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Abstract: Background. Although thousands of different chemicals have been 

identified in cigarette smoke, the characterization of their urinary 

metabolites still requires significant research. The aim of this work was 

to perform an untargeted metabolomic approach to a pilot cross-sectional 

study conducted on subjects with different smoking habits and to compare 

the results with those of the targeted measurement of mercapturic acids. 

Methods. Urine samples from 67 adults, including 38 non-smokers, 7 

electronic cigarette users, and 22 traditional tobacco smokers were 

collected. Samples were analysed by liquid chromatography/time-of flight 

mass spectrometry. Data were processed using the R-packages IPO and XCMS 

to perform feature detection, retention time correction and alignment. 

One-way ANOVA test was used to identify different features among groups. 

Quantitative determination of 17 mercapturic acids was available from a 

previous study. 

Results. One hundred and seventeen features, out of 3613, were different 

among groups. They corresponded to 91 potential metabolites, 5 of which 

were identified vs authentic standards, 43 were putatively annotated and 

13 were attributed to chemical classes. Among identified compounds there 

were the mercapturic acids of acrolein, 1,3-butadiene, and 

crotonaldehyde; among putatively annotated compounds there were the 

glucuronide conjugated of 3-hydroxycotinine and the sulfate conjugate of 

methoxyphenol; with the lowest degree of confidence several sulfate 

conjugates of small molecules were annotated. Considering mercapturic 

acids, the coherence between the targeted and untargeted approach was 

found for a limited number of chemicals, typically the most abundant. 

Conclusions. Differences in the urinary levels of several compounds were 

associated to the different smoking habits, suggesting that the proposed 

approach is useful for the investigation of the metabolite patterns 

related to the exposure to toxicants. However, limitations were 

highlighted, in particular regarding the identification of low 

concentration compounds. 
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Highlights 

 

• LC-MS/MS untargeted metabolomics applied to subjects with different smoking habits 

• 91 potential urinary metabolites out of 3613 features were different among groups 

• 61 potential metabolites were annotated with various degree of confidence 

• Annotated metabolites derived from smoke pollutants and metabolism modifications 

• Among different features, 3 corresponded to mercapturic acids previously measured 
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Abstract 22 

Background. Although thousands of different chemicals have been identified in cigarette smoke, the 23 

characterization of their urinary metabolites still requires significant research. The aim of this work 24 

was to perform an untargeted metabolomic approach to a pilot cross-sectional study conducted on 25 

subjects with different smoking habits and to compare the results with those of the targeted 26 

measurement of mercapturic acids. 27 

Methods. Urine samples from 67 adults, including 38 non-smokers, 7 electronic cigarette users, and 28 

22 traditional tobacco smokers were collected. Samples were analysed by liquid 29 

chromatography/time-of flight mass spectrometry. Data were processed using the R-packages IPO 30 

and XCMS to perform feature detection, retention time correction and alignment. One-way ANOVA 31 

test was used to identify different features among groups. Quantitative determination of 17 32 

mercapturic acids was available from a previous study. 33 

Results. One hundred and seventeen features, out of 3613, were different among groups. They 34 

corresponded to 91 potential metabolites, 5 of which were identified vs authentic standards, 43 were 35 

putatively annotated and 13 were attributed to chemical classes. Among identified compounds there 36 

were the mercapturic acids of acrolein, 1,3-butadiene, and crotonaldehyde; among putatively 37 

annotated compounds there were the glucuronide conjugated of 3-hydroxycotinine and the sulfate 38 

conjugate of methoxyphenol; with the lowest degree of confidence several sulfate conjugates of small 39 

molecules were annotated. Considering mercapturic acids, the coherence between the targeted and 40 

untargeted approach was found for a limited number of chemicals, typically the most abundant. 41 

Conclusions. Differences in the urinary levels of several compounds were associated to the different 42 

smoking habits, suggesting that the proposed approach is useful for the investigation of the 43 

metabolite patterns related to the exposure to toxicants. However, limitations were highlighted, in 44 

particular regarding the identification of low concentration compounds. 45 
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 46 

Keyword: smoking habits; electronic cigarette; traditional tobacco smoking; untargeted 47 

metabolomics; exposomics 48 

 49 

Abbreviation 50 

2-HPMA, N-acetyl-S-(2-hydroxypropyl)cysteine; 3-HPMA, N-acetyl-S-(3-hydroxypropyl)cysteine; 51 

AAMA, N-acetyl-S-(carbamoylethyl)-L-cysteine; AMCC, N-acetyl-S-(N-methylcarbamoyl)-L-52 

cysteine; ANOVA, analysis of variance; CEMA, N-acetyl-S-(2-cyanoethyl)-L-cysteine; CMEMA, N-53 

acetyl-S-(3-carboxy-2-propyl)-L-cysteine; DHBMA, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; 54 

ECU, electronic cigarette users; EMA, N-acetyl-S-ethyl-L-cysteine; GAMA, N-acetyl-S-(2-hydroxy-55 

3-propionamide)-L-cysteine; HEMA, N-acetyl-S-(2-hydroxyethyl)-L-cysteine; HMPMA, N-acetyl-56 

S-(3-hydroxypropyl-1-methyl)-L-cysteine; LC-MS/MS, liquid chromatography-tandem mass 57 

spectrometry; MHBMA, (R,S)-N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine + (R,S)-N-58 

acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine; MMA, N-acetyl-S-methyl-L-cysteine; NANPC, S-(4-59 

nitrophenyl)mercapturic acid; NS, non-smokers; PCA, Principal Components Analysis; PHEMA, N-60 

acetyl-S-(2-hydroxy-1-phenylethyl)-L-cysteine + N-acetyl-S-(2-hydroxy-2-phenylethyl)-L-cysteine; 61 

