

Tectono-metamorphic evolution of UHP Zermatt-Saas serpentinites: a tool for vertical palaeogeographic restoration

Journal:	International Geology Review
Manuscript ID	TIGR-2019-0424.R1
Manuscript Type:	Data Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Luoni, Pietro; Università degli Studi di Milano, Scienze della Terra Ardito Desio Rebay, Gisella; Università degli Studi di Pavia Roda, Manuel; Università degli Studi di Milano, Scienze della Terra Ardito Desio Zanoni, Davide; Università degli Studi di Milano, Scienze della Terra Ardito Desio Spalla, Maria Iole; Università degli Studi di Milano, Scienze della Terra Ardito Desio
Keywords:	Ti-humites, serpentinite, subduction modelling, Piemonte Zone, Western Alps

SCHOLARONE[™] Manuscripts

1 2		
3 4	1	Tectono-metamorphic evolution of UHP Zermatt-Saas serpentinites: a tool for
5 6	2	vertical palaeogeographic restoration
7 8	3	
9 10 11	4	Pietro Luoni ^a *, Gisella Rebay ^b , Manuel Roda ^a , Davide Zanoni ^a and Maria Iole Spalla ^a
12 13	5	
14	6	^a Dipartimento di Scienze della Terra 'A. Desio', Università degli Studi di Milano, Milano, Italy;
15 16 17	7	^b Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
18 19	8	
20 21	9	*Dipartimento di Scienze della Terra 'A. Desio', Università degli Studi di Milano, Via Mangiagalli,
22 23	10	34 - 20133 Milano, Italy. pietro.luoni@unimi.it
24 25	11	
26 27	12	Orcid ID:
28 29	13	Pietro Luoni: 0000-0001-9957-1388
30 31	14	Gisella Rebay: 0000-0001-8353-2683
32 33	15	Manuel Roda: 0000-0002-5446-6434
34 35	16	Davide Zanoni: 0000-0003-1404-4824
36 37	17	Maria Iole Spalla: 0000-0001-8346-5070
38 39	18	
40 41	19	
42 43	20	
45	21	
46 47	22	
48 49	23	
50 51	24	
52 53	25	
54 55	26	
56 57	27	
58 59	28	
60	29	

Tectono-metamorphic evolution of UHP Zermatt-Saas serpentinites: a tool for vertical palaeogeographic restoration

Within the Zermatt-Saas Zone (ZSZ, northwestern Alps), Ti-chondrodite- and Ti-clinohumitebearing assemblages in serpentinites indicate UHP conditions. Multiscale structural analysis (1:20 scale mapping) and petrological investigation of serpentinites at Créton (upper Valtournanche) evidenced a polyphasic deformation and metamorphic history. In this locality and at regional scale, S2 is the dominant foliation that developed under HP-UHP conditions. Pre-D2 mineral and textural relicts are preserved despite the pervasiveness of S2. Pre-D2 olivine + Ti-chondrodite + spinel assemblage implies re-equilibration at 2.8–3.3 GPa and 600– 630 °C, in agreement with conditions recorded by coesite- and microdiamond-bearing rocks in the Cignana Lake Unit. The PT conditions inferred for syn-D2 assemblages at Créton are similar to those estimated for D2 in the surrounding serpentinites, which were dated at $65 \pm$ 5.6 Ma. These results suggest that portions of ZSZ were subducted at high depth before 70 Ma and widen the time span during which ZSZ recorded PT peak conditions. The comparison of these data with results of a numerical model of an ocean-continent subduction system gives insights on coupling stages of this UHP unit with the surrounding ZSZ rocks during the Alpine convergence and vertical palaeogeography during different time steps.

Keywords: Ti-humites, serpentinite, subduction modelling, Piemonte Zone, Western Alps

1. Introduction

Emplacement of Ultra High Pressure (UHP) rocks in the axial portion of orogenic chains (Chopin 1984; Smith 1984; Kienast et al. 1991; Reinecke 1991; Ernst and Liou 1999) has opened up the need to identify the geodynamic context of their formation and coupling with the surrounding units, apparently free of this metamorphic imprint, and precisely if such formation and/or coupling occurred in a context of subduction, collision or, even, of late orogenic extension. Moreover, the discussion on exhumation mechanisms and timing that are effective for the preservation of UHP assemblages is still open. In the Alps the detection of UHP mineral phases, such as coesite, ellenbergerite, Mg-dumortierite, and microdiamonds, allowed the individuation of hectometre- to kilometre-scale UHP tectonic units enclosed in HP nappes both of oceanic (Zermatt-

 Saas Zone) and continental (Dora Maira Massif) origin (e.g. Chopin 1984; Chopin *et al.* 1986; Reinecke 1991; Ferraris *et al.* 1995; Frezzotti *et al.* 2011). In the last decades several UHP mineral records have been detected in metabasites and metasediments of the Zermatt-Saas Zone (Reinecke 1991; Reinecke *et al.* 1994; van der Klauw *et al.* 1997; Bucher *et al.* 2005; Groppo *et al.* 2009; Frezzotti *et al.* 2011) and more recently UHP conditions have been reported also in serpentinites from Créton, in upper Valtournanche (Luoni *et al.* 2018). In particular, the hectometre-sized Cignana Lake Unit and the UHP Créton serpentinites are localised close to the tectonic contact between Zermatt-Saas and Combin zones (Forster *et al.* 2004; Luoni *et al.* 2019 and refs. therein). As evidenced by reviewing the rich-literature (Rebay *et al.* 2018 and refs. therein), the inferred P_{max} conditions are heterogeneous and the proposed metamorphic evolutions are not coherent and often contrasting, as well as the peak radiometric ages , which are spread over a time interval from Upper Cretaceous to middle Eocene.

Therefore, a comparison between high-detailed structural and metamorphic data, defining
the tectono-thermal evolution of these UHP slices, with the predictions from quantitative
geodynamic models becomes a fundamental key to investigate their potential formation and
coupling environment during different stages of the convergent Alpine history.

With this aim, this contribution shows a multiscale structural and petrological analysis that
is finalised to define the P-T-d-t evolution of the Créton UHP serpentinites. The results are
compared with the prediction of a 2D quantitative geodynamic model of an ocean-continent
subduction system.

2. Geological setting

80 The Zermatt-Saas Zone (ZSZ) is one of the main units of the Piemonte Zone in the Penninic
81 domain of the Western Alps (Figure 1a; Bigi *et al.* 1990; Dal Piaz 1992; Dal Piaz 2010; Balestro *et al.* 2019 and references therein). The Piemonte Zone occurs in the axial part of the Western Alps,

from the Ligurian Alps to Switzerland (Figure 1a) and is bordered by the Sesia-Lanzo Zone and the
Po Plain to the east, and the Briançonnaise Zone to the west (Beltrando *et al.* 2010; Dal Piaz 2010;
Spalla *et al.* 2010; Roda *et al.* 2019 and references therein). It mostly comprises meta-ophiolites
consisting of serpentinites, metagabbros, metabasites, and metasediments with minor continental
outliers (Fassmer *et al.* 2016; Weber and Bucher 2015 and refs therein).

The ZSZ is interpreted as a remnant of the Alpine Tethys oceanic lithosphere, sutured in the Alpine belt during the Alpine subduction and collision (Dal Piaz 2001; Reddy et al. 1999; Balestro et al. 2019). Together with the Combin Zone (CZ), ZSZ is sandwiched between the continental nappes of Monte Rosa and Dent Blanche (Figure 1b). ZSZ and CZ are separated by the Pancherot-Cime Bianche-Bettaforca unit (PCB). The CZ is characterised mostly by metasedimentary rocks with minor metabasalts, metagabbros, and serpentinites and interpreted as derived from an ocean-continent transition zone (e.g. Dal Piaz and Ernst 1978; Dal Piaz et al. 1981). CZ rocks recorded blueschist facies conditions during the Alpine convergence, recognizable despite the pervasive greenschist facies metamorphism (Reddy et al. 1999; Bousquet et al. 2004 and reference therein). Laying between ZSZ and CZ, PCB is a discontinuous horizon of metasedimentary rocks of Austroalpine affinity, dominated by greenschist facies metamorphic imprint, whose protoliths are thought to be deposited on a thinned continental margin (Dal Piaz 1988; Dal Piaz 1999; Passeri et al. 2018).

The ZSZ preserves a complete ophiolitic sequence derived from the internal portion of the oceanic realm (Bearth 1967; Ernst and Dal Piaz 1978; Martin *et al.* 1994; Tartarotti *et al.* 2017). It includes serpentinites (Li *et al.* 2004a; Rebay *et al.* 2012), metagabbros and metarodingites (Li *et al.* 2004b; Zanoni *et al.* 2016), metabasites (Bucher *et al.* 2005 and reference therein), and metasedimentary cover, which consists of calcschists, marbles, and quartzites. Ophiolites locally enclose continental slices, such as the Theodul Glacier Unit (TGU) (Weber and Bucher 2015). The age of protoliths is proposed to be 164-153 Ma for metagabbros and metabasites (Rubatto *et al.* Page 5 of 59

1

International Geology Review

1998) in the Swiss portion of ZSZ, and 168-162 Ma for basalt melt-percolated serpentinites in Valtournanche (Rebay et al. 2018). The whole ZSZ is dominated by an eclogite facies metamorphic imprint, registered during the Alpine subduction, and overprinted by epidote amphibolite and greenschist facies metamorphism (Ernst and Dal Piaz 1978; Spalla et al. 1996; Rebay et al. 2012; Rebay et al. 2018). Since Reinecke (1991) inferred metamorphic PT peak conditions of 2.6-2.8 GPa and 590-630 °C for quartzites in the Cignana Lake Unit (CLU; Figure 1b and Figure 1c), HP-UHP peak conditions have been estimated in other localities of the ZSZ. Metabasites of Saas-Fee experienced PT conditions from 1.9-2.2 GPa and 530-600 °C (Dale et al. 2009) and 2.3-2.5 GPa and 530-555 °C (Angiboust et al. 2009) to 2.5-3.0 GPa and 550-600 °C (Bucher et al. 2005). Metagabbros in the Swiss portion of ZSZ registered peak conditions of 1.75-2.0 GPa and 550-600 °C (Barnicoat and Fry 1986), 2.5 GPa and 650 °C (Meyer 1983) and 2.5 GPa and 610 °C (Bucher and Grapes 2009). Further estimates in CLU show PT conditions from 2.7 to over 3.2 GPa and temperatures of 590-630°C (van der Klauw et al. 1997; Reinecke 1998; Groppo et al. 2009), accompanied by the discovery of microdiamonds in oceanic metasediments (Frezzotti et al. 2011). HP-UHP peak conditions are also reported for the mantle rocks of the ZSZ: serpentinites from the Swiss portion of the ZSZ recorded peak conditions at 2.0-2.5 GPa and 600-650 °C (Li et al. 2004a) while serpentinites from Valtournanche experienced peak conditions at 2.2-2.8 GPa and 580-620 °C (Rebay et al. 2012), together with the associated rodingites at 2.3-2.8 GPa and 580-660 °C (Zanoni et al. 2016). In TGU at Trockener Steg (Zermatt area) peak conditions of 2.2-2.3 GPa and 515-645 °C are estimated in a continental slice enclosed within ZSZ (Weber and Bucher 2015).

⁵⁰ 128 ZSZ serpentinites have been interpreted to be affected by an ocean floor metasomatism
 ⁵² 129 responsible for serpentinisation of the peridotites and rodingitisation of the associated gabbroic
 ⁵⁴ dikes (Rahn and Bucher 1998; Li *et al.* 2004b; Zanoni *et al.* 2016). Ti-clinohumite in veins and
 ⁵⁶ aggregates has been interpreted as the record of both ocean-floor metasomatism, at conditions of 0.4
 ⁵⁹ GPa and 420 °C (Rahn and Bucher, 1998), and HP-UHP syn-subduction metamorphism, since Ti-

clinohumite is in textural equilibrium with HP mineral assemblages (Scambelluri and Rampone
1999; Groppo and Compagnoni 2007; Ferrando *et al.* 2010; Rebay *et al.* 2012).

Recently at Créton (see Figure 1d), the finding of Ti-chondrodite and Ti-chondrodite + Ticlinohumite bearing assemblages allowed inferring UHP conditions predating the HP-UHP regional
fabrics in the ZSZ serpentinites (Luoni *et al.* 2018). Soon after, Ti-chondrodite was also found in
CLU serpentinites (Gilio *et al.* 2019).

Although all these peak PT estimates disclose HP-UHP conditions, differences in P and T values occur (see Rebay *et al.* 2018), together with a heterogeneous areal distribution of P_{max} conditions. Furthermore, peak ages range between 68 and 38 Ma, although evidence of prograde metamorphism dates back at 80 Ma (e.g. Skora *et al.* 2015). These data (Table 1) are in contrast with ZSZ experiencing a homogeneous evolution during the Alpine convergence (e.g. Angiboust *et al.* 2009; Angiboust and Agard 2010), but rather enforce the interpretation of a heterogeneous metamorphic evolution covering a wide time span during the subduction of the ZSZ rocks and associated continental slivers (Spalla *et al.* 1996; Gerya and Stöckhert 2005; Spalla *et al.* 2010; Roda *et al.* 2012).

3. Deformation history

Valtournanche serpentinites and rodingites underwent a common structural evolution of three ductile syn-metamorphic stages (D1, D2, D3) followed by a stage (D4) not associated with new mineral growth (Rebay et al. 2012; Zanoni et al. 2012). During D2 the most pervasive foliation 48 151 50 152 S2 developed under HP conditions (Figure 1d). D3 structures consist of open folds and the associated S3 foliation, whereas D4 mostly consists of open folds with sub vertical axial planes. ₅₅ 154 Créton outcrops have been the subject of high-precision structural mapping at 1:20 scale to further 57 155 investigate pre-D2 evolution and to precisely define the rich lithostratigraphy of UHP serpentinites (Figure 2, Luoni et al. 2019).

Page 7 of 59

1

International Geology Review

2	
3	157
4	10,
5	158
6	158
7	
8	159
9	
10	160
11	
12	161
13	161
14	
15	
16	162
17	
18	163
19	103
20	
20	164
21 22	
23	165
24	105
25	
26	166
27	
28	167
29	
30	100
31	168
32	
33	169
34	
35	170
36	170
37	
38	
39	171
40	
40 41	172
42	
42 43	173
45 44	1/3
45	174
46	
47	
48	
49	175
50	
51	176
52	
53	177
54	т//
55	
56	178
57	
58	179
59	
60	100
	180

Créton serpentinites are close to the boundary with calcschists and metabasites of the CZ (Figure 1d). They contain layers of magnetite and embed rare decimetre-thick pyroxenite and olivine-rich layers and lenses. Locally Ti-chondrodite and Ti-clinohumite and olivine veins occur. The effects of polyphasic deformation, which affects the original lithostratigraphy, are synthesised in Figure 3. As described by Luoni et al. (2019), D1 structures are rare D1 rootless fold hinges marked by magnetite layers, olivine-rich layers, Ti-chondrodite + Ti-clinohumite veins (Figure 3a), and S1 foliation in an olivine-rich lens. D2 produced tight to isoclinal folds of olivine-rich layers (Figure 3b) and boudins of olivine-rich layers, pyroxenite, and Ti-chondrodite + Ti-clinohumite veins, locally with a granoblastic texture in which an oriented fabric is lacking. Magnetite layers are often asymmetrically crenulated by D2. S2 is a mylonitic, locally composite, foliation (Figure 3b) and represents the dominant structure. S2 shows a dip azimuth at W-WNW/14°- 65° and is observed in all lithotypes intersecting previous structures. Rare D3 centimetre-wide crenulation affects S2 in serpentinites. D3 fold axial planes dip WNW with medium angle and fold axes dip at a low angle towards WSW (Luoni et al. 2019). S3 axial plane foliation has been recognised only at the microscale. D3 also developed shear zones deflecting S2, magnetite layers (Figure 3c) and olivine-rich layers. 4. Syn-metamorphic fabric evolution Petrographic and structural microanalysis is focused on serpentinites and embedded rocks such as olivine-rich layers and lenses, pyroxenites, and Ti-chondrodite + Ti-clinohumite veins. S2 affects serpentinites and all the embedded lithotypes and contains pre-D2 mineral and textural relicts consisting of S1 relics or deformed veins and lenses with granoblastic textures. Because D2

fabrics dominate, porphyroclasts, lenticular aggregates of polygonal grains, and S1 marking rootless

fold hinges wrapped by S2 (in places mylonitic), are labelled as pre-D2 relics, since univocal chronological relationships between porphyroclasts and mineral aggregates, and S1 structures are not preserved.

Four subsequent mineral assemblages were distinguished (Table 2): *pre-D2* relics are
different types of porphyroclasts and mineral aggregates wrapped by S2, locally marking S1
foliation; *pre-D2-to-early-D2* minerals constitute polygonal aggregates, often around pre-D2
porphyroclasts, and are wrapped by S2. *D2* assemblages underline S2 foliation and fill syn-D2
boudins necks. Locally syn-D3 minerals overgrew S2 foliation or marked incipient D3 folds axial
plane foliation. Mineral abbreviations are from Whitney and Evans (2010).

