CHARGE 
syndrome (coloboma, heart anomaly, choanal atresia, retardation, genital and ear anomalies, OMIM 
#214800), whose specific epi-signature has been used for classifying the pathogenicity of VUS in the 
chromodomain-containing helicase CHD7 gene [33]. Interestingly, methylation patterns also allowed 
researchers to discriminate between CHARGE and Kabuki cases with extensive clinical overlap. In 
particular, HOXA5 is hypermethylated in both CHARGE and Kabuki-specific signatures and may 
account, together with a few other targets, for some of the clinical overlap between these disorders, 
but the majority of CpGs of the CHARGE epi-signature are specific and located within genes related 
to neural growth and development and other relevant functions.  

Methylation abnormalities in 16 regions across the genome constitute the highly specific epi-
signature in the peripheral blood of patients with alpha thalassemia/mental retardation X-linked 
(ATRX) syndrome (OMIM #301040), which is caused by alterations in the chromatin remodeling 
factor ATRX [34]. This protein is involved in chromosome segregation, DNA repair, and 
transcriptional regulation. Moreover, ATRX is involved in the control of DNA methylation at 
subtelomeric and repetitive regions and has been shown to interact with the methyl-binding protein 
MECP2. In patients with ATRX syndrome, the majority of the CpGs of its epi-signature are 
hypermethylated. These abnormally methylated CpGs are not restricted to telomeric and 
pericentromeric regions, but include promoter-associated CpG islands and protein-coding genes, 
such as those of the transcriptional regulators PRDM9, ZNF274 and ZNF300, possibly contributing 
to the ATRX syndrome phenotype.  
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Another example of a highly specific epi-signature is provided by Floating–Harbor syndrome 
(FHS, OMIM #136140), which is associated with heterozygous variants in the chromatin remodeling 
SRCAP gene. A total of 28 hyper or hypomethylated regions preferentially occurring in CpG islands, 
including those associated with the FIGN and STPG2 (hypermethylated), and MYO1F and RASIP1 
(hypomethylated) genes, have been identified in these patients [35]. Specific epi-signatures have also 
been demonstrated in patients carrying variants in different subunits of the BRG1-associated factors 
(BAF) chromatin remodeling complex (disorders also known as BAFopathies). The finding of similar 
methylation patterns (e.g., consistently hypermethylated regions overlapping the keratin KRT8 and 
KRT18 genes) in Coffin–Siris syndrome (OMIM #135900, 614608, 614609), Nicolaides–Baraitser 
syndrome (OMIM #601358) and chromosome 6q25 deletion (OMIM #612863) cases confirms the 
functional link within this group of disorders [36]. Moreover, in these cases, the identified epi-
signatures have proven to be able to resolve ambiguous clinical cases, as well as to re-classify VUS.  

A different scenario was demonstrated for Activity-dependent neuroprotector homeobox 
(ADNP) syndrome (also known as Helsmoortel–Van der Aa syndrome, OMIM #615873). This 
disorder is associated with dominant negative truncating variants in the neuroprotective 
transcription factor ADNP gene. However, two distinct epi-signatures have been found in patients 
affected by this disease, suggesting its possible reclassification into two separate entities [37]. In 
particular, hypomethylation of ~6000 CpGs is associated with mutations in the amino-terminal half, 
while hypermethylation of ~1000 CpGs is associated with mutations involving the central nuclear 
localization signal of the ADNP protein [37]. The two epi-signatures are only partially overlapping 
and both involve genes mostly related to neuronal functions. These methylation patterns have proven 
to be able to identify cases of ADNP syndrome within cohorts of patients with unresolved 
developmental delay (DD)/ID. 

Specific epi-signatures are also associated with DNMT variants. In particular, patients affected 
by Autosomal Dominant Cerebellar Ataxia with Deafness and Narcolepsy (ADCA-DN, OMIM 
#126375), which is caused by dominant missense variants in the Replication Foci Targeting Sequence 
of DNMT1, show both moderate global DNA hypomethylation, and hypermethylation of specific 
loci, including gene bodies, intergenic regions, promoters and CpG islands [29,38]. Hereditary 
Sensory Neuropathy with Dementia and Hearing Loss (HSAN1E, OMIM #614116) is caused by 
mutations in different residues of the same domain of DNMT1, and has strong clinical overlap with 
ADCA-DN. Patients affected by HSAN1E also have moderate global hypomethylation and specific 
hypermethylation that have both been linked with neurological disease, but it is still unclear how 
similar or different the epi-signatures of these two disorders are [39]. Opposite methylation changes 
have been found in Tatton-Brown–Rahman syndrome (TBRS, OMIM #615879) and Heyn–Sproul–
Jackson syndrome (HESJAS, OMIM #618724), which are associated with loss of function and gain of 
function variants in the DNMT3A gene, respectively. Loss of methylation of 388 regions 
corresponding to intergenic regions and CpG island shores significantly enriched at genes involved 
in development and growth pathways, as well as an acceleration of the Horvath’s epigenetic aging 
clock, have been described in TBRS patients [40]. Conversely, hypermethylation in the majority of 
deregulated regions, including evolutionary conserved regions associated with Polycomb-regulated 
developmental genes, were found in HESJAS cases [41]. Concerning Immunodeficiency with 
Centromeric Instability and Facial Anomalies syndrome (ICF), different epi-signatures have been 
demonstrated in blood DNA, in the four molecular subgroups of this disorder [42]. Patients affected 
by ICF1 (OMIM #242860), in which the genetic defects are represented by recessive loss of function 
mutations in DNMT3B, show hypomethylation of pericentromeric repeats (satellites two and three), 
subtelomeric regions, other repetitive elements, and CpG island-associated promoters of germline-
specific genes. The epi-signatures of ICF2 (OMIM #614069), ICF3 (OMIM #616910) and ICF4 (OMIM 
#616911) that are associated with recessive variants of the transcription factors/chromatin modifiers 
ZBTB24, CDCA7 and HELLS, respectively, share with the ICF1 epi-signature hypomethylation of 
pericentromeric repeats, but are characterized by further specific hypomethylation of CpG-poor 
genomic regions with hallmarks of heterochromatin, including gene clusters expressed in a random 
or imprinted monoallelic manner. 
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Specific epi-signatures have been recently demonstrated in other CRDs, including 
Genitopatellar and Say–Barber–Biesecker–Young–Simpson syndromes, Werner syndrome, Williams 
and 7q11.23 duplication syndromes, progressive supranuclear palsy and frontotemporal dementia, 
Cornelia de Lange and SETD1B-related syndromes [15,29,44,45]. Details on the aetiology and 
methylation patterns of these disorders are reported in Table 1. Overall, limited overlap among the 
epi-signatures, mainly involving genes related to histone modifications (PRDM9, HIST1H3E, NSD1 
and SETDB1), has been demonstrated, which should allow concurrent classification of all CRDs 
through genome-wide mCpG analysis. As an example, only 217 out of 15,408 CpGs included in the 
epi-signatures of nine CRDs are shared by more than two conditions, and only 18 CpGs by more than 
three [29]. Blood methylation profiles are influenced by cell-type composition [157]. However, at least 
in a cohort of TBRS patients, the observed epi-signatures were not significantly influenced by cell-
type variation [40]. Moreover, for some CRDs, reproducible epi-signatures have been obtained in 
both peripheral blood leukocytes and fibroblasts, after filtering out tissue-specific differences [41,43]. 