SBMA, N-acetyl-S-benzyl-L-cysteine; SPMA, N-acetyl-S-phenyl-L-cysteine; TTS, traditional 62 

tobacco smokers. 63 

 64 

Introduction 65 

Tobacco smoke is one of the main preventable causes of diseases for humans (Samet, 2013). Its 66 

related health effects, among which lung cancer, cardiovascular, and respiratory diseases, are the 67 

causes of millions of premature deaths worldwide each year (West, 2017). Tobacco smoke is 68 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

composed by a mixture of chemicals and more than 5000 compounds have been identified in tobacco 69 

smoke (Rodgman and Perfetti, 2013). Molecules present in tobacco smoke derive from the direct 70 

volatilization of compounds present in tobacco or are generated from tobacco constituents through 71 

pyrogenesis. Mainstream smoke is composed by a vapour phase (>95%) and a wet particulate matter 72 

(<5%). The vapour phase contains water, nitrogen, oxygen, carbon dioxide and monoxide, and other 73 

volatile compounds such as hydrocarbons, aldehydes and ketones, nitriles, heterocyclic alcohols, 74 

acids, and esters; while the particulate contains, in addition, nicotine, partially combusted particulate 75 

matter knowns as tar, smoke pigments, alkaloid derivatives and phenols (Rodgman and Perfetti, 76 

2013). 77 

Besides traditional tobacco cigarette, electronic cigarette is a relatively new product, which is 78 

growing in popularity. Electronic cigarettes aerosolize a solvent, such as propylene glycol and 79 

glycerol, containing nicotine and flavourings, and the produced vapour is inhaled by the user 80 

(Breland et al., 2017; Cheng, 2014). Evidences regarding the health effects of electronic cigarettes 81 

are still limited: long-term health effects have not been documented in humans and potential short-82 

term effects include irritation of respiratory tract and inflammation induction, as well as nicotine-83 

related cardiovascular risks (Benowitz and Fraiman, 2017; Callahan-Lyon, 2014; Qasim et al., 2017). 84 

The composition of electronic cigarette liquids, cartridges, and aerosols varies among different 85 

products. Other than nicotine, the list of compounds includes tobacco-specific nitrosamines, carbonyl 86 

compounds, metals, volatile organic compounds, phenolic compounds, polycyclic aromatic 87 

hydrocarbons, flavours, solvent carriers, tobacco alkaloids and drugs (Bekki et al., 2014; Cheng, 88 

2014; Goniewicz et al., 2014). 89 

Inhaled compounds from tobacco smoke and electronic cigarette aerosol, once absorbed, may be 90 

metabolized and excreted through different routes, and one of the most important is urinary 91 

excretion. Indeed, the assessment of exposure to chemicals can be carried out by determining the 92 

specific metabolites of toxicants present in urine (biomonitoring). The metabolites measured with this 93 
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approach are referred to as biomarkers of exposure. Other than monitoring the exposure to toxicants, 94 

biomarkers can also be useful to evaluate the biological responses associated with potential health 95 

effects (Mattes et al., 2014). 96 

Among metabolites derived from exogenous compounds, mercapturic acids are the urinary end-97 

products of the metabolism of different toxicants (De Rooij et al., 1998). In a previous work, we 98 

evaluated 17 urinary mercapturic acids derived from several volatile organic compounds, in 67 99 

subjects with different smoking habits: traditional tobacco smokers (TTS), electronic cigarette users 100 

(ECU) and non-smokers (NS) (Frigerio et al., 2020; this issue). 101 

Untargeted metabolomics is a relatively new approach, whose development has been made possible 102 

thanks to advancements in analytical instrumentation and computational power. It aims to study the 103 

metabolome, i.e. the ensemble of small molecules produced from the organism presents in a 104 

biological fluid and their modification associated with a specific condition (Dunn et al., 2011). 105 

Untargeted metabolomics is a promising approach to characterize metabolites associated with the 106 

exposure to environmental xenobiotics, thus allowing us to characterize the “exposome” (Dennis et 107 

al., 2017). Previous untargeted metabolomic experiments in smoking subjects were conducted mainly 108 

in blood (Gu et al., 2016; Hsu et al., 2017; Hsu et al., 2013; Kaluarachchi et al., 2016; Müller et al., 109 

2014), while only a few were conducted in urine (Garcia-Perez et al., 2014; Ramakrishnan et al., 110 

2016), including some experiences assessing volatile metabolites (Rocha et al., 2012; Wang et al., 111 

2018). Other approaches that are in between the targeted measurements and the untargeted 112 

metabolomics are also possible, such as the recently published method for the non-targeted screening 113 

of mercapturic acids using neutral loss detection and post-column infusion internal standard 114 

correction (Bloch et al., 2019).  115 

The aim of this work was to perform an untargeted high performance liquid chromatography-mass 116 

spectrometry metabolomic experiment to investigate different smoking modes. Urine samples of 117 
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subjects previously investigated for mercapturic acids were used (Frigerio et al., 2020; this issue). In 118 

this untargeted metabolomic approach, the features allowing the differentiation among groups were 119 

identified and annotated. Results of the untargeted approach were compared with those of the 120 

previous targeted study; to facilitate this comparison the chromatographic conditions and mass 121 

spectrometry ionization mode applied in the analysis of samples were the same. 122 

Materials and methods 123 

Study subject 124 

The experiments were conducted using the same urine samples obtained in the frame of the study 125 

aimed to assess the urinary concentrations of mercapturic acids (see Frigerio et al., 2020, this issue, 126 

for details). Briefly, 67 healthy subjects with comparable age and body mass index were classified for 127 

their smoking habits: 38 non-smokers (NS), 7 electronic cigarette users (ECU) and 22 traditional 128 

tobacco smokers (TTS).  129 

 130 

Chemicals 131 

Analytical grade acetonitrile, aqueous ammonia (30%), formic acid, and methanol were purchased 132 

from Sigma-Aldrich (Milan, Italy). Purified water was obtained using a Milli-Q Plus ultrapure water 133 

system (Millipore, Milford, MA, USA). Authentic chemical standards of the mercapturic acids were 134 

purchased from Toronto Research Chemicals (Ontario, Canada), with exception of N-acetyl-S-135 

phenyl-L-cysteine (SPMA), which was purchased form Tokyo Chemical Industry (Tokyo, Japan), 136 

and N-acetyl-S-phenyl-L-cysteine-D2 (SPMA-D2), which was purchased from CDN Isotope (Pointe-137 