4.1 Serpentinite

Antigorite marks both pre-D2 and syn-D2 domains. SPO (shape preferred orientation) of Atg2 flakes defines S2 mylonitic foliation with Mag2 and Ol2 (Figure 4a) or Cpx2 (Figure 4b). Often Cpx2 is parallel to Chl2 SPO and LPO (Figure 4b). S2 wraps pre-D2 centimetre-sized oval aggregates of antigorite: they can be constituted of oriented fibres of Atg or made of interlobate Atg lamellae in mesh textures. Submillimetre-sized pre-D2 olivine porphyroclasts are wrapped by S2 and often enclose sharp-edged and anhedral to rounded Mag (Figure 4a). Furthermore, pre-D2 Ol aligned porphyroclasts constitute the remnants of olivine veinlets. Pre-D2 Ol shows undulose extinction, and contains Ti-Chu lamellae, Atg, Mag, and fluid inclusions. Ol2 often rims pre-D2 Ol. Locally, Cpx2 or Ol2 and Atg2 occur in S2 pressure shadows of pre-D2 Ol. Pre-D2 millimetresized rounded Cr-Mag and Mag are wrapped by S2 and often rimmed by Mag2. Mag2 grains are aligned in submillimetre layers along S2 (Figure 4a). Chlorite constitutes lenses and anastomosed layers wrapping Cpx2 aggregates and Ti-chondrodite + Ti-clinohumite veins. Aggregates of chlorite contain Chl2 grains parallel to S2, locally rimmed by Chl3. Locally, in Chl-rich aggregates, S2 is marked by Chl2 \pm Atg2 and wraps pre-D2 Chl porphyroclasts as they display different LPO with respect to minerals underlying S2. Pre-D2 Ti-Chu porphyroclasts with undulose extinction are

International Geology Review

scattered in the serpentinite matrix and are wrapped by S2 foliation marked by $Atg2 + Mag2 \pm Ti$ -Chu2. SPO of Atg3 and Mag3 marks the rare S3 foliation and D3 shear zones with Amph3. Rare dolomite porphyroclasts are wrapped by S2 marked by Dol2 + Mag2 + Atg2 + Ol2. Up to millimetre-sized rare apatite porphyroclasts, with undulose extinction are wrapped by S2 defined by Atg2 + Cpx2 + Chl2. Calcite veins are locally parallel to S2 foliations (Cal2) and fill fractures crosscutting S2 (post-D2 Cal).

12 4.2 Olivine-rich layers and lenses

Olivine-rich layers display massive cores with more than 90% of olivine and strongly 213 foliated rims with a higher modal amount of Atg than the cores. The cores of these layers contain millimetre pre-D2 subhedral Ol porphyroclasts (Figure 4c) with weak undulose extinction and fractures. Locally their SPO is parallel to the S2 foliation wrapping or crosscutting the layers. They are rich in inclusions of micron-sized Mag and Atg. Mag is mostly sharp-edged and rounded while Atg flakes may have both sharp and irregular edges. Ol porphyroclasts are surrounded by polygonal aggregates of submillimetre pre-D2-to-early-D2 Ol + Atg + Mag. These aggregates do not show 219 any preferred orientation. Edges between grains are sharp and Mag inclusions are common. Mag is 220 also interstitial among Ol polygonal grains. Micron-sized, rounded, and sharp-edged inclusions of clinopyroxene occur both in pre-D2 and in pre-D2-to-early-D2 Ol. In the rims of the layers, where 223 S2 is pervasive, Atg is more abundant than Ol and wraps pre-D2 Ol porphyroclasts. Polygonal pre-D2-to-early-D2 Ol occurs in pressure shadows of pre-D2 Ol, whereas Ol2 is very fine grained and shows SPO parallel to the foliation marked by Atg2 + Ol2 + Mag2. Ol2 with Atg2 also fill syn-D2 necks of pre-D2 Ol boudins. Locally, Mag2 and Chl2 rim pre-D2 Cr-Mag porphyroclasts. An 226 olivine-rich lens is foliated and banded with alternating layers respectively richer in Ol and Atg. In the millimetre Ol-rich layers pre-D2 Ol relicts are anhedral, fractured, and display slight undulose extinction. They are partially surrounded by polygonal aggregates of submillimetre-sized Ol. Both

the porphyroclasts and the polygonal aggregates are contained in a micron-sized matrix of

polygonal Atg + Ol + Mag, with Pre-D2 Cr-Mag porphyroclasts rimmed by Mag and Fe-Chl.

32 4.3 Pyroxenite

Anhedral to subhedral centimetre-sized pre-D2 Cpx porphyroclasts are strongly deformed, locally kinked, with exsolution of Ilm + Mag (Figure 4d) and contain Atg + Chl + Ti-Chn and Ti-Chu along cleavages. Locally rare exsolutions- and strain-free augite cores are preserved in pre-D2 Cpx crystals.

Cpx porphyroclasts are often partially or totally replaced by Cpx2 new grains and Chl2. S2 oriented aggregates of Atg2 + Chl2 + Mag2 + Cpx2 wrap Cpx porphyroclasts where Chl2 and Atg2 SPO is parallel to S2. Locally, between the rim of Cpx porphyroclasts and millimetre globular aggregates of Ilm + Mag (former Spl), aggregates of polygonal pre-D2-to-early-D2 Ti-Chn + Ti-Chu occur (Figure 4e). The grain boundaries among Ti-humites, Ilm, and Mag are sharp and those between Ti-humites and Cpx porphyroclasts are interdigitated; locally Ti-humites occur along Cpx porphyroclasts cleavages.

4.4 Ti-Chu + Ti-Chn veins

Millimetre-sized pre-D2 Ti-Chn porphyroclasts are subhedral and twinned, with tapering lamellae, and enclose Atg and Mag (Figure 4f). Ti-Chn + Ti-Chu submillimetre subhedral grains constitute pre-D2-to-early-D2 assemblage together with Chl, Atg, Ilm, and Mag (Figure 5a and Figure 5b). Ol constitutes pre-D2 porphyroclasts locally replaced by pre-D2-to-early-D2 almost equigranular, subhedral Ol grains. Locally pre-D2-to-early-D2 Ol constitutes ribbon-shaped aggregates parallel to S2. Ol2 also marks S2 with SPO of submillimetre grains. Pre-D2 millimetresized and anhedral Spl is replaced by Ilm + Mag exsolutions (similarly to Figure 5c and Figure 5d). Pre-D2-to-early-D2 Ilm + Mag are often equigranular and with sharp edges in polygonal Ti-Chn + Ti-Chu aggregates. Page 11 of 59

1

5. Mineral compositional evolution

WDS mineral analyses were acquired from different microstructural sites by using the electron microprobe (JEOL 8200 Super Probe) operating at the "A. Desio" Earth Science Department of Milano University. A 15 keV accelerating voltage and a beam current of 15nA were used. Natural silicates were used as standards and matrix corrections were calculated using the ZAF procedure. Mineral formulae were recalculated on the basis of the following number of oxygen atoms: 4 for olivine, 6 for clinopyroxene, 116 for serpentine (Padrón-Navarta *et al.* 2013), 28 for chlorite, 4 for magnetite, 3 for ilmenite, and 23 for amphibole. Ti-chondrodite and Ti-clinohumite formulae were recalculated on the basis of 7 and 13 cations, respectively. Fe³⁺ in ilmenite was recalculated according to Droop (1987). Diagrams showing the significant compositional variations of the main minerals are shown in Figure 6 and a synthesis of the mineral compositions is reported in Table 3.

Olivine in serpentinites and olivine-rich layers is fosteritic $(0.89 < X_{Mg} < 0.96)$ and its composition is mainly influenced by bulk rock (Figure 6a): olivine from the olivine-veins in serpentinite is the richest in Mg and olivine within Ti-clinohumite and Ti-chondrodite porphyroclasts is the richest in Fe. Olivine from olivine-rich layers shows the highest variation of Mg and Fe content, with the exception of olivine marking the relic S1, which has intermediate values of Fe. Mn is lower than 0.01 a.p.f.u.. Al, determined by ICPMS, is in the range 0.33-3.59 ppm (Table 4).

Ti-chondrodite and Ti-clinohumite: Ti-chondrodite is higher in both M/Si and TiO₂ than Ticlinohumite. Ti-clinohumite2 shows higher M/Si and TiO₂ than Ti-clinohumite in pre-D2-to-earlyD2 polygonal grains. Similarly, pre-D2-to-early-D2 Ti-Chn has higher M/Si and TiO₂ than pre-D2
Ti-Chn porphyroclasts (Figure 6b).

Clinopyroxene: in olivine-rich layers and serpentinites, pre-D2 Cpx and Cpx2 have a
 diopsiditic composition (Morimoto, 1988; Figure 6c). Ca is generally comprised between 0.88 and

International Geology Review

2 3	2	7	9
4	2	'	5
5 6	2	8	0
7			
8	2	8	1
9 10	ר כ	Q	2
11	2	0	2
12	2	8	3
13 14			
15	2	8	4
16 17			
18	2	8	5
19			-
20 21	2	8	6
22			
23	2	8	7
24 25	2	0	'
26	2	8	8
27			
28 29	2	8	9
30	r	^	^
31	2	9	0
32 33	2	9	1
34			
35 36	2	9	2
30 37	~	~	2
38	2	9	3
39 40	2	9	4
40 41		-	
42	2	9	5
43 44	_	_	_
45	2	9	6
46			
47 48	2	9	7
49			
50 51	2	9	8
52	2	۵	9
53	2	9	5
54 55			
55	3	0	0
57	ר	~	1
58 59	3	0	T
60			

1 2

1.02 a.p.f.u., whereas Cr is < 0.06 a.p.f.u. and Ti and Al are lower than the detection limit (Table 3).
In pyroxenites, Pre-D2 Cpx cores and pre-D2-to-early-D2 Cpx are augite, with pre-D2-to-early-D2
Cpx richer in Ca and Al (up to 1.5 a.p.f.u.). Cpx2 is a pure diopside. The Ca increase from pre-D2
to D2 is accompanied by a decrease of Al and Na. Ti is < 0.05 a.p.f.u. and Cr is < 0.04 a.p.f.u. in
pre-D2 and pre-D2-to-early-D2 Cpx and they are lower than detection limit in Cpx2 (Table 3;
Figure 6c).

Serpentine composition (Figure 6d) is mainly influenced by whole rock composition. Atg
 from Ti-Chn + Ti-Chu veins is the richest in Mg, whereas Atg from pyroxenites is the richest in Fe.

Oxides: Spinel (Ferracutti *et al.* 2015) is Mag and its composition varies as a function of microstructural sites and bulk rock composition (Figure 6e): in olivine-rich layers and lenses, cores of Mag porphyroclasts are richer in Cr than the rims, and Mag2 (i.e. the rims) is pure magnetite; in serpentinites and Ti-Chn + Ti-Chu veins, both pre-D2 Mag and Mag2 are pure magnetite; oxide exsolutions in clinopyroxene porphyroclasts consist of magnetite. Ilmenite has low Mn contents in all rock types (0.04-0.15 a.p.f.u.). In pyroxenite, ilmenite shows Mg in the range 0.33-0.57 a.p.f.u.; in serpentinite ilmenite has low Mg in symplectites (0.02-0.04 a.p.f.u.) and 0.40-0.43 a.p.f.u. in Ilm2; in Ti-Chn + Ti-Chu veins, Mg in pre-D2-to-early-D2 Ilm is usually 0.05-0.31 a.p.f.u., with higher values in polygonal aggregates. Ilm2 shows Mg between 0.26 and 0.31 a.p.f.u. in polygonal aggregates .

Chlorite is generally penninite (Deer *et al.* 1992) in all rock types and no appreciable differences have been recognised among different generations (Table 3) and lithotypes. Al content varies between 2.43 and 3.13 a.p.f.u. and X_{Mg} is between 0.91 and 0.94.

Syn-D3 *amphibole* in serpentinites is tremolite (Locock, 2014). X_{Mg} varies between 0.95 and 0.96, Ca varies between 1.73 and 1.96 a.p.f.u., Al is < 0.06 a.p.f.u., and Na < 0.07 a.p.f.u..

2 3 302 4	6. Physical conditions of metamorphism
5 303 6	Microstructural observations, considered the influence of deformation mechanisms on
7 8 304	reaction progress in the different microstructural sites to better constrain PT estimates relative to
9 10 305	superposed fabrics (e.g. Passchier et al. 1990; Spalla and Zucali 2004; Passchier and Trouw 2005;
11 12 306	Vernon 2018), and in Créton serpentinites allowed distinguishing two subsequent parageneses
13 ¹⁴ 307 15	(Table 2) that occur in domains wrapped by S2:
16 17	
₁₈ 308 19	(a) pre-D2 Ti-Chn + Atg + Spl \pm Chl + Ol/Cpx,
20 21 309	(b) pre-D2-to-early-D2 Ti-Chn + Ti-Chu + Atg + Ilm + Mag + Ol/Cpx.
22 23	
24 25	On the contrary S2 is marked by the Ti-Chn-free assemblage:
26 27 28 311	Ti-Chu + Atg + Mag + Chl + Ol/Cpx.
29	
30 31 312	Metamorphic reaction curves from the literature, for Ti-poor and Ti-rich systems (Shen et
32 33 313 34	al. 2015) and pseudosections allow inferring the PT evolution of Créton rocks (Figure 7). In the Ti-
³⁵ 36 314	rich system experiments, Ti-Chn-out is at higher P _{min} (2.6-3.0 GPa at 550-670 °C) than in the Ti-
37 38 315	poor system (Figure 7a), which shows Ti-Chn + Ti-Chu stable together between 1.9 and 2.8 GPa (at
39 40 316 41	550-670 °C). Temperatures in our samples are constrained using the Al content in pre-D2 Ol
42 43 317	porphyroclasts and pre-D2-to-early-D2 polygonal Ol (De Hoog et al. 2010), represented as green
44 45 318	and blue lines considering a 2 σ error, respectively. T _{max} is limited by the Atg out curve at 670 °C in
46 47 319 48 49	both systems.
⁵⁰ 320 51	D2 metamorphic conditions have been modelled in the CFMASHO system with
52 53 321	pseudosections using version tc345 of THERMOCALC software (Holland and Powell 1998; Powell
54 55 322	et al. 1998; dataset tc-ds62) for two different samples: in the first sample Cpx does not occur and S2
56 57 323 58	is marked by Ol + Atg + Mag, in the second sample Ol is not present and S2 is underlined by Cpx +
59 60 324	Atg + Chl + Mag. The amphibole and pyroxene activity-composition models are those of Diener <i>et</i>

(2007) and of Zeh et al. (2005), respectively. The garnet models are from White et al. (2007)

2		
3 4	325	al.
5 6	326	(bu
7 8	327	mo
9 10 11	328	Th
12 13	329	het
14 15	330	vol
16 17	331	pro
18 19 20	332	ana
21 22	333	the
23 24	~~ .	
25 26	334	
27 28	335	the
29 30	336	doi
31 32 33	337	
34 35		
35 36 37	338	
38 39	339	
40 41	555	
42 43	340	
44 45	341	wh
46 47 48	342	ma
40 49 50		
50 51 52	343	
53 54	344	the
55 56	345	Alt
57 58	346	in '
59 60	347	ric

1

(but with the garnet asymmetry involving αgr = 3 instead of 9), and the Fe-Ti oxide and epidote models are from Holland and Powell (1998). Chlorite activity model is from Holland *et al.* (1998). The other phases are pure end-members: brucite, magnetite, and H₂O. The small-scale heterogeneities in serpentinite do not allow performing XRF analyses of an "equilibrium rock volume". Therefore rock compositions (Figure 7b and Figure 7c) are estimated integrating modal proportions by polarised light microscope analysis with the phase compositions acquired by WDS analysis. Compositions obtained have also been validated with EDS analysis of an area of 3 mm² of the same thin sections. After studying several samples, two (with clinopyroxene and with olivine, respectively, in the D2 assemblages - Figure 7b and Figure 7c) were chosen as representative, as in both S2 is dominant and no relics of previous textures are preserved.

3 337 Modal proportions used were:

- Atg 73, Ol 20, Mag 7 (Figure 7b)

- Atg 20, Cpx 55, Ilm 2, Chl 20, Mag 3 (Figure 7c).

 $\frac{1}{340}$ O content was set to 0.76 and 1.5 respectively (mole proportions) from mineral analyses, where Fe³⁺ content was derived by charge balance, and also accounting for modal proportions of magnetite.

Because serpentine is > 40%, and is found in all HP assemblages together with Ol or Cpx, the modelling was performed with H₂O in excess (Guiraud *et al.* 2001; Rebay *et al.* 2010). Although Créton serpentinites are rich in Ti-humite minerals, the modelled samples are the poorest in Ti-phases in order to minimize Ti content in the bulk composition, as reliable a-x models for Tirich minerals are not available. In both the pseudosections, magnetite and H₂O are in excess. Bulk

compositions have been calculated by the mode of the minerals, whose compositions are reported inTable 4.

In Figure 7b a pseudosection calculated for a sample with Ol - Atg - Mag bearing S2 foliation is presented. All fields are delimited by vertical curves. Divariant fields are narrow, spanning maximum over a range of 10°C, whereas trivariant and quadrivariant fields are wider, and all fields are stable within the whole range of considered pressures from 1 to 4 GPa. Chlorite is stable at T < 580 °C and orthopyroxene is stable at T > 592 °C. Even if this is a Cpx-free sample, olivine and diopside are predicted to be stable in every field. It is though important to note that in the Ol - Di - Atg field, constrained between 560 and 640 °C by the Chl-out and Opx-in curves, the predicted Cpx mode is negligible (<0.1%), and therefore this field represents the assemblage we actually observe in the rock.

The pseudosection of Figure 7c is calculated for the composition of a rock where clinopyroxene is found in D2 together with Atg - Chl - Mag. Fields are again mostly separated by vertical boundaries as already seen in the olivine-bearing rock, but a horizontal divariant field with Di - Atg - Chl - Mag, separates at lower temperatures (<650°C) a field where actinolite is stable at P <1.6 -1.8 GPa from a field where Ta is stable with Di - Atg - Chl (and Mag) for P > 1.7 GPa. This latter field represents the assemblage observed in our sample, once it is realised that the predicted Ta mode in this field is < 2%. D3 assemblage stability conditions are constrained by the predicted coexistence of actinolite and antigorite at P < 1.7 GPa.

In this latter case, Cpx and Ol have never been observed in the same assemblage, and it is therefore impossible to further constrain PT conditions by using isopleths of these two phases as done in Rebay *et al.* 2012, in samples from nearby outcrops. Rebay *et al.* (2012) estimated for D2 2.5 ± 0.3 GPa and $600 \pm 20^{\circ}$ C, and for D3 1 ± 0.4 GPa and $550 \pm 50^{\circ}$ C, as indicated in Figure 7a and Figure 7b with dashed and dotted polygons. International Geology Review

Page 16 of 59

On the other hand, the Opx-in curve in Figure 7b (Ol-rich assemblage), calculated for syn-D2 conditions in serpentinite, can be superposed to the PT fields of the pre-D2 and pre-D2-to-early-D2 stages (Figure 7a), to further constrain their conditions.

