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Abstract. In this brief note we study how the fractional mean curvature of order s ∈
(0, 1) varies with respect to C1,α diffeomorphisms. We prove that, if α > s, then the
variation under a C1,α diffeomorphism Ψ of the s-mean curvature of a set E is controlled
by the C0,α norm of the Jacobian of Ψ. When α = 1 we discuss the stability of these
estimates as s → 1− and comment on the consistency of our result with the classical
framework.

1. Introduction and statement of the result

In the seminal work [CRS10], Caffarelli, Roquejoffre and Savin introduced the concept of
fractional perimeter of a measurable set E ⊂ Rn inside a fixed open bounded set Ω ⊂ Rn.
More precisely, they defined

Pers(E,Ω) := Ls(E ∩ Ω, CE ∩ Ω) + Ls(E ∩ Ω, CE ∩ CΩ) + Ls(E ∩ CΩ, CE ∩ Ω),

where s ∈ (0, 1) is a fixed parameter and Ls is the integral functional defined for any two
non-overlapping measurable sets A,B ⊂ Rn as

Ls(A,B) :=

∫
A

∫
B

dxdy

|x− y|n+s
.

In contrast with the classical notion of De Giorgi perimeter, this is non-local, as it also takes
into account interactions with the complements of E and Ω in Rn.

A non-local s-minimal surface in Ω is, hence, the boundary of a set E of finite s-perimeter
for which

Pers(E,Ω) 6 Pers(F,Ω) for any measurable F ⊂ Rn with E ∩ CΩ = F ∩ CΩ.

In [CRS10], the existence of such minimizers is proved, together with other results con-
cerning their regularity, the Hausdorff dimension of the singular set and the relation with
non-local equations. In particular, they proved that the rescaled characteristic function

χ̃E(x) := χE(x)− χCE(x) =

{
1 if x ∈ E,
−1 if x ∈ CE,

of a minimizer E satisfies the Euler-Lagrange equation

(−∆)s/2 χ̃E = 0, on ∂E ∩ Ω,
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in a suitable viscosity sense. Here, (−∆)σ, for σ ∈ (0, 1), is the fractional Laplace operator,
defined for a sufficiently smooth, bounded function u at a point x ∈ Rn as

(−∆)σu(x) := Cn,σ P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2σ
dy.

The symbol P.V. denotes the Cauchy principal value and Cn,σ is a normalizing constant,
depending only on n and σ. For more information about this operator we refer the interested
reader for instance to [DNPV12, CS07] and the classical [L72].

Similarly to the local framework, a natural notion of fractional mean curvature has been
introduced, so that s-minimal surfaces are precisely those having vanishing s-mean curva-
ture. The result is the assignment, for x ∈ ∂E,

Hs[E](x) := P.V.

∫
Rn

χ̃E(y)

|x− y|n+s
dy. (1.1)

Notice that this definition is well-posed if ∂E is of class C2 at x (see, e.g., [AV14, Lemma 7]
and also Corollary 3.5 in the present note).

Over the last few years, an increasing interest has risen around non-local minimal surfaces
and the related fractional mean curvature operator. Nice surveys on the topic can be
found in [V13] and [AV14]. Moreover, the latter proposes a definition of non-local principal
curvatures and establishes a relation with the s-mean curvature reminiscent to what happens
in the classical setting. In the next few paragraphs we will give a brief overview of the main
developments in the field of non-local minimal surfaces.

In [BFV14, SV13, FV13] and [CV13] improvements concerning the regularity of s-minimal
surfaces are obtained. See also [CS09, CS11], again [BFV14] and [AFV15] for similar results
for the fractional Laplacian.

Fractional perimeters arise naturally in phase separation models as Γ-limits of non-local
Ginzburg-Landau energies. In [SV12] the authors propose an extension of the classical
Modica-Mortola theory ([MM77, M87]) to fractional orders. See also [CabS14, CabS15,
PSV13] for relevant material on layer solutions and [AB98, AB98b], where these results are
set in a slightly different non-local framework.