Claire, Quebec, Canada). O-, m-, and p- methylhippuric acid were purchased from Tokio Casei 138 

(Nihonbashi, Chūō, Tokyo, Japan) and creatinine was purchased from Merck KGaA (Darmstadt, 139 

Germany). 140 
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Sample preparation 141 

500 µL of each urine samples was added to 500 µL of an aqueous solution of 0.2 M formic acid and 142 

20 µL of a mixture containing deuterated internal standards of mercapturic acids (Frigerio et al., 143 

2019). This solution was mixed through vortex, filtered using a regenerated cellulose membrane filter 144 

(0.45 µm) (Agilent Technologies, Cernusco Sul Naviglio, Italy), and transferred to an autosampler 145 

vial. 146 

Analytical experiment 147 

Analytical experiments were carried out using a liquid chromatograph system coupled with tandem 148 

mass spectrometry (LC-MS/MS). In particular, the LC part consisted of a UHPLC Exion LC (AB 149 

Sciex, Monza, Italy). The autosampler temperature was set at 8 °C and the injection volume was set 150 

at 2 µL. The column used was a Betasil C18 column (150 ×, 2.1 mm, 5 µm; Thermo Fisher Scientific, 151 

Rodano, Italy) along with the Betasil C18 pre-column (10 × 2.1 mm, 5 µm; Thermo Fisher Scientific, 152 

Rodano, Italy). The column oven was set at 40 °C. A linear gradient with two mobile phases was 153 

applied; the A phase was an aqueous solution of ammonium formate (5 mM) with 0.1% formic acid, 154 

and the B phase was acetonitrile. The gradient was programmed as follows: 0–0.5 min, 0.5% B 155 

isocratic; 0.5–2 min, from 0.5% to 30% B; 2–7 min, 30% B isocratic; 7–8 min, from 30% to 100% B; 156 

8–12 min, 100% B isocratic; 12–12.1 min, from 100% to 0.5% B; and 12.1–18 min, 0.5% B isocratic. 157 

The flow rate was set at 200 µL/min. The mass spectrometer part consisted of a time of flight Triple-158 

TOF 6600 (AB Sciex, Monza, Italy). The instrument was set in data-dependent mode: a full mass 159 

experiment with range 100-600 m/z was carried out, while the MS/MS experiments triggered when 160 

the signal exceeded 1000 cps, for the 10 most intense signal, and excluding the same parent ion for 161 

10 seconds after two consecutive triggers. The acquisition time for the full mass experiment was 250 162 

ms; while, for each data dependent experiment, it was 75 ms. Polarity was set in negative and the 163 

following parameters were used: curtain gas (N2), 30 psi; ion spray voltage, -4500 V; temperature, 164 
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350°C; ion source gas 1 (air), 50 psi; ion source gas 2 (air), 45 psi; declustering potential, -50 V; 165 

collision energy, -15 V; collision energy spread, 30 V. During each analytical sequence, an external 166 

calibration was performed every three analysis, according to the manufacturer’s instructions, to 167 

calibrate mass accuracy of the mass spectrometer. The Analist
®
 software (version 1.7.1; Ab Sciex 168 

S.r.l, Milano, Italy) was used to prepare batches for analysis. Data were acquired in profiling mode. 169 

 170 

Data integration, analysis and metabolite annotation 171 

Data obtained with the analyses were converted from “wiff” files to “mzML” files using 172 

ProteoWizard MSConverter 3.0.19248 (Chambers et al., 2012) using the peak piking algorithm on all 173 

MS levels. These files were then processed using the IPO algorithm (Libiseller et al., 2015), which 174 

was run using R (version 3.6.1, R Foundation, Vienna, Austria) (R-Core-Team, 2019) with the 175 

Rstudio interface (Version 1.2.1335, RStudio Inc., Boston, Massachusetts, United States) in order to 176 

obtain the optimal parameters for XCMS (centWave algorithm). The dataset containing the detected 177 

features was obtained using the on-line version of XCMS (Tautenhahn et al., 2008; Tautenhahn et al., 178 

2012), using the following parameters: minimum peak width, 3; maximum peak width, 95; ppm, 179 

28.45; mzdiff, -0.0175; signal to noise threshold, 3; noise, 0; prefilter, 3; value of prefilter, 100; 180 

integration method, 1; bw, 0.88; minfrac, 0.5; mzwid, 1 x 10
-4

. 181 

The obtained dataset was investigated using MetaboAnalyst (Chong et al., 2018) to perform both 182 

multivariate and univariate analysis. Principal Components Analysis (PCA) was performed for 183 

dimensional reduction and data visualization. Features with more than 50% missing values were 184 

removed, missing value imputation was performed using the k-nearest neighbour (KNN) algorithm, 185 

data were normalised by sum and log transformed, and a pareto scaling was applied. One-way 186 

ANOVA was performed, with data normalised by sum and log-transformed. A Fisher's LSD post-hoc 187 

test was also applied for inter-group comparison. 188 
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The software BEAMS (Birmingham mEtabolite Annotation for Mass Spectrometry), developed at 189 

the University of Birmingham (unpublished) was then implemented for grouping adducts and 190 

isotopes, and to perform annotation of metabolite features. The following parameters were used for 191 

grouping features: maximum RT difference (sec), 5; coefficient threshold, 0.70; grouping method, 192 

Pearson correlation; P-value threshold, 0.01; cpus, 3; block size, 5000; annotation of peak patterns 193 

was performed considering adducts, isotopes and multiple charged ions, with a mass tolerance of 6 194 

ppm. Then, features which were statistically significantly different among groups in the one-way 195 