In fact, in serpentinite, pre-D2 and D2 assemblages are characterised by the same chemical system, and Opx never occurs neither in pre-D2 nor in D2 assemblage. The Opx-in curve, calculated for D2 assemblage in serpentinite, represents therefore a temperature constrain also for pre-D2 stage. Likely, Ti-Chn + Ti-Chu veins, which formed before D2 stage and occur in the same serpentinite outcrops of the samples used for estimating syn-D2 conditions, do not contain Opx. Then, Opx-in curve from Ol-rich assemblage (Figure 7b) is preferred to Opx-in curve from Cpxrich assemblage (Figure 7c), since no Cpx occurs in Figure 7a.

The superposition of the Opx-in curve from the Ol-rich assemblage pseudosection (red curve in Figure 7a) let decrease T_{max} from 670 to 630 °C and P_{max} from 3.5 to 3.3 GPa. Therefore, new pre-D2 PT conditions can be proposed as P = 2.8-3.3 GPa and 600-630 °C. In the same way, pre-D2-to-early-D2 conditions can be delimited by Opx-in curve: T_{max} is reduced to 630 °C and P_{max} to 2.9 GPa. The P-T-d-t path of the Créton serpentinites sinthesyses in Figure 7d the P-T conditions inferred for the successive deformation stages.

7. Geodynamic modelling and tectonic history

7.1 Setup

We used the 2D finite element method to simulate an ocean-continent subduction (Regorda et al. 2017) in order to compare the tectono-metamorphic history of serpentinites of the ZSZ with the evolution of the oceanic lithosphere within a subduction zone, since in the literature a continental upper plate is proposed for the Alpine subduction system (Dal Piaz *et al.* 1972; Polino *et al.* 1990; Roda *et al.* 2012 and reference therein). The physics of the crust-mantle system is described by coupled equations for continuity, conservation of momentum, and conservation of energy (Marotta *et al.* 2006). The equations are solved by means of the 2D finite element code
Submar (Marotta *et al.* 2006), which includes erosion and sedimentation processes (Roda *et al.*2012), shear heating (Regorda *et al.* 2017), and oceanic crust dehydration and mantle
serpentinisation mechanisms (Meda *et al.* 2010; Roda *et al.* 2010; Roda *et al.* 2012). According to
Regorda *et al.* (2017), a viscous rheology is assumed for the sublithospheric mantle and a
brittle/plastic rheology is assumed for the lithosphere. Materials are compositionally differentiated
via the Lagrangian markers technique (Christensen 1992), by using 1 marker per 0.25 km² to define
the atmosphere/water, the sediments, the upper and lower oceanic crust, the continental crust, and
the mantle. During the evolution of the system, each marker is advected in time and in space using a
first order Runge–Kutta scheme (Marotta and Spalla 2007; Roda *et al.* 2010; Roda *et al.* 2012;
Regorda *et al.* 2017; Regorda *et al.* 2020). The material and rheological parameters used in the

An initial continental lithospheric thickness of 80 km, including 30 km of continental crust, is assumed (Figure 8) to represent the originally thinned passive margin that characterised the former margin of Adria (Dal Piaz 2001; Marotta *et al.* 2018; Roda *et al.* 2019). An oceanic lithospheric thickness of 80 km is chosen to represent an age of ca. 40 Myr for the Tethys Ocean (Handy *et al.* 2010; Roda *et al.* 2012), based on the cooling model of a semi-infinite half-space (Turcotte and Schubert 2002), and characterised by a slow spreading rate (2.5 cm/yr full spreading). The upper oceanic crust is generally strongly affected by hydrothermal alteration at mid-ocean ridges, thermal fracturing, and it is covered by oceanic sediments. Furthermore, intense serpentinisation affects the oceanic mantle that can be episodically exhumed at ocean floor (Carlson and Miller 1997; Juteau and Maury 1999; Christensen 2004; Malvoisin *et al.* 2012; Cannat *et al.* 2013). For this reason, the upper oceanic crust is assumed to be composed by a 5 km-thick layer of porous and fractured basalts and serpentinites. Compared to the upper oceanic crust, the lower oceanic crust is considered to be little affected by hydrothermal circulation and mainly formed by

1

gabbros (Carlson and Miller 1997; Canales et al. 2000; Christensen 2004; Malvoisin et al. 2012;

Cannat *et al.* 2013; Rüpke and Hasenclever 2017). Therefore, the lower oceanic crust is represented
by a 5 km-thick layer with the rheology of a dry diabase.

To simulate plate convergence, a horizontal velocity of 3 cm/yr is imposed along the bottom of the oceanic crust (Roda *et al.* 2012; Roda *et al.* 2010) and the initial slab dip is 45° (Roda *et al.* 2010). The model runs for 65 Myr of oceanic subduction, i.e. from 100 to 35 Ma (Hunziker *et al.* 1992; Handy and Oberänsli 2004; Handy *et al.* 2010; Roda *et al.* 2012). Additional details about the model setup are summarised in the caption of Figure 8.

9 7.2 Model results

The subduction of the oceanic lithosphere induces the tectonic erosion of part of the continental crust from the overriding plate due to the strong coupling along the plate boundary. The burial flow carries the oceanic and continental crust, trench sediments and mantle markers toward deep levels of the subduction zone. The hydrated upper oceanic crust progressively releases fluids within the mantle wedge during the burial, and serpentinisation of the overriding mantle occurs. The size of the serpentinised mantle wedge increases with time due to the continuous dehydration of the upper oceanic crust and the progressive cooling of the subduction system. The strong contrast between serpentinites and dry mantle results in an intense counterclockwise convection flow developed in the upper part of the mantle wedge. As a consequence, part of the subducted material is exhumed to shallower structural levels within the mantle wedge and the rest remains in the deeper portion of the mantle wedge or is inhumed in the sublithospheric mantle. The upper oceanic crust is commonly involved in the exhumation process, sometimes coupled with recycled trench sediments. During the exhumation within the mantle wedge, the oceanic crust can also be coupled with dry continental mantle and continental crust coming from the upper plate.

International Geology Review

The result of such a tectonic mingling is a subduction-related mélange comprising a mixture of exhumed upper oceanic and continental crustal slices, buried and exhumed trench sediments, and continental lithospheric mantle enclosed within the serpentinised matrix derived from the hydrated mantle wedge. The subducted materials record different PT peak conditions, different P-T-t evolutions and different exhumation trajectories, and the size of a single tectono-metamorphic unit ranges from 2-3 km² to several tens of km², which is consistent with the results already discussed by Roda et al. (2012).

7.3 Natural data vs model predictions

The inferred P-T-d-t path of Créton serpentinites (Figure 7d) is compared with the tectonic 23 452 25 453 setting and thermal state predicted by the numerical model of an ocean-continent subduction zone. 27 28 454 Since ZSZ serpentinites have been interpreted as affected by ocean floor metasomatism, therefore ₃₀ 455 representing the upper part of the oceanic lithosphere, we focus on the geological setting recorded by the markers that belong to the upper oceanic crust at different timing of the tectono-metamorphic 32 456 457 history. The first structural and metamorphic re-equilibration predates D2, and the serpentinites recorded the peak conditions at pressure of 2.8-3.3 GPa and temperature of 600-630°C (Figures 7 458 39 459 and 9). There is no radiometric age associated with this stage, but pre-D2 structures are clearly older 41 460 than D2 stage, which has been dated 60-70 Ma by Rebay et al. (2018). The oldest age proposed for 461 the prograde path of ZSZ is 80 Ma (Skora et al. 2009). Therefore, we extrapolate two main events 46 462 of the numerical simulation to be compared with the pre-D2 stage at steps of 80 and 72 Ma (Figure 48 463 9). For the oldest event (80 Ma), the pre-D2 PT conditions occur in the portion of the upper oceanic 464 crust within the serpentinised mantle wedge still close to the slab (Figure 9a). The lithological ₅₃ 465 mixing is poor and only few markers of trench sediments record the same PT conditions (Figure 55 466 9a). Pre-D2 conditions can be also potentially reached by a portion of the lithospheric oceanic ⁵⁷ 467 mantle below the Benioff plane (Figure 9a). However, this portion has been excluded for the 59 60 468 comparison because the ocean floor metasomatism, widely testified in the ZSZ oceanic lithosphere

1

of upper Valtournanche, does not occur below the Benioff plane. In the simulated system, pre-D2 conditions occur at a distance of 100-130 km from the trench and at ca. 80-110 km depth (Figure 9a and Figure 9b). At 72 Ma, the size of the serpentinised mantle wedge increases, and the pre-D2 PT conditions extend to an innermost portion of the mantle wedge (Figure 9c). The lithological mixing is still poor and characterised by upper oceanic crust and few sediment markers. Again, the portion of the lithospheric oceanic mantle below the Benioff plane recording pre-D2 conditions can be excluded from the comparison, for the occurrence of ocean floor metasomatism. The fitting of pre-D2 PT conditions in the subduction system is accomplished at a distance of 110-145 km from the trench and at ca. 80-110 km depth (Figure 9c and Figure 9d). The D2 stage represents the first exhumation stage recorded by Créton serpentinites and occurs at P and T conditions of 1.8-2.8 GPa and 580-620°C. The D2 radiometric age varies from 70 to 60 Ma and, therefore, we compare D2 PT conditions with three different time steps of the simulation: 70, 65, and 60 Ma (Figure 10). In the oldest step (70 Ma), D2 conditions are recorded by markers of upper oceanic crust within the mantle wedge, coupled with rare markers of trench

sediments and some markers of continental crust (Figure 10a). In the successive steps, the amount
of trench sediments recording D2 conditions sensibly increases (Figure 10c and Figure 10e). With
the size increase of the serpentinised mantle wedge with time, the area characterised by PT
conditions fitting with those of D2 moves away from the slab (Figure 10a, Figure 10c, and Figure
10e), and the maximum distance from the trench varies from 125 km at 70 Ma to 155 km at 60 Ma
(Figure 10b, Figure 10d, and Figure 10f). Starting from the oldest age, depth varies between 85 and
55 km.

The D3 stage occurred under epidote-amphibolite facies conditions (Rebay *et al.* 2012) and intermediate PT ratio, compatible with a Barrovian metamorphism. Therefore, D3 PT conditions likely occurred at the end of the oceanic subduction, at the beginning of the continental collision (Regorda *et al.* 2017).

1	
2 3	494
4	494
5	495
6 7	
/ 8	496
9	
	497
11	400
13	498
14	499
15	499
16 17	500
17	
	501
20	
21 22	502
22 23	
24	503
25	
26	504
27	504
	505
30	505
31	506
32 33	
	507
35	
	508
37 38	
39	509
40	
41	510
42 43	510
	511
45	
46	512
47 48	
40 49	513
50	
51	514
52 53	
55 54	515
55	516
56	210
57 58	517
50 59	
60	518

8. Discussions

Results of this integrated structural, petrological, and modelling approach on Créton serpentinites show that rocks that are generally considered cryptic, preserve a wealth of information to be disclosed, that in this case-study results into the reconstruction of a complex polydeformed and polymetamorphosed lithostratigraphy of a portion of oceanic crust. Serpentinites, with magnetite layers and Ti-chondrodite + Ti-clinohumite veins, embed pyroxenites, diopsidites, and Ol-rich layers. Serpentinites preserve various types of pre-D2 relics within the S2 foliation, such as D1 rootles folds, S1 foliation, porphyroclasts, and polygonal mineral aggregates. D2 stage produced isoclinal folds and the dominant fabric, which is the S2 mylonitic foliation; D3 crenulated S2 and is associated with discrete shear zones.

By reconstructing the successive mineral assemblages, and the definition of the PT conditions registered by serpentinites, the correlation of the fabrics of Créton outcrops with those described by Rebay et al. (2012) and Zanoni et al. (2012; 2016) was possible. The pre-D2 (Ti-Chn $+ Atg + Spl \pm Chl + Ol/Cpx$) and pre-D2-to-early-D2 (Ti-Chn + Ti-Chu + Atg + Ilm + Mag + Ol/Cpx) assemblages in Ti-Chondrodite + Ti-Clinohumite veins indicate pressure and temperature ranges of 2.8-3.3 GPa and 600-630 °C, and 2.1-3.0 GPa and 570-670 °C, respectively (Figure 7a).

The integration of the petrological modelling of syn-D2 PT conditions for Cpx + Atg + Mag + Chl- and Ol + Atg + Mag-bearing S2 foliation in serpentinites suggests pressures greater than 1.8 GPa and temperatures between 540 and 640 °C. Since Ol and Cpx never occur together along S2 foliation, these results represent the best ones obtainable for these assemblages and, at the same time, they confirm those proposed for the S2 assemblage developed in adjacent serpentinites and rodingites (Rebay et al. 2012; Zanoni et al. 2016) at 2.2-2.8 GPa and 580-620 °C, which has been dated at 60-70 Ma (Rebay et al. 2018). Furthermore, although referred to different compositional systems, the calculated curve of Opx-in for syn-D2 assemblages in serpentinites have been used to better constrain pre-D2 and pre-D2-to-early-D2 metamorphic conditions of Ti-Chn + Ti-Chu veins, 60 518

1

since these veins formed before the D2 stage. The new proposed conditions are characterised by pressure and temperature ranges of 2.8-3.3 GPa and 600-630 °C for pre-D2 stage, and 2.1-2.9 GPa and 570-630 °C for pre-D2-to-early-D2 stage.

The comparison between PT conditions for pre-D2 and D2 stages and the prediction of a numerical model of an ocean-continent subduction allowed inferring a vertical "palaeogeography" for the serpentinites during their evolution between 80 and 60 Ma in the subduction system. The model suggests that, between 80 and 72 Ma, markers of upper oceanic crust that represent the Créton serpentinites attained pre-D2 PT conditions at a distance from the trench ranging from 100 km to 145 km, at depths of 80-110 km. D2 PT conditions were attained by markers located at a distance from the trench from 125 km at 70 Ma to 155 km at 60 Ma, for depths between 85 and 55 km.

At pre-D2 PT conditions, the lithological mixing between oceanic markers and trench sediments is poor, and the continental markers are rare or absent. On the other hand, at D2 PT conditions, the lithological mixing between oceanic markers and trench sediments sensibly increases and some continental markers attained the same PT conditions. Therefore, the coupling between rodingite-bearing serpentinites of ZSZ, metasediments, and continental slices (e.g. Weber and Bucher 2015) is more likely attained during D2, still under eclogite facies conditions (Weber *et al.* 2015). D2 developed during the earlier stages of exhumation of Créton serpentinites under P/T ratios consistent with ongoing oceanic subduction, and thus long before the continental collision onset. This interpretation is also consistent with the strong parallelisation of Valtournanche lithostratigraphic surfaces with S2 foliation.

Finally, considering different radiometric ages proposed for UHP conditions in ZSZ, we also compared the PT peak estimates for the Cignana Lake Unit with the model predictions at 40 Ma (Table 1; Figure 11). At 40 Ma several markers of oceanic crust and trench sediments achieved

International Geology Review

the PT conditions proposed for the Cignana Lake Unit (i.e. 2.6-3.0 GPa and 590-630 °C). This fitting supports the idea of continuous subduction and exhumation of crustal material over the simulated 65 Myr and explain the occurrence of different peak ages and different UHP conditions in slices accreted in ZSZ. The proposed geodynamics is not peculiar for the Alpine chain only. A similar syn-subductive evolution, characterised by a deep and cold subduction, is also proposed for the Palaeozoic serpentinites in La Cabaña area of the Chilean Coastal Cordillera (González-Jiménez *et al.* 2017).

50 9. Conclusions

The integration of different approaches in this study adds a new UHP puzzle tile to ZSZ tectonic evolution. The Créton serpentinite reached UHP conditions (2.8-3.3 GPa and 600-630 °C) before the development of the dominant S2 foliation, which has been dated at 60 - 70 Ma and represents an exhumation-related tectono-metamorphic stage. At the regional scale, this new UHP finding reinforces the idea of a heterogeneous nature of ZSZ, that can be therefore interpreted as constituted by different tectono-metamorphic units, which were amalgamated and partly obliterated 556 during the development of the dominant regional S2 foliation under UHP-HP conditions. The 557 vertical restoration of Créton serpentinite during subduction is here reconstructed by comparing the P-T-t-d path with 2D model predictions and suggests that the pre-D2 re-equilibration took place at around 100 km depth, close to the slab, before 70 Ma. Afterwards, these rocks were exhumed and 560 migrated toward the top of the serpentinised wedge where syn-D2 assemblages developed between 60 and 80 km depth: here Ti-humite-bearing serpentinites were tectonically mixed with trench 563 sediments and minor slices of continental crust.