2.2. Imprinting Disorders 

Imprinting Disorders (ImpDis) are a clinically heterogenous group of diseases, of which the 
common feature is dysregulation of imprinted genes [95]. Overall, ImpDis can be considered the 
prototype of disease for which the DNA methylation pattern that is detected in blood leukocytes is 
sufficient for diagnosis [95]. They generally present a methylation abnormality in the locus that is 
directly responsible for the clinical phenotype. Thus, molecular diagnosis is based on the finding of 
loss or gain of methylation (LOM or GOM) of the germline-derived DMR regulating the imprinting 
of the locus (also known as the Imprinting Centre (IC)). However, a subgroup of patients often 
showing more complex phenotypes have Multi-Locus Imprinting Disturbances (MLIDs) [96]. 
Imprinted methylation abnormalities are often associated in cis with genetic defects (e.g., Copy-
Number variants (CNVs), Uniparental Disomy (UPD) or Single Nucleotide Variants (SNVs)), but can 
also occur in the absence of obvious genetic change as primary epimutations. MLIDs have been 
associated with genetic variants occurring in trans, either in the zygote or maternal oocyte [7]. 
Molecular diagnosis of ImpDis is commonly obtained with methylation analysis of the germline-
derived DMR of the associated locus [95]. Currently, the most commonly used approach to reach the 
molecular diagnosis is MS-MLPA on peripheral blood DNA, allowing simultaneous detection of 
DNA methylation and CNVs. A specific MS-MLPA assay for each ImpDis and a further one targeting 
to multiple loci for detecting MLID are commercially available [97]. Recently, the use of a genome-
wide methylation assay with methylation arrays has been implemented and proven to be particularly 
useful for detection of MLID [98–100]. Methylation abnormalities occurring in individual ImpDis and 
in MLID will be treated separately. 

2.2.1. Prader–Willi Syndrome and Angelman Syndrome 

Prader–Willi syndrome (PWS; OMIM #176270) and Angelman syndrome (AS, OMIM #105830) 
are neurodevelopmental ImpDis caused by different genetic and epigenetic defects in the 
chromosome 15q11–q13 region. Their prevalence at birth is 1:10,000–1:25,000 for PWS and 1:12,000–
1:20,000 for AS. The locus harbors the imprinted genes UEB3A and ATP10C that are expressed from 
the maternal allele, and a group of paternally expressed genes including five protein-coding genes 
(MKRN3, MAGEL2, NDN, C15orf2 and the bicistronic SNURF-SNRPN), a cluster of small-nucleolar 
RNA (snoRNA) genes including SNORD116, and several antisense transcripts (including the 
antisense transcript to UBE3A or SNHG14). Imprinting of the locus is controlled by a bipartite IC 
consisting of the PWS-IC and the AS-IC. The PWS-IC overlaps the SNURF:Transcription Start Site 
(TSS)-DMR and directs gene expression from the paternal chromosome, while the AS-IC corresponds 
to an oocyte-specific promoter that is necessary for de novo methylation of the PWS-IC in the 
maternal germline [46]. Some of the paternally expressed genes (e.g., MAGEL2) have their promoter 
marked by a somatic maternally methylated DMR that is hierarchically controlled by the SNURF:TSS- 
DMR. Loss of function or expression of the paternally expressed genes causes PWS, while loss of 
function or expression of the maternally expressed UBE3A results in AS [47]. 
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PWS is characterized by muscular hypotonia, intellectual disability, short stature, hyperphagia-
driven obesity, hypogonadotropic hypogonadism and small hands and feet [48]. The exact 
contribution of each gene of the 15q11-q13 cluster to the PWS phenotype is unclear. However, the 
minimal region lost in some patients carrying small atypical deletions harbors SNORD 116, which is 
therefore considered the major gene contributing to the PWS phenotype. The most common 
molecular defects are: 5–7 Mb de novo deletions, removing the entire imprinting cluster on the 
paternal chromosome (accounting for up 70%–75% of patients), maternal UPD of chromosome 15 
(found in 25% of patients), epigenetic silencing of the paternal allele caused by an imprinting defect, 
switching the paternal to maternal imprints (i.e., gain of methylation of the paternal SNURF:TSS- 
DMR allele) in 1% of the cases. The imprinting defect can be due to microdeletions of the IC or 
primary epimutations, occurring without any detectable change in the DNA sequence in cis. In less 
than 1% of the patients carrying paternal deletions, the defect can result from a parental balanced 
chromosome 15 rearrangement [48]. 

Over 99% of PWS cases can be diagnosed analyzing DNA methylation and CNVs at 15q11–q13 
by MS-MLPA. In all cases, gains in methylation of the SNURF:TSS-DMR and somatic 15q11–q13 
DMRs can be detected in blood DNA [49]. Microsatellite analysis should be performed to distinguish 
maternal UPD 15 from primary IC epimutation. The recurrence risk is dependent on the genetic 
mechanisms underlying the PWS. Low recurrence risk is reported for patients with de novo deletions, 
maternal UPD 15 and primary imprinting defect in absence of genetic mutation. Recurrence risk is 
higher in the presence of inherited chromosome 15 rearrangements, and corresponds to 50% in 
imprinting defect cases with paternal inheritance of IC microdeletions [50]. Early diagnosis, 
preferably in the nursery, offers the opportunity to greatly improve the health and quality of life of 
the patients and their families, as management of PWS is very age-dependent and focused on 
anticipatory guidance and addressing the consequences of the syndrome.  