ANOVA test were further investigated, scrutinizing each feature and merging entries with close 196 

masses or retention times and other possible adducts. Metabolite annotation was completed by 197 

manually comparing the fragmentation pattern obtained (where available) from each [M-H]
-
 parent 198 

ion with data stored in the on-line databases of Metlin (Guijas et al., 2018) and HMDB (Wishart et 199 

al., 2018), checking data from all the levels of collision energies available, along with comparison 200 

with fragmentation patterns obtained in-silico using MS-Finder (Tsugawa et al., 2016) and Met-frag 201 

(Ruttkies et al., 2016). Annotated metabolites were grouped as confidently identified compounds 202 

(level 1), putatively annotated compounds (level 2), putatively annotated compound classes (level 3), 203 

or unknown compounds (level 4) according to the proposed minimum reporting standards as 204 

suggested by the Metabolomics Standards Initiative (Sumner et al., 2007). 205 

 206 

 207 

Results 208 

An overview of the workflow and a summary of the results are given in Fig. 1. 209 
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Statistical analyses and metabolite annotation 210 

Signals from the analyses of all urine samples elaborated with XCMS were summarised in to 3613 211 

features. A clear separation of groups was not achieved with the PCA (supplementary Figures S1 and 212 

S2). 213 

From the 3613 features, the application of the one-way ANOVA test identified 117 features with 214 

significant differences among groups. Using the software BEAMS for grouping adducts and 215 

manually inspecting each feature, 91 potential metabolites were defined. After manually inspecting 216 

mass fragmentation spectra, 5 metabolites were confidently identified through comparison (retention 217 

time and MS/MS mass spectrum) with purchased external chemical standards analysed under the 218 

same analytical conditions (level 1), 43 were putatively annotated (level 2) by matching m/z and 219 

MS/MS fragments with those reported in different databases, 13 compounds were putatively 220 

annotated only for their compound class (level 3), and 30 were considered unknown compounds 221 

(level 4). The list of compounds annotated with level 1, 2, and 3 is reported in Table 1, while some 222 

examples of confidently identified compounds and putatively annotated compounds are reported in 223 

Fig. 2A and 2B. 224 

 225 

Comparison between the untargeted metabolomic approach and the targeted approach 226 

The results related to mercapturic acids obtained in the present study were compared with those 227 

obtained quantifying urinary mercapturic acid concentrations with a targeted approach (Frigerio et 228 

al., 2020; this issue). As reported in Table 2, only three mercapturic acids (3-HPMA, DHBMA, and 229 

HMPMA) were identified as a feature by the XCMS algorithm and their intensities were significantly 230 

different among groups. CMEMA and AMCC were also identified as features, but their intensities 231 

were not different among groups; this is consistent with results from the targeted approach for 232 

CMEMA, while it is not for AMCC. Several molecules (2-HPMA, AAMA, CEMA, GAMA, HEMA, 233 
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MHBMA, and SBMA) were not identified as a feature by the XCMS algorithm, but their presence 234 

was verified after inspecting the chromatograms. Finally, some of the compounds present at the 235 

lowest concentrations (EMA, MMA, PHEMA, and SPMA) were not detected neither using the 236 

algorithms nor inspecting the chromatograms. 237 

  238 
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Discussion 239 

In this work, we presented the results of an untargeted metabolomic experiment carried out on urine 240 

samples from a pilot cross-sectional study involving subjects with different smoking habits. 241 

Multivariate analyses were used only for dimensional reduction and data visualization of features, but 242 

no clear separation was achieved with these approaches (supplementary Figures S1 and S2). 243 

Univariate one-way ANOVA was implemented to find significantly different features among groups 244 

and metabolite annotation was performed only for these features. After grouping possible adducts, 245 

the annotation was performed on 91 potential metabolites. We were able to confidently identify with 246 

an external chemical standard (level 1 according to the proposed minimum reporting standard) 247 

(Sumner et al., 2007) only 5 compounds (Table 1). Three of the five identified compounds are 248 

mercapturic acids: N-acetyl-S-(3-hydroxy-1-methylpropyl)-L-cysteine (HMPMA), N-acetyl-S-(3-249 

hydroxypropyl)-L-cysteine (3-HPMA), and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA). 250 

These compounds were significantly higher in TTS when compared to both NS and ECU. Indeed 251 

they are the metabolites of crotonaldehyde, acrolein, and 1,3-butadiene, respectively, and these 252 

compounds have been reported to be present in tobacco smoke (IARC, 2004). The other identified 253 

compounds (level 1) were firstly annotated by comparison of mass spectra with on-line databases, 254 

and afterwards by analysis, comparing their signal with an external chemical standard. 255 

Methylhippuric acid is a metabolite of xylene (Kira, 1977), which is a known compound present in 256 

tobacco smoke (IARC, 2004). Indeed, the feature identified as methylhippuric acid was significantly 257 

higher in TTS than ECU/NS. We tested the three possible isomers with three different standards: o-258 

methylhippuric acid, m-methylhippuric acid, and p-methylhippuric acid. While o-methylhippuric 259 

acid eluted earlier (5.61 min), m- and p-methylhippuric acid had the same retention time (6.18 min). 260 

The peak in samples had the same retention time of m- and p-methylhippuric acid, so it can be one of 261 

them or a mixture of both. The last identified compound was creatinine, which was higher in NS than 262 
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TTS; this was surprising as in the previous study (Frigerio et al., 2020; this issue) creatinine was not 263 

different among the groups. 264 

Several compounds were annotated at level 2, for most of which the annotation was based on the 265 

predicted fragmentation spectra produced by MS-Finder and the information present in HMDB. 266 

Among putatively annotated compounds, 3-hydroxycotinine glucuronide (Table 1), a metabolite of 267 

nicotine, showed the most significant difference in the ANOVA test (P = 1.19 x 10
-21

