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Abstract 24 

High-quality biodiversity inventories are key tools to develop effective conservation strategies, but 25 

financial resources devoted to systematic species inventories are usually limited. Different sampling 26 

strategies have been proposed to efficiently allocate such limited resources (i.e. accessibility-based, 27 

stratified random and grid samplings), but their effectiveness may depend on the aim of the survey. Our 28 

aim was to assess which approach can provide the best trade-off between sampling costs and accuracy 29 

in estimating both single species distribution and regional species set composition. We generated 30 

simulated species distribution data to compare costs and performances of the three sampling methods in 31 

assessing species distribution. When we aim at measuring species range (i.e. area of occupancy or 32 

extent of occurrence), or obtaining baseline ecological data for conservation assessments (i.e. niche 33 

breadth), grid sampling usually provided the best trade-off between performances and costs at both the 34 

species and regional levels. Otherwise, the stratified random sampling outperformed the other methods 35 

when we are interested in assessing the relative rarity (i.e. species frequency) of the species across the 36 

study area. Low quality distribution data can lead to heavily biased conclusions on biodiversity trends 37 

or impacts of environmental changes; our findings highlight that selecting the right sampling strategy is 38 

essential to obtain reliable estimates of both single species distribution and regional species set 39 

composition. 40 

 41 

Keywords: field survey design, grid sampling, stratified random sampling, accessibility-based sampling, 42 
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Introduction 45 

Species inventories are a key tool to obtain baseline data on the distribution of organisms and to 46 

develop effective conservation strategies (Barthlott & Winiger 1998). Systematic field surveys can 47 

enhance our knowledge of species occurrences and relative frequencies, which are essential to detect 48 

and track changes in biodiversity patterns (e.g. modifications in species richness or community 49 

composition following climate change, urbanization or agricultural intensification), to identify species 50 

or areas of high conservation priority, and to develop successful management measures (Austin & 51 

Heyligers 1989; Neldner et al. 1995; Hortal & Lobo 2005). Although survey campaigns are widely 52 

acknowledged as a primary tool in conservation planning and management, human and financial 53 

resources devoted to biodiversity survey and monitoring are limited. As a consequence, one of the main 54 

issues for conservationists and managers remains how to allocate limited resources to carry out the best 55 

conservation outcomes (McCarthy et al. 2012; Ficetola et al. 2018). 56 

Surveying costs, in terms of time and/or funds, can be reduced by selecting sampling sites that 57 

are more easily accessible, usually close to roads (“accessibility-based” sampling) (Greenwood, 1996; 58 

Jobe & White 2009). However, site accessibility is seldom uniform across a region. For instance, road 59 

distribution is related to multiple factors, such as the physical properties of the landscape (e.g. 60 

elevation, orography, presence of barriers), and the distribution of human activities (e.g. presence of 61 

urban, agricultural or industrial areas) (Nelson 2008; Uchida & Nelson 2010). Therefore, easily 62 

accessible sites are often associated with anthropogenic stresses that are likely to affect species 63 

distribution. Many plant and animal species show limited frequency and / or activity nearby roads (e.g. 64 

edge effect) because of lower habitat quality and increased mortality (Forman & Alexander 1998; 65 

Trombulak & Frissell 2000; Fahrig & Rytwinski 2009). As a consequence, even if appealing from a 66 

cost perspective, accessibility-based samplings may provide spatially and/or ecologically biased data 67 
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(Kadmon et al. 2004). It is thus fundamental that these aspects are carefully accounted for before any 68 

inference is made about patterns and potential drivers of biodiversity. 69 

Given the spatial bias of many species distribution datasets (Ficetola et al. 2013; Yang et al. 70 

2014), several methods have been proposed to optimize and standardize efforts in collecting 71 

biodiversity information across a given area. Stratified (habitat-specific) random and grid sampling are 72 

among the most popular methods (Smith et al. 2017). However, outputs, spatial bias and costs may be 73 

very different among these methods, and their effectiveness mostly depends on the aims of the study. 74 

Stratified random sampling could return spatially unbiased information about species distribution and 75 

frequency across the study area by sampling all the potential suitable habitats (Yoccoz et al. 2001; 76 

Smith et al. 2017) but, due to logistic constraints, its application may be limited to surveying a reduced 77 

number of taxa in relatively small study areas (Guisan & Zimmermann 2000). This method seems 78 

particularly appropriate for investigating the distribution of rare or endangered species with well-79 

known ecological constraints, as it requires some a-priori knowledge of the requirements of target 80 

species (e.g. inhabited vegetation types, elevational range); consequently, setting up a multi-habitat and 81 

multi-species (i.e. assemblage level) stratified sampling over large study areas can be technically 82 

complex and expensive (Guisan & Zimmermann 2000). Grid sampling (systematic survey sensu 83 