AS is a neurogenetic disorder, characterized by microcephaly, severe intellectual deficit, speech 
impairment, epilepsy, electroencephalogram abnormalities, ataxic movements, tongue protrusion, 
paroxysms of laughter, abnormal sleep patterns, and hyperactivity [51]. The molecular defects are 
similar to those causing PWS, but affecting the maternal chromosome. Typical 5–7 Mb de novo 
deletions of 15q11.2–q13 on the maternal chromosome are found in 75% of patients, paternal UPD of 
chromosome 15 is found in 1%–2% [51], and imprinting defects (i.e., loss of methylation of the 
maternal SNURF:TSS-DMR) resulting from IC microdeletion or mosaic primary epimutation is found 
in 3% [49,52,53]. Furthermore, 5%–10% of AS patients have normal methylation, but present clinical 
variants in the maternal allele of UBE3A; 10%–15% are idiopathic. 

Consensus diagnostic clinical criteria for AS have been developed [54,55], but clinical diagnosis 
in infants and young children is sometimes difficult, as the unique clinical features of AS may not 
manifest until after one year of age, so confirmation by genetic testing can be very useful; it is also 
useful for determining the risk of recurrence. A methylation test of 15q11–q13 is required in patients 
with ID if the following clinical features are also present: normal or high birth weight, developmental 
delay and obesity with food-seeking behavior. As with PWS, for AS the molecular diagnosis is 
performed by MS-MLPA and microsatellite analysis of 15q11–q13. Targeted sequencing of UBE3A is 
required in case of a negative methylation test. The recurrence risk is low in the case of a de novo 
deletion, UPD and imprinting defect without IC-deletion. In case of UBE3A variants and imprinting 
defects caused by IC microdeletions, the recurrence risk is 50% if the defect is inherited from the 
mother, low if de novo arises and higher in the presence of maternal germline mosaicism [47]. 

2.2.2. Temple Syndrome and Kagami–Ogata Syndrome 

Temple syndrome (TS; OMIM #616222) and Kagami–Ogata syndrome (KOS; OMIM #608149) 
are very rare ImpDis caused by imprinting alterations of the 14q32.2 region. This region harbors 
several maternally expressed noncoding RNA genes (MEG3, RTL1as and many small nucleolar and 
micro RNAs, likely as a single polycistronic transcript), as well as paternally expressed genes (DLK1 
and RTL1), whose imprinting is regulated by the paternally methylated MEG3/DLK1:Intergenic (IG)- 
DMR. The somatic MEG3:TSS–DMR and MEG8:Int2–DMR are methylated in the paternal and 



Genes 2020, 11, 355 15 of 34 

maternal chromosome, respectively, and their methylation is hierarchically controlled by the 
MEG3/DLK1:IG-DMR.  

TS is characterized by early-onset hypotonia, feeding difficulties, short stature, precocious 
puberty, obesity and brachydactyly. About 20% to 50% of patients have phenotypic overlap with 
Silver–Russell and Prader–Willi syndromes, especially in early childhood.  

The most common molecular mechanisms in TS are maternal UPD 14 (accounting for up to 78% 
of TS patients), paternal microdeletions of 14q32.2 (9.8%), and primary epimutations 
(hypomethylation) of the MEG3/DLK1:IG-DMR (ranging from 11% to 60%) [56,57]. These lesions lead 
to overexpression of the paternally expressed genes and expression loss of DLK1 [58]. Recently, 
intrachromosomal triplications with runs of homozygosity (rare, postzygotic events, with 
undetectable mosaicism rate) have been reported as a potential mechanism causing segmental 
uniparental disomy in TS [59]. Mosaicisms occur in about 50% of cases. The diagnosis is reached 
using MS-MLPA and demonstrated as hypomethylation of the MEG3/DLK1:IG-DMR and 
MEG3:TSS–DMR. MLIDs have been reported in TS but not in KOS patients [60]. Recurrence risk 
depends on the molecular mechanism; low recurrence risk is present in case of UPD unless an 
inherited rearrangement of chromosome 14 is present, in case of microdeletions unless a balanced 
rearrangement or germinal mosaicism is present in the mother, and in case of primary methylation 
defects. KOS is a severe, extremely rare condition characterized by peculiar facial features, 
polyhydramnios and omphalocele, abnormality of the costal arch, bell-shaped thorax and early 
lethality. The molecular defects in patients with KOS result in lack of expression of the maternally 
expressed genes and overexpression of DLK1. The diagnosis can be obtained by MS-MLPA 
demonstrating hypermethylation of the MEG3/DLK1:IG-DMR and MEG3:TSS–DMR [61]. The most 
common molecular mechanisms are UPD14 pat (about 60%), maternal microdeletions of 14q32.2 of 
variable size, but mostly including the MEG3/DLK1:IG-DMR and/or MEG3:TSS–DMR (20%) (rare 
microdeletions involve the maternally expressed noncoding RNAs [62]) and primary epimutations 
(hypermethylation) of the DLK1/MEG3:IG-DMR (20%). One single report describes mosaic pat 
UPD14 [63]. Genetic counselling for recurrence risk is based on the molecular mechanisms. UPD, 
unless related to an inherited rearrangement of chromosome 14, has low recurrence risk; 
microdeletions, if a balanced rearrangement is not present in the mother or a germinal mosaicism 
exists, have a low recurrence risk; primary DMR methylation defects have a low recurrence risk.  

2.2.3. Beckwith–Wiedemann Syndrome and Silver–Russell Syndrome 

Beckwith–Wiedemann syndrome (BWS, OMIM #130650; prevalence at birth: 1:10500) and 
Silver–Russell syndrome (SRS; OMIM #180860; prevalence at birth 1:30,000/1:100,000) are different 
ImpDis, both associated with the imprinted genes of chromosome 11p15. BWS is characterized by 
variable clinical features, which may include macroglossia, abdominal wall defects, overgrowth, 
lateralized overgrowth, organomegalia and predisposition to embryonal tumors [64]. A recent 
international consensus document has recognized the existence of a Beckwith–Wiedemann spectrum 
(BWSp) covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 
11p15.5 molecular anomaly [64]. The typical BWS molecular abnormalities affect one or both of two 
functional domains of the imprinted gene cluster located at chromosome 11p15.5–11p15.4 [65]. The 
telomeric domain harbors the insulin-like growth factor 2 (IGF2) gene that is expressed from the 
paternal allele and encodes a protein promoting fetal growth, and H19, which is expressed from the 
maternal allele and encodes a non-translated long non-coding RNA with growth inhibitory 
properties. Their reciprocal imprinting is regulated by the H19/IGF2:IG-DMR (also known as IC1), 
whose unmethylated maternal allele acts as a CTCF-binding-dependent insulator. The centromeric 
domain harbors a group of genes expressed from the maternal chromosome, including the growth 
inhibitor CDKN1C. These genes are repressed on the paternal chromosome by the long non-coding 
RNA KCNQ1OT1, whose promoter is maternally methylated and overlaps the KCNQ1OT1:TSS-DMR 
(also known as IC2). 