The problem of determining the asymptotic behaviours of the s-perimeter is successfully
addressed in [DFPV13], as s → 0+, and in [ADPM11, CV11], as s → 1−. We also men-
tion [L14], where the author presents analogous results obtained for a class of anisotropic
non-local perimeters.

Finally, a Bernstein-type conjecture has been proposed for entire s-minimal graphs
of Rn+1. In [SV13] it has been proved to be true in the case n = 1 and for n = 2 the
problem has been solved in [FV13]. In particular, in the latter contribution a De Giorgi-
type lemma is stated: the validity of the conjecture in n + 1 dimensions is ensured by the
non-existence of singular n-dimensional s-minimal cones. In higher dimensions the conjec-
ture is still open, while in the classical case the result is true up to n = 7.

At a technical point of [FV13], the two authors needed to establish a relation between
the s-mean curvature of a subgraph and that of its image under a C2 graph diffeomorphism.

More in general, it is natural to conjecture that given a set E of class C2 in a neighbour-
hood of a point x̄ ∈ ∂E and a global C2 diffeomorphism Ψ of Rn, the difference between the
non-local mean curvature of E and that of its transformed Ψ(E), at x̄ and Ψ(x̄) respectively,
can be controlled by means of the C2 norm of Ψ.

In the present work we give a proof of this fact in full details. Indeed, we prove some-
thing slightly stronger, since we lower the regularity assumptions on both the sets and the
diffeomorphism to C1,α, with α ∈ (s, 1].

The precise statement of the result is the content of the following
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Theorem 1.1. Let η0, R > 0 and s ∈ (0, 1). Let E be an open subset of Rn, take a
point x̄ ∈ ∂E and assume ∂E to be of class C1,α in BR(x̄), for some α ∈ (s, 1]. Let Ψ be a
global diffeomorphism of Rn of class C1(Rn,Rn) ∩ C1,α(BR(x̄),Rn) and set

F := Ψ(E), ȳ := Ψ(x̄).

Decomposing Ψ and its inverse Ψ−1 as

Ψ(x) = x+ Φ(x), for any x ∈ Rn, (1.2)

and

Ψ−1(y) = y + Ξ(y), for any y ∈ Rn, (1.3)

for suitable functions Φ and Ξ, suppose that

‖JΦ‖L∞(Rn), [JΦ]C0,α(BR(x̄)) , ‖JΞ‖L∞(Rn), [JΞ]C0,α(Ψ(BR(x̄))) 6 η, (1.4)

for some 0 < η < η0. Then, ∣∣Hs[E](x̄)−Hs[F ](ȳ)
∣∣ 6 Cη, (1.5)

for some constant C > 0 depending on n, s, η0, R, α and the C1,α norm of E at x̄.

Notice that the s-mean curvature is well-defined not only for C2 sets, but also for those
being just C1,α regular, provided α > s. This fact is probably well-known to the experts
but we nevertheless include a proof of it in Subsection 3.3.

Needless to say, the decompositions defined by formulae (1.2)-(1.3) are not restrictive at
all. In fact, we employ this notation to the sole purpose of making more evident the role
of Φ and Ξ as perturbations of the identity. The relation Ξ = −Φ ◦Ψ−1 clearly holds.

Notice that, if η0 is suitably small, in dependence of n, then we can require condition (1.4)
to hold a priori for JΦ only. Indeed, if this is the case, it can be shown that also the
corresponding bound on JΞ is satisfied.

Finally, we stress that the hypotheses of the theorem are obviously satisfied by C2 diffeo-
morphisms. In this case, one may be interested in the precise dependence of the constant C
in (1.5) on s. To this scope, we took care of this dependence all along the proof and we
finally made it explicit in formula (2.15).

