
NUMBER 1 OF 1

AUTHOR QUERIES

DATE 8/13/2019

JOB NAME ECL

ARTICLE ECL-19-132

QUERIES FOR AUTHORS E. Villani et al.

THIS QUERY FORM MUST BE RETURNED WITH ALL PROOFS FOR CORRECTIONS

Please confirm the given names (pink) and surnames (blue) of authors have been identified correctly.

AU1) Please check and confirm the suggested running head.

AU2) Please provide the accessed date for references 7 and 8.

AU3) Please note that references “30” and “52” seem to be identical. Hence, reference “52” has been deleted and

renumbered accordingly both in the text and in the list to ensure sequential order. Please check and confirm.



REVIEW ARTICLE

Imaging Biomarkers for Dry Eye Disease

Edoardo Villani, M.D., Francesco Bonsignore, O.D., Elisa Cantalamessa, M.D., Massimiliano Serafino, M.D., and
Paolo Nucci, M.D.

Abstract: The clinical, scientific, economic, and regulatory impact of validated
biomarkers and surrogate endpoints has the potential to revolutionize the
approach to ocular surface diseases. At present, there is a growing interest in
developing biomarkers for dry eye disease, and other ocular surface disorders
and imaging are of the most promising approaches to this issue. Among the
several and constantly evolving imaging technologies, some tools that are aimed
to assess tear film stability and volume, meibomian gland morphology and
function, and ocular surface microanatomy are now supported by a good body
of evidence. To date, clinical trials on ocular surface diseases have slowly
started incorporating imaging biomarkers for disease diagnosis and stratification
and as surrogate endpoints. Major efforts are still needed, mainly aimed to
improve automatic acquisition and quantitative analysis, standardization
(standard operating procedures, normative databases etc.), and validation of
imaging biomarkers.

Key Words: Imaging—Biomarker—Clinical trial—Dry eye—Ocular
surface.

(Eye & Contact Lens 2019;00: 1–5)

T he definition of dry eye disease (DED) has been recently
amended by the Tear Film and Ocular Surface Society Dry

Eye Workshop II (TFOS DEWS II) to “Dry eye is a multifactorial
disease of the ocular surface characterized by a loss of homeostasis
of the tear film and accompanied by ocular symptoms, in which
tear film instability and hyperosmolarity, ocular surface inflamma-
tion and damage, and neurosensory abnormalities play etiological
roles.”1 This definition highlights the complexity of the disease,
driven by five different etiologic mechanisms able to have an
impact on several components of the ocular surface morphofunc-
tional unit.
The proper assessment of DED patients is a major issue in both

clinical practice and research.
As recently discussed in the TFOS DEWS II Diagnostic

Methodology Report, “no single ’gold standard’ sign or symptom
that correlates perfectly with the DED state has been established.”2

Main problems are related to the lack of agreement between
signs and symptoms, to their fluctuation over time, and to the
significant overlap between normal and DED distributions of
currently available metrics.2

Furthermore, the low success rate of recent clinical trials on DED,
although due to several not yet fully understood concomitant factors, is
pointing out the urgent need for the identification and validation
of minimally invasive biomarkers to be used for patient selection and
stratification and to monitor the response to the treatments.3–5

Biomarkers and Surrogate Endpoints: Concep-
tual Framework and Updated Definitions

Biomarkers and surrogate endpoints have significant potential for
improving and accelerating the translation of scientific concepts into
diagnostic and therapeutic approaches and technologies.6 Proper val-
idation and usage of these tools require, above all, common and shared
language as well as definitions and conceptual framework.6

For this reason, the FDA-NIH Joint Leadership Council recently
identified the harmonization of terms used in translational science
and medical product development as a priority need and developed
the BEST (Biomarkers, EndpointS, and other Tools) glossary.7

This resource clarifies currently accepted definitions and describes
some of the hierarchical relationships, connections, and dependen-
cies among the terms it contains.7

A biomarker can be diagnostic, predictive, or prognostic and is
defined as a “characteristic that is measured as an indicator of normal
biological processes, pathogenic processes, or responses to an exposure
or intervention, including therapeutic interventions. A biomarker is not
an assessment of how an individual feels, functions, or survives.”6,7

A surrogate endpoint is defined as “an endpoint that is used in
clinical trials as a substitute for a direct measure of how a patient feels,
functions, or survives. A surrogate endpoint does not measure the
clinical benefit of primary interest in and of itself but rather is expected
to predict that clinical benefit or harm based on epidemiologic, ther-
apeutic, pathophysiologic, or other scientific evidence.” A validated
surrogate endpoint must be “supported by a clear mechanistic rationale
and clinical data providing strong evidence that an effect on the sur-
rogate endpoint predicts a clinical benefit.”6,7