) and it was 268 

significantly higher in ECU and TTS than in NS. This result is supported by similar differences of 269 

urinary cotinine in TTS and ECU (Frigerio et al., 2020; this issue) and also by previously reported 270 

data showing that the concentration of nicotine in electronic and traditional cigarette smoke is 271 

comparable (Marsot and Simon, 2016). It is worth mentioning that we managed to find only one 272 

metabolite of nicotine (3-hydroxycotinine glucuronide), while several other nicotine metabolites have 273 

been reported to be present in urine; the discrepancy is due to the fact that our experiment was 274 

performed in the negative ion mode, while the large majority of nicotine metabolites is detected in 275 

the positive ion mode (Ramakrishnan et al., 2016). 276 

Among the other annotated features at level 2, we proposed the presence of 3-ethylphenyl sulfate, 4-277 

ethylphenylsulfate, and methoxycatechol-sulphate, which are metabolites of 3-ethylphenol, 4-278 

ethylphenol, and guaiacol, respectively. All of them are compounds reported to be present in tobacco 279 

smoke (Clark and Bunch, 1996; Rodgman and Perfetti, 2013). Interestingly, the two isomers of 280 

ethylphenyl sulfate were significantly higher in TTS than ECU/NS, while methoxycatechol-sulphate 281 

was significantly higher in ECU/TTS than NS, indicating that both electronic cigarette users and 282 

traditional tobacco smokers might be equally exposed to this compound. We annotated other 283 

metabolites of toxicants with a sulfate group. For all of them we identified a characteristic product 284 

ion of m/z 79.96. With this information, we managed to annotate the compound class (sulfonic acid) 285 

of other features (level 3). Some of the other compounds annotated are endogenous metabolites, 286 

which can be related to the alteration of metabolism induced by the smoking habits. As an example, 287 
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TTS showed higher levels of dodecanedioic acid (an indicator of hepatic carnitine 288 

palmitoyltransferase I deficiency) and higher levels of indoxyl sulfate, a metabolite of the amino acid 289 

tryptophan, that may point to alterations in the tryptophan metabolism in smokers, as previously 290 

reported in a smoking cessation study (Goettel et al., 2017). Furthermore, TTS had higher levels of 291 

12-oxo-20-trihydroxy-leukotriene B4, which is linked to inflammation. It is important to mention, 292 

however, that results obtained with annotated compounds (level 2) should be interpreted with 293 

caution, since some of them may derive from a false positive annotation. Different compounds 294 

deriving from confounding factors may have been annotated; for example some of the polyphenol 295 

derivatives might derive from tobacco smoking and/or the consumption of coffee; in fact the 296 

association of smoking with coffee consumption has been reported (Bjørngaard et al., 2017). 297 

Other untargeted metabolomic experiments carried out on urine samples of subjects with different 298 

smoking habits reported metabolites of nicotine as the main discriminant compounds between TTS 299 

and NS (Garcia-Perez et al., 2014; Ramakrishnan et al., 2016). Furthermore, the study by Garcia-300 

Perez and co-workers reported the presence of other discriminating endogenous metabolites, which 301 

are different from the ones annotated in this work. This may be attributable to the different polarity 302 

mode applied (negative in this study, positive in the one by Garcia-Perez and co-workers). 303 

Comparing the results relative to mercapturic acids to those obtained with the targeted approach 304 

(Frigerio et al., 2020; this issue), HMPMA, 3-HPMA, and DHBMA (with median levels ranging 305 

from 54 to 1595 µg/L) were the only mercapturic acids identified as a features and significantly 306 

different among groups with the approach reported in this study. Interestingly, these mercapturic 307 

acids are not currently present in the HMDB database, although they are well-known metabolites of 308 

xenobiotics. This highlights that the limited coverage of metabolites in on-line databases is still a 309 

shortcoming of untargeted metabolomics, especially when trying to characterize metabolites of 310 

xenobiotics or environmental exposures. Another major limitation of untargeted metabolomics 311 

highlighted in this pilot experiment was the lack of sensitivity of such an untargeted approach. 312 
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Indeed, in our previous work we used a targeted approach to determine a total of seventeen 313 

mercapturic acids in the same urine samples (Frigerio et al., 2020; this issue). Besides HMPMA, 3-314 

HPMA, and DHBMA, others urinary mercapturic acids were significantly higher in TTS, as SPMA 315 

(metabolite of benzene, median concentration from 0.07 to 0.64 µg/L) and CEMA (metabolite of 316 

acrylonitrile, median concentration from 1.2 to 147.3 µg/L), the latter being also different between 317 

ECU and NS. In that previous work, we used a low-resolution triple quadrupole mass spectrometer 318 

and each mercapturic acid was quantified with its own mass transition. Moreover, the 319 

parent/fragment ion pair and the collision energy were optimised for each analyte to obtain the 320 

highest signal sensitivity. With such a targeted approach, it was possible to accurately quantify even 321 

compounds present in concentrations lower than one µg/L (as for SPMA). In the non-targeted 322 

approach presented in this work, using a data-dependent mode and applying a non-specific ramp of 323 

collision energies, we did not manage to detect molecules present at median concentrations ranging 324 

from 0.03 to 4.20 µg/L (EMA, MMA, PHEMA, and SPMA). The missing detection of SPMA has 325 

been similarly reported in other non-targeted approaches (Bloch et al., 2019; Wagner et al., 2007). 326 

Furthermore, despite being detected after inspecting the chromatograms, others mercapturic acids, 327 

with median concentration from 0.42 to 147.3 µg/L were not present in the list of 3613 features 328 

identified by the XCMS algorithm (2-HPMA, AAMA, CEMA, GAMA, HEMA, MHBMA, and 329 

SBMA). This could derive both from a poor chromatographic separation of peaks and to a non-ideal 330 

choice of XCMS parameters, as the “minfrac” parameter (which is the minimum fraction, for each 331 

feature, of positive presence among all samples to keep that feature in the final result table). These 332 

limitations of untargeted approaches should be considered in every study aimed to assess the 333 

exposure to exogenous compounds in a certain condition (e.g. environmental or occupational). A 334 

possible solution to overcome these limitations could be the use of methods focused on a particular 335 

class of metabolites, such as the one recently proposed for mercapturic acids, using a neutral loss 336 

detection (Bloch et al., 2019). 337 
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Some limitations may be identified in this study. The most important is the low number of subjects 338 