As a result, one may observe that C diverges, while taking its limit as s → 1−. This is
not surprising at all, since - at least regarding the asymptotic analysis with respect to the
parameter s - the right normalization for the s-mean curvature is obtained by correcting
the quantity described in (1.1) with the factor 1 − s. Indeed, after this modification we
see that the new constant C does not diverge anymore and, thus, the result is stable as s
approaches 1 from below. Furthermore, by [AV14, Theorem 12] or [CV13, Lemma 9], we
know that

(1− s)Hs[E](x̄) −→ cnH[E](x̄), as s→ 1−,

where H[E](x̄) denotes the classical mean curvature of ∂E at x̄ and cn is some dimen-
sional constant. Therefore, using estimate (2.15) we may recover the standard version of
Theorem 1.1 for the classical mean curvature (see also Appendix A).

The heart of the proof of Theorem 1.1 is contained in Section 2, while we postpone some
useful auxiliary computations to the subsequent Section 3. In the conclusive Appendix A
we recall the corresponding well-known result for the classical mean curvature.

Notation. Next is a list of the less standard notations and conventions employed in the
course of the work.

• Points of the Rn will be denoted with small letters, as x and y, while primed ones will
indicate (n − 1)-dimensional points. In general, we will make no difference between
elements and sets of Rn−1 and those of the hyperplane Rn−1×{0} of Rn. Hence, we will
often refer to a point of Rn as x = (x′, xn) ∈ Rn−1 × R.
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We will also use primed notations for differential operators applied to functions defined
on subsets of Rn−1. So, gradients of such functions will be denoted by ∇′ and Laplacians
by ∆′.
No confusion should arise from the fact that the symbol ∆ will also be used at times for
the symmetric difference between two sets.
• The symbol BR(x) will indicate the open n-dimensional ball of radius R centered at a

point x ∈ Rn, while we will simply write BR for that centered at the origin. Analo-
gously, B′R(x′) and B′R will be used for (n− 1)-dimensional balls.
The (n− 1)-dimensional unit sphere in Rn will be labeled as Sn−1 = ∂B1 and ωn−1 will
denote its Hausdorff measure.
• Given a point x ∈ Rn, a hyperplane π 3 x orthogonal to ν ∈ Sn−1 and two numbers r,H >

0, we will write Kπ,r,H(x) to denote the open cylinder of radius r and height 2H, centered
at x, directed along ν. In symbols,

Kπ,r,H(x) = {y ∈ Rn : |y − x− [(y − x) · ν] ν| < r, |(y − x) · ν| < H} .

We will use Kr,H(x) to identify the cylinder directed along the n-th axis

Kr,H(x) = B′r(x
′)× (−H,H),

and set Kr,H = Kr,H(0).
• The components of a vector valued function will be indicated with superscripts. Thus,

if F : Rn → Rm, we will write

F (x) =
(
F `(x)

)`=1,...,m
=
(
F 1(x), . . . , Fm(x)

)
.

To avoid confusion, we will never use short notations for the derivatives of vector func-
tions. Hence, the Jacobian matrix and Hessian tensor of F will be referred to as

JF (x) =
(
∂iF

`(x)
)`=1,...,m

i=1,...,n
, J2F =

(
∂2
ijF

`(x)
)`=1,...,m

i,j=1,...,n
.

• Latin letters, like i, j, k, will be used for indices running from 1 to n, while Greek letters,
such as µ, ν, κ, identify those that range between 1 and n− 1.
• We will understand the matrices as endowed with the Frobenius norm

‖A‖F :=
√
ATA =

√√√√ n∑
i,j=1

|Aij |2, for A = [Aij ] ∈ Matn(R),

where AT is the transpose of A. Any other norm works pretty much the same, but then
some attention to the constants involved in the various computations should be paid.
• Sometimes we will use the big O notation. Indeed, saying that a function f is O(η) will

mean that there exists a constant C > 0 independent of η such that

|f(x)| 6 Cη,

for any x in the domain of f .

2. Proof of Theorem 1.1

First, denote by νF ∈ Sn−1 the normal vector to the tangent hyperplane πF to ∂F at ȳ
pointing inside F . Also, denote by LF the half-space determined by πF containing νF . We
adopt the same notation with respect to E at the point x̄.

Let r > 0 be some fixed number, whose value will be specified later. We begin with the
computation inside the ball of radius r with center x̄. We observe that, by symmetry,

P.V.