Wessels et al. 1998) could be more appropriate if the aim is to collect data on distribution patterns on a 84 

large set of species (e.g. assemblages) within a study area. In this case, a uniform sampling of the study 85 

area would be desirable. This approach could provide spatially unbiased estimates of species 86 

distribution, which are helpful to map biodiversity patterns within the study area; however it could be 87 

excessively expensive, and may not always lead to reliable estimates of species frequencies (Overton & 88 

Lehmann 2003). Even if statistically representative, both of these approaches may nevertheless under-89 

represent or even lack species living in extremely rare habitats, for which ad-hoc strategies of site 90 

selection could be advisable (Økland 2007; Rolaček et al. 2007). 91 
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The choice of the sampling method is a crucial and challenging task that requires awareness 92 

about the strengths and weaknesses associated with each sampling approach. The relative performances 93 

and costs of different approaches may be assessed by comparing data collected with different protocols 94 

in the same area (Kadmon et al. 2004; Mccarthy et al. 2012). However, no method provides a perfect 95 

knowledge of true species distribution, thus hampering the estimation of the absolute biases. The 96 

analysis of simulated data on species distribution provides several advantages, such as the perfect 97 

knowledge of species occupancy and frequency, and community composition across the study area; 98 

this, in turn, allows the quantification of the sampling bias in relation to the real pattern (i.e. the 99 

“truth”), and the comparison of the biases of estimators based on different sampling methods (Hirzel & 100 

Guisan 2002; Zurell et al. 2010; Smith et al. 2017).  101 

Here we used simulated species distribution data to compare costs (in terms of time needed to 102 

reach and survey the sites; i.e. total time) and performances of three different sampling methods 103 

(accessibility-based, stratified random and grid samplings) in assessing both single species distribution 104 

and species set composition across the study area. Stratified random and grid are rigorous sampling 105 

strategies, which can allow unbiased estimation of the parameters of interest (Smith et al. 2017). On the 106 

contrary, accessibility-based sampling often has high bias, but such data are frequent in occasional 107 

inventories, thus it is important to assess their relative performance. We considered three landscapes 108 

configurations, differing for their accessibility (i.e. road densities) and also assessed the robustness of 109 

our results to the issues of imperfect detection (MacKenzie et al. 2006; Kery & Royle 2016) and edge 110 

effect (Palomino & Carrascal 2007; Semlitsch et al. 2007), given their pervasive effects on species 111 

distribution data and on the reliability of survey results. Water dependent organisms were selected as it 112 

is easy to identify relationships between the distribution of presence sites (i.e. waterbodies) and 113 

accessibility, but results can be applied to many organisms that can be sampled in sites where 114 

appropriate resources (habitats) are. The aim of our study was to provide guidelines for researchers as 115 
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well as for non-profit organization and government agencies dealing with biodiversity survey and 116 

monitoring. This will allow optimizing sampling design depending on both the survey aim and 117 

available resources, thus maximizing the reliability of the gathered data in term of species distribution. 118 

 119 

 120 

Methods 121 

Simulated species and landscape 122 

Our simulation approach mimicked surveys aiming at detecting water-dependent organisms (e.g. 123 

amphibians, water birds, insects, or any kind of aquatic taxon). Artificial distribution data were 124 

generated for 15 hypothetical aquatic species differing in their habitat preferences, response to 125 

elevational gradients, and occupancy probabilities. For habitat preferences, we considered three species 126 

typologies: specialists for lentic habitats (e.g. ponds or small lakes), specialist of lotic habitats (e.g. 127 

streams), generalist (present in both typologies; Table 1). For elevation, each species showed an 128 

optimal elevation, and we assumed a Gaussian response to the altitudinal gradients (i.e. each species 129 

responded to the elevational variation with a symmetrical and decreasing occurrence probability around 130 

an optimum value, following a Gaussian probability curve). Species differed in optimum value (mean) 131 

and amplitude of their responses (standard deviation, sd) (see Table 1). Although variables other than 132 

elevation (e.g., water depth) also affect the distribution of aquatic species, and elevation may not be the 133 

key environmental driver of distribution per se, elevation is directly or indirectly linked to major 134 

variables (e.g. temperature, solar radiation, oxygen pressure, hydroperiod and wind), that can deeply 135 

influence organisms occurrence and frequency and overall biodiversity patterns (Guisan & 136 

Zimmermann 2000; Körner 2007; Graham et al. 2014). Furthermore, orography strongly determines 137 

the distribution of roads. To obtain realistic species distributions, occupancy probability was set to 0.5 138 

(6 species) or 0.25 (9 species): only a randomly selected portion of suitable sites was thus considered 139 
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effectively populated. Consequently, for each species, realized occupancy was higher around the 140 

optimum value (mean) and decreased following a Gaussian probability curve. Potential biotic 141 

interactions among simulated species were not considered. See Electronic Supplementary Material 1 142 

(ESM1) for an example of the scripts used to generate species distribution data. 143 