involved in the study, in particular for the ECU class. Another limitation is the use of negative 339 

polarity in the mass spectrometer, therefore excluding metabolites forming positive ions. This 340 

strategy was meant to directly compare the results of this study with those of the previous study on 341 

mercapturic acids and to focus on metabolites of exogenous chemicals, known to be mostly 342 

eliminated as carboxylic acids and phenols, following oxidative metabolism. Another weakness of 343 

this experiment was the lack of suitable quality controls, such as pooled quality controls, which could 344 

have improved the quality of the dataset (Broadhurst et al., 2018). 345 

A strength of the work is the annotation of several different compounds; the effort was supported by 346 

the targeted study on urinary mercapturic acids previously performed and on the large literature on 347 

tobacco smoking. Furthermore, with this approach, we described the use of a combination of open-348 

source tools, which can be useful for the interpretation of data from any untargeted metabolomic 349 

experiment. Finally, to the best of our knowledge this is the first untargeted metabolic experiment 350 

conducted in electronic cigarette users. 351 

In conclusion, this untargeted metabolomic approach allowed to investigate metabolic changes in 352 

subjects with different smoking habits, showing several differences in both metabolites associated 353 

with exposure to toxicants and with precocious effects. The comparison with the results obtained 354 

with the targeted study quantifying mercapturic acids (Frigerio et al., 2020; this issue) highlights the 355 

limited power of the untargeted approach to identify differences between exposure groups when the 356 

compounds are present at concentration of tens of µg/L or lower. Another strength of this work is this 357 

attempt to quantify the range of applicability of an untargeted approach. 358 

 359 
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Tables 489 

Table 1 490 

List of confidently identified compounds (level 1 according to Sumner et al., 2007), putatively annotated compounds (level 2) and putatively annotated 491 

compound classes (level 3). For each compound, significance differences in the Fisher’s LSD post-hoc test are given, along with molecular formula, 492 

ppm error, compound name, an identification code, and the supposed parent compound (for most compounds this information was obtained from 493 

HMDB). 494 

Level 1 – confidently identified compounds 

ANOVA 

P-value 
Fisher's LSD 

Molecular 

formula 
ppm error Annotated compounds name Code Metabolite of 

3.56 x 10-12 TTS > ECU; TTS > 

NS 
C9H17NO4S +3.19 

N-Acetyl-S-(3-hydroxy-1-methylpropyl)-L-cysteine 

(HMPMA) 

PubChem CID: 

46780019 
crotonaldehyde 

7.69 x10-12 TTS > ECU; TTS > 

NS 
C8H15NO4S -0.86 N-Acetyl-S-(3-hydroxypropyl)-L-cysteine (3-HPMA) 

PubChem CID: 

119083 
acrolein 

4.03 x 10-4 TTS > ECU; TTS > 

NS 
C9H17NO5S -1.65 N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA) 

PubChem CID: 

44151464 
butadiene 

3.57 x 10-12 TTS > ECU; TTS > 

NS 
C10H11NO3 -1.13 m- or p-methylhippuric acid 

HMDB0013245 / 

HMDB0013292 
m- or p-xylene 

9.90 x 10-4 NS > TTS C4H7N3O -4.78 Creatinine HMDB0000562 - 

Level 2 – putatively annotated compounds 

ANOVA 

P-value Fisher's LSD 

Supposed 

molecular 

formula 

ppm error Annotated compounds name Code Metabolite of 

1.19 x 10-21 ECU > NS; TTS > NS C16H20N2O8 -7.05 trans-3-Hydroxycotinine glucuronide HMDB0001204 nicotine 

8.86 x 10-21 TTS > ECU; TTS > 

NS 
C8H10O4S +1.47 3-Ethylphenyl sulfate / 4-Ethylphenylsulfate 

HMDB0062721 / 

HMDB0062551 
3-ethylphenol / 4-ethylphenol 

1.61 x 10-9 TTS > ECU; TTS > 

NS 

3.06 x 10-5 ECU > NS; TTS > NS C7H8O5S -0.83 O-methoxycatechol-O-sulphate HMDB0060013 Guaiacol (o-Methoxyphenol) 

3.69 x 10-18 TTS > ECU; TTS > 

NS 
C7H5NO4S -3.8 5-Mercapto-2-Nitro-Benzoic Acid DrugBank=DB02763 - 

1.80 x 10-16 TTS > ECU; TTS > 

NS 
C11H9N3O3 -4.84 1-(2-hydroxyethyl)-4-[1]benzopyrano[3,4-d]triazolone CHEBI:114849 - 

5.07 x 10-16 ECU > NS; TTS > 

ECU; TTS > NS 
C8H8O5S -4.04 (5-ethenyl-2-hydroxyphenyl)oxidanesulfonic acid HMDB0124978 4-ethenylbenzene-1,2-diol 
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8.12 x 10-16 TTS > ECU; TTS > 

NS 
C13H10O4 +2.91 

7-hydroxy-6-(3-oxobut-1-en-1-yl)-2H-chromen-2-one / 

Coriandrin 

HMDB0128952 / 

HMDB33329 

7-methoxy-6-(3-oxobut-1-en-1-yl)-2h-

chromen-2-one 

8.48 x 10-16 TTS > ECU; TTS > 

NS 
C9H12O4S -1.18 (3-phenylpropoxy)sulfonic acid HMDB0135313 3-phenylpropan-1-ol 