A molecular defect affecting imprinted genes in the chromosome region 11p15 can be detected 
in ~85% of patients [64,65]. DNA methylation changes are the most frequent abnormalities. IC2 LOM 
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leading to KCNQ1OT1 upregulation and CDKN1C repression in the maternal chromosome can be 
found in ~50% of cases. About one third of these patients shows MLID (see below). 5%–10% of BWS 
patients have IC1 GOM that results in increased IGF2 and reduced H19 expression on the maternal 
chromosome. In about one third of these cases, IC1 LOM is associated with maternal 1.4–2.2 Kb 
deletions or single nucleotide variants (SNV) inside IC1, which are believed to be predisposed to the 
methylation defect (secondary epimutations). Both IC1 GOM and IC2 LOM resulting from mosaic 
segmental paternal 11p15 UPD (upd(11)pat) can be found in 20% of patients. Up to 10% of these have 
mosaic genome-wide UPD (paternal unidiploidy). IC1 GOM or IC2 LOM, or both, can also be 
detected in BWS patients with 11p15 chromosome abnormalities, which account for about 1% of cases 
and correspond to more frequent paternal duplications and rare maternal deletions. About 5% of 
BWS cases have normal 11p15 methylation and carry intragenic loss of function maternal variants in 
CDKN1C.  

Molecular diagnosis of BWS is obtained by detection of abnormal methylation of IC1, IC2 or 
both, and is most commonly reached by using MS-MLPA, which also recognizes CNVs [64,65]. A 
further microsatellite analysis is needed to confirm upd(11)pat, and Sanger sequencing is needed to 
detect possible clinical variants in IC1 and CDKN1C. A total of 15% idiopathic cases can be due to 
low-level mosaicism or other undefined mechanisms. Indeed, mosaicism is a major challenge for 
molecular diagnosis of BWS and SRS [66]. Modest methylation abnormalities may not be detected, 
because of the limited sensitivity of the method used, leading to false negative results. In some BWS 
patients, differences in IC1 and IC2 methylation have been observed between blood and tongue, and 
in one case even between the two sides of the tongue [67,68]. Thus, in case of unequivocal clinical 
diagnosis and negative molecular testing in blood, analysis of DNA derived from other tissues (e.g., 
fibroblasts, oral mucosa) might be considered [64].  

The recurrence risk for BWS is generally low in case of upd(11)pat and IC1 and IC2 epimutation. 
However, the cases with IC1 GOM and carrying IC1 deletion/SNV have a 50% risk of transmitting 
the disease via maternal transmission. In addition, increased recurrence risk has been reported in 
cases with MLID with maternal-effect clinical SNVs (see ref 113 and MLID section). Moreover, high 
recurrence risk via maternal transmission has been described in rare cases of IC2 LOM with 
KCNQ1OT1 rearrangements or clinical SNVs [69]. Furthermore, a 50% recurrence risk is also present 
in the cases with clinical CDKN1C SNVs (only via maternal transmission), and in the cases of 
inherited chromosomal rearrangements (parental bias depends on the type of mutation).  

SRS is a congenital developmental disorder characterized by pre- and post-natal growth 
retardation, craniofacial features (triangular shaped face and broad forehead), relative macrocephaly 
at birth, body asymmetry and feeding difficulties. Although clinical scoring systems have been 
proposed by several groups [70–72], the accuracy of the diagnosis is often difficult in less severely 
affected individuals, because of clinical heterogeneity and attenuation of clinical features with aging. 

SRS can be regarded as the genetically (and clinically) opposite disease to BWS, as demonstrated 
by specular molecular defects at chromosome 11p15 [73,74]. The primary molecular cause of SRS is 
IC1 LOM, which leads to reduced IGF2 and increased H19 expression and accounts for 40%–60% of 
patients [70]. In a subgroup of cases, IC1 LOM is present in mosaic form and its detection is 
challenging, because tissues other than blood may be more severely affected [75]. In rare cases, IC1 
LOM is associated with in cis microdeletions within the paternal IC1 [76]. In a significant proportion 
(15%–38%) of IC1 LOM cases, the methylation defect affects also other DMRs (see MLID section) [77]. 
Duplications (generally of maternal origin) and deletions affecting the 11p15.5 imprinting cluster 
account for 1%–2% of patients [78]. Single familial cases with gain of function CDKN1C or loss of 
function IGF2 variants and normal methylation have also been reported [79,80]. The locus 11p15.5 is 
not the only imprinting locus to be involved in SRS—total or segmental maternal UPD of 
chromosome seven (upd(7)mat) is found in 5%–10% of patients [81,82]. The critical region of this 
chromosome contributing to the SRS phenotype has not been established yet, although there are 
currently three candidate imprinted loci (MEST/PEG1, GRB10 and PEG10) in which an isolated 
epigenetic change may conceivably lead to SRS phenotype. Patients with SRS-like phenotype may 
have abnormalities affecting the 14q32 imprinted gene cluster, consistent with clinical overlap 
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between SRS and TS [56]. The molecular aetiology of SRS remains unknown in about 30%–40% of 
patients.  

Diagnostic genetic testing of SRS can be performed by detecting methylation disturbances and 
CNVs in IC1 of chromosome 11p15, and MEST:alt-TSS-DMR and GRB1:alt-TSS-DMR of chromosome 
seven, by MS-MLPA. Microsatellite analysis is needed to confirm upd(7)mat and upd(11p15)mat. The 
recurrence risk for SRS is low in case of upd(7)mat and primary IC1 epimutation, but it is 50% with 
parental bias in cases of inherited chromosomal rearrangements/clinical variants/IC1 microdeletions, 
and is increased in cases of MLID with maternal clinical variants (see MLID section).  