The good agreement of the inferred tectono-metamorphic evolution compared with the predictions of the quantitative geodynamic modelling of an ocean-continent subduction system, together with the heterogeneous and diachronic metamorphic evolutions inferred in different portions of ZSZ, suggests that ophiolites from the axial zone of the Alpine belt can be considered as

4	568	a tectonic mélange of different oceanic lithospheric slices that recorded different thermal and
5 6 7	569	structural evolutions during their burial and exhumation trajectories in the mantle wedge of the
, 8 9 10	570	subduction system.
11 12 13	571	Acknowledgments
14	572	The authors acknowledge insightful reviews by Kurt Bucher and an anonymous reviewer that greatly
15 16	573	improved the text. C. Malinverno prepared thin sections and A. Risplendente assisted the work at the
17	574	microprobe. Results here presented have been developed in the frame of the MIUR Project "Dipartimenti di
18 19	575	Eccellenza 2017 - Le geoscienze per la società: risorse e loro evoluzione (Work-package 3, Tasks 3.3-3.4)".
20 21	576	P.L. thanks Paolo Papone and Ugo Zuretti for their kind hospitality during fieldwork.
22 23 24	577	Funding
25	578	This work was supported by the University of Milano under Grant [PSR2018_DZANONI] and MIUR under
26 27 28	579	Grant [FFABR2018DZANONI]. Studio Ciocca supported P.L.'s PhD scholarship.
29 30 31	580	References
32 33	581	Afonso, J.C., and Ranalli, G., 2004, Crustal and mantle strengths in continental lithosphere: is the
34	582	jelly sandwich model obsolete?: Tectonophysics, v. 394, p. 221-232. doi:
37	583	<u>10.1016/j.tecto.2004.08.006</u>
38 39	584	Amato, J.M., Johnson, C.M., Baumgartner, L.P., and Beard, B.L., 1999, Rapid exhumation of the
40 41	585	Zermatt-Saas ophiolite deduced from high precision Sm-Nd and Rb-Sr geochronology:
	586	Earth and Planetary Science Letters, v. 171, p. 425-38.
	587	Angiboust, S., and Agard, P., 2010, Initial water budget: The key to detaching large volumes of
46 47	588	eclogitized oceanic crust along the subduction channel?: Lithos, v. 120, p. 453-474. doi:
48	589	<u>10.1016/j.lithos.2010.09.007</u>
51	590	Angiboust, S., Agard, P., Jolivet, L., and Beyssac, O., 2009, The Zermatt-Saas ophiolite: The
53	591	largest (60-km wide) and deepest (c. 70-80km) continuous slice of oceanic lithosphere
54	592	detached from a subduction zone?: Terra Nova, v. 21, p. 171-180. doi: 10.1111/j.1365-
56	593	<u>3121.2009.00870.x</u>
57 58		
59 60		

Page 25 of 59

2	
³ 594 4	Balestro, G., Festa A., and Dilek, Y., 2019, Structural architecture of the western alpine ophiolites,
5 595	and the Jurassic seafloor spreading tectonics of the Alpine Tethys: Journal of the
6 7 596	Geological Society, v. 176, p. 913-930. doi: 10.1144/jgs2018-099
8	
9 10 597	Barnicoat, A.C., 1988, Zoned high-pressure assemblages in pillow lavas of the Zermatt-Saas
¹¹ 598	ophiolite zone, Switzerland: Lithos, v. 21, p. 227-36.
12 13	
¹⁴ 599	Barnicoat, A.C., and Fry, N., 1986, High-pressure metamorphism of the Zermatt-Sass ophiolite,
15 16 600	Switzerland: Journal of the Geological Society, v. 143, p. 607-618.
17 18	
19 601	Bearth, P., 1967, Die ophiolite der Zone von Zermatt-Sass Fee: Beitrag Geologische Karte
20 21 602	Schweitz, v. 132, p. 1-130.
22	
23 24 603	Beltrando, M., Rubatto, D., and Manatschal, G., 2010, From passive margins to orogens: The link
²⁵ 604 26	between ocean-continent transition zones and (ultra)high-pressure metamorphism:
27 605	Geology, v. 38, p. 559-562. doi: 10.1130/G30768.1
28 29	
30 606	Best, M.G., and Christiansen, E.H., 2001, Igneous Petrology: Blackwell Science, Oxford, 458 p.
31 32	
33 607	Bigi, G., Cosentino, D., Parotto, M., Sartori, R., and Sandone, P., 1990, Structural Model of Italy
34 35 608	and gravity map. Scale 1: 500.000, Sheets 1-9 C.N.R., Progetto finalizzato Geodinamica:
³⁶ 609 37	Quaderni de «La Ricerca Scientifica», no 114.
38	
³⁹ 610 40	Bousquet, R., Engi, M., Gosso, G., Oberhänsli, R., Berger, A., Spalla, M.I., Zucali, M., and Goffè,
41 611	B., 2004, Explanatory notes to the map: Metamorphic structure of the Alps Transition from
42 43 612	the Western to the Central Alps: Mitteilungen der Österreichischen Mineralogischen
44 45 613	Gesellschaft, v. 149, p. 145-156.
46	
47 48 614	Bowtell, S.A., Cliff, R.A., and Barnicoat, A.C., 1994, Sm-Nd isotopic evidence on the age of
49 615	eclogitisation in the Zermatt-Saas ophiolite: Journal of Metamorphic Geology, v. 12, p.
50 51 616	187-96.
52	
53 54 617	Bucher, K., Fazis, Y., de Capitani, C., and Grapes, R., 2005, Blueschists, eclogites, and
⁵⁵ 618 56	decompression assemblages of the Zermatt-Saas ophiolite: High-pressure metamorphism
57 619	of subducted Tethys lithosphere: American Mineralogist, v. 90, p. 821-835.
58 59 620	https://doi.org/10.2138/am.2005.1718
60	

3 621	Bucher, K. and Frey, M., 1994. Petrogenesis of Metamorphic Rocks. Heidelberg, Berlin: Springer,
5 622 6	318 pp.
7 8 623	Bucher, K., and Grapes, R., 2009, The eclogite-facies Allalin gabbro of the Zermatt-Saas ophiolite,
9 10 624	Western alps: A record of subduction zone hydration: Journal of Petrology, v. 50, p. 1405-
¹¹ 625	1442. doi: 10.1093/petrology/egp035
13	
¹⁴ 626 15	Canales, J.P., Detrick, R.S., Lin, J., Collins, J.A., and Toomey, D.R., 2000, Crustal and upper
16 6 27 17	mantle seismic structure beneath the rift mountains and across a non-transform offset at the
₁₈ 628	Mid-Atlantic Ridge (35°N): Journal of Geophysical Research - Solid Earth, v. 105, p.
19 20 21	2699-2719. <u>doi: 10.1029/1999JB900379</u>
²² 630 23	Cannat, M., Fontaine, F., and Escartín, J., 2013, Serpentinisation and Associated Hydrogen and
24 631	Methane Fluxes at Slow Spreading Ridges. Diversity of Hydrothermal Systems on Slow
25 26 632	Spreading Ocean Ridges. American Geophysical Union, Abstract, p. 241-264. doi:
27 28 633 29	<u>10.1029/2008GM000760</u>
³⁰ 31 634	Carlson, R.L., and Miller, D.J., 1997, A new assessment of the abundance of serpentinite in the
³² 635 33	oceanic crust: Geophysical Research Letters, v. 24, p. 457-460. doi: 10.1029/97GL00144
34 35 636	Chinner, G.A. and Dixon, J.E., 1973, Some high pressure parageneses of the Allalin gabbro, Valais,
36 37 637	Switzerland: Journal of Petrology, v. 14, p. 185-202.
38	
39 40 638	Chopin, C., 1984, Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first
41 42 639	record and some consequences: Contributions to Mineralogy and Petrology, v. 86, p. 107-
43 640 44	118
45 46 641	Chopin, C., Klaska, R., Medenbach, O., and Dron, D., 1986, Ellenbergerite, a new high-pressure
47 48 642	Mg-Al-(Ti,Zr)-silicate with a novel structure based on face-sharing octahedral:
49 50 643	Contributions to Mineralogy and Petrology, v. 92, p. 316-321.
50 51	
52 53 644	Chopra, P.N., and Paterson, M.S., 1981, The experimental deformation of dunite: Tectonophysics,
⁵⁴ 645 55	v. 78, p. 453-473. <u>doi: 10.1016/0040-1951(81)90024-X</u>
56 57 646	Christensen, U.R., 1992, An Eulerian Technique for thermo-mechanical model of lithospheric
58 59 647 60	extension: Journal of Geophysical Research, v. 97, p. 2015-2036. doi: 10.1029/91JB02642

2	
³ 648 4	Christensen, N.I., 2004, Serpentinites, Peridotites, and Seismology: International Geology Review,
5 649 6	v. 46, p. 795-816. doi: 10.2747/0020-6814.46.9.795
7 8 650	Cloos, M., 1993, Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus,
9 10 651	continental margins, island arcs, spreading ridges, and seamounts: Geological Society of
11 652 12 13	America Bulletin, v. 105, p. 715-737.
¹⁴ 653	Dal Piaz, G.V., 1988, Revised setting of the Piemonte zone between Valtournanche and Gressoney
15 16 654 17	valleys: Ofioliti, v. 13, p. 157-162.
18 19 655 20	1992, Guida geologica: Le Alpi dal Monte Bianco al Lago Maggiore, v. 3, Seven Hills Book.
21 22 656	1999, The Austroalpine-Piedmont nappe stack and the puzzle of Alpine Tethys: Memorie di
23 24 657 25	Scienze Geologiche, v. 51, p. 155-176.
26 27 658	2001, History of tectonic interpretations of the Alps: Journal of Geodynamics, v. 32, p. 99-
28 659 29 30	114. <u>doi: /10.1016/S0264-3707(01)00019-9</u>
31 660	2010, The Italian Alps: A journey across two centuries of Alpine geology: Journal of the
32 33 661 34	Virtual Explorer, v. 36, paper 8. doi: 10.3809/jvirtex.2010.00234
35 36 662	Dal Piaz, G.V., and Ernst, W.G., 1978, Areal geology and petrology of eclogites and associated
³⁷ 38 663	metabasites of the Piemonte ophiolite nappe, Breuil-St. Jacques area, Italian Western Alps:
39 664 40 41	Tectonophysics, v. 51, p. 99-126.
42 665	Dal Piaz, G.V., Hunziker, J.C., and Martinotti, G., 1972, La zona Sesia-Lanzo e l'evoluzione
43 44 666	tettonico-metamorfica delle Alpi nord-occidentali interne: Memorie della Società
45 46 47	Geologica Italiana, v. 11, p. 433-460.
48 49 668	Dal Piaz, G.V., Venturelli, G., Spadea, P., and Di Battistini, G., 1981, Geochemical features of
⁵⁰ 669 51	metabasalts and metagabbros from the Piemonte ophiolite nappe, Italian Western Alps:
52 670 53	Neues Jahrbuch für Mineralogie – Abhandlungen, v. 142, p. 248-269.
54 55 671	Dale, C.W., Burton, K.W., Pearson, D.G., Gannoun, A., Alard, O., Argles, T.W., and Parkinson,
56 57 672	I.J., 2009, Highly siderophile element behaviour accompanying subduction of oceanic
⁵⁸ 673 59	crust: Whole rock and mineral-scale insights from a high-pressure terrain: Geochimica et
60 674	Cosmochimica Acta, v. 73, p. 1394-1416. doi: 10.1016/j.gca.2008.11.036

2	
³ 675 4	Deer, W.A., Howie, R.A., and Zussman, J., 1992, An Introduction to the Rock Forming Minerals:
5 676	Longman, 712 p.
6 7	
, 8 677	De Giusti, F., Dal Piaz, G.V., Schiavo, A., Massironi, M., Monopoli, B., Bistacchi, A., and Schiavo,
9 10 678	A., 2003, Carta geotettonica della Valle d'Aosta: Memorie di Scienze Geologiche, v. 55, p.
¹¹ 679	129-149.
12 13	
¹⁴ 680 15	De Hoog, J.C.M., Gall, L., and Cornell, D.H., 2010, Trace-element geochemistry of mantle olivine
16 681	and application to mantle petrogenesis and geothermobarometry: Chemical Geology, v.
17 18 682	270, p. 196-215. doi : 10.1016/j.chemgeo.2009.11.017
19	
20 21 683	Diener, J.F.A., Powell, R., White, R.W., and Holland, T.J.B., 2007, A new thermodynamic model
²² 684 23	for clino- and orthoamphiboles in the system Na ₂ O-CaO-FeO-MgO-Al ₂ O ₃ -SiO ₂ -H ₂ O-O:
24 685	Journal of Metamorphic Geology, v. 25, p. 631-656. doi: 10.1111/j.1525-
25 26 686	1314.2007.00720.x
27	
28 29 687	Droop, G.T.R., 1987, A general equation for estimating Fe ³⁺ concentrations in ferromagnesian
³⁰ 31 688	silicates and oxides from microprobe analyses, using stoichiometric criteria: Mineralogical
32 689	Magazine, v. 51, p. 431-435doi: 10.1180/minmag.1987.051.361.10
33 34	
35 690	Dubois, J., and Diament, M., 1997, Géophysique: Masson, Paris.
36 37	
38 691	Ernst, W.G., and Dal Piaz, G.V., 1978, Mineral parageneses of eclogitic rocks and related mafic
39 40 692	schists of the Piemonte ophiolite nappe, Breuil-St. Jacque: American Mineralogist, v. 63,
41 42 693	p. 621-640.
43	
⁴⁴ 694 45	Ernst, W.G., and Liou, J.G., 1999, Overview of UHP metamorphism and tectonics in well-studied
46 695	collisional orogens: International Geology Review, v. 41, p. 477-493.
47 48	
49 696 50	Fassmer, K., Obermüller, G., Nagel, T.J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I.,
51 697	Fonseca, R.O.C., and Münker, C., 2016, High-pressure metamorphic age and significance
52 53 698	of eclogite-facies continental fragments associated with oceanic lithosphere in the Western
⁵⁴ 699	Alps (Etirol-Levaz Slice, Valtournenche, Italy): Lithos, v. 252-253, p. 145-159. doi:
55 56 700	10.1016/j.lithos.2016.02.019
57 58	
58 59	
60	

1 2	
3 701 4	Ferracutti, G.R., Gargiulo, M.F., Ganuza, M.L., Bjerg, E.A., and Castro, S.M., 2015, Determination
5 702	of the spinel group end-members based on electron microprobe analyses: Mineralogy and
6 7 703 8	Petrology, v. 109, p. 153-160. doi: 10.1007/s00710-014-0363-1
9 10 704	Ferrando, S., Frezzotti, M.L., Orione, P., Conte, R.C., and Compagnoni, R., 2010, Late-Alpine
¹¹ 705 12	rodingitisation in the Bellecombe meta-ophiolites (Aosta Valley, Italian Western Alps):
13 706	evidence from mineral assemblages and serpentinisation-derived H ₂ -bearing brine:
14 15 707 16	International Geology Review, v. 52, p. 1220-1243. doi: 10.1080/00206810903557761
17 18 708	Ferraris, G., Ivaldi, G., and Chopin, C., 1995, Magnesiodumortierite, a new mineral from very-
¹⁹ 709 20	high-pressure rocks (Western Alps). Part I: Crystal structure: European Journal of
21 710 22 23	Mineralogy, v. 7, p. 167-174. doi: 10.1127/ejm/7/1/0167
24 711	Forster, M., Lister, G.S., Compagnoni, R., Giles, R., Hills, D., 2004, Mapping of oceanic crust with
25 26 712	"HP" to "UHP" metamorphism: The Lago di Cignana Unit, (Western Alps), in Pasquarè,
27 28 713	G. Venturini, C. & Groppelli, G. eds, Mapping Geology in Italy. APAT - Dip. Difesa del
²⁹ 714 30	Suolo, Servizio Geologico d'Italia, Roma 2004 (2006), Map 33, printed by S.EL.CA.
31 715 32	Firenze, p. 279-286.
33 34 716	Frezzotti, M.L., Selverstone, J., Sharp, Z.D., and Compagnoni, R., 2011, Carbonate dissolution
35 36 717	during subduction revealed by diamond-bearing rocks from the Alps: Nature Geoscience,
37 38 39	v. 4, p. 703-706. doi: 10.1038/ngeo1246
⁴⁰ 719 41	Gerya, T.V., and Stöckhert, B., 2005, Two-dimensional numerical modeling of tectonic and
42 720	metamorphic histories at active continental margins: International Journal of Earth
43 44 721 45	Science, v. 95, p. 250-274. doi: 10.1007/s00531-005-0035-9
46 47 722	Gerya, T.V., and Yuen, D.A., 2003, Characteristics-based marker-in-cell method with conservative
⁴⁸ 723 49	finite-differences schemes for modeling geological flows with strongly variable transport
50 724	properties: Physics of the Earth and Planetary Interiors, v. 140, p. 293-318. doi:
51 52 725 53	<u>10.1016/j.pepi.2003.09.006</u>
54 55 726	Gilio, M., Scambelluri, M., Agostini, S., Godard, M., Peters, D., and Pettke, T., 2019, Petrology and
⁵⁶ 57 727	Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana
58 728 59	Unit (ItalianWestern Alps): Journal of Petrology, v. 60, 1229–1262. doi:
59 60 729	10.1093/petrology/egz030

1 2	
³ 730	González-Jiménez, J.M., Plissart, G., Garrido, L.N., Padrón-Navarta, J.A., Aiglsperger, T., Romero,
4 5 731	R., Marchesi, C., Moreno-Abril, A.J., Reich, M., Barra, F., and Morata, D., 2017, Titanian
6 7 732	clinohumite and chondrodite in antigorite serpentinites from Central Chile: evidence for
8 9 733	deep and cold subduction: European Journal of Mineralogy, v. 29, p. 959-970.
9 10	
¹¹ 734 12	Gouzu, C., Itaya, T., Hyodo, H., and Matsuda, T., 2006, Excess ⁴⁰ Ar-free phengite in ultrahigh-
13 735	pressure metamorphic rocks from the Lago di Cignana area, Western Alps: Lithos, v. 92, p.
14 15 736	418-30.
16 17	
18 737	Groppo, C., Beltrando, M., and Compagnoni, R., 2009, The P-T path of the ultra-high pressure
¹⁹ 738 20	Lago Di Cignana and adjoining high-pressure meta-ophiolitic units: Insights into the
21 739 22	evolution of the subducting Tethyan slab: Journal of Metamorphic Geology, v. 27, p. 207-
23 740 24	231doi: 10.1111/j.1525-1314.2009.00814.x
25	Comme Cound Commentin B 2007 Materia militaria from the commentinitar of the Discounts
26 741 27 - 12	Groppo, C., and Compagnoni, R., 2007, Metamorphic veins from the serpentinites of the Piemonte
28 742	Zone, western Alps, Italy: A review: Periodico di Mineralogia, v. 76, p. 127-153. doi:
²⁹ 743 30	/10.2451/2007PM0021
21	
31 ³² 744	Guiraud, M., Powell, R., and Rebay, G., 2001, H ₂ O in metamorphism and unexpected behaviour in
32 744 33	Guiraud, M., Powell, R., and Rebay, G., 2001, H ₂ O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology,
32 744 33 34 745 35	the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology,
32 744 33 34 745 35 36 746 37	
32 744 33 34 745 35 36 746 37	the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology,
32 744 33 34 745 35 746 37 38 747 40 748	the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x
32 744 33 34 745 35 746 37 38 747 39 747 40 748 41 42	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3
32 744 33 34 745 35 746 37 38 747 40 748 41	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the
32 744 33 34 745 35 746 37 38 747 40 748 41 42 43 749 44 45 750	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3
32 744 33 34 745 35 746 37 38 747 40 748 41 42 43 749 44 45 750 46 47 751	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the
32 744 33 34 745 35 746 37 38 747 40 748 41 42 43 749 44 45 750	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and
32 744 33 745 35 746 37 38 747 40 748 41 42 43 749 44 45 750 46 47 751 48 752 49 50	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and outstanding problems: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, v. 149, p. 201-225.
32 744 33 34 745 35 746 37 38 747 40 748 41 42 43 749 44 45 750 46 47 751 48 752 49 50 51 753 52	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and outstanding problems: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, v. 149, p. 201-225. Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, and E., Bernoulli, D., 2010, Reconciling plate-
32 744 33 34 745 35 746 37 38 747 40 748 41 42 43 749 44 45 750 46 47 751 48 752 49 50 51 753 52 754 54	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and outstanding problems: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, v. 149, p. 201-225. Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, and E., Bernoulli, D., 2010, Reconciling platetectonic reconstructions of Alpine Tethys with the geological-geophysical record of
32 744 33 745 35 746 37 38 747 40 748 41 42 43 749 44 750 46 751 48 752 49 752 50 51 753 53 754 55 755	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and outstanding problems: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, v. 149, p. 201-225. Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, and E., Bernoulli, D., 2010, Reconciling platetectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps: Earth-Science Reviews, v. 102, p. 121-158. doi:
32 744 33 34 745 35 746 37 38 747 40 748 41 42 43 749 44 748 45 750 46 751 48 752 49 752 50 51 753 52 755 53 754 55 755 56 756 57 756	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and outstanding problems: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, v. 149, p. 201-225. Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, and E., Bernoulli, D., 2010, Reconciling platetectonic reconstructions of Alpine Tethys with the geological-geophysical record of
32 744 33 745 35 746 37 38 747 40 748 41 42 43 749 44 750 46 751 48 752 49 752 50 51 753 53 754 55 755	 the preservation of metamorphic mineral assemblages: Journal of Metamorphic Geology, v. 19, p. 445-454. doi: 10.1046/j.0263-4929.2001.00320.x Haenel, R., Rybach, L., and Stegena, L., 1988, Handbook of Terrestrial Heat-Flow Density Determination: Kluwer Academic Publishers, p. 125-142. doi: 10.1007/978-94-009-2847-3 Handy, M.R., and Oberhänsli, R., 2004, Explanatory notes to the map: metamorphic structure of the Alps age map of the metamorphic structure of the Alps – tectonic interpretation and outstanding problems: Mitteilungen der Österreichischen Mineralogischen Gesellschaft, v. 149, p. 201-225. Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, and E., Bernoulli, D., 2010, Reconciling platetectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps: Earth-Science Reviews, v. 102, p. 121-158. doi:

Page 31 of 59

3 757 4	Holland, T.J.B., Baker, J., and Powell, R., 1998, Mixing properties and activity-composition
5 758	relationships of chlorites in the system MgO-FeO-Al ₂ O ₃ -SiO ₂ -H ₂ O: European Journal of
6 7 759	Mineralogy, v. 10, p. 395-406. doi: 10.1127/ejm/10/3/0395
8	
9 10 760	Holland, T.J.B., and Powell, R., 1998, An internally consistent thermodynamic data set for phases
¹¹ 761	of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309-343. doi:
12 13 762	10.1111/j.1525-1314.1998.00140.x
14 15	
16 763	Hunziker, J.C., Desmons, J., and Hurford, A.J., 1992, Thirty-two years of geochronological work in
17 18 764	the Central and Western Alps: a review on seven maps: Mémoires de Géologie (Lausanne),
19 ₇₆₅	v. 13, p. 1-59.
20 ⁷⁰⁵ 21	
²² 766 23	Juteau, T., and Maury, R., 1999, The Oceanic Crust, From Accretion to Mantle Recycling:
24 767	Springer-Verlag, New York, 390 p.
25 26	
27 768	Kienast J.R., Lombardo, B., Biino, G., and Pinardon, J.L., 1991, Petrology of very-high-pressure
28 29 769	eclogitic rocks from the Brossasco-Isasca complex, Dora-Maira massif, Italian western
³⁰ 31 770	Alps: Journal of Metamorphic Geology, v. 9, p. 19-34.
32	
33 771	Kirby, S.H., 1983, Rheology of the Lithosphere: Review of Geophysics, v. 21, p. 1459-1487. doi:
³³ 771 34 35 772	Kirby, S.H., 1983, Rheology of the Lithosphere: Review of Geophysics, v. 21, p. 1459-1487. doi: 10.1029/RG021i006p01458
33 34 771	
33 34 35 772 36 37 38 773	
33 34 35 772 36 37	10.1029/RG021i006p01458
33 34 35 35 36 37 38 773 39 40 774 41 775	10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and
33 34 35 35 37 38 773 38 773 39 40 774 41 42 775 43	10.1029/RG021i006p01458Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi:
33 34 35 35 37 38 773 38 773 39 40 774 41 42 775 43 44 776	10.1029/RG021i006p01458Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi:
33 34 35 35 37 38 773 39 40 774 41 775 43 44 775 43 44 776 46 777	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x
33 34 35 35 37 38 773 38 773 39 40 774 41 775 42 775 43 44 45 776	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International
33 34 35 35 37 38 773 39 40 774 41 775 42 775 43 44 776 45 776 46 777 48 49 778	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International
33 34 35 35 37 38 773 38 773 39 40 774 41 775 43 44 775 43 44 776 45 776 46 777 47 48 49 778 50 51 779	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International Geology Review, v. 46, p. 28-51. doi: 10.2747/0020-6814.46.1.28
33 34 35 35 37 38 773 38 773 39 40 774 41 775 43 44 775 43 44 776 45 776 46 777 47 48 49 778 50 51 779	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International Geology Review, v. 46, p. 28-51. doi: 10.2747/0020-6814.46.1.28 Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following the
33 771 34 772 36 37 38 773 39 774 40 774 41 775 43 776 44 776 45 776 46 777 48 9 49 778 50 779 52 780 53 780	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International Geology Review, v. 46, p. 28-51. doi: 10.2747/0020-6814.46.1.28 Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations: Computers and Geosciences, v. 62, p. 1-11. doi:
33 771 34 772 36 37 38 773 39 774 40 774 41 775 43 745 44 776 45 776 46 777 48 49 49 778 50 779 52 780	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International Geology Review, v. 46, p. 28-51. doi: 10.2747/0020-6814.46.1.28 Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations: Computers and Geosciences, v. 62, p. 1-11. doi:
33 771 34 772 36 37 38 773 39 774 40 774 41 775 42 775 43 44 45 776 46 777 48 49 49 778 50 51 51 779 52 780 54 55 56 781 57 782	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International Geology Review, v. 46, p. 28-51. doi: 10.2747/0020-6814.46.1.28 Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations: Computers and Geosciences, v. 62, p. 1-11. doi: 10.1016/j.cageo.2013.09.011
33 771 34 772 36 37 38 773 39 774 40 774 41 775 43 44 45 776 46 777 48 49 49 778 50 7179 52 780 54 55 56 781	 10.1029/RG021i006p01458 Li, X.P., Rahn, M., and Bucher, K., 2004a, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159-177. doi: 10.1111/j.1525-1314.2004.00503.x 2004b, Metamorphic processes in rodingites of the Zermatt-Saas ophiolites: International Geology Review, v. 46, p. 28-51. doi: 10.2747/0020-6814.46.1.28 Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations: Computers and Geosciences, v. 62, p. 1-11. doi: 10.1016/j.cageo.2013.09.011 Luoni, P., Rebay, G., Spalla, M.I., and Zanoni, D., 2018, UHP Ti-chondrodite in the Zermatt-Saas

3	784	Luoni, P., Zanoni, D., Rebay, G., and Spalla, M.I., 2019, Deformation history of Ultra High-
4 5	785	Pressure ophiolitic serpentinites in the Zermatt-Saas Zone, Créton, Upper Valtournanche
6 7	786	(Aosta Valley, Western Alps): Ofioliti, v. 44, p. 111-123. doi: 10.4454/ofioliti.v44i2.468
8		
9 10	787	Mahlen, N.J., Johnson, C.M., Baumgartner, L.P., Lapen, T.J., Skora, S., and Beard, B.L., 2006, The
	788	protracted subduction history and HP/UHP metamorphism of the Zermatt-Saas ophiolite,
	789	western Alps, as constrained by Lu-Hf geochronology: EOS Transactions AGU Fall
14 15	790	Meeting, p. V41E-05.
16		
17 18	791	Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., and Cannat, M., 2012, Serpentinization of
19 20	792	oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal
21	793	alteration: Journal of Geophysical Research: Solid Earth, v. 117, p. 1-13. doi:
22 23	794	10.1029/2011JB008842.
24 25		
26	795	Marotta, A.M., Roda, M., Conte, K., and Spalla, M.I., 2018, Thermo-mechanical numerical model
27 28	796	of the transition from continental rifting to oceanic spreading: the case study of the Alpine
	797	Tethys: Geological Magazine, v. 155, p. 1-30. doi: 10.1017/S0016756816000856
31		
32 33	798	Marotta, A.M., and Spalla, M.I., 2007, Permian-Triassic high thermal regime in the Alps: Result of
34	799	late Variscan collapse or continental rifting? Validation by numerical modeling: Tectonics,
35 36	800	v. 26, p. 1–30. doi: 10.1029/2006TC002047.
37 38		
39	801	Marotta, A.M., Spelta, E., and Rizzetto, C., 2006, Gravity signature of crustal subduction inferred
40 41	802	from numerical modelling: International Journal of Geophysics, v. 166, p. 923-938. doi:
42 43	803	10.1111/j.1365-246X.2006.03058.x
44		
46	804	Martin, S., Tartarotti, P., and Dal Piaz, G.V., 1994, Alpine ophiolites: a review: Bollettino di
47	805	Geofisica Teorica ed Applicata, v. 36, p. 175-219.
48 49	000	Made M. Maratta A.M. and Spalla M.L. 2010. The role of months hydrotics in continental emet
	806	Meda, M., Marotta, A.M., and Spalla, M.I., 2010, The role of mantle hydration in continental crust
	807	recycling in the wedge region: Geological Society, London, Special Publications, v. 332, p.
53 54	808	149-172. doi: 10.1144/SP332.10
55 56	809	Meyer, J., 1983, Mineralogie und Petrologie des Allalingabbros [Ph.D. thesis]: Basel, Universität
57		Basel.
58 59	810	
60	811	Morimoto, N., 1988, Nomenclature of pyroxenes: Mineralogical Magazine, v. 52, p. 535-550.

1	
2 ³ 812	Oberhänsli, R., 1980, PT bestimmungen anhand von mineral analysen in eklogiten und
4 5 813	glaukophaniten der ophiolite von Zermatt: Schweizerische Mineralogische und
6	Petrographische Mitteilungen, v. 60, p. 215-35.
7 ⁸¹⁴ 8	r eu ographisene witten ungen, v. oo, p. 215-55.
9 10 815	Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Hermann, J., Connolly, J.A.D., Garrido, C.J.,
¹¹ 816	Gómez-Pugnaire, M.T., and Marchesi, C., 2013, Tschermak's substitution in antigorite and
12 13 817	consequences for phase relations and water liberation in high-grade serpentinites: Lithos,
14 15 818	v. 178, p. 186-196. doi: 10.1016/j.lithos.2013.02.001.
16	v. 170, p. 100 190. doi: 10.1010/j.mil00.2015.02.001.
17 18 819	Passchier, C.W., Myers, J.S., and Kroener, A., 1990, Field Geology of High-Grade Gneiss Terrains:
¹⁹ 820	Springer, Berlin, 150 pp.
20 21	Springer, Derini, reepp.
²² 821	Passchier, C.W., and Trouw, R.A.J., 2005, Microtectonics: Springer, Berlin, 366 pp.
23 24	
²⁵ 822	Passeri, L., Ciarapica, G., and Dal Piaz, G.V., 2018, The problematic origin of the Pancherot-Cime
26 27 823	Bianche-Bettaforca unit (PCB) in the Piemonte zone (Western Alps): Italian Journal of
28 29 824	Geosciences, v. 137, p. 478-489. doi: 10.3301/IJG.2018.21
30	
31 32 825	Polino, R., Dal Piaz, G.V., and Gosso, G., 1990, An accretionary wedge model for the pre-
33 826	collisional Cretaceous orogeny in the Alps: Societé Géologique de France Memoires, v.
34 35 827	156, p. 309-321.
36	150, p. 509-521.
37 38 828	Powell, R., Holland, T.J.B., and Worley, B., 1998, Calculating phase diagrams involving solid
39	solutions via non-linear equations, with examples using THERMOCALC: Journal of
40 829	
42 830	Metamorphic Geology, v. 16, p. 577-588.
43 44 45 831	Rahn, M., and Bucher, K., 1998, Titanian clinohumite formation in the Zermatt-Saas ophiolites,
45 46 832	Central Alps: Mineralogy and Petrology, v. 64, p. 1-13. doi: 10.1007/BF01226561
47 48	
40 49 833	Ranalli, G., and Murphy, D.C., 1987, Rheological stratification of the lithosphere: Tectonophysics,
50 51 834	v. 132, p. 281-295. doi: 10.1016/0040-1951(87)90348-9
52	
53 54 835	Rebay, G., Powell, R., and Diener, J.F.A., 2010, Calculated phase equilibria for a MORB
⁵⁵ 836	composition in a P-T range, 450-650 °C and 18-28 kbar: the stability of eclogite: Journal
56 57 837	of Metamorphic Geology, v. 28, p. 635-645. doi: 10.1111/j.1525-1314.2010.00882.x
58 59	
60	

2		
3 4	838	Rebay, G., Spalla, M.I., and Zanoni, D., 2012, Interaction of deformation and metamorphism during
5 6	839	subduction and exhumation of hydrated oceanic mantle: Insights from the Western Alps:
7	840	Journal of Metamorphic Geology, v. 30, p. 687-702. doi: 10.1111/j.1525-
8 9	841	1314.2012.00990.x
10		
11 12	842	Rebay, G., Zanoni, D., Langone, A., Luoni, P., Tiepolo, M., and Spalla, M.I., 2018, Dating of
13 14	843	ultramafic rocks from the Western Alps ophiolites discloses Late Cretaceous subduction
15	844	ages in the Zermatt-Saas Zone: Geological Magazine, v. 155, p. 298-315. doi:
16 17	845	10.1017/S0016756817000334
18		
20	846	Reddy, S.M., Wheeler, J., and Cliff, R.A., 1999, The geometry and timing of orogenic extension: an
21 22	847	example from the Western Italian Alps: Journal of Metamorphic Geology, v. 17, p. 573-
23	848	589.
24 25		
	849	Regorda, A., Lardeaux, JM., Roda, M., Marotta, A.M., and Spalla, M.I., 2020, How many
	850	subductions in the Variscan orogeny? Insights from numerical models: Geoscience
29 30	851	Frontiers. doi: 10.1016/j.gsf.2019.10.005.
31 32	~	
33	852	Regorda, A., Roda, M., Marotta, A.M., and Spalla, M.I., 2017, 2-D numerical study of hydrated
35	853	wedge dynamics from subduction to post-collisional phases: Geophysical Journal
36 37	854	International, v. 211, p. 974-1000. doi: 10.1093/gji/ggx336
38	855	Reinecke, T., 1991, Very high pressure metamorphism and uplift of coesite-bearing metasediments
40	856	from the Zermatt-Saas Zone, Western Alps: European Journal of Mineralogy, v. 3, p. 7-17.
41 42		
43	857	1995, Ultrahigh and high-pressure metamorphic rocks of the Zermatt-Saas zone, Western Alps
44 45	858	records of burial and exhumation paths: Bochumer Geologische und Geotechnische
46 47	859	Arbeiten, v. 44, p. 152-7.
48		
	860	1998, Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic
51 52	861	sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps: Lithos, v. 42, p. 147-189.
53	862	doi: 10.1016/S0024-4937(97)00041-8
54 55		
	863	Reinecke, T., van der Klauw, S.N.G.C., Stöckhert, B., 1994, UHP metamorphic oceanic crust of the
	864	Zermatt-Saas zone (Piemontese zone) at Lago di Cignana, Valtournanche, Italy.
59 60	865	Compagnoni, R., Messiga, B., eds., High Pressure Metamorphism in the Western Alps:
	866	16 th IMA Meeting. Guide Book to Field Excursion, B1, p. 117-126. 34

Page 35 of 59

3 867 4	Roda, M., Marotta, A.M., and Spalla, M.I., 2010, Numerical simulations of an ocean-continent
4 5 868	convergent system: influence of subduction geometry and mantle wedge hydration on
6 7 869	crustal recycling: Geochemistry, Geophysics, Geosystems, v. 11, p. 1-21.
8 9	
9 10 870	2011, The effects of the overriding plate thermal state on the slab dip in an ocean-continent
¹¹ 871	subduction system: Comptes Rendus – Geoscience, v. 343, p. 323-330. doi:
13 872 14	10.1016/j.crte.2011.01.005
15 16 873	Roda, M., Regorda, A., Spalla, M.I., Marotta, A.M., 2019, What drives Alpine Tethys opening?
17 18 874	Clues from the review of geological data and model predictions: Geological Journal, v. 54,
19 20 875	
21 22 23 876	Roda, M., Spalla, M.I., and Marotta, A.M., 2012, Integration of natural data within a numerical
23 24 877	
25	
26 878 27	Austroalpine crust: Journal of Metamorphic Geology, v. 30, p. 973-996.
28 29 879	Rubatto, D., Gebauer, D., and Fanning, M., 1998, Jurassic formation and Eocene subduction of the
³⁰ 31 880	
32 881 33	
34 35 882	Rüpke, L.H., and Hasenclever, J., 2017, Global rates of mantle serpentinisation and H ₂ production
36 37 883	at oceanic transform faults in 3-D geodynamic models: Geophysical Research Letters, v.
³⁸ 39 884 40	44, p. 6726-6734. doi: 10.1002/2017GL072893
41 42 885	Scambelluri, M., and Rampone, E., 1999, Mg-metasomatism of oceanic gabbros and its control on
43 886	Ti-clinohumite formation during eclogitisation: Contributions to Mineralogy and
44 45 887	Petrology, v. 135, p. 1-17. doi: 10.1007/s004100050494
46 47	
48 888	Schmidt, M.W., and Poli, S., 1998, Experimentally based water budgets for dehydrating slabs and
49 50 889	
51 890 52	361-379. doi: 10.1016/S0012-821X(98)00142-3
53 54 891	Smith, D.C., 1984, Coesite in clinopyroxene in the Caledonides and its implications for
55 56 892 57	geodynamics. Nature, v. 310, p. 641-644.
58 59 893	Shen, T., Hermann, J., Zhang, L., Lü, Z., Padrón-Navarta, J.A., Xia, B., and Bader, T., 2015, UHP
⁶⁰ 894	
	35