∫
Br(ȳ)

χ̃LF (y)

|y − ȳ|n+s
dy = 0. (2.1)
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Using (2.1) and applying the change of variables induced by Ψ, we compute

P.V.

∫
Br(ȳ)

χ̃F (y)

|y − ȳ|n+s
dy =

∫
Br(ȳ)

χ̃F (y)− χ̃LF (y)

|y − ȳ|n+s
dy

=

∫
Ψ−1(Br(ȳ))

χ̃E(x)− χ̃Ψ−1(LF )(x)

|Ψ(x)−Ψ(x̄)|n+s
| det JΨ(x)| dx.

Now, Lemma 3.2 tells us that

|det JΨ(x)| = 1 +O(η),

|Ψ(x)−Ψ(x̄)|−n−s = |x− x̄|−n−s(1 +O(η)).
(2.2)

We remark that the functions defining the big O’s only depend on n and η0, besides x.
Indeed, one can choose e.g. λ̄ = n + 1, in the notation of Lemma 3.2, to obtain estimates
independent of s. Thence, we obtain

P.V.

∫
Br(ȳ)

χ̃F (y)

|y − ȳ|n+s
dy =

∫
Ψ−1(Br(ȳ))

χ̃E(x)− χ̃Ψ−1(LF )(x)

|x− x̄|n+s
(1 +O(η)) dx. (2.3)

Now we prove that, up to choosing r small enough, it holds∫
Ψ−1(Br(ȳ))

∣∣χ̃E(x)− χ̃Ψ−1(LF )(x)
∣∣

|x− x̄|n+s
dx 6 C/(α− s), (2.4)

for some constant C > 0 depending only on n, η0 and E.
To this scope, notice that we can select a radius r̃ > 0 and a height H̃ > 0, depending

on n, α, R, η0 and E, such that both

∂E ∩KπE ,r̃,H̃
(x̄) and ∂Ψ−1(LF ) ∩KπE ,r̃,H̃

(x̄),

can be written as graphs of C1,α functions with respect to πE . The assertion relative to ∂E
is a direct consequence of its regularity properties in a neighbourhood of x̄. On the other
hand, we may employ Proposition 3.3 to obtain that the same is true also for ∂Ψ−1(LF ).
Furthermore, if x ∈ Ψ−1(Br(ȳ)), then

|x− x̄| = |Ψ−1(Ψ(x))−Ψ−1(ȳ)| 6 |Ψ(x)− ȳ|+ |Ξ(Ψ(x))− Ξ(ȳ)| 6 (1 + η0)r,

and so

Ψ−1(Br(ȳ)) ⊂ B(1+η0)r(x̄) ⊂ KπE ,(1+η0)r,(1+η0)r(x̄). (2.5)

Thus, we take

r < min

{
r̃

1 + η0
,

H̃

1 + η0
, 1

}
. (2.6)

Now, observe that both ∂E and ∂Ψ−1(LF ) are tangent to πE at x̄. We take advantage of
this fact, together with Lemma 3.4 and (2.5), (2.6), to obtain that∫

Ψ−1(Br(ȳ))

|χ̃E(x)− χ̃LE (x)|
|x− x̄|n+s

dx 6 C1/(α− s),

and ∫
Ψ−1(Br(ȳ))

∣∣χ̃Ψ−1(LF )(x)− χ̃LE (x)
∣∣

|x− x̄|n+s
dx 6 C2η/(α− s), (2.7)

where C1 = C1(n,E) and C2 = C2(n, η0) are positive constants. The combination of these
two inequalities immediately leads to (2.4). Notice that we employed (3.10) to recover the
bound for the C1,α norm of Ψ−1(LF ) necessary to apply Lemma 3.4. Moreover, we simply
controlled r with 1, since (2.6) is in force.
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By this, (2.3) may be read as

P.V.

∫
Br(ȳ)

χ̃F (y)

|y − ȳ|n+s
dy =

∫
Ψ−1(Br(ȳ))

χ̃E(x)− χ̃Ψ−1(LF )(x)

|x− x̄|n+s
dx

+ (α− s)−1O(η).