2.2.4. Pseudohypoparathyroidism 

Pseudohypoparathyroidism (PHP) represents a group of disorders characterized by resistance 
to the parathyroid hormone (PTH) leading to hypocalcemia and hyperphosphataemia [83]. PHP is 
also defined by several clinical features such as brachydactyly, short stature, stocky build, obesity, 
round face and subcutaneuous ossification, also known as Albright hereditary osteodsystrophy 
(AHO). In 50%–75% of the cases, cognitive impairment is also present. 
Pseudopseudohypoparathyroidism (PPHP, OMIM #612463) is characterized by AHO, without 
hormone resistance [84]. PHP and PPHP are primarily caused by a molecular defect of the GNAS1 
locus that encodes the G protein (Gs-alpha) involved in the signaling pathway of PTH and other 
hormones, through the activation of cAMP [85]. The GNAS1 locus is located in chromosome 20q in a 
region regulated by imprinting [86]. Most of the tissues show biallelic GNAS1 expression, while 
predominant maternal expression is present in endocrine tissues, such as the thyroid, ovary and 
pituitary gland.  

Based on clinical features, PTH hormone resistance, cAMP response and protein Gs-alpha 
activity, PHP is classified in PHP Ia (OMIM #103580), PHP Ib (OMIM #603233), PHP Ic (OMIM 
#612462) and PPHP [87]. PHP Ia shows AHO features and, usually, multiple hormone resistance, 
decreased cellular cAMP response to PTH infusion and decreased erythrocyte protein Gs-alpha 
activity [88]. PHP Ib has renal PTH resistance, a decreased cAMP response to PTH infusion, normal 
erythrocyte Gs-alpha activity and patients do not show signs of AHO. PHP Ic is characterized by PTH 
resistance, generalized hormone resistance, AHO, decreased cAMP response to PTH infusion, and 
normal erythrocyte Gs-alpha activity. PPHP shows AHO without endocrine abnormalities, a normal 
cellular cAMP response to PTH infusion and decreased erythrocyte Gs-alpha activity. 

In 70%–80% of the cases, PHP Ia is caused by maternally inherited inactivating mutations of the 
GNAS1 gene [89]. In a few cases, large deletions, including part of or the whole gene, have been 
reported. Only PHP Ib is characterized by methylation abnormalities; in all these cases, at least one 
among the three maternally methylated DMRs and the somatic paternally methylated DMRs of the 
locus is affected [90]. In the familial form (15%–20% of the cases), which is associated with maternal 
microdeletions affecting the STX16 gene or the GNAS locus, the defect may be limited to the LOM of 
the GNAS A/B:TSS-DMR (in the case of STX deletion) or be extended to the other DMRs (in cases with 
GNAS locus deletion). In most of the sporadic cases, more than one DMR is involved. In 8%–10% of 
the PHP 1b cases, the methylation abnormality is caused by maternal UPD of chromosome 20 
(upd(20q)mat). MLID may be present in PHP 1b patients, although evidence is limited. PHP Ic 
patients have a maternal inactivating mutation in the C-terminal portion of GNAS1 that is required 
for receptor-mediated activation, while PPHP is caused by paternally inherited inactivating 
mutations (point mutations or large deletions) of the GNAS1 locus [91].  

Molecular diagnosis of PHP 1b is usually done by MS-MLPA to identify methylation defects and 
deletions encompassing the GNAS1 locus. Microsatellite analysis is required to identify upd(20q)mat. 
Recurrence risk for PHP 1b is low, unless a maternally inherited deletion in the STX16 or GNAS loci 
is present. 

2.2.5. Transient Neonatal Diabetes Mellitus 

Transient neonatal diabetes mellitus (TNDM, OMIM#601410; prevalence at birth: 1:400,000) is 
defined as an insulin-requiring hyperglycemia appearing during the first six months of life. In about 
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half of the neonates, diabetes is transient and resolves before five months. In a significant number of 
patients, type II diabetes appears later in life. Some patients present low birth weight and congenital 
abnormalities, such as macroglossia and umbilical hernia, while, less frequently, dysmorphic facial 
features, renal tract anomalies and cardiac anomalies are present [92].  

The major cause of TNDM (70% of the cases) is overexpression of the imprinted genes PLAGL1 
and HYMA1 on chromosome 6q24 [93]. This gene dysregulation can be caused by (i) paternal UPD 
of chromosome 6 (UPD(6)pat), (ii) paternally inherited duplication of 6q24 or (iii) maternal LOM of 
the PLAGL1:alt-TSS-DMR that controls the imprinting of the locus. In about 40% of the patients with 
LOM, the methylation defect is isolated, while the remaining cases have MLID. Around 50% of these 
patients carry loss-of-function recessive mutations of ZFP57, a transcription factor required for the 
maintenance of methylation during early embryonic development [94]. Molecular diagnosis is 
usually done by MS-MLPA to identify UPD(6)pat, paternal 6q24 duplications and single or multi-
locus LOM. Microsatellite analysis is needed to distinguish cases of paternal UPD from maternal 
LOM. Sanger sequencing is needed to identify clinical SNVs in the ZFP57 gene. Recurrence risk is 
low in cases of UPD(6)pat and single-locus LOM, it is 50% in cases with paternally inherited 
duplications, and 25% in MLID cases with clinically significant ZFP57 SNVs. 

2.2.6. Multilocus Imprinting Disturbances 

Epimutations associated with ImpDis may affect not only single but also multiple imprinted loci, 
which may become abnormally methylated throughout the genome. This phenomenon has been 
defined as a Multilocus Imprinting Disturbance (MLID) [7]. The first reported evidence is represented 
by a few cases of TNDM, which, in addition to 6q24 LOM, also displayed LOM at the 11p15 IC2 and 
led the researchers to hypothesize that the TNDM and BWS loci were functionally related [101,102]. 
Since then, a series of targeted and genome-wide studies revealed that MLID is a recurrent event in 
most ImpDis. As for the epimutations limited to a single locus, for MLID, intra- and inter-tissue 
mosaicism is observed [103]. The reported frequency of MLID varies among ImpDis and appears 
quite heterogeneous in cohorts with the same disorder, probably biased by the use of different and 
targeted rather than genome-wide approaches. The highest frequency (50%–75%) has been reported 
in TNDM patients with PLAGL1:alt-TSS–DMR hypomethylation [104,105]. In BWS patients with IC2 
LOM, the incidence ranges between 20% and 50% [104–109], in SRS patients with IC1 LOM between 
9.5% and 30% [71,104,105,107,110], and in PHP-1b patients with GNAS imprinting defects from 0% 
to 6.3% [111,112]. MLID is rare in AS and PWS [105]. 