2 3 4	895	ultramafic rocks from Chinese southwestern Tianshan: Journal of Petrology, v. 56, p.
5 6	896	1425-1458.
7 8	897	Skora, S., Lapen, T.J., Baumgartner, L.P., Johnson, C.M., Hellebrand, E., and Mahlen, N.J., 2009,
9 10	898	The duration of prograde garnet crystallisation in the UHP eclogites at Lago di Cignana,
1 1	899	Italy: Earth and Planetary Science Letters, v. 287, p. 402-411.
14 15	900	Skora, S., Mahlen, N.J., Johnson, C.M., Baumgartner, L.P., Lapen, T.J., Beard, B.L., and Szilvagyi,
	901	E.T., 2015, Evidence for protracted prograde metamorphism followed by rapid exhumation
17 18	902	of the Zermatt-Saas Fee ophiolite: Journal of Metamorphic Geology, v. 33, p. 711-734.
19 20 21	903	<u>doi: 10.1111/jmg.12148</u>
22 23	904	Spalla, M.I., Gosso, G., Marotta, A.M., Zucali, M., and Salvi, F., 2010, Analysis of natural tectonic
24	905	systems coupled with numerical modelling of the polycyclic continental lithosphere of the
25 26	906	Alps: International Geology Review, v. 52, p. 1268-1302.
27 28		
29	907	Spalla, M.I., Lardeaux, J.M., Dal Piaz, G.V., Gosso, G., and Messiga, B., 1996, Tectonic
30 31	908	significance of Alpine eclogites: Journal of Geodynamics, v. 21, p. 257-285.
32		
34	909	Spalla, M.I., and Zucali M., 2004, Deformation vs. metamorphic reequilibration heterogeneities in
35 36	910	polymetamorphic rocks: a key to infer quality P-T-d-t path: Periodico di Mineralogia, v.
37 38	911	73, p. 249-257.
39 40	912	Tartarotti, P., Festa, A., Benciolini, L., and Balestro, G., 2017, Record of Jurassic mass transport
41 42	913	processes through the orogenic cycle: Understanding chaotic rock units in the high-
43	914	pressure Zermatt-Saas ophiolite (Western Alps): Lithosphere, v. 9, p. 399-407. doi:
44 45	915	10.1130/L605.1
46 47		
48	916	Turcotte, D.L., Schubert, G., 2002, Geodynamics (2nd ed.): Cambridge University Press, New York,
49 50 51	917	848 p.
52 53	918	Vernon, R.H., 2018, A practical guide to rock microstructures, second edition: Cambridge
54	919	University Press, Cambridge, 432 p., doi:10.1017/9781108654609
55 56		
	920	van der Klauw, S.N.G.C., Reinecke, T., and Stöckhert, B., 1997, Exhumation of ultrahigh-pressure
	921	metamorphic oceanic crust from Lago di Cignana, Piemontese zone, western Alps: the

Page 37 of 59

1

International Geology Review

2	
3 922 4	structural record in metabasites: Lithos, v. 41, p. 79-102. doi: 10.1016/S0024-
5 923 6	4937(97)82006-3
7 8 924	Weber, S., and Bucher, K., 2015, An eclogite-bearing continental tectonic slice in the Zermatt-Saas
9 10 925	high-pressure ophiolites at Trockener Steg (Zermatt, Swiss Western Alps): Lithos, v. 232,
¹¹ 926 12 13	p. 336-359. doi: 10.1016/j.lithos.2015.07.010
¹⁴ 927 15	Weber, S., Sandmann, S., Miladinova, I., Fonseca, R.O.C., Froitzheim, N., Münker, C., and Bucher,
16 928	K., 2015, Dating the initiation of Piemonte-Liguria Ocean subduction: Lu-Hf garnet
17 18 929	chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas zone, Switzerland):
¹⁹ 930 20	Swiss Journal of Geosciences, v. 108, p. 183-199doi: 10.1007/s00015-015-0180-5
21 22 931	White, R.W., Powell, R., and Holland, T.J.B., 2007, Progress relating to calculation of partial
23 24 932	melting equilibria for metapelites: Journal of Metamorphic Geology, v. 25, p. 511-527.
25 26 933	doi: 10.1111/j.1525-1314.2007.00711.x
26 933 27	doi: 10.1111/J.1323-1314.2007.00711.X
28 29 934	Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals:
³⁰ 935 31	American Mineralogist, v. 95, p. 185-187. doi: 10.2138/am.2010.3371
32 33 34 35	Winter, J., 2001, Principles of Igneous and Metamorphic Petrology: Prentice Hall Pearson, 712 p.
³⁶ 937	Zanoni, D., Rebay, G., Bernardoni, J., and Spalla, M.I., 2012, Using multiscale structural analysis
37 38 938	to infer high-/ultrahigh-pressure assemblages in subducted rodingites of the Zermatt-Saas
39 40 939	Zone at Valtournanche, Italy: Journal of the Virtual Explorer, v. 41, p. 2-30. doi:
41 42 43	10.3809/jvirtex.2011.00290
⁴⁴ 941	Zanoni, D., Rebay, G., and Spalla, M.I., 2016, Ocean floor and subduction record in the Zermatt-
45 ⁹ 46 942	Saas rodingites, Valtournanche, Western Alps: Journal of Metamorphic Geology, v. 34, p.
47 48 943 49	941-961. doi: 10.1111/jmg.12215
50 51 944	Zeh, A., Holland, T.J.B., and Klemd, R., 2005, Phase relationships in grunerite-garnet-bearing
52 53 945	amphibolites in the system CFMASH, with applications to metamorphic rocks from the
⁵⁴ 946	Central Zone of the Limpopo Belt, South Africa: Journal of Metamorphic Geology, v. 23,
55 56 947	p. 1-16. doi: 10.1111/j.1525-1314.2005.00554.x
57 58 948	
59	
⁶⁰ 949	Figure captions
	72

1

Figure 1. (a) Location of the studied area in the simplified tectonic framework of the Western Alps (SL = Sesia-Lanzo Zone; PL = Periadriatic line; TP = Tertiary plutons); (b) simplified structural setting of the upper Valtournanche (redrawn after De Giusti *et al.* 2003 and Forster *et al.* 2004): CLU = Cignana Lake Unit; CZ = Combin Zone; DB = Dent Blanche Nappe; PCB = Pancherot-Cime Bianche Unit; ZSZ = Zermatt-Saas Zone. AA' cross-section is shown in Figure 1c. The red star locates the studied area (Créton outcrops) and the red rectangle Figure 1d; (c) cross-section of UHP Cignana Lake Unit and Arolla Unit (Dent Blanche Nappe) – Combin Zone – Zermatt-Saas Zone contacts (Forster *et al.* 2004); (d) foliation trajectory map with legend of Upper Valtournanche after Luoni *et al.* (2019) and Zanoni (unpublished: original mapping at 1:5000 scale); light colours indicate interpreted lithostratigraphy.

Figure 2. Form surface maps of two outcrops from Créton, showing a quite complete lithostratigraphy and sequence of superposed fabrics (modified after Luoni *et al.* 2019). Equiareal Schmidt projections for structures are shown, with number of data in brackets.

Figure 3. Mesostructures revealing the tectonic history of the Créton serpentinites. (a) Tichondrodite + Ti-clinohumite vein marking D1 isoclinal fold and intersected by S2 foliation: AP1 = D1 axial plane; (b) olivine-rich layer underlying D2 tight folds in olivine-rich serpentinite; (c) magnetite layer intersected by S2 and D3 discrete shear zones in serpentinite. Coin and pencil for scale.

Figure 4. Microstructures. (a) S2 foliation in serpentinite marked by Atg2 + Mag2 + Ol2, wrapping pre-D2 Ol with Mag inclusions (BSE image); (b) S2 foliation in serpentinite marked by Atg2 +Chl2 + Cpx2 (crossed polars); (c) olivine-rich layer with pre-D2 and pre-D2-to-early-D2 Ol wrapped by S2 foliation marked by Ol2 + Atg2 + Mag2 (crossed polars); (d) Cpx porphyroclast in a Atg2 + Chl2 + Cpx2 + Mag2 matrix (crossed polars); (e) Ti-Chu + Ti-Chn rim between Ilm + Mag aggregate and pre-D2-to-early-D2 Cpx (plane polarised light); (f) Core-mantle structure with pre-

D2 Ti-Chn porphyroclast surrounded by a Ti-Chn +Ti-Chu polygonal aggregate (plane polarised light).

Figure 5. (a-b-c-d) Pre-D2-to-early-D2 grains in Ti-Chu polygonal aggregates at the rim of Ti-Chn aggregates are gradually parallelised and recrystallised into S2 in BSE image (a) and Ti map (b); (cd) pre-D2-to-early-D2 Cpx, Ti-Chu + Ti-Chn rim, Ilm + Mag aggregate in BSE image (c) and crossed polars (d).

Figure 6: Mineral chemistry diagrams. (a) olivine; (b) humites; (c) clinopyroxene; (d) serpentine;
(e) spinel. Symbols refer to rocks and colours to structural stages: blue = pre-D2; red = pre-D2-toearly-D2; green = syn-D2. Ti-humite diagram is redrawn after Luoni *et al.* (2018).

Figure 7. (a) Pre-D2 (orange area) and pre-D2-to-early-D2 PT conditions (yellow area); experimentally determined fields in Ti-rich systems (black curves, redrawn from Shen *et al.* 2015); experimental data combined with Schreinemaker analysis, representing phase relations in systems with less Ti and involving Ti-humites, Atg, Opx, OI, and Chl (grey curves, redrawn from Shen *et al.* 2015). Green and blue lines represent temperatures calculated from pre-D2 olivine (De Hoog *et al.* 2010) with error bars. The red thick curve represents Opx-in from Figure 7b; (b-c) pseudosections calculated in the CFMASHO system for syn-D2 Ol-bearing (b) and Cpx-bearing (c) mineral assemblages; compositions (mol%) are reported at the top of each pseudosection. Dotted and dashed areas in panels a,b, and c represent syn-D2 PT conditions for Valtournanche rodingites (Zanoni *et al.* 2016) and serpentinites (Rebay *et al.* 2012) respectively; (d) Inferred P-T-d-t path of Créton serpentinites redrawn after Luoni *et al.* (2019) with age data from Rebay *et al.* (2018). Geotherms (Cloos *et al.* 1993): (1) near spreading ridge or volcanic arc; (2) normal gradient of old plate interior; (3a) cold subduction zones; (3b) warm subduction zones. Orange and yellow boxes represent pre-D2 and D2, respectively and blue field represents D3 re-equilibration.

Figure 8. Setup of the numerical model. The model domain is 1400 km wide and 710 km deep. The initial lithosphere thickness is 80 km and is defined by the 1227°C isotherm. The velocity boundary conditions correspond to a free slip condition along the bottom of the domain and a fixed velocity

along the top boundary. The vertical component of the velocity vector (Uv) is fixed at 0 cm/yr on

the right boundary along the entire lithospheric thickness (80 km depth) and along the left side from

0 to 700 km depth. No slip conditions are imposed on the right and left sides of the domain from the

topographic surface to the upper boundary. Plate convergence is simulated with a horizontal

velocity of 3 cm/yr, and it is fixed along the bottom of the oceanic crust and at the nodes of the

numerical grid and distributed along a 45°-dipping plane from the trench to a depth of 100 km. The

thermal boundary conditions correspond to 0°C at the top of the domain and 1227°C at the bottom.

The initial thermal configuration corresponds to an uniform purely conductive upper thermal

boundary layer throughout the lithosphere (from 0 to 80 km depth and from 0°C to 1227°C) and an

uniform sublithospheric temperature of 1227°C (inset). The temperatures are fixed along the left

vertical sidewall, and a zero thermal flux is imposed on the right side. The materials included in the

model account for the upper and lower oceanic crust, continental crust, mantle, and sticky air (see

Figure 9. Results of the simulation represented by geodynamic setting (a-c) and related geotherms

(b-d) after 20 (a-b) and 28 Myr (c-d) of oceanic subduction, (corresponding to 80 and 72 Ma

absolute ages) and comparison with the pre-D2 PT conditions (white box), defined by isotherms

and depths. (a) At 80 Ma, the pre-D2 PT conditions are matched by markers that belong to the

upper oceanic crust, located within the serpentinised mantle wedge and close to the slab. (b)

Geotherms extrapolated at different distances from the trench indicate that the pre-D2 PT conditions

occur at a distance of 100-130 km from the trench and at ca. 80-110 km depth. (c) At 72 Ma, the

pre-D2 PT conditions occur in an inner portion of the mantle wedge. (d) The location of the pre-D2

PT conditions in the subduction system is reached at a distance of 110-145 km from the trench and

Table 5 for material parameters and rheology).

1

59 60 at ca. 80-110 km depth.

2 ³ 1023	Figure 10. Results of the simulation represented by geodynamic setting (a-c) and related geotherms
5 6 1024	(b-d) after 30 (a-b), 35 (c-d), and 40 Myr (e-f) of oceanic subduction, (corresponding to 70, 65, and
7 8 1025 9	60 Ma absolute ages) and comparison with the D2 PT conditions (white box), defined by isotherms
9 10 <u>1026</u> 11	and depths. At 70 Ma (a), D2 PT conditions are recorded by markers of upper oceanic crust within
12 13 13	the mantle wedge, and they are coupled with rare markers of trench sediments and some markers of
14 151028 16	continental crust. In the younger steps (c-e), the location of D2 PT conditions moves away from the
1 <i>7</i> 1029 18	slab. The maximum distance from the trench (b-d-e) varies from 125 km at 70 Ma to 155 km at 60
¹⁹ 1030 20 21	Ma.
²² 1031 23	Figure 11. Results of the simulation represented by geodynamic setting at 40 Ma and comparison
24 25 ¹⁰³²	with the PT peak conditions of Cignana Lake Unit (white box), defined by isotherms and depths
26 271033 28	(590-630°C and 2.6-3.0 GPa). At 40 Ma, several markers of oceanic crust and trench sediments
29 <u>1034</u> 30	achieved the PT conditions proposed for Cignana Lake Unit.
31	
³² 1035	
	Table captions
321035 33 341036 35 36 371037	Table captions Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone
32 <u>1035</u> 33 341036 35 36	
321035 33 341036 35 36 371037 38 391038 40 41 421039	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone
32_{1035} 33 34_{1036} 35 36 37_{1037} 38 39_{1038} 40 41 42^{1039} 43 441040	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn
321035 33 341036 35 36 371037 38 391038 40 41 421039 43	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS =
32_{1035} 33 34_{1036} 35 36 37_{1037} 38 39_{1038} 40 41 42^{1039} 43 441040 45 46_{1041} 47 48 49^{1042}	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS = Zermatt-Saas Zone; CO = Combin Zone; Dk = II Diorite-Kinzigitic Zone; EM = Mont Emilius, GR
$\begin{array}{c} 32_{1035} \\ 33 \\ 34_{1036} \\ 35 \\ 36 \\ 37_{1037} \\ 38 \\ 39_{1038} \\ 40 \\ 41 \\ 42^{1039} \\ 43 \\ 44_{1040} \\ 45 \\ 45 \\ 46_{1041} \\ 47 \end{array}$	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS = Zermatt-Saas Zone; CO = Combin Zone; Dk = II Diorite-Kinzigitic Zone; EM = Mont Emilius, GR = Glacier-Refray; MA = Mont Avic; B = Biella pluton; Emc = Eclogitic Micaschist Complex; Gm
32_{1035} 33 34_{1036} 35 36 37_{1037} 38 39_{1038} 40 41 42_{1039} 43 44_{1040} 43 44_{1040} 45 46_{1041} 47 48 49_{1042} 50 51 52_{1043} 53 54_{1044} 55	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS = Zermatt-Saas Zone; CO = Combin Zone; Dk = II Diorite-Kinzigitic Zone; EM = Mont Emilius, GR = Glacier-Refray; MA = Mont Avic; B = Biella pluton; Emc = Eclogitic Micaschist Complex; Gm = Gneiss Minuti Complex; GP = Gran Paradiso.
32_{1035} 33 34_{1036} 35 36 37_{1037} 38 39_{1038} 40 41 42_{1039} 43 441040 45 46_{1041} 47 48_{1042} 50 51_{1043} 52_{1043} 53 54_{1044} 56 57_{1045}	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS = Zermatt-Saas Zone; CO = Combin Zone; Dk = II Diorite-Kinzigitic Zone; EM = Mont Emilius, GR = Glacier-Refray; MA = Mont Avic; B = Biella pluton; Emc = Eclogitic Micaschist Complex; Gm = Gneiss Minuti Complex; GP = Gran Paradiso. Table 2. Mineral modes and assemblages marking superposed fabrics in the different rock types.
32_{1035} 33 34_{1036} 35 36 37_{1037} 38 39_{1038} 40 41 42_{1039} 43 44_{1040} 45 46_{1041} 47 48 49_{1042} 50 51 51_{21043} 53 54 56	Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay <i>et al.</i> 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS = Zermatt-Saas Zone; CO = Combin Zone; Dk = II Diorite-Kinzigitic Zone; EM = Mont Emilius, GR = Glacier-Refray; MA = Mont Avic; B = Biella pluton; Emc = Eclogitic Micaschist Complex; Gm = Gneiss Minuti Complex; GP = Gran Paradiso. Table 2. Mineral modes and assemblages marking superposed fabrics in the different rock types. Table 3. Compositional range of olivine, serpentine, clinopyroxene, magnetite, chlorite, amphibole,

³ 1047 Table 4. EMPA mineral chemical analyses selected for calculating the bulk rock composition used in pseudosections. Al ppm content of Ol was determined by ICPMS at the CNR-IGG UOS of Pavia 8 1049 with a LA-ICP-MS system coupling a 266 nm Nd:YAG laser probe with a quadrupole ICP-MS (DRCe from PerkinElmer), using NIST 610, NIST 612, and BCR2 standards, and GLITTER data ¹²1051 13 processing. Spot size was 40–55 mm according to the mineral sizes, laser frequency 10 Hz, acquisition was for 40-60 s preceded and followed by at least 40 s background counting. 18¹⁰⁵³ Table 5. Material and rheological parameters used in the simulation. References: a) Ranalli and Murphy 1987; b) Afonso and Ranalli, 2004; c) Kirby 1983; d) Haenel et al. 1988; e) Chopra and ²²1055 23 Paterson 1981; f) Dubois and Diament 1997; Best and Christiansen 2001; g) Roda et al. 2011; h)

25¹⁰⁵⁶ Schmidt and Poli 1998; i) Gerya and Stöckhert 2005; j) Roda et al. 2012; k) Gerya and Yuen 2003;

Provide States

1) Meda et al. 2010.