To obtain simulations mimicking the complexity of real landscapes, simulated data were 144 

generated on a true area of 40 × 40 km placed at the foothills of the Eastern Italian Alps (upperleft 145 

corner: x = 714,000 m, y = 5,114,000; Map projection: UTM zone 32N), characterized by an 146 

elevational range of more than 2,000 m. Patterns of spatial aggregation of lentic waters and paths of 147 

both roads and lotic waters are mainly determined by local orography, geomorphological and 148 

lithological features. Selecting a true area allowed us obtaining a realistic distribution of both sampling 149 

sites and road network without compromising the generality of results (Hirzel et al. 2001; Meynard & 150 

Quinn 2007).  151 

 152 

Environmental variables 153 

For the study area, elevation data were obtained from the Shuttle radar topographic mission (SRTM; 154 

original resolution = 3 arc-seconds; downloaded on 20th April 2010), reprojected to UTM 32N 155 

(resolution = 92.66 m) and slightly rescaled to vary between 0 and 2,252 m a.s.l. (Figure 1a). The 156 

complete road network was obtained from the database DBPrior10K (downloaded on 15th January 2016 157 

from http://www.centrointerregionale-gis.it/DBPrior/DBPrior.asp). Single roads, both main and 158 

secondary roads (branches), were manually reclassified to three different classes (class 1 to class 3; 159 

Figure 1b). In our simulations we explored three scenarios of accessibility (low, medium and high road 160 

densities). In the low accessibility scenario we only considered class 1 roads (main roads); class 1 + 2 161 

roads (main roads and their first branches) were considered in the medium accessibility scenario, and 162 

for the high accessibility scenario we considered all roads as exploitable during the survey.  163 
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Sampling sites included both lentic and lotic sites. Lotic sites were obtained by simplifying the 164 

hydrographic network available on the Italian National Geoportal website (downloaded on 7th 165 

November 2015 from http://wms.pcn.minambiente.it/ogc?map=/ms_ogc/wfs/Aste_fluviali.map via the 166 

Web Feature Service in Quantum GIS 2.2). For each stream we set a sampling site every 1,500 m with 167 

a minimum of 2 sampling sites per stream, obtaining a total of 719 lotic sites (Figure 1c). Lentic sites 168 

were detected from the toponym layer (downloaded on 13th November 2015 from 169 

http://wms.pcn.minambiente.it/ogc?map=/ms_ogc/wfs/Toponimi_2011.map via the Web Feature 170 

Service in Quantum GIS 2.2), by selecting sites representing water-related typologies (118 points). 171 

Available maps certainly underestimate lentic sites, given that small ponds are often undetected by 172 

aerial photos (Ficetola et al. 2015). To approximate a 2:1 ratio between lotic and lentic sampling sites 173 

and retain at the same time the spatial aggregation pattern typical of lentic habitats, we randomly 174 

generated 225 additional lentic points within a buffer of 2,000 m from the extant ones (total lentic sites 175 

= 343; Figure 1c). This led to a total of 1,062 sampling sites (719 lotic + 343 lentic sites). For each 176 

potential sampling site, travelling costs (in term of time) were calculated using the gdistance R package 177 

(van Etten 2015) and applying the Tobler’s Hiking Function. This function provides a rough estimate 178 

for the maximum speed of off-path hiking given the slope of the terrain (Tobler 1993). Once obtained 179 

the inter-cell speed (m/s), the correction (ratio) for the inter-centroid distance converts the speeds in 180 

reciprocal of times (1/s): simply summing the reciprocal of these reciprocals (Σ 1/(1/s)) allow us to 181 

obtain the total travelling time. For each of the three accessibility scenarios, costs were estimated 182 

between each sampling site and the closest road. Despite in the real world it is not always feasible to 183 

gain access to the whole set of sampling sites, here we considered all sites potentially accessible and 184 

differing only in the travelling cost to be spent in reaching them. 185 

 186 

Survey design 187 
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We evaluated three survey strategies (grid, stratified random and accessibility-based samplings) under 188 

three scenarios of accessibility (low, medium and high). In 999 simulations, we generated the 189 

distribution of artificial species; simulated species sets were then sampled according to the three 190 

different methods (see Supplementary Figure 1b-d in ESM2 for an example of site selection). To 191 

simplify comparisons, we employed the same sampling effort (i.e. same number of sampling sites) in 192 

the three sampling methods. Grid sampling was performed by building grids of different cell size and 193 

selecting, whenever present, one lotic and one lentic site within each cell of the grid. To account for 194 

scale dependent effects, analyses were run using cell sizes of 10, 6.67, 5, 4, 3.33 and 2.5 km 195 