Although several targeted methods have been set up for the molecular diagnosis of MLID 
differing in its sensitivity and the number of DMRs analyzed, the MRC–Holland Multilocus MS-
MLPA probably represents the best approach for a preliminary, fast and cheap screening. Genome-
wide approaches based on the HumanMethylation 450 K and Infinium Methylation EPIC 850 K 
platforms allow us to investigate a higher number of imprinted DMRs and may increase the number 
of ImpDis cases scoring positive for MLID [100,113]. When genomic DNA from both blood leucocytes 
and oral mucosa were processed, some discrepancies in either the degree of methylation or number 
of affected DMRs were observed, consistent with the mosaic nature of the phenomenon [100].  

Epigenotype-phenotype correlation studies of MLID cases are limited and the clinical relevance 
of this phenomenon is still unclear. Indeed, the majority of the patients with MLID show clinical 
features that are characteristic of one ImpDis (more frequently, BWS, SRS or TNDM). However, in 
some cases, phenotypic differences have been described between the cohort with MLID and that with 
isolated methylation defects, suggesting that some imprinted loci may act as modifier genes [114,115]. 

Concerning the causal mechanisms of MLID, pathogenic variants in maternal-effect genes 
mostly coding for members (NLRP5, NLRP2, NLRP7 and PADI6) of the subcortical maternal complex 
have been found in women with reproductive problems and their offspring, including individuals 
with characteristic features of ImpDis (mostly BWS or SRS) and developmental delay or behavioral 
problems, and recurrent miscarriages [100,108,116–118]. Moreover, in patients affected by TNDM 
and with a specific pattern of MLID, recessive loss of function variants have been found in the ZFP57 
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gene, which is a zinc finger protein interacting with the methylated allele of germline-derived DMRs 
[158,159]. 

2.3. DNA Methylation Defects in Hereditary Tumours 

While somatically acquired epigenetic changes are common in tumor cells, a small fraction of 
patients harbor a constitutional epimutation predisposed to cancer. This mechanism is well 
documented for retinoblastoma and Lynch syndrome. Constitutive methylation has been described 
for other cancer predisposing and tumor suppressor genes, including BRCA1 and DAPK1 [160,161]. 
However, the frequency and relevance of this mechanism for tumor predisposition has yet to be 
determined, and currently it is not recommended to investigate epimutations in these genes in a 
diagnostic setting.    

2.3.1. Retinoblastoma  

Retinoblastoma (OMIM #180200), representing the most frequent ocular cancer of the pediatric 
age, is caused by biallelic inactivation of RB1 tumor suppressor gene [119]. Although it is well known 
that methylation of the RB1 promoter is a rather frequent inactivating event in retinoblastoma cancer 
cells, the role of constitutive epimutations has been poorly investigated and it has long been 
controversial [120–122]. However, a recent study demonstrated that RB1 promoter methylation can 
act as the first ‘hit’ in rare cases of retinoblastoma [123]. The presence of mosaic promoter methylation 
segregating with the disease was demonstrated by MS-MLPA in the blood of one out of 50 
retinoblastoma patients who tested negative for germline predisposing variants. Methylation affected 
the maternal allele, which is normally preferentially expressed [124], and had a strong impact on RB1 
expression. Bisulfite pyrosequencing confirmed the aberration in DNA isolated from oral mucosa, 
although at lower levels (mean ~34% vs. 49% in blood). The probability of transgenerational 
inheritance is very low, but these data suggest that surveillance for the onset of second primary 
malignancies is appropriate in such cases.  

2.3.2. Lynch Syndrome  

Lynch syndrome (LS) is caused by alterations in the mismatch repair (MMR) genes MLH1, 
MSH2, MSH6 and PMS2. Tumors arising in LS subjects usually display absent or reduced 
immunohistochemical expression of the protein corresponding to the gene that is altered in the 
germline. In addition, about 5%–15% of colorectal carcinomas (CRCs) display reduced MLH1 
immunostaining and MMR deficiency due to promoter hypermethylation. In most cases, epigenetic 
inactivation is a somatic event, but constitutional MLH1 hypermethylation has been reported in 
several patients [125–128]. Overall, this mechanism explains 1.5%–10.5% of CRCs associated with 
abnormal expression of MLH1, and might account for up to 3% of LS [128]. In a few cases, the 
epigenetic abnormality is accompanied by deletions or single nucleotide substitutions, namely a 
specific MLH1 haplotype bearing the variants c.27C>A and c.85G>T (secondary epimutation), and 
inheritance of these genetic variations and associated epimutation has been observed in some families 
[129]. However, more frequently, the aberrant methylation pattern is not accompanied by DNA 
sequence alterations (primary epimutation) and is usually reverted across generations, although 
occasional inheritance has been observed [130]. MLH1 epimutations tend to present as sporadic cases 
affected with multiple primary tumors, with an earlier average age at cancer diagnosis compared to 
the general population [128]. A handful of mosaic cases have been reported, including a case showing 
levels of methylated MLH1 alleles as low as 1% in blood and other tissues, which implies an 
opportunity to use very sensitive techniques [131]. The most commonly used method for MLH1 
promoter methylation analysis is MS-MLPA, usually performed on peripheral leukocytes [135]. 
However, while this method is valuable for screening, it is semiquantitative. Therefore, additional 
approaches should be used, including pyrosequencing and MS-melting curve analysis in cases 
scoring negatively, but with strong clinical suspicion [131]. Genome-wide approaches have shown 



Genes 2020, 11, 355 20 of 34 

that primary epimutations are focal events involving a 1.6 kb region encompassing the shared 
MLH1/EPM2AIP1 promoter [125]. 

Another LS gene, MSH2, is affected by constitutional secondary epimutations. These occur when 
the 3’ portion of the upstream EPCAM gene is deleted, causing transcriptional readthrough within 
the MSH2 sequence with production of EPCAM/MSH2 fusion transcripts and methylation and 
silencing of the MSH2 promoter [99]. These 3’ EPCAM deletions and associated MSH2 epimutations 
account for 1%–3% of the molecular defects identified in LS patients and are conveniently detectable 
by MLPA in epithelial tissues [132,133]. Patients with tissue-specific mosaic inactivation have a 
significantly lower incidence of endometrial carcinoma compared to carriers of canonical MSH2 
pathogenic variants [134]. Carriers of EPCAM deletions have a 50% chance of passing on the 
rearrangement to their children, and are managed like typical LS individuals for counseling 
purposes.   