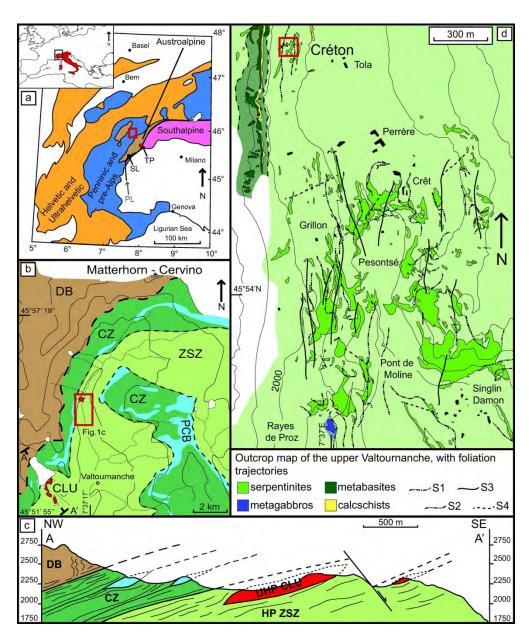
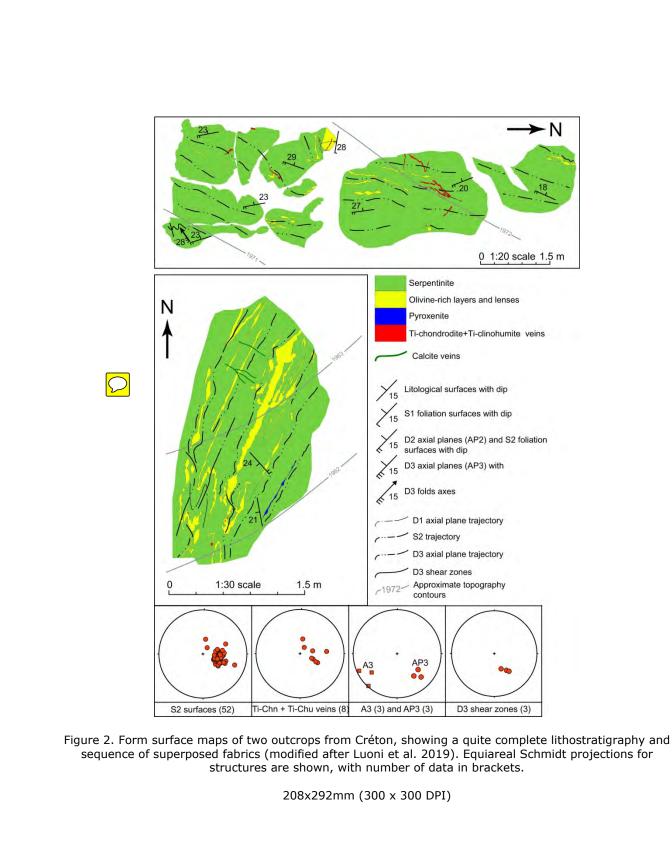



Figure 1. (a) Location of the studied area in the simplified tectonic framework of the Western Alps (SL = Sesia-Lanzo Zone; PL = Periadriatic line; TP = Tertiary plutons); (b) simplified structural setting of the upper Valtournanche (redrawn after De Giusti et al. 2003 and Forster et al. 2004): CLU = Cignana Lake Unit; CZ = Combin Zone; DB = Dent Blanche Nappe; PCB = Pancherot-Cime Bianche Unit; ZSZ = Zermatt-Saas Zone. AA' cross-section is shown in Figure 1c. The red star locates the studied area (Créton outcrops) and the red rectangle Figure 1d; (c) cross-section of UHP Cignana Lake Unit and Arolla Unit (Dent Blanche Nappe) – Combin Zone – Zermatt-Saas Zone contacts (Forster et al. 2004); (d) foliation trajectory map with legend of Upper Valtournanche after Luoni et al. (2019) and Zanoni (unpublished: original mapping at 1:5000 scale); light colours indicate interpreted lithostratigraphy.

178x215mm (300 x 300 DPI)

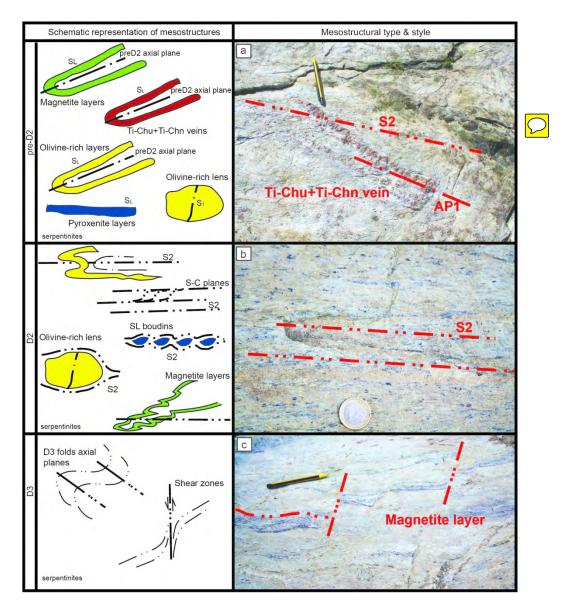


Figure 3. Mesostructures revealing the tectonic history of the Créton serpentinites. (a) Ti-chondrodite + Ticlinohumite vein marking D1 isoclinal fold and intersected by S2 foliation: AP1 = D1 axial plane; (b) olivinerich layer underlying D2 tight folds in olivine-rich serpentinite; (c) magnetite layer intersected by S2 and D3 discrete shear zones in serpentinite. Coin and pencil for scale.

180x206mm (300 x 300 DPI)

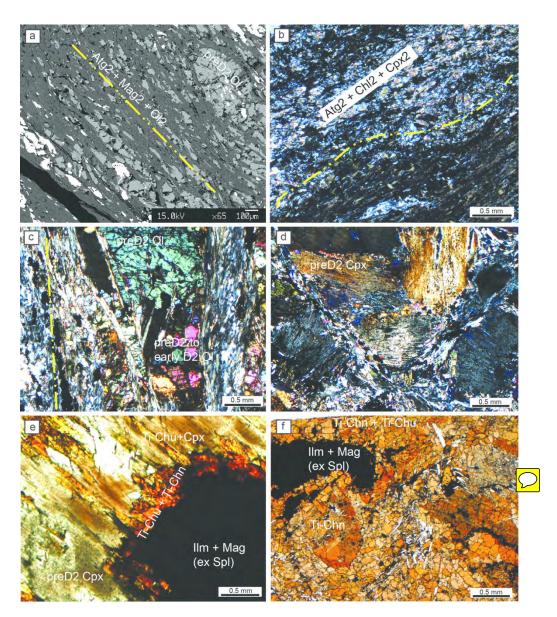
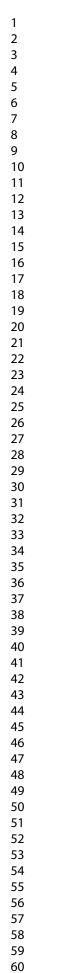



Figure 4. Microstructures. (a) S2 foliation in serpentinite marked by Atg2 + Mag2 + Ol2, wrapping pre-D2 Ol with Mag inclusions (BSE image); (b) S2 foliation in serpentinite marked by Atg2 + Chl2 + Cpx2 (crossed polars); (c) olivine-rich layer with pre-D2 and pre-D2-to-early-D2 Ol wrapped by S2 foliation marked by Ol2 + Atg2 + Mag2 (crossed polars); (d) Cpx porphyroclast in a Atg2 + Chl2 + Cpx2 + Mag2 matrix (crossed polars); (e) Ti-Chu + Ti-Chn rim between IIm + Mag aggregate and pre-D2-to-early-D2 Cpx (plane polarised light); (f) Core-mantle structure with pre-D2 Ti-Chn porphyroclast surrounded by a Ti-Chn +Ti-Chu polygonal aggregate (plane polarised light).

178x206mm (300 x 300 DPI)

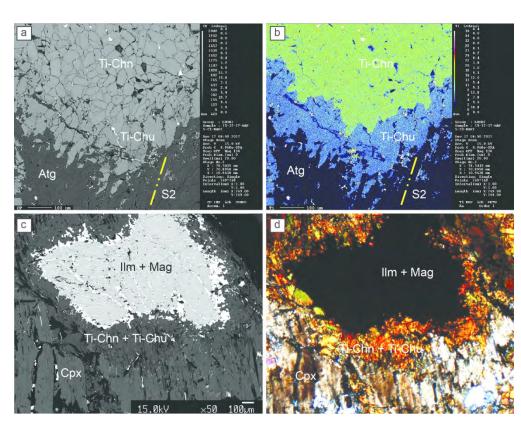


Figure 5. (a-b-c-d) Pre-D2-to-early-D2 grains in Ti-Chu polygonal aggregates at the rim of Ti-Chn aggregates are gradually parallelised and recrystallised into S2 in BSE image (a) and Ti map (b); (c-d) pre-D2-to-early-D2 Cpx, Ti-Chu + Ti-Chn rim, IIm + Mag aggregate in BSE image (c) and crossed polars (d).

199x155mm (300 x 300 DPI)

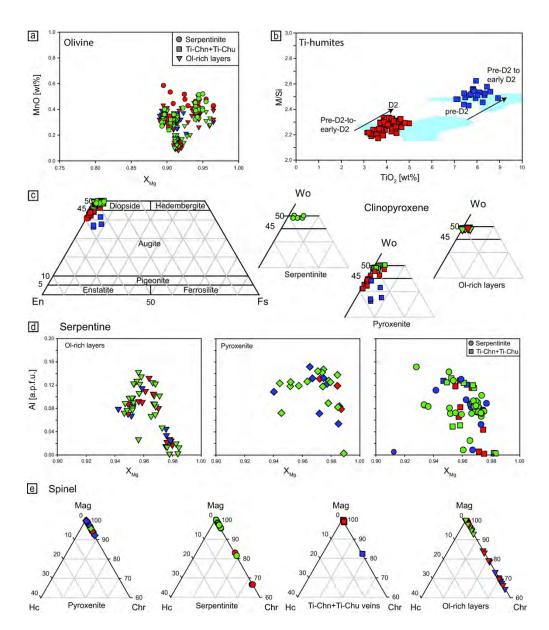
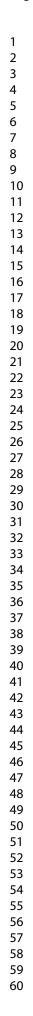



Figure 6: Mineral chemistry diagrams. (a) olivine; (b) humites; (c) clinopyroxene; (d) serpentine; (e) spinel. Symbols refer to rocks and colours to structural stages: blue = pre-D2; red = pre-D2-to-early-D2; green = syn-D2. Ti-humite diagram is redrawn after Luoni et al. (2018).

208x242mm (300 x 300 DPI)

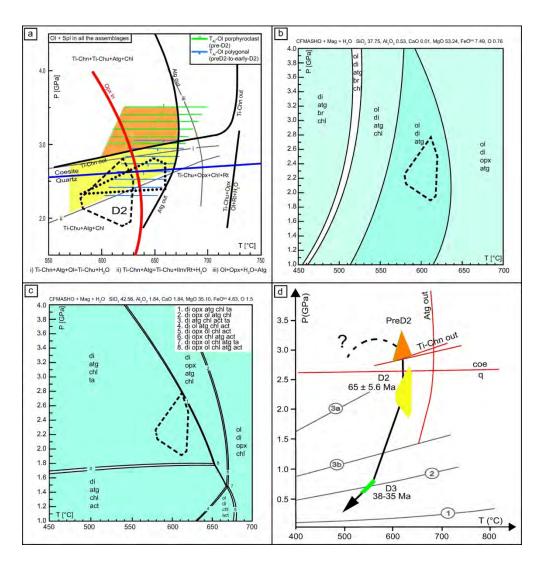


Figure 7. (a) Pre-D2 (orange area) and pre-D2-to-early-D2 PT conditions (yellow area); experimentally determined fields in Ti-rich systems (black curves, redrawn from Shen et al. 2015); experimental data combined with Schreinemaker analysis, representing phase relations in systems with less Ti and involving Ti-humites, Atg, Opx, Ol, and Chl (grey curves, redrawn from Shen et al. 2015). Green and blue lines represent temperatures calculated from pre-D2 olivine (De Hoog et al. 2010) with error bars. The red thick curve represents Opx-in from Figure 7b; (b-c) pseudosections calculated in the CFMASHO system for syn-D2 Ol-bearing (b) and Cpx-bearing (c) mineral assemblages; compositions (mol%) are reported at the top of each pseudosection. Dotted and dashed areas in panels a,b, and c represent syn-D2 PT conditions for Valtournanche rodingites (Zanoni et al. 2016) and serpentinites (Rebay et al. 2012) respectively; (d) Inferred P-T-d-t path of Créton serpentinites redrawn after Luoni et al. (2019) with age data from Rebay et al. (2018). Geotherms (Cloos et al. 1993): (1) near spreading ridge or volcanic arc; (2) normal gradient of old plate interior; (3a) cold subduction zones; (3b) warm subduction zones. Orange and yellow boxes represent pre-D2 and D2, respectively and blue field represents D3 re-equilibration.

210x218mm (300 x 300 DPI)

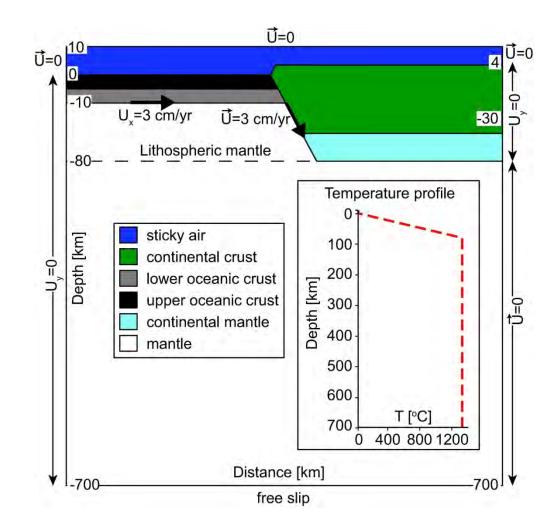
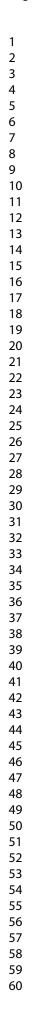



Figure 8. Setup of the numerical model. The model domain is 1400 km wide and 710 km deep. The initial lithosphere thickness is 80 km and is defined by the 1227°C isotherm. The velocity boundary conditions correspond to a free slip condition along the bottom of the domain and a fixed velocity along the top boundary. The vertical component of the velocity vector (Uy) is fixed at 0 cm/yr on the right boundary along the entire lithospheric thickness (80 km depth) and along the left side from 0 to 700 km depth. No slip conditions are imposed on the right and left sides of the domain from the topographic surface to the upper boundary. Plate convergence is simulated with a horizontal velocity of 3 cm/yr, and it is fixed along the bottom of the oceanic crust and at the nodes of the numerical grid and distributed along a 45°-dipping plane from the trench to a depth of 100 km. The thermal boundary conditions correspond to 0°C at the top of the domain and 1227°C at the bottom. The initial thermal configuration corresponds to an uniform purely conductive upper thermal boundary layer throughout the lithosphere (from 0 to 80 km depth and from 0°C to 1227°C) and an uniform sublithospheric temperature of 1227°C (inset). The temperatures are fixed along the left vertical sidewall, and a zero thermal flux is imposed on the right side. The materials included in the model account for the upper and lower oceanic crust, continental crust, mantle, and sticky air (see Table 5 for material parameters and rheology).

162x156mm (300 x 300 DPI)

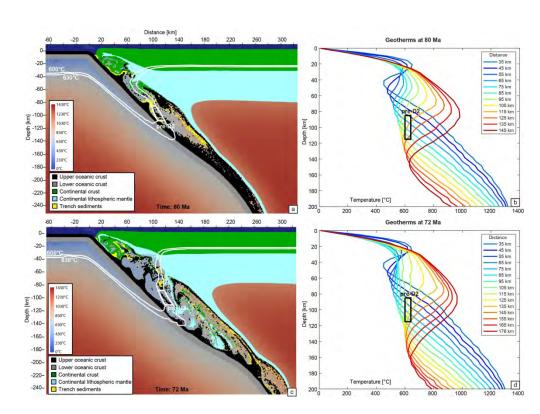


Figure 9. Results of the simulation represented by geodynamic setting (a-c) and related geotherms (b-d) after 20 (a-b) and 28 Myr (c-d) of oceanic subduction, (corresponding to 80 and 72 Ma absolute ages) and comparison with the pre-D2 PT conditions (white box), defined by isotherms and depths. (a) At 80 Ma, the pre-D2 PT conditions are matched by markers that belong to the upper oceanic crust, located within the serpentinised mantle wedge and close to the slab. (b) Geotherms extrapolated at different distances from the trench indicate that the pre-D2 PT conditions occur at a distance of 100-130 km from the trench and at ca. 80-110 km depth. (c) At 72 Ma, the pre-D2 PT conditions occur in an inner portion of the mantle wedge. (d) The location of the pre-D2 PT conditions in the subduction system is reached at a distance of 110-145 km from the trench and at ca. 80-110 km depth.