The Role of Imaging
Medical imaging is increasingly used for screening, diagnosis,

prognosis, evaluating the natural history of disease, or monitoring
therapeutic efficacy.5

The potential advantages of imaging include objective measure-
ments, in vivo assessment, minimization of subjective bias, and, in
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clinical research, the opportunity to have masked, standardized,
and centralized evaluation of the images.5

Main limits of this approach are related to the availability of the
technology and to the need for standardization of image acquisi-
tion, analysis, and interpretation.
Almost all medical imaging processes involve some aspects of

standardization. However, in clinical practice, images are frequently
handled with limited formal quantification, and a certain degree of
variability among facilities and operators may have little or no impact on
the ability to provide a diagnosis. Differently, imaging biomarkers for
clinical trials require specific imaging process standards, extending
beyond those typically performed in the medical care of a patient.
Variability, indeed, may result in increased variability in endpoint
measurements and may compromise the ability of the trial to achieve its
objectives.8

In a recent analysis, we showed the growing use of imaging
biomarkers in published clinical trials in ophthalmology, mainly for
patient selection and stratification and as secondary surrogate
endpoints.5

Imaging for Dry Eye Disease
At present, several technologies are available to assess the tear

film and ocular surface in DED patients, and their usage is now
reaching the clinical trials’ design. Looking at trials recently reg-
istered on ClinicalTrials.gov (available at: https://clinicaltrials.
gov/; search performed on Mar 28, 2019; study type: randomized
clinical trials; status: recruiting; the first 10 results), we found that
only 1/10 studies on “dry eye disease” included imaging bio-
markers as inclusion criteria and surrogate endpoints, whereas 5/
9 studies on “meibomian glands dysfunction” included imaging
biomarkers, mainly as surrogate endpoints (T1 Table 1).
The most widely used imaging approaches for DED patients and

the most promising potential imaging biomarkers are aimed to

assess tear film stability and volume, meibomian gland (MGs), and
corneal and ocular surface microanatomy ( T2Table 2).

Imaging to Assess Tear Film Stability
Tear film instability is one of the key elements of the DED vicious

cycle,1,9 and it is an important parameter to be considered for DED
diagnosis.2 Tear film break-up time is traditionally evaluated using
sodium fluorescein to enhance the visibility of the tear film (F-break-
up time [BUT]). F-BUT is a quick, inexpensive, and low-tech
approach and has become one of the most widely used clinical tests
for DED. Concerns related to the impact of sodium fluorescein on
the tear film, to difficulties in standardizing the volume of instilled
dye, and to the repeatability of the examination led to the develop-
ment of imaging systems aimed to quantify the tear film stability
without fluorescein instillation (noninvasive BUT [NI-BUT]).10

There are several commercially available NI-BUT systems,
based on topographic or videokeratographic methods that analyze
the interblink changes of reflected placido mires.10–13

Potential advantages of this approach include steady-state
respect and good repeatability and reproducibility data in healthy
subjects and DED patients.12,14 Moreover, these systems allow for
automatic qualitative and quantitative assessment of tear film sta-
bility and images and data storage. At present, main limits are the
lack of validated diagnostic cutoff values and of agreement among
the different systems, which cannot be used interchangeably,15,16

the wide range of specificity for DED diagnosis (76%–94%),2 and
the conflicting data on the correlations between NI-BUT and other
clinical parameters.12,13,17,18

Imaging to Assess Tear Film Volume
The quantitative assessment of tear film volume/secretion is an

important component of DED patients’ examination and a crucial
element for DED subclassification.2

TABLE 1. Imaging Biomarkers Usage in Current Clinical Trials on Dry Eye Disease and Meibomian Glands Dysfunction (https://clinicaltrials.gov/;
Search Performed on Mar 28, 2019; Study Type: randomized Clinical Trials; Status: Recruiting; the First 10 Results)

CT Number Status Imaging Biomarkers
Imaging Primary

Surrogate Endpoint
Imaging Secondary
Surrogate Endpoint

Clinical trials on “dry eye disease”
NCT03204903 Recruiting None None None
NCT02193490 Recruiting None None None
NCT03785340 Recruiting None None None
NCT03116776 Recruiting None None None
NCT02767258 Recruiting None None None
NCT03768115 Recruiting None None None
NCT03888183 Recruiting Surrogate endpoints.

Inclusion criteria: TMH and NIBUT
TMH 5/8: TMH, lipid layer thickness,

redness score, NIBUT
NCT03846453 Recruiting None None None
NCT03676335 Recruiting None None None
NCT03460548 Recruiting None None None

Clinical trials on “meibomian
glands dysfunction”
NCT03434106 Recruiting Surrogate endpoints 1/5: NIBUT 1/2: TMH
NCT03060005 Recruiting Surrogate endpoints 2/6: NIBUT, TMH None
NCT03652051 Recruiting None None None
NCT03162497 Recruiting Surrogate endpoints OCT tear film thickness 2/13: lipid layer thickness, meibography
NCT03318874 Recruiting Inclusion criteria: NIBUT None None
NCT03422146 Recruiting None None None
NCT03708367 Recruiting None None None
NCT03396913 Recruiting Surrogate endpoint None 1/12: meibography
NCT03492541 Recruiting None None None

OCT, optical coherence tomography.