2.4. Neuromuscular Diseases   

2.4.1. Myotonic Dystrophy Type 1 

Myotonic dystrophy type 1 (DM1; OMIM#160900) is an autosomal dominant disease 
characterized by myopathy, progressive muscle weakness, and multisystem complications. The 
disease results from a CTG repeat expansion (50 to several thousand with tissue-specific differences) 
in a CpG island of the 3’ untranslated region of the dystrophia myotonica protein kinase (DMPK) 
gene on chromosome 19q13.3 [135]. Several pathogenic mechanisms have been proposed for the 
repeat expansion including a cis-acting effect reducing DMPK gene transcription or translation, an 
alteration of the chromatin structure at the DMPK locus able to repress the expression of neighboring 
genes, and a toxic gain in the function of the resulting mRNA [136]. Based on the onset of the main 
symptoms, different clinical subtypes of the disease are recognized, including congenital (CDM1) 
and childhood onset cases, juvenile and adult onset ones, and late onset DM1 [135].  

CDM1 is the most severe form and is characterized by large repeat expansions mostly via 
maternal transmission [137]. Hypermethylation of the region upstream the CTG expansion has been 
demonstrated in the blood of CDM1 patients [138]. More recent studies revealed that methylation 
patterns flanking the CTG repeat are stronger indicators of CDM1 than the CTG repeat size, and 
suggested that DMPK methylation may account for the maternal bias of CDM1 transmission, and 
may serve as a more accurate diagnostic indicator of CDM1 in prenatal screening [137]. 
Hypermethylation of the upstream region occurs less frequently in DM1, and has been associated 
with earlier onset of the symptoms, larger CTG expansion and the maternal origin of the expanded 
allele [139]. In addition, a recent investigation revealed that methylation at the DMPK locus in blood 
DNA contributes significantly and independently of the CTG repeat length to the variability of 
muscular strength and respiratory profiles in DM1, suggesting that testing for it could improve 
prognostic accuracy for the patients [140].  

Several methods can be used to evaluate DMPK methylation, including methylation-sensitive 
high-resolution melting [139,162] or bisulfite sequencing and pyrosequencing approaches [137,140]. 
The DMPK locus contains a binding site for the insulator protein CTCF (CTCF1 site), and the recent 
models linking DNA methylation to the pathogenesis of DM1 suggest that methylation of this site 
may inhibit CTCF binding, thus altering the chromatin structure and gene expression of the locus 
135,140].  

2.4.2. Amyotrophic Lateral Sclerosis  

Hexanucleotide GGGGCC repeat expansions in the C9orf72 gene are the most frequent cause of 
amyotrophic lateral sclerosis and frontotemporal dementia (OMIM#105550). Expansions of hundreds 
to thousands of repeats are observed in the patients, but the pathological repeat length threshold is 
not defined yet [141]. Proposed pathological mechanisms include loss of function of the C9orf72 
protein, and the toxic effects of expanded sense and antisense C9orf72 RNA or proteins [141]. 
Hypermethylation of the C9orf72 promoter region upstream of the pathogenic repeats was observed 



Genes 2020, 11, 355 21 of 34 

in 10–30% of the patients, and linked to increased repeat length and reduced transcription of C9orf72 
[142]. Moreover, the expanded hexanucleotide repeat itself is methylated in almost all cases [143]. 
However, despite some evidence that intermediate alleles displaying increased C9orf72 methylation 
levels are associated with higher frequency of neuropsychiatric symptoms, the clinical utility of 
C9orf72 methylation deserves further investigation [144]. 

2.4.3. Facioscapulohumeral Muscular Dystrophy  

Facioscapulohumeral Muscular Dystrophy (FSHD) is the third most common neuromuscular 
condition and represents a disease in which genetic defects cause epigenetic changes which result in 
disease [145]. The pathogenic mechanism is based on overexpression of the retrogene Double 
Homeobox Protein 4 (DUX4) located on the D4Z4 macrosatellite repeat of the chromosome 4q35 
subtelomeric region. DUX4 is toxic at high levels, because it activates germline genes, impairs RNA 
and protein metabolism, and triggers inflammation, oxidative stress and apoptotic events in muscle 
tissue [146,147]. In most normal adult tissues, D4Z4 is hypermethylated and DUX4 is turned-off. In 
FSHD, a disease-specific DUX4 transcript (DUX4-fl) is transcribed from the most distal D4Z4 unit 
and stabilized by a polyadenylation signal encoded by disease-permissive alleles [148]. 

Two molecular classes of FSHD associated with similar clinical phenotypes are known. Patients 
of both classes harbor a DUX4 allele with a polyadenylation signal. However, 95% of patients 
(FSHD1) have a deletion of between one and 10 large repeated units of D4Z4 and the rest (FSHD2) 
inherit a mutation in the SMCHD1 or DNMT3B genes [148–150]. SMCHD1 and DNMT3B also act as 
modifiers of disease severity in FSHD1 subjects [149,151]. Thus, DUX4 derepression results from 
D4Z4 chromatin relaxation due to either the contraction of repeats or mutations in chromatin 
modifiers [148]. Furthermore, 4q35 genes may be epigenetically silenced, because of proximity to the 
telomere or because of a position-effect of D4Z4, and contraction of D4Z4 repeats may cause their 
derepression [152].  

Levels of D4Z4 methylation are negatively correlated with repeat array size, but also with 
disease severity and disease penetrance. After correction for repeat size, the variability in clinical 
severity in FSHD1 and FSHD2 individuals depends on individual differences in susceptibility to 
D4Z4 hypomethylation, with more severe cases showing quantitatively less methylation and less 
severely affected subjects more methylation [153]. Therefore, the molecular diagnosis of FSHD 
requires a combination of genetic and epigenetic tests. The evaluation of D4Z4 methylation levels by 
bisulfite sequencing in blood or saliva DNA allows discrimination between FSHD1 and FSHD2 [154]. 

3. DNA Methylation Analysis in Prenatal Diagnosis  

So far, the analysis of DNA methylation in prenatal diagnosis pertains only the ImpDis and the 
triplet expansion disorders FXS and CDM1. Although prenatal diagnosis of FXS and CDM1 is based 
on the sizing of the triplet repeat, coupling it with DNA methylation analysis may ameliorate 
diagnostic accuracy. Molecular tests can be offered during the prenatal period, based on the presence 
of: 
• Abnormal fetal and/or parental karyotypes involving chromosomes harboring imprinted loci;  
• Positive family history;  
• Fetal phenotypes suggesting ImpDis detected by ultrasound; 
• Females carrying PM or FM of FXS and CDM1. 