(corresponding to 32, 69, 118, 167, 235 and 373 sampling sites). We applied the same sampling effort 196 

to the three methods, thus the same number of sampling sites (n) used in the grid approach was 197 

subsequently sampled with the stratified random and accessibility-based methods. For the stratified 198 

random sampling we considered just one ecologically informative stratum, i.e. the availability of water 199 

resources (both streams and ponds) across the whole study area. Sampling was then performed by 200 

randomly selecting from the whole dataset of water resources n sampling sites. Only for the 201 

accessibility-based sampling, we selected the n sampling sites with the lowest travelling costs; 202 

consequently, the total cost is the same for all the replicates with the same n within the same 203 

accessibility scenario. Travelling cost estimation and sampling selection were repeated for each of three 204 

accessibility scenarios. For purpose of comparison, two additional values of n (600 and 750 sites) were 205 

further sampled with the accessibility-based sampling only. A total of 60 combinations were thus 206 

analysed for each of the 999 simulated species sets: 3 sampling methods × 6 sampling efforts × 3 207 

accessibility scenarios, plus two additional sampling efforts (i.e. 600 and 750 sites) × 3 accessibility 208 

scenarios for the accessibility-based sampling only. 209 

We performed two additional simulation runs to assess the impact of edge effect and imperfect 210 

detection on our conclusions. To assess the consequences of edge effect, sites within 90 m from roads 211 
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were considered unsuitable for the target species (average travel time: about 110 s from the nearest 212 

road), all other parameters being constant. Furthermore, in standard analyses, we assumed just one 213 

survey per site and perfect detection of all the present species. However, detection probability is almost 214 

always below one, and multiple surveys are needed to obtain robust estimates of species distribution 215 

(MacKenzie et al. 2006; Petitot et al. 2014). We therefore repeated simulations assuming that species 216 

have imperfect detection; the detection probability of each species was randomly drawn from the 217 

interval [0.1,0.7]. Each site was surveyed in three distinct sampling occasions, while all the other 218 

parameters remained consistent with the other simulations.  219 

 220 

Assessing the efficiency of survey methods 221 

The performance of each survey method (grid, stratified random and accessibility-based methods) was 222 

evaluated by its ability to assess species distribution at a given survey cost. At the regional level, two 223 

measures of species distribution were used, reflecting different survey aims: area of occupancy and 224 

species frequency across the landscape. Area of occupancy is a measure of the spatial distribution of 225 

species, while frequency across the landscape is the proportion of sites with species presence. These 226 

two metrics are not necessarily correlated and allow to describe  and represent different forms of rarity 227 

(Rabinowitz 1981). For instance, a species can occupy a very large number of sites within a small area 228 

(e.g. small range species that are locally abundant), or can occupy very large ranges with just a few 229 

populations (sparse populations over broad ranges). For each cell size used during the grid sampling 230 

(i.e. 10, 6.67, 5, 4, 3.33 and 2.5 km), area of occupancy was calculated as the total number of cells in 231 

which a given species was present (true occupancy) or collected (sampled occupancy) standardized by 232 

total number of cells; this approach is similar to the one used during IUCN species assessment. Species 233 

frequency across the study area was calculated as the total number of sites in which the species was 234 

present (true frequency) or collected (sampled frequency), standardized by the total number of sites or 235 
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the number of surveyed sites, respectively. At the regional level, bias was calculated as the overall 236 

Renkonen (Percentage) dissimilarity (Renkonen 1938) between standardized sampled (i.e. sampled 237 

occupancy or frequency) and true (i.e. true occupancy or frequency) species sets. Renkonen 238 

dissimilarity corresponds to Bray-Curtis dissimilarity when this is calculated on relative rather than 239 

absolute abundances, and solves the problem of density invariance highlighted for this latter index (Jost 240 

et al. 2011). At the species level, we measured performance also for two additional parameters: niche 241 

breadth and extent of occurrence. For each species, niche breadth was calculated as the altitudinal 242 

range experienced by the species, while extent of occurrence as the area contained within the minimum 243 

convex polygon enclosing all sites occupied by the species. 244 

For each estimator of sampling performances, we calculated relative bias as (true value - 245 

estimated value) / true value. Consequently, bias values can range between -1 and 1 when dealing with 246 

species frequency across the landscape, and between 0 and 1 in all the other cases (i.e., area of 247 

occupancy, extent of occurrence and niche breadth). We report species-level measures of bias for a 248 

subset of species representing the whole range of simulated species: the commonest (Species 1), the 249 

rarest (Species 9) and one species with an intermediate frequency (Species 10). 250 

In biodiversity surveys, the time required by operators to complete sampling is a major 251 

determinant of total survey cost. We used two metrics to measure the sampling cost of each survey 252 

scheme: cumulative travel time, and number of surveyed sites. Cumulative travel time was the sum of 253 

the time needed to reach all the n sites, as the time to reach survey sites constitute a major part of the 254 

working time of operators. Furthermore, we considered the total number of surveyed sites, as sampling 255 

more sites requires a larger effort. The number of surveyed sites ranged between 32 and 373 (up to 750 256 

for the accessibility-based sampling only). These measures were calculated for each of the three 257 

different accessibility scenarios (from low to high road density). We finally calculated the total survey 258 

time as (number of surveyed sites × site sampling time) + cumulative travel times, by assuming an 259 
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average sampling time of 20 minutes per site, which is a typical survey effort for the national 260 

monitoring of amphibians and reptiles in Italy (Stoch & Genovesi 2016). Times other than off-path 261 

hiking (e.g., driving time from a “base”) and costs for materials (e.g., sampling equipment or fuel) were 262 

not considered for the calculation of costs as they strongly depend on the positioning of the base and 263 

the sampling methodology, respectively. 264 

Analyses were performed using the R programming environment (R 3.2.5; R Development 265 