E. Villani et al. Eye & Contact Lens � Volume 00, Number 00, Month 2019

2 Eye & Contact Lens � Volume 00, Number 00, Month 2019

Copyright © 2019 Contact Lens Association of Ophthalmologists, Inc. Unauthorized reproduction of this article is prohibited.

http://ClinicalTrials.gov
https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/


For many decades, the Schirmer test has been the most popular
test for tear film quantitative assessment, and it is still included
among the preferred tests for DED diagnosis in the American
Academy of Ophthalmology Dry Eye Preferred Practice Pattern.19

However, major concerns related to its invasiveness and poor
repeatability20 led to major efforts aimed to validate more direct,
noninvasive tests for tear film volume quantification.
The tear menisci, formed by the tears lying at the junctions of the

bulbar conjunctiva and the margins of both the upper and lower
eyelids, contain the majority of tear fluid, and the quantitative
analysis of the tear menisci is, at present, the most direct approach
to evaluate the tear film volume.2 Different systems can perform
meniscometry, but the largest amount of evidence currently sup-
ports the use of optical coherence tomography (OCT) assessment
of the tear meniscus, extensively studied in the past 10 years.2,21,22

Upper and lower height, area, radius, and depth are, at present,
the most studied parameters, and their OCT assessment showed
good intra-rater and inter-rater repeatability, especially using
spectral-domain OCT.23,24

The main advantages of OCT meniscometry are that this
technology is a noninvasive and steady-state respectful technique,
and image acquisition is easy and quick. On the contrary, image
analysis may be complex, time-consuming, and operator-
dependent, and the development of validated measurement soft-
ware is needed.2 Other major concerns are that measurements are
instrument-dependent2,24 and may be biased by conjunctivochala-
sis, disorders of lid margin congruity, and ocular surface–lid
apposition.21 Moreover, the combination of interfering factors
related to head, eye, and eyelid movements suggests the potential
clinical utility of developing systems for post-blink dynamic OCT
meniscometry.25

There are conflicting data on the diagnostic accuracy of this
technique and on its correlations with other dry eye tests.2,10,21 An
important issue is the heterogeneity of DED definitions and diag-
nostic algorithms adopted in the published studies. In light of the
TFOS DEWS II report, additional efforts should be made to vali-
date instrument-specific cutoff values, obtained starting from a stan-
dardized and widely accepted definition of DED and aimed to
subclassify the disease by identifying aqueous-deficient forms.

Imaging to Assess Meibomian Glands
Meibomian glands are currently recognized as a key element of

the ocular surface morphofunctional unit, and MGs’ dysfunction
(MGD), “a chronic, diffuse abnormality of the meibomian glands,
commonly characterized by terminal duct obstruction and/or
qualitative/quantitative changes in the glandular secretion,” is
known to be the leading cause of DED.26

Validated objective assessment of MGs would be essential for
DED patients’ subclassification and stratification and to monitor

the response to some treatments.27 Moreover, in vivo imaging
studies have demonstrated MG changes associated with aging28,29

and contributed to a better understanding of inflammatory/
hyposecretive DED30,31 and other ocular surface diseases.32,33

Technological evolution provided us several noninvasive (or
nearly noninvasive) tools,34 including infrared (IR) meibography,35

in vivo confocal microscopy (IVCM),36 and OCT meibography.37

In vivo confocal microscopy not only has a great potential
allowing for in vivo study of the ocular surface tissues at a cellular
level but also has major limitations mainly due to the small field of
view and to the lack of validated and user-friendly software for
image analysis.27 Moreover, IVCM analysis is purely morphologic,
without any tissue and cellular phenotyping, and recently published
data seriously challenge the interpretation of confocal images of
MGs acinar units.38

Optical coherence tomography meibography, performed by
a long coherence swept laser source, might provide interesting
and novel tridimensional information, but at present, we have only
preliminary data obtained with customized systems, and there is
need to standardize this approach and to obtain validated
biomarkers by this technology.37,39

Instead, IR meibography has been extensively studied, and its
use is supported by a large body of evidence.35 This type of in vivo
noninvasive examination can provide objective and repeatable,
qualitative and quantitative, assessment of MGs morphology.35