Although not currently recommended, it is expected that requests for prenatal testing of ImpDis 
in fetuses conceived by assisted reproductive techology (ART) may increase in the future based on 
the reported association with these procedures [163,164]. An accurate molecular prenatal diagnosis 
is often challenged by heterogeneity and frequent mosaicism of the genetic/epigenetic alterations [7]. 
In addition, the offered tests must take into account the source of fetal cells, because methylation 
patterns of embryonic and extraembryonic tissues may differ from those of adult tissues [165,166]. 
For these reasons, prior to offering prenatal diagnosis based on methylation testing, a detailed 
presentation of the technological limitations should be discussed with the parents; in particular, they 
should be made aware that a normal result does not necessarily exclude the suspected diagnosis. 



Genes 2020, 11, 355 22 of 34 

Moreover, for FXS, couples should be informed about the possible identification of a female fetus 
carrying a FM, who has (approximately) a 50% risk of being clinically affected. 

Methylation testing for ImpDis diagnosis can be performed on both chorionic villi samples 
(CVS) and amniotic fluid (AF). Indeed, germline imprinted DMRs (e.g., H19/IGF2:IGDMR and 
KCNQ1OT1:TSSDMR for BWS/SRS and SNURF:TSSDMR for PWS/AS) display in the placenta the 
same methylation levels as in the fetus; in addition, culturing of CVS/AF samples seems not to modify 
the imprinting pattern of ICs. However, some CpGs of the germline DMRs and the somatic DMRs 
(e.g. H19 and MAGEL2 promoters) could be hypomethylated in CVS and amniocytes, and should not 
be considered for prenatal diagnosis [165]. For FXS, it is preferable to perform the study in CVS after 
the twelfth week of gestation, because this locus is not fully methylated at earlier stages. Because of 
possible epigenetic mosaicism, it is important to verify the sensitivity of the experimental procedures, 
in order to maximize the diagnostic yield. In addition, false negative results may be related to the 
mosaic distribution of the epimutation within fetal tissues. At present, prenatal methylation testing 
is restricted to single disease-specific loci, although it is likely that array- and next generation 
sequencing-based assays will be implemented in the future. Given the limitations described above, 
the methods for determining DNA methylation in fetal tissues are the same used for postnatal testing 
and include MS-MLPA and methylation-specific pyrosequencing combined with molecular 
karyotyping for determining UPD and CNVs. However, the flowchart for prenatal testing is not 
necessarily identical to the one indicated for postnatal testing, and may be modified according to 
known molecular defects and specific clinical features. 

4. Perspectives and Challenges  

The possibility to diagnose cases with unidentified genetic defects or with variants of uncertain 
significance and re-classify monogenic disorders on the basis of epigenetic defects of multiple loci is 
a fascinating opportunity for DNA methylation testing. So far, DNA methylation analysis for 
diagnostic purposes has been limited to CRDs, some chromosome imbalances, Imprinting Disorders 
and a small number of other monogenic diseases. However, the number of disorders for which a 
specific DNA methylation signature can be identified is likely to become larger with the development 
of more extended arrays and next generation sequencing-based assays, and possibly include other 
genetic diseases in which DNA binding proteins or their cognate target sites are affected. An 
important advantage is that disease-specific methylation signatures can be often identified in blood, 
even if this is not the primary affected tissue, because major methylation reprogramming events occur 
in early embryogenesis and abnormal patterns may be perpetuated across development and tissues. 
Another advantage is that DNA methylation is a rather stable modification and is suitable for high 
throughput testing of multiple loci. 

Despite these positive expectations, DNA methylation analysis remains quite challenging. The 
presence of epigenetic mosaicism and tissue-specific patterns often requires highly sensitive 
techniques and accurate standardization to perform correct molecular diagnosis. Sophisticated 
algorithms are sometimes needed to adjust for cell-type composition [157]. It is likely that the 
emerging single cell methylome analysis will enable us to better dissect cell type-specific patterns 
and allow identification of even more subtle tissue-specific epimutations [167]. Another common 
problem is represented by variability due to batch effects in the results of genome-wide analyses, and 
expert bioinformatics work is needed to obtain reliable results. Finally, methylome analysis will likely 
lead to the identification of potential new candidates; the challenge will be to identify clinically 
significant associations.  
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Acronyms/Abbreviations  

AS Angelman syndrome 
ANDP Activity Dependent Neuroprotective Protein 
ATRX Alpha thalassemia/mental retardation X-linked 
BWS Beckwith–Wiedemann syndrome 
BWSp Beckwith–Wiedemann syndrome spectrum 
CDM1 congenital Myotonic dystrophy type 1 
CJS Claes–Jensen syndrome 
CNV Copy number variation 
CRD Chromatin-Related Disorders 
CVS chorionic villi samples 
DD/ID Developmental delay and/or intellectual disability disorders 
DM1 Myotonic dystrophy type 1 
DNMT DNA methyltransferase 
FM Full mutation 
FSHD Facioscapulohumeral Muscular Dystrophy 
FXS Fragile X syndrome 
gDMR Germline-derived differentially methylated region 
GOM gain of methylation 
IC Imprinting Centre 
IG-DMR Intergenic-differentially methylated region 
Imp Dis Imprinting Disorders 
KOS Kagami–Ogata syndrome 
KS Kabuki syndrome 
LS Lynch syndrome 
LOM Loss of methylation 
mat maternal 
mCpG methylation of cytosines preceding guanines 
MLID Multi-locus imprinting disturbances 
MMR mismatch repair 
MS-MLPA Methylation Specific Multiple Ligation-Dependent Probe Amplification 
pat paternal 
PHP1B Pseudohypoparathyroidism 1B 
PM premutation 
PTH parathyroid hormone 
PWS Prader–Willi syndrome 
SCMC Sub-cortical maternal complex 
SnoRNA small nucleolar RNA 
SNV Single-nucleotide variants 
SRS Silver–Russell syndrome 
SS Sotos syndrome 
TNDM Transient neonatal diabetes mellitus 
TS Temple syndrome 
TSS–DMR Transcription start site-differentially methylated region 
UPD uniparental disomy 
VUS variants of unknown significance 
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