1.33 x 10-15 TTS > ECU; TTS > 

NS 
C26H40O8 -2.39 xylarenone E CHEBI:69734 - 

3.39 x 10-15 TTS > ECU; TTS > 

NS 

C11H12O5S -5.76 

[(3-methyl-2-oxo-4-phenylbut-3-en-1-yl)oxy]sulfonic acid 

/ [4-(2-methyl-3-oxobut-1-en-1-yl)phenyl]oxidanesulfonic 

acid / [3-oxo-2-(phenylmethylidene)butoxy]sulfonic acid / 

[3-oxo-2-(phenylmethylidene)butoxy]sulfonic acid 

HMDB0133689 / 

HMDB0133695 / 

HMDB0133691 / 

HMDB0133693 

1-hydroxy-3-methyl-4-phenylbut-3-en-2-one / 

4-(4-hydroxyphenyl)-3-methylbut-3-en-2-one / 

3-(hydroxymethyl)-4-phenylbut-3-en-2-one / 

4-(3-hydroxyphenyl)-3-methylbut-3-en-2-one 

1.01 x 10-10 ECU > NS; TTS > NS 

5.31 x 10-7 ECU > NS; TTS > 

ECU; TTS > NS 

9.82 x 10-15 TTS > ECU; TTS > 

NS 
C10H12O4S -2.44 

{[(2E)-2-methyl-3-phenylprop-2-en-1-yl]oxy}sulfonic 

acid / {[(3E)-4-phenylbut-3-en-2-yl]oxy}sulfonic acid 

HMDB0133620 / 

HMDB0133731 

(2e)-2-methyl-3-phenylprop-2-en-1-ol / 

4-phenylbut-3-en-2-ol 

2.49 x 10-12 TTS > ECU; TTS > 

NS 
C21H30O7 -2.99 Pteroside Z / Secoeremopetasitolide B 

HMDB32587 / 

HMDB41363 
- 

8.84 x 10-10 TTS > ECU; TTS > 

NS 
C5H9NO3S -2.09 Tiopronin CHEBI:32229 - 

1.12 x 10-9 ECU > NS; TTS > 

ECU; TTS > NS 
C8H10O5S -1.93 

Tyrosol 4-sulfate / 

(5-ethyl-2-hydroxyphenyl)oxidanesulfonic acid 

HMDB0041785 / 

HMDB0124986 

polyphenol metabolite / 

4-ethylbenzene-1,2-diol 7.59 x 10-7 TTS > ECU; TTS > 

NS 

2.43 x 10-9 TTS > ECU; TTS > 

NS 
C12H22O4 -2.76 Dodecanedioic acid HMDB0000623 - 

5.06 x 10-9 TTS > ECU; TTS > 

NS 
C8H7NO4S +0.93 Indoxyl sulfate HMDB0000682 tryptophan 

6.61 x 10-9 
ECU > NS; TTS > NS 

C10H10O6S -2.07 

[2-hydroxy-5-(3-oxobut-1-en-1-yl)phenyl]oxidanesulfonic 

acid / (2E)-2-methyl-3-[4-(sulfooxy)phenyl]prop-2-enoic 

acid / (2E)-2-methyl-3-[3-(sulfooxy)phenyl]prop-2-enoic 

acid / {4-[(1E)-3-methoxy-3-oxoprop-1-en-1-

yl]phenyl}oxidanesulfonic acid 

HMDB0135681 / 

HMDB0133667 / 

HMDB0133664 / 

HMDB0131180 

4-(3,4-dihydroxyphenyl)but-3-en-2-one / 

(2e)-3-(4-hydroxyphenyl)-2-methylprop-2-

enoic acid / 

(2e)-3-(3-hydroxyphenyl)-2-methylprop-2-

enoic acid / 

(2e)-3-(4-hydroxyphenyl)prop-2-enoate 

2.56 x 10-4 

ECU > NS; TTS > NS 

2.59 x 10-7 TTS > ECU; TTS > 

NS 
C16H20O8 +0.76 trans-isoeugenol-O-glucuronide HMDB0060021 trans-isoeugenol 

1.53 x 10-6 TTS > ECU; TTS > 

NS 
C8H8O4S -1.78 4-Vinylphenol sulfate HMDB0062775 4-Hydroxystyrene 

2.82 x 10-6 TTS > ECU; TTS > 

NS 
C9H12O5S +1.87 (4-ethyl-2-methoxyphenyl)oxidanesulfonic acid HMDB0127988 4-Ethyl-2-methoxyphenol 

3.40 x 10-6 
TTS > ECU; TTS > 

NS 
C21H32O8 +0.63 

5-(2,3-Dihydroxy-3-methylbutyl)-4-(3,4-epoxy-4-

methylpentanoyl)-3,4-dihydroxy-2-isopentanoyl-2-

cyclopenten-1-one / Abscisic alcohol 11-glucoside 

HMDB0030082 / 

HMDB39636 
- 

3.61 x 10-6 ECU > NS; TTS > NS C7H9NO4S -0.26 Cystathionine ketamine HMDB0002015 - 

1.05 x 10-5 ECU > TTS; NS > 

TTS 
C11H15NO3S -2.87 

methiocarb-sulfoxide / 2-(Ethylsulfinylmethyl)phenyl 

methylcarbamate 

CHEBI:83542 / 

HMDB0040289 
Methiocarb /  Ethiofencarb 

1.10 x 10-05 
TTS > NS C10H8O6S -7.78 

4-Methylumbelliferyl sulfate / [(1-oxo-1H-isochromen-3-

yl)methoxy]sulfonic acid 

CHEBI:1905 / 

HMDB0128627 

4-methylumbelliferone / 3-(hydroxymethyl)-1h-

isochromen-1-one 
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1.46 x 10-5 
ECU > NS; TTS > NS 

C12H22O11 -0.4 
disaccharide (Lactose, Maltose, Melibiose, Sucrose, 

Trehalose) 

HMDB0000186 / 

HMDB0000163 / 

HMDB0000048 / 

HMDB0000258 / 

HMDB0000975 

- 
4.96 x 10-4 

ECU > NS; TTS > NS 

2.79 x 10-5 TTS > ECU; TTS > 

NS 
C20H30O7 -2.56 12-Oxo-20-trihydroxy-leukotriene B4 HMDB0012553 leukotriene B4 (LTB4) 

7.03 x 10-5 TTS > NS C8H11NO4S +3.69 Tyramine-O-sulfate HMDB0006409 Tyramide 

1.06 x 10-4 
ECU > NS; TTS > NS C12H16N2O5 +0.95 Tyrosyl-Serine / Serinyl-Tyrosine 