Core Team 2016) and associated packages (Goslee & Urban 2007; Bivand & Rundel 2014; Bivand et 266 

al. 2015; Hijmans 2015; van Etten 2015). Data sets and R scripts used to run the analyses are available 267 

as supplementary material (ESM1). 268 

 269 

 270 

Results 271 

Analyses of relationships between sampling costs and bias showed that an increase in total survey time 272 

was always associated with a decrease in sampling bias (Figs. 2-4). However the different monitoring 273 

strategies showed substantial differences in bias for all the measures of species distribution used, i.e. 274 

area of occupancy (Figs. 2a-c and 3a-c), frequency (Figs. 2d-f and 3d-f), extent of occurrence (Fig. 4a-275 

c) or niche breadth (Fig. 4d-f), and across the accessibility scenario considered. 276 

 277 

Regional level analysis: species area of occupancy  278 

When we considered the reliability of estimates of area of occupancy across the whole species set and 279 

study area, the accessibility-based sampling always showed smaller total and travel times than the other 280 

methods (Fig. 2a-c and Supplementary Figure 2a-c in ESM2, respectively). The relative performances 281 

(biases) of the three methods considerably varied depending on the accessibility scenario (Fig. 2a-c). 282 

Grid sampling consistently provided the best estimates across all the accessibility scenarios, although 283 
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accessibility-based samplings slightly outperformed the others when the greatest number of sites was 284 

sampled (750 sites). Accessibility-based and random sampling showed similar performance in the high 285 

and medium accessibility scenarios (Fig. 2a-b), while random sampling generally showed lower bias 286 

than the accessibility approach in the low accessibility one (Fig. 2c). See Supplementary Figure 2 in 287 

ESM2 for an estimation of sampling cost, separately showing cumulative travel times and number of 288 

sampled sites and Supplementary Figures 5a-c in ESM2 for the consequences that edge effect has on 289 

sampling bias. 290 

 291 

Regional level analysis: species frequency in the landscape 292 

When we considered the reliability of species frequency estimates across the whole species set and 293 

study area, the relative performances of each method were consistent across the three accessibility 294 

scenarios (Fig. 2d-f, Supplementary Figure 3 in ESM2). Stratified random sampling returned the most 295 

accurate estimation of the species set at the regional level (Fig. 2d-f), while the accessibility-based 296 

sampling provided the worst estimates, irrespective of the landscape accessibility and the measures of 297 

cost used. See Supplementary Figure 3 in ESM2 for an estimation of sampling cost, showing separately 298 

cumulative travel times and number of sampled sites and Supplementary Figures 5d-f in ESM2 for the 299 

consequences that edge effect has on sampling bias. 300 

 301 

Species level analysis 302 

The performances of the three sampling methods in describing area of occupancy, frequency, extent of 303 

occurrence and niche breadth of single species revealed patterns partially similar to the ones from the 304 

regional level analyses (Figs. 3 and 4). Here we focus on the results of the high accessibility scenario, 305 

but conclusions for the other scenarios were similar (Supplementary Fig. 4 in ESM2). For all the 306 

species, sampling bias ranged more widely with respect to the regional level analyses. Considering the 307 
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bias in estimating the area of occupancy (Fig. 3a-c), the accessibility-based method showed the best 308 

performances for common species only (Fig. 3a), whereas grid sampling outperformed accessibility-309 

based sampling for rare species (Fig. 3c). For the estimation of species frequencies across the landscape 310 

(Fig. 3d-f), the results are consistent with the patterns observed at the regional level: the stratified 311 

random sampling provides bias values very close to zero for all the species and thus clearly 312 

outperformed the other methodologies. For the estimation of the extent of occurrence (Fig. 4a-c), the 313 

accessibility-based sampling slightly outperformed the other methods for species with high and 314 

intermediate frequencies (Fig. 4a-b), while grid sampling showed the lowest bias when dealing with 315 

rare species (Fig. 4c). Lastly, considering the bias in estimating niche breadth (Fig. 4d-f) all the 316 

methods provide a similar performance for species with high and intermediate frequency (Fig. 4d-e), 317 

while grid sampling returned the best estimates for rare species (Fig. 4f). 318 

 319 

Imperfect detection 320 

At the regional level, the overall performances of the three sampling methods were consistent with 321 

previous results, when imperfect detection was included in simulations (Supplementary Figure 6 in 322 

ESM2). Grid and stratified random samplings returned the best estimates of area of occupancy (Fig. 323 