Moreover, the recent development of software for automated mea-
surement of MGs area40 is facilitating its increasing use in clinical
practice and research. Published data on this technique have dem-
onstrated its use for patients’ stratification and to predict and to
monitor the response to treatments,41–44 strongly supporting its
potentials as a useful biomarker and surrogate endpoint for clinical
research on MGD and other ocular surface diseases.
However, working on the validation of potential IR

meibography-based biomarkers, we have to consider that, at
present, this approach has some important limits, including the
poor diagnostic accuracy for MGD (when it is taken alone, without
functional data),45 the relatively low resolution, and the still sub-
jective interpretation of the “dark drop-out areas.”27

Imaging to Assess Cornea and Ocular
Surface Microanatomy
In vivo confocal microscopy allows clinicians and scientists to

perform a minimally invasive, high-resolution, steady-state
respectful assessment of the ocular surface at the cellular level.46,47

Systems currently available on the market are a white-light
confocal microscope (Confoscan 4.0; Nidek Co. Ltd., Gamagori,
Japan) and a laser scanning confocal microscope (HRT-III/Rostock
Cornea Module; Heidelberg Engineering GmbH, Heidelberg,
Germany). Both the instruments have been used in several studies

TABLE 2. Selection of the Currently Most Promising Potential Biomarkers for Dry Eye Disease

Structure or Condition Potential Imaging Biomarker

Tear film stability Noninvasive break-up time
Tear film volume Tear menisci height, area, radius, and depth
Meibomian gland Infrared meibography quantitative and morphologic parameters
Ocular surface inflammation Confocal assessment of corneal dendritic cells and other inflammatory cells
Corneal innervation Confocal assessment of subbasal corneal nerves (quantitative and morphologic parameters)
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on DED and the latter one able to go beyond the cornea, exploring
the limbus, the bulbar, and tarsal conjunctiva and the eyelids
margin, providing interesting images of several components of the
ocular surface morphofunctional unit.46,47

Interestingly, IVCM is able to provide information on three of
the five key etiologic elements included in the revised DED
definition proposed by the TFOS DEWS II1: the ocular surface
inflammation and damage and the neurosensory abnormalities.
About the inflammation, confocal studies described several

types and patterns of inflammatory cells,48 including dendritic
cells,49 activated keratocytes,50 and conjunctival51 and eyelid
inflammatory cells.30,52 At present, central corneal subbasal den-
dritic cells, interpreted as antigen-presenting cells, seem to be the
most promising potential confocal biomarker of inflammation.
These cells, in addition to showing increased density in DED pa-
tients (especially in the most “inflammatory types” of DED),49

seem to be useful to monitor the response to treatments and even
to predict the response to some therapies.53

About the epithelial damage, the literature reports conflicting
confocal data on corneal epithelial density47 and, more interest-
ingly, preliminary data on conjunctival goblet cell density and
squamous metaplasia (cell areas and nucleocytoplasmic ratios),
with good correlations between confocal and impression cytology
results.54–56

In vivo confocal microscopy allows for qualitative and quanti-
tative evaluations of corneal nerves, mainly of the subbasal nerve
plexus. Confocal studies showed DED-related decrease of nerves’
density and increase of nerves’ tortuosity.50,57–60 Moreover, con-
focal data suggested correlations among nerves’ changes, corneal
sensitivity, symptoms, and inflammatory cells density.57–60

In summary, IVCM offers an exciting bridge between clinical
and laboratory observations, enabling clinicians and scientists to
gain insight into alterations of the ocular surface microstructure.
However, at present, despite the progress achieved in image

quantitative analysis, main issues limiting the use of IVCM-based
biomarkers in clinical trials on DED include the limited availability
of this technology, the lack of validated software for fully
automated image analysis, and the lack of validated cutoff values.

CONCLUSIONS
Recent rapid technological evolution is providing several instru-

ments for imaging assessment of the ocular surface in health and
disease. However, the full understanding of new image meaning
and the development and validation of imaging biomarkers
requires more time.
At present, a few imaging approaches have been extensively

studied, obtaining growing evidence supporting their use as
potential biomarkers of tear film volume and stability, MGs, and
ocular surface microanatomy.
Tools for NI-BUT, OCT and other high-tech meniscometry, IR

meibography, and IVCM, taken together, are able to in vivo
investigate, in a steady-state respectful manner, four key etiologic
elements of DED (tear film instability, ocular surface inflammation
and damage, and neurosensory abnormalities)1 and to provide
information on tear film volume and MGs state, crucial elements
for DED subclassification.1

These imaging tools, increasingly used in clinical practice, might
play an important role also in clinical research, providing non-

invasive biomarkers (for patients’ diagnosis and stratification) and
surrogate endpoints. Major efforts are still needed, mainly aimed to
improve automated acquisition and quantitative analysis, standard-
ization (standard operating procedures, normative databases etc.),
and validation of imaging biomarkers.
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