HMDB29114 / 

HMDB29051 
- 

2.59 x 10-4 ECU > TTS; NS > 

TTS 
C10H12N2O5 -4.79 (±)-2-(1-Methylpropyl)-4,6-dinitrophenol / Dinoterb 

HMDB0032559 / 

CHEBI:81883 
- 

3.19 x 10-4 ECU > NS; TTS > NS C26H32O10 -2.53 Myricatomentoside I HMDB0031536 - 

5.71 x 10-4 
ECU > NS; TTS > NS C13H10O5S +5.82 MINEs-120960 / MINEs-120956 

MINEs-120960 / 

MINEs-120956  

7.44 x 10-4 ECU > NS; TTS > NS C16H20O10 -3.16 Dihydroferulic acid 4-O-glucuronide HMDB0041723 - 

8.45 x 10-4 TTS > ECU; TTS > 

NS 
C7H6O8S +8.99 

2,4-dihydroxy-3-(sulfooxy)benzoic acid / 3,5-dihydroxy-

4-(sulfooxy)benzoic acid 

HMDB0130471 / 

HMDB0126639 
trihydroxybenzoic acid 

1.14 x 10-3 ECU > NS; TTS > NS C6H9N3O2 +2.59 L-Histidine HMDB0000177 - 

1.27 x 10-3 

ECU > NS; TTS > NS C18H22O11 -0.57 

5-(3'',4'',5''-trihydroxyphenyl)-gamma-valerolactone-O-

methyl-4''-O-glucuronide / 5-(3'',4'',5''-trihydroxyphenyl)-

gamma-valerolactone-O-methyl-5''-O-glucuronide 

HMDB0060027 / 

HMDB0060028 

5-(3',4',5'-trihydroxyphenyl)-gamma-

valerolactone-O-methyl / 

5-(3',4',5'-trihydroxyphenyl)-gamma-

valerolactone-O-methyl 

1.32 x 10-3 ECU > NS; TTS > NS C8H9NO4 +0.1 4-Pyridoxic acid HMDB0000017 vitamin B6 

1.53 x 10-3 ECU > TTS; NS > 

TTS 
C10H16N2O4 -0.14 Prolylhydroxyproline HMDB0006695 - 

Level 3 – putatively annotated compound classes 

ANOVA 

P-value Fisher's LSD 

Supposed 

molecular 

formula 

ppm 

error 
Annotated compound class 

1.04 x 10-25 ECU > NS; TTS > 

ECU; TTS > NS 
C11H12O4S +1.05 Sulfonic acid 

2.87 x 10-20 TTS > ECU; TTS > 

NS 
C12H12O4S -0.99 Sulfonic acid 

1.82 x 10-17 TTS > ECU; TTS > 

NS 
C12H14O4S -5.94 Sulfonic acid 

6.48 x 10-4 TTS > NS C8H8O5S +0.15 Sulfonic acid 

5.55 x 10-5 TTS > NS C8H12O2 -6.14 Methyl-branched fatty acids / Cyclic ketones / Fatty acid esters / Medium-chain fatty acids 

5.57 x 10-5 TTS > ECU; TTS > 

NS 
C10H12O6S -4.57 Sulfonic acid / Phenylsulfates 

8.96 x 10-5 TTS > ECU; TTS > 

NS 
C15H22O9 -3.5 conjugated polyphenol 
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 495 

 496 

Table 2 497 

Comparison between the targeted and the untargeted approach in the detection of urinary mercapturic acids. 498 

 Targeted approach Untargeted approach 

Coherence of 

targeted vs 

untargeted 

approach 

Urinary 

mercapturic 

acids 

Median 

concentr

ations in 

NS 

(µg/L) 

Median 

concentra

tions in 

ECU 

(µg/L) 

Median 

concentratio

ns in TTS 

 (µg/L) 

P-value of 

ANOVA 

Part of the 91 

different features 

Part of the 

3613 total 

features 

Identified after 

inspecting the 

chromatogram 

3-HPMA 224 414 1594 < 0.001 ✔ ✔ ✔ ✔ 

DHBMA 348 405 644 0.002 ✔ ✔ ✔ ✔ 

HMPMA 54 77 326 < 0.001 ✔ ✔ ✔ ✔ 

AMCC 220 364 572 0.009  ✔ ✔  

CMEMA 340 349 578 0.245  ✔ ✔ ✔ 

2-HPMA 10.3 16.3 33.6 < 0.001   ✔  

1.91 x 10-4 TTS > NS C7H10O2 -2.43 Cyclic ketones  

5.75 x 10-4 TTS > NS C12H16O8 -0.49 Phenolic glycosides 

6.00  x 10-4 NS > ECU; TTS > 

ECU 
C9H10O4 +2.03 Phenols 

8.54 x 10-4 TTS > NS C9H10O3 -5.56 Benzenoids 

1.06 x 10-3 TTS > ECU; TTS > 

NS 
C5H8O3 -4.07 Short-chain keto acids and derivatives 

1.39 x 10-4 ECU > NS; TTS > NS C15H16O8S +0.81 sulfonic acid 
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AAMA 65 84 113 < 0.001   ✔  

CEMA 1.2 4.1 147 < 0.001   ✔  

GAMA 3.5 3.6 7.6 0.011   ✔  

HEMA 1.4 3.1 2.8 0.001   ✔  

MHBMA 0.42 1.16 4.94 < 0.001   ✔  

SBMA 2.69 2.94 2.18 0.240   ✔  

EMA 0.03 0.02 0.12 0.048     

MMA 4.34 5.09 4.20 0.626     

NANPC < LOQ < LOQ < LOQ N.A    ✔ 

PHEMA 0.60 1.09 1.24 0.013     

SPMA 0.07 0.17 0.64 < 0.001     

 499 

 500 
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Figure legends 501 

Figure 1. Workflow implemented for the data integration, analysis and metabolite annotation. 502 

Figure 2-A. Examples of confidently identified compounds (level 1) 503 

Figure 2-B. Examples of putatively annotated compounds (level 2) 504 
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