S6a-c) and species frequency (Fig. S6d-f), respectively, but incomplete detection and multiple 324 

sampling occasions increased both the uncertainties in estimating the species set at the regional level, 325 

and the sampling costs. 326 

 327 

Discussion 328 

Efficient and reliable biodiversity surveys are necessary to obtain distribution data, but substantial 329 

resources are required to obtain robust estimates of species range and frequency. At a given sampling 330 
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cost, different approaches show strong heterogeneity in performance, and our results help to select the 331 

optimal sampling strategy depending on both the aims of the survey and the landscape accessibility. 332 

When the main aim is obtaining measures of geographic range of species, baseline data for 333 

conservation assessments (IUCN 2001; Tracewski et al. 2016), or overall biodiversity patterns across 334 

the landscape, grid -based sampling provides a good trade-off between sampling bias and costs at both 335 

the regional and single species levels (Figs. 2a-c, 3a-c, 4). Accessibility-based sampling effectively 336 

estimated the area of occupancy of commonest species, but suffers multiple drawbacks. First, species 337 

distributions can be accessibility-biased (e.g. lower abundance nearby roads, a classical case of edge 338 

effect) (Palomino & Carrascal 2007; Semlitsch et al. 2007), and under these circumstances selecting 339 

sites on the basis of accessibility would provide biased results (discussed below). Furthermore, grid 340 

sampling considerably outperforms the accessibility-based one in estimating areas of occupancy level 341 

(Fig. 2) and the distribution of rare species (Fig. 3c, Fig. 4c and Fig. 4f). Grid sampling allows a 342 

homogeneous spatial distribution of sampling sites across the whole study area, thus providing more 343 

balanced estimates of single species relative distribution and maximising spatial coverage, which is 344 

essential for the assessment of species ranges. The grid approach we used can be particularly effective, 345 

as it may be seen as a grid-based stratified sampling: in fact, within each cell, two different typologies 346 

of sites (i.e. one lentic plus one lotic habitat) were randomly selected, allowing to take into account 347 

ecological variation and thus improving the overall quality of the estimates.  348 

Conversely, if the main aim of the survey is to collect reliable data on species frequency across 349 

the landscape, the stratified random sampling outperformed the other methods in describing both 350 

regional patterns and single species frequencies (Fig. 2d-f, Fig. 3d-f). This can be due to its ability to 351 

gather data proportionally to the resource typology and spatial availability, allowing a more reliable 352 

estimation of species frequency within the study area. The excellent performance of random sampling 353 

in estimating species frequency at both the regional and the single species level was independent of 354 
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landscape accessibility and the measures of cost used (Fig. 2d-f, Fig. 3d-f, Supplementary Figures 3 & 355 

4d). 356 

Occasional samplings are often biased by accessibility. As occasional sampling is a main source 357 

of biodiversity distribution data, accessibility-based sampling is perhaps the most frequent strategy for 358 

the collection of distribution data, even though this is only seldom explicitly stated. For instance, 359 

citizen science provides a huge amount of data over large temporal and spatial scales but it is prone to 360 

spatial biases from infrastructure and human population density (Geldmann et al. 2016) because roads, 361 

cities, and other physical features determine accessibility for observers. This bias may be reduced using 362 

effective protocol development and volunteer training (Flesch & Belt 2017), still it remains pervasive 363 

in biodiversity datasets. In principle, selecting sampling sites on the basis of accessibility greatly 364 

reduces sampling time, and thus allows visiting a larger number of sites. For instance, in this study the 365 

travel time needed to visit the 373 most accessible sites (53 h) was about seven times lower than the 366 

time required to visit the same number of sites selected using the alternatives schemes (355 and 362 h 367 

for grid and stratified random sampling, respectively), in the intermediate accessibility landscape 368 

(Supplementary Fig. 2b). Unfortunately, surveying such a large number of sites does not improve the 369 

quality of results, confirming the existing concerns on road-biased sampling. Accessibility-based 370 

sampling is sometimes thought to represent the most cost-effective solution to sample an area (Albert et 371 

al. 2010), but its effectiveness strongly depends on the density of the road network: in fact, sampling 372 

sites close to roads reduces costs only within highly accessible landscapes or for common species (Fig. 373 

2, Fig. 3a and Fig. 4a and d), and only if road distribution is not heavily biased by spatial and 374 

ecological features (e.g. landscape composition or orography). Given that such biases are widespread, 375 

and given that the usefulness of the accessibility-based sampling is restricted to specific conditions, if 376 

possible other sampling strategies should be preferred in most of programmes. 377 
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In addition, roads often have negative effects such as direct killing by vehicles, disturbance, 378 

barrier effects and pollution (Forman & Alexander 1998; Rytwinski & Fahrig 2015). Consequently, 379 

occupancy is generally reduced in sites nearby roads (edge effect) (Palomino & Carrascal 2007; 380 

Semlitsch et al. 2007), posing additional issues to the accessibility-based sampling. If we assume that 381 

sites within 90 m from roads are unsuitable for the target species, accessibility-based sampling 382 

becomes even less reliable (Supplementary Fig. 5 in ESM2). When we estimate area of occupancy and 383 

species frequencies accounting for edge effect, the performances of the accessibility-based survey were 384 

far from being reliable. In practice, edge effects determine the highest observed bias values 385 