(2.8)

Now we only need to estimate the quantity

P.V.

∫
Ψ−1(Br(ȳ))

χ̃Ψ−1(LF )(x)

|x− x̄|n+s
dx.

To do so, we first add and subtract χ̃LE to the numerator. With the aid of (2.7), we
compute ∣∣∣∣∣P.V.

∫
Ψ−1(Br(ȳ))

χ̃Ψ−1(LF )(x)

|x− x̄|n+s
dx

∣∣∣∣∣ 6
∣∣∣∣∣P.V.

∫
Ψ−1(Br(ȳ))

χ̃LE (x)

|x− x̄|n+s
dx

∣∣∣∣∣
+ C(α− s)−1η,

(2.9)

with C > 0 depending only on n and η0. Furthermore, by symmetry we have∣∣∣∣∣P.V.

∫
Ψ−1(Br(ȳ))

χ̃LE (x)

|x− x̄|n+s
dx

∣∣∣∣∣ 6
∫

Ψ−1(Br(ȳ))∆Br(x̄)

dx

|x− x̄|n+s

+ P.V.

∫
Br(x̄)

χ̃LE (x)

|x− x̄|n+s
dx

=

∫
Ψ−1(Br(ȳ))∆Br(x̄)

dx

|x− x̄|n+s
.

Now, if x ∈ Ψ−1(Br(ȳ))∆Br(x̄), then we either have x /∈ Br(x̄) or x /∈ Ψ−1(Br(ȳ)). While
in the first case it clearly holds |x− x̄| > r, the latter yields

r 6 |Ψ(x)−Ψ(x̄)| 6 |x− x̄|+ |Φ(x)− Φ(x̄)| 6 (1 + η)|x− x̄|.

That is

if x /∈ Ψ−1(Br(ȳ)) or x /∈ Br(x̄), then |x− x̄| > r

1 + η
. (2.10)

A similar argument leads to the upper bound

|x− x̄| 6 (1 + η)r.

Thanks to these two inequalities, we compute∣∣∣∣∣P.V.

∫
Ψ−1(Br(ȳ))

χ̃LE (x)

|x− x̄|n+s
dx

∣∣∣∣∣ 6
∫
B(1+η)r(x̄)\Br/(1+η)(x̄)

dx

|x− x̄|n+s

= ωn−1

∫ (1+η)r

r/(1+η)
ρ−1−sdρ

=
ωn−1

srs(1 + η)s
[
(1 + η)2s − 1

]
6 Cs−1η,

(2.11)

for some positive constant C depending on n, η0, R, α and E. Notice that in the last line
we used (2.6) and Lemma 3.1 with λ = 2s, λ̄ = 2. Combining (2.9) and (2.11) we get∣∣∣∣∣P.V.

∫
Ψ−1(Br(ȳ))

χ̃Ψ−1(LF )(x)

|x− x̄|n+s
dx

∣∣∣∣∣ 6 C(s(α− s))−1η.
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Consequently, (2.8) finally becomes

P.V.

∫
Br(ȳ)

χ̃F (y)

|y − ȳ|n+s
dy = P.V.

∫
Ψ−1(Br(ȳ))

χ̃E(x)

|x− x̄|n+s
dx

+ (s(α− s))−1O(η).

(2.12)

The computation outside Br(ȳ) is much simpler. Here we do not have to deal with the
singularity of the kernel and, indeed, the estimates are almost immediate. Nevertheless, we
provide all the details.

Making the same substitution performed at the start of the proof and using (2.2) we
recover ∫

CBr(ȳ)

χ̃F (y)

|y − ȳ|n+s
dy =

∫
Ψ−1(CBr(ȳ))

χ̃E(x)

|Ψ(x)−Ψ(x̄)|n+s
| det JF (x)| dx

=

∫
CΨ−1(Br(ȳ))

χ̃E(x)

|x− x̄|n+s
(1 +O(η)) dx.