265x196mm (300 x 300 DPI)

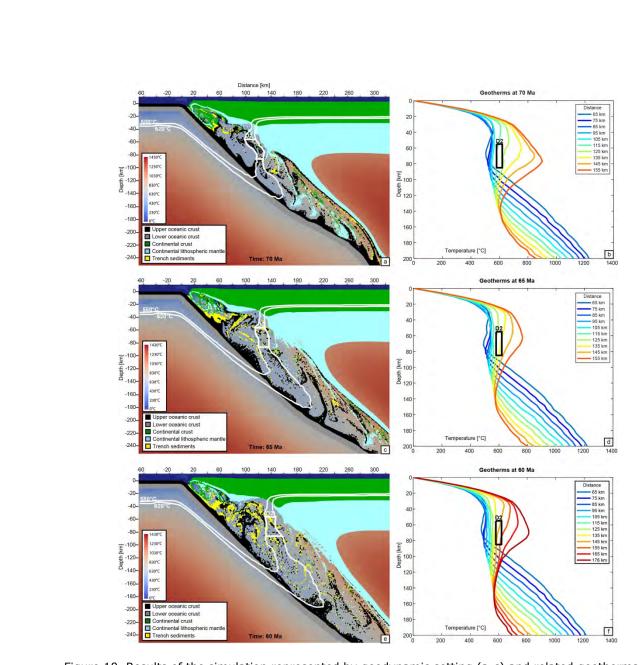
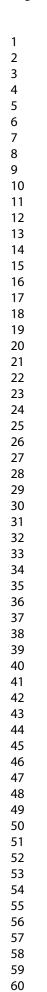



Figure 10. Results of the simulation represented by geodynamic setting (a-c) and related geotherms (b-d) after 30 (a-b), 35 (c-d), and 40 Myr (e-f) of oceanic subduction, (corresponding to 70, 65, and 60 Ma absolute ages) and comparison with the D2 PT conditions (white box), defined by isotherms and depths. At 70 Ma (a), D2 PT conditions are recorded by markers of upper oceanic crust within the mantle wedge, and they are coupled with rare markers of trench sediments and some markers of continental crust. In the younger steps (c-e), the location of D2 PT conditions moves away from the slab. The maximum distance from the trench (b-d-e) varies from 125 km at 70 Ma to 155 km at 60 Ma.

205x231mm (300 x 300 DPI)

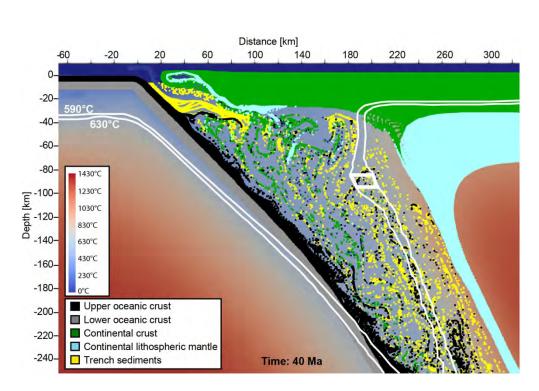


Figure 11. Results of the simulation represented by geodynamic setting at 40 Ma and comparison with the PT peak conditions of Cignana Lake Unit (white box), defined by isotherms and depths (590-630°C and 2.6-3.0 GPa). At 40 Ma, several markers of oceanic crust and trench sediments achieved the PT conditions proposed for Cignana Lake Unit.

145x98mm (300 x 300 DPI)

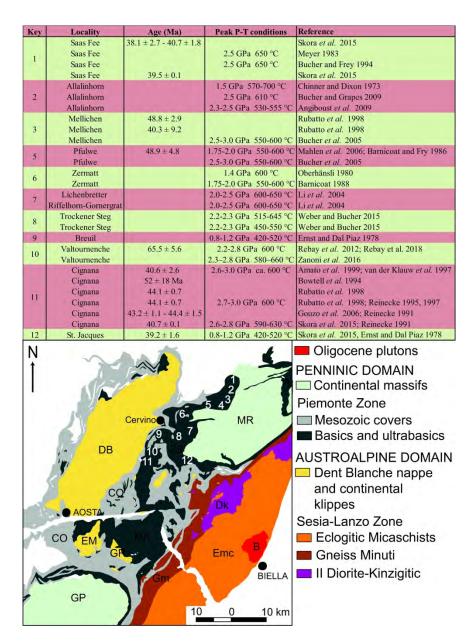
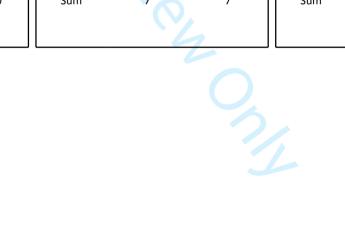


Table 1. Metamorphic conditions and radiometric ages of the HP-UHP peaks of Zermatt-Saas Zone (modified after Rebay et al. 2018). Data are localised in the underlying tectonic sketch (redrawn after Dal Piaz 1999): A = Antrona Ophiolite; DB = Dent-Blanche nappe; MR = Monte Rosa; ZS = Zermatt-Saas Zone; CO = Combin Zone; Dk = II Diorite-Kinzigitic Zone; EM = Mont Emilius, GR = Glacier-Refray; MA = Mont Avic; B = Biella pluton; Emc = Eclogitic Micaschist Complex; Gm = Gneiss Minuti Complex; GP = Gran Paradiso.

210x290mm (300 x 300 DPI)

Rock type	Mineral modes		blages synkinematic		rmation stages D3 and post D2
Serpentinite	Srp (60-90%), OI (5-30%)/Cpx (5-10%), Mag (5-15%), Ti- Chu (5%), Cal + Dol (<5%). Locally Chl, Ap (<5%)	pre-D2	pre-D2 to early D2 + Ti-Chu + Dol + Ap	D2 Srp + Mag + Cpx / Ol + Ti-Chu ± Chl ± Cal ± Dol	Srp + Mag + Chl + Cal
Ti-Chn + Ti-Chu veins	Ti-Chn + Ti-Chu (70-80%), Ol (10-20%), Atg (5-10%), Mag ± Ilm (5-10%), Chl (<5%)	$Ti-Chn + Ex-Spl + Ol \pm Chl + Srp$	Ti-Chn + Ti-Chu + Ol + Ilm + Mag + Chl + Srp	Ti-Chu + Srp + Ol + Chl + Mag	
Pyroxenite	Cpx (70-80%), Atg ± Chl (10-20%), Ilm ± Mag (5%), Ti-Chn + Ti-Chn (5%), Amph (<2%)	Cpx (augitic core) + Spl + Srp + Chl (+ Ti-Chn)	Cpx + Srp + Chl + Ti- Chn + Ti-Chu + Ilm + Mag	Cpx + Srp + Ti-Chu + Chl + Mag	Srp + Chl + Mag + Amph
Olivine-rich layers and lenses	Ol (60-90%), Atg (10-20%), Mag ± Cr-Mag (10%), Chl (<5%), Ti-Chn + Ti-Chn (<5%), Dol (<2%) Cpx (<1%)	Ol + Srp + Mag + Cr- Mag + Cpx ± Ti-Chn + Chl	Ol + Srp + Mag + Ti- Chu + Dol	Ol + Srp + Mag + Ti- Chu	Srp + Cal
			0		


			Serper	ntinites				Pyroxenites		0	Divine-rich layers		Olivine-rich lens
		preD2	preD2 to early D2	D2	D3	preD2	preD2 to early D2	D2	D3	preD2	preD2 to early D2	D2	
	Olivine												
	Fetot	0	0.07-0.22	0.09-0.23	-	-	-	-	-	0.07-0.23	0.07-0.22	0.08-0.22	0.14-0.18
	Mg	1	1.79-1.92	1.81-1.90	-	-	-	-	-	1.77-1.92	1.78-1.92	1.780-1.92	1.81-1.87
	Mn		0.01	0.00-0.01	-	-	-	-	-	0.01	0.01	0.01	-
	X_{Mg}	0).89-0.96	0.89-0.95	-	-	-	-	-	0.89-0.96	0.89-0.96	0.89-0.96	0.90-0.93
	Serpentine												
•	Mg	2.53-2.78	2.76-2.83	2.54-3.16	2.65-2.75	2.54-2.76	2.63-2.75	2.56-2.77	2.66-2.70	2.52-2.78	2.55-2.78	2.50-2.79	2.64-3.39
0	Fetot	0.05-0.24	0.07-0.12	0.04-0.39	0.09-0.14	0.09-0.22	0.09-0.14	0.09-0.21	0.10-0.16	0.06-0.16	0.06-0.14	0.05-0.14	0.04-0.20
1	Al	0.00-0.13	0.0-0.07	0.0-0.15	0.03-0.13	0.05-0.15	0.03-0.13	0.0-0.15	0.10-0.15	0.01-0.11	0.02-0.13	0.0-0.14	0.0-0.13
2													
3	Clinopyroxene												
4	Fe ²⁺	-	-	0.0-0.05	-	0.02-0.13	0.0-0.7	0.0-0.06	-	0.03	0.03	-	0.03
5	Fe ³⁺	-	-	0.0-0.09	-	0.11-0.14	0.0-0.14	0.0-0.08	-	-	-	-	-
6	Mg	-	-	0.88-1.00	-	0.91-1.01	0.93-1.06	0.92-1.05	-	0.97-0.98	0.96-0.98	-	0.95
- 7	Ca	-	-	0.97-1.00	-	0.73-0.87		0.95-1.02	-	0.97-0.98	0.97-0.98	-	1
, o	Na	-	-	0.00-0.01	-	0.03-0.05		0.0-0.01	-	-	-	-	-
0 9	Ti	-	-	-	-	0.02-0.03	0.0-0.05	-	-	-	-	-	-
-													
0	Magnetite												
1	Fe ²⁺	0.70-0.92	0.90-0.99	0.84-0.99	-	0.92-1.01	0.93-0.96	0.91-0.99	-	0.74-0.94	0.73-0.93	0.86-0.94	0.75-0.90
2	Fe ³⁺	1.28-1.98	1.88-1.98	160-1.99	-	1.74-1.98	1.84-1.96	1.91-1.99	-	1.34-1.99	1.29-1.99	1.85-1.99	1.25-1.98
3	Cr	0.0-0.63	0.0-0.02	0.0-0.06	-	0.0-0.15	0.02-0.11	0.0-0.11	-	0.0-0.62	0.0-0.65	0.0-0.14	0.01-0.68
4													
5	Chlorite												
6	Fetot	0.56-0.68	0.52-0.67	0.55-0.88	-	0.58-0.91	0.57-0.63	0.53-0.94		-	-	-	0.47-0.71
0 7	Mg	9.74-10.04	9.84-10.04	9.69-10.08	-	9.51-9.91	9.86-9.91	9.57-10.01	-	-	-	-	9.70-10.02
, 8	Al	2.43-2.85	2.52-2.99	2.70-3.13	-	2.59-2.99	2.75-2.96	2.53-3.02	-		-	-	2.41-2.97
o 9	Ilmenite												
0	Fe ²⁺	-	0.59-0.85	0.39-0.67	-	-	0.35-0.61	0.6	-		-	-	-
1	Fe ³⁺	-	0.03-0.07	0.03-0.08	-	-	0.01-0.04	0.02-0.03	-	-	-	-	-
2	Ti	-	0.96-0.98	0.96-0.98	-	-	0.98-0.99	0.98-0.98	-	-	-	-	-
_													

URL: https://mc.manuscriptcentral.com/tigr E-mail: rjstern@utdallas.edu

International Geology Review

1 2			Clinopy	roxene]	Olivine					
3 4	Rock		Pirossenite		Serpenti nite	Dunite		Rock	Ti-humi	te veins	С	l-rich layer	s
5 6	Texture	Pre-D2	Pre-D2- to-D2	D2	D2	Pre-D2		Texture	Pre2	Pre-D2- to-D2	Pre-D2- to-D2	Pre-D2- to-D2	D2
7	SiO ₂	50.62	51.04	54.15	52.15	55.81		SiO ₂	39.73	40.06	40.99	40.89	41.97
8	TiO ₂	1.25	0.48	0.03	0.00	0.00		TiO ₂	0.00	0.01	0.08	0.02	0.00
9	Al ₂ O ₃	1.96	3.12	0.00	0.33	0.02		Al_2O_3	0.02	0.13	0.01	0.04	0.00
10 11	Cr_2O_3	0.03	0.81	0.00	0.00	0.00		Cr_2O_3	0.02	0.11	0.06	0.01	0.00
12	FeOt	8.67	2.80	0.90	4.39	1.10		FeOt	9.75	9.52	8.55	8.80	4.57
13	MnO	0.37	0.13	0.00	0.59	0.03		MnO	0.29	0.34	0.33	0.33	0.31
14	MgO	16.57	17.18	18.20	15.82	18.02		MgO	50.37	50.17	49.87	49.76	52.88
15	CaO	18.87	22.40	24.92	24.71	24.89		CaO	0.00	0.02	0.00	0.01	0.01
16 17	Na₂O	0.71	0.28	0.00	0.05	0.01		Na₂O	0.00	0.00	0.03	0.00	0.00
18	K2O	0.00	0.00 🧹	0.00	0.00	0.01		K ₂ O	0.00	0.03	0.00	0.00	0.00
19	NiO	0.04	0.01	0.05	0.14	0.02		NiO	0.08	0.16	0.06	0.13	0.16
20	Sum	100.65	100.16	100.40	100.18	99.91		Sum	100.26	100.55	99.98	99.99	99.90
21	6 Ox							4 Ox					
22 23	Si	1.88	1.88	1.99	1.95	2.023		Si	0.97	0.98	1.00	1.00	1.01
23 24	Ti	0.03	0.01	0.00	0.00	0.000		Ti	0.00	0.00	0.00	0.00	0.00
25	AI	0.09	0.12	0.00	0.01	0.000		Al	0.00	0.00	0.00	0.00	0.00
26	AI ^{VI}	0.00	0.02	0.00	0.00	0.001		Cr	0.00	0.00	0.00	0.00	0.00
27	Cr	0.00	0.02	0.00	0.00	0.000		Fe ²⁺	0.20	0.19	0.17	0.18	0.09
28 29	Fe ²⁺	0.13	0.02	0.01	0.05	0.033		Mn	0.01	0.01	0.01	0.01	0.01
29 30	Fe ³⁺	0.14	0.06	0.02	0.09	0.000		Mg	1.84	1.83	1.81	1.81	1.89
31	Mn	0.01	0.00	0.00	0.02	0.001		Ca	0.00	0.00	0.00	0.00	0.00
32	Mg	0.92	0.95	1.00	0.88	0.973		Na	0.00	0.00	0.00	0.00	0.00
33	Ca	0.75	0.89	0.98	0.99	0.967		К	0.00	0.00	0.00	0.00	0.00
34 35	Na	0.05	0.02	0.00	0.00	0.001		Ni	0.00	0.00	0.00	0.00	0.00
35 36	K	0.00	0.00	0.00	0.00	0.000		Sum	3.03	3.02	3.00	3.00	2.99
37	Ni	0.00	0.00	0.00	0.00	0.001							
38	Sum	4.00	4.00	4.00	4.00	4.00		Al (ppm)	0.33-3.59	0.88-2.05			
39							J						
40													
41 42													
43													
44													
45													
46													

	Ti-clinohumite			Ti-chondrodit	e	Am	phibole
Rock	Ti-chn + Ti-(Chu veins	Rock	Ti-chn + T	Гі-Chu veins	Rock	Serpentinite
Texture	Pre-D2-to-D2	D2	Texture	Pre-D2	Pre-D2 to D2	Texture	Post-D2
SiO ₂	36.78	37.14	SiO ₂	32.80	32.81	SiO ₂	58.18
TiO ₂	4.14	3.68	TiO ₂	7.93	9.22	TiO ₂	0.04
AI_2O_3	0.00	0.01	Al ₂ O ₃	0.02	0.02	AI_2O_3	0.07
Cr_2O_3	0.00	0.04	Cr ₂ O ₃	0.00	0.00	Cr ₂ O ₃	0.00
FeOt	9.21	9.27	FeOt	9.86	9.69	FeOt	2.02
MnO	0.28	0.33	MnO	0.34	0.40	MnO	0.11
MgO	48.67	48.42	MgO	46.08	45.56	MgO	23.21
CaO	0.01	0.01	CaO	0.06	0.00	CaO	13.30
Na ₂ O	0.00	0.01	Na ₂ O	1.30	0.03	Na ₂ O	0.10
K ₂ O	0.01	0.01	K ₂ O	0.14	0.00	K ₂ O	0.01
NiO	0.04	0.11	NiO	0.14	0.05	NiO	0.02
Sum	99.14	99.04	Sum	98.67	97.77	Sum	99.26
13 cations			7 cations			23 oxygens	
Si	3.97	4.01	Si	1.93	1.98	Si	8.00
Ti	0.34	0.30	Ті	0.35	0.42	Ti	0.00
Al	0.00	0.00	AI	0.00	0.00	Al	0.01
Cr	0.00	0.00	Cr	0.00	0.00	Cr	0.00
Fe ²⁺	0.83	0.84	Fe ²⁺	0.49	0.49	Fe ²⁺	0.23
Mn	0.03	0.03	Mn	0.02	0.02	Mn	0.01
Mg	7.83	7.80	Mg	4.04	4.09	Mg	4.76
Ca	0.00	0.00	Ca	0.00	0.00	Ca	1.96
Na	0.00	0.00	Na	0.15	0.00	Na	0.02
К	0.00	0.00	к	0.01	0.00	к	0.00
Ni	0.00	0.01	Ni	0.01	0.00		
Sum	13.00	13.00	Sum	7	7	Sum	14.99

		Upper oceanic	Lower	Dry	Serpentinised	Sediments	Sticky air
	crust	crust	oceanic crust	mantle	mantle		-
Rheology	Dry granite		Diabase	Dry dunite	Serpentinite		
μ_0 (Pa s)	3.47E+21	1.61E+19	1.61E+22	5.01E+20	1.00E+19	1.00E+19	1.00E+19
$\rho_0 (\mathrm{kg} \mathrm{m}^{-3})$	2640	2961	2961	3200	3000	2640	1000
$K (W m^{-1} K^{-1})$	3.03	2.1	2.1	4.15	4.15	3.03	0.026
$H_r(\mu W m^{-3})$	2.5	0.4	0.4	0.002	0.002	2	_
E (kJ mol ⁻¹)	38.43	103	103	130			
References	a,d,f,l	b,f,j,k,l	a,b,c,f,l	c,d,e,f,j,l	d,f,g,h,i	g,j	g,j