(Supplementary Fig. 5), and completely erases any potential advantage of accessibility-based sampling. 386 

Nevertheless, the interactions between roads, species occurrence, accessibility, and performance of 387 

surveys can be complex, and there are cases in which performing sampling along roads do not provide 388 

biased estimates of species distribution (Mccarthy et al. 2012). 389 

In the real world, imperfect detection of species is pervasive, further increasing the complexity 390 

of planning biodiversity surveys (MacKenzie et al. 2006; Petitot et al. 2014). If detection is imperfect, 391 

multiple visits must be performed to each site, thus increasing the overall cost and the uncertainties of 392 

species distribution estimates. Nevertheless, after taking into account imperfect detection we obtained 393 

the same overall pattern, with grid sampling providing the best assessment of species range, and 394 

stratified sampling providing the best assessments of species frequencies (Supplementary Figure 6 in 395 

ESM2). This is probably due to the fact that detection probability was not different among sites with 396 

different accessibility, and the number of surveys per site was adequate to obtain reliable estimates of 397 

species occupancy. The situation could be more challenging when detection probability of species is 398 

not spatially random (Gu & Swihart 2004). For instance, species detection might be lower for rare 399 

species (Tanadini & Schmidt 2011) or nearby roads: in this case we expect that non-random imperfect 400 

detection would further increase the bias of accessibility-based sampling.  401 
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Our simulations were developed assuming aquatic species as the target of the survey and testing 402 

the effectiveness of three alternative sampling strategies. Small wetlands and streams often are discrete 403 

habitats, thus an a-priori selection of sites with a stratified sampling can be easily performed using 404 

geographic information systems, if information on wetland distribution is available. The selection of 405 

sampling sites may be more complex for terrestrial or marine organisms, whose habitats are often 406 

represented as polygon-like features (Smith et al. 2017). For these organisms there is the additional 407 

question of the appropriate position of the sampling site, within the polygon extent. The definition of 408 

the appropriate sampling site (e.g. point count, transect or trapping station) is strongly dependent on the 409 

study taxon and on the research aims, and is beyond the scope of the present study. Still, the increasing 410 

availability of informative strata (e.g. habitat typology, altitude, and microclimate data layers) can 411 

allow integrating multiple information sources, in order to optimize the sampling strategy even in the 412 

most complex situations. Therefore, grid and stratified random sampling can also be used for the 413 

selection of sampling sites for terrestrial organisms, once the potential sampling sites have been 414 

defined. At the same time, alternative sampling strategies such as the generalized random-tessellation 415 

stratified (GRTS; Stevens & Olsen, 2004) and the gradient directed transects (grandsects; Gillison & 416 

Brewer, 1985; Wessels et al., 1998) could be just as reliable as those tested here to optimize and 417 

standardize efforts in collecting biodiversity information across a given area. All of these objective 418 

approaches to site selection have the advantage to strongly limit subjective choices driven by 419 

environmental attractiveness or accessibility (Soberón et al. 2000; Parnell et al. 2003; Moerman & 420 

Estabrook 2006; Romo et al. 2006).  421 

There is not a single sampling approach suitable for all the circumstances and, when setting up 422 

a survey or monitoring programme, the optimal sampling strategy should be defined on the basis of the 423 

landscape structure and the aims of the programme (Yoccoz et al. 2001). If the aim is to collect 424 

unbiased data on the spatial distribution of the species (e.g. for a distribution atlas) and to use them to 425 
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assess biodiversity patterns, a grid sampling, eventually associated with a stratified selection of sites 426 

within each cell, is the more appropriate and cost-effective method. Conversely, the stratified random 427 

sampling returns the best trade-off between data reliability and sampling cost, when the focus is on 428 

species frequencies (e.g. assessing species rarity). Monitoring programmes must be repeated in time, to 429 

discover potential biodiversity changes, assess the consequences of environmental modifications, and 430 

test whether populations are declining or increasing (Nichols & Williams 2006; Wintle et al. 2010; 431 

Ficetola et al. 2018). However, low quality distribution data can lead to heavily biased conclusions 432 

when we test species or biodiversity trends, and impacts of environmental changes (Yoccoz et al. 433 

2001). Selecting an optimal and objective approach to survey or monitoring is important to optimize 434 

the results, but is also the key to obtain reliable assessments of the long-term trajectories of species and 435 

ecosystems, and thus to best inform conservation and management.  436 
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Figure captions 604 

 605 

Figure 1 (b/w in print) 606 

Study area: Digital elevation model (a). Road network with classified roads: class 1 only = low 607 

accessibility scenario; class 1 + 2 = medium accessibility scenario; all classes = high accessibility 608 

scenario (b). Sampling stations (N = 1062) showing separately the 719 lotic sites (along streams) and 609 

the 343 lentic sites.  Green triangles = lentic sites; blue circles = lotic sites (c). 610 

 611 

Figure 2 (b/w in print) 612 

Regional level: relationships between total sampling costs and bias for the three sampling methods 613 

(grid, random and accessibility-based samplings) at three different accessibility scenarios (high, 614 

medium and low road densities). Grid sampling was performed using cell sizes of 10, 6.67, 5, 4, 3.33 615 

and 2.5 km (corresponding to 32, 69, 118, 167, 235 and 373 sampling sites). Total sampling cost was 616 

measured as total time: (number of surveyed sites × site sampling time) + cumulative travel times. Bias 617 

was calculated as Renkonen (Percentage) dissimilarity between true and sampled species sets based on 618 

area of occupancy (Fig. 2a-c) and species frequency (Fig. 2d-f). Bars represent the 0.025 and 0.975 619 

quantiles: vertical bars refer to distribution of the bias, whereas horizontal bars refer to total sampling 620 

times. Blue circles = grid sampling; green squares = random sampling; black diamonds = accessibility-621 

based sampling; grey diamonds = accessibility-based sampling, 600 and 750 sampling sites. 622 

 623 

Figure 3 (b/w in print) 624 

Species level: relationships between total sampling costs and bias for the three sampling methods (grid, 625 

random and accessibility-based samplings) using the high accessibility scenario. Grid sampling was 626 

performed using cell sizes of 10, 6.67, 5, 4, 3.33 and 2.5 km (corresponding to 32, 69, 118, 167, 235 627 



29 
 

and 373 sampling sites). Total sampling cost was measured as total time (see Fig. 2). Three species 628 

were reported: the commonest (Species 1), the rarest (Species 9) and one species with an intermediate 629 

frequency (Species 10). Estimates of single species distribution were based on area of occupancy (Fig. 630 

3a-c) and species frequency (Fig. 3d-f). Relative bias was calculated as (true value - estimated value) / 631 

true value. Bars represent the 0.025 and 0.975 quantiles: vertical bars refer to distribution of the bias, 632 

whereas horizontal bars to total sampling time. Blue circles = grid sampling; green squares = random 633 

sampling; black diamonds = accessibility-based sampling; grey diamonds = accessibility-based 634 

sampling, 600 and 750 sampling sites. 635 

 636 

Figure 4 (b/w in print) 637 

Species level: relationships between total sampling costs and bias for the three sampling methods (grid, 638 

random and accessibility-based samplings) using the high accessibility scenario. Grid sampling was 639 

performed using cell sizes of 10, 6.67, 5, 4, 3.33 and 2.5 km (corresponding to 32, 69, 118, 167, 235 640 

and 373 sampling sites). Total sampling cost was measured as total time (see Fig. 2). Three species 641 

were reported: the commonest (Species 1; Fig. 4a and d), the rarest (Species 9; Fig. 4c and f) and one 642 

species with an intermediate frequency (Species 10; Fig. 4b and e). Estimates of single species 643 

distribution were based on extent of occurrence (Fig. 4a-c) and niche breadth (Fig. 4d-f). Relative bias 644 

was calculated as (true value - estimated value) / true value. Bars represent the 0.025 and 0.975 645 

quantiles: vertical bars refer to distribution of the bias, whereas horizontal bars to total sampling time. 646 

Blue circles = grid sampling; green squares = random sampling; black diamonds = accessibility-based 647 

sampling; grey diamonds = accessibility-based sampling, 600 and 750 sampling sites. 648 
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Tables 649 

Table 1: Ecological preferences and occupancy probability of the 15 artificial species. We assumed 650 

Gaussian responses of the species to elevational gradients: each species was characterized by its 651 

optimal value (mean) and amplitude of the response (sd - standard deviation). Three species typologies 652 

were considered, according to their habitat preferences: specialists for lentic habitats (e.g., ponds), 653 

specialists for lotic habitats (e.g., streams) and generalists. Finally, two occupancy probabilities (0.5 654 

and 0.25) were used to control the relative rarity of the species within suitable habitats. 655 

 656 

Species 
Elevation range (m 

a.s.l.) 
Habitat typology Occupancy 

 mean sd   

Species 1 250 125 lotic 0.5 

Species 2 900 200 lotic 0.5 

Species 3 1900 300 lotic 0.5 

Species 4 600 300 lotic 0.25 

Species 5 1150 325 lotic 0.25 

Species 6 1600 300 lotic 0.25 

Species 7 250 125 lentic 0.5 

Species 8 900 200 lentic 0.5 

Species 9 1900 300 lentic 0.5 

Species 10 600 300 lentic 0.25 

Species 11 1150 325 lentic 0.25 

Species 12 1600 300 lentic 0.25 

Species 13 500 250 lentic + lotic 0.25 

Species 14 1000 250 lentic + lotic 0.25 

Species 15 1500 250 lentic + lotic 0.25 
 657 
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Supplementary Data: ESM1 - Data sets and R scripts used to run the analyses 660 

Supplementary Figures: 1-6 (ESM2) 661 