(2.13)

Using now (2.10), we estimate∫
CΨ−1(Br(ȳ))

|χ̃E(x)|
|x− x̄|n+s

dx 6
∫
CBr/(1+η)(x̄)

dx

|x− x̄|n+s

= ωn−1

∫ +∞

r/(1+η)
ρ−1−sdρ

=
ωn−1(1 + η)s

srs

6
ωn−1(1 + η0)

sr
.

Thus, we can bring the big O in (2.13) out of the integral to write∫
CBr(ȳ)

χ̃F (y)

|y − ȳ|n+s
dy =

∫
CΨ−1(Br(ȳ))

χ̃E(x)

|x− x̄|n+s
dx+ s−1O(η). (2.14)

Combining equations (2.12) and (2.14), we finally conclude that there exists a positive
constant C, depending on n, η0, R, α and E, such that

|Hs[F ](Ψ(x̄))−Hs[E](x̄)| 6 C(s(α− s))−1η, (2.15)

and hence (1.5) is proved.

3. Auxiliary results

We collect here some minor results which have been used to prove Theorem 1.1. The
section is divided into three parts. The first subsection contains an estimate for a one-
dimensional function, the second is devoted to some general facts about diffeomorphisms
of Rn and the third to singular integrals.

3.1. One-dimensional analysis. In this short paragraph we include a technical compu-
tation involving a scalar function.

Lemma 3.1. Fix η0 > 0 and λ̄ > 0. Then, there exists a constant C > 0 depending only
on λ̄ and η0 for which

|(1 + η)λ − 1| 6 Cη, (3.1)

for any |λ| 6 λ̄ and η ∈ [0, η0).

Proof. First notice that we can restrict to the case λ > 0. Indeed, when λ = 0 the result is
obvious, while if λ < 0 we may recover it from the positive case, observing that

|(1 + η)λ − 1| = 1− (1 + η)−|λ| =
(1 + η)|λ| − 1

(1 + η)|λ|
6 |(1 + η)|λ| − 1|.
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Thus, assume λ > 0 and define

ϕ(t) := (1 + t)λ, for any t ∈ [0, η0).

We have

ϕ′(t) = λ(1 + t)λ−1, ϕ′′(t) = λ(λ− 1)(1 + t)λ−2.

Then, we consider separately the two cases λ ∈ (0, 1) and λ > 1.
In the first situation, we have ϕ′′ < 0 so that

ϕ′(t) 6 ϕ′(0) = λ,

and thus

|(1 + η)λ − 1| = ϕ(η)− ϕ(0) =

∫ η

0
ϕ′(t) dt 6 λη 6 η.

If λ > 1, then ϕ′′ > 0 and hence

ϕ′(t) 6 ϕ′(η0) = λ(1 + η0)λ−1.

By this we get

|(1 + η)λ − 1| = ϕ(η)− ϕ(0) =

∫ η

0
ϕ′(t) dt 6 λ(1 + η0)λ−1η 6 λ̄(1 + η0)λ̄−1η,

and in either cases (3.1) is proved. �

3.2. Facts concerning diffeomorphisms. We collect here a pair of general results about
diffeomorphisms of Rn. In the first lemma we control some quantities related to a diffeo-
morphism with its C1 norm.

Lemma 3.2. Let η0 > 0, U be a domain of Rn and Ψ : U → Rn be a C1 diffeomorphism.
Decomposing Ψ and Ψ−1 as in (1.2)-(1.3), suppose that

‖JΦ‖L∞(U), ‖JΞ‖L∞(Ψ(U)) 6 η, (3.2)

for some 0 < η < η0. Then,∣∣|det JΨ(x)| − 1
∣∣ 6 Cη, for any x ∈ U, (3.3)

for some constant C > 0 depending only on n and η0. Moreover, given 0 < λ < λ̄, then∣∣∣∣∣
[
|Ψ(x)−Ψ(y)|
|x− y|

]−λ
− 1

∣∣∣∣∣ 6 Cη, for any x, y ∈ U such that x 6= y, (3.4)

for some constant C > 0 depending only on η0 and λ̄.

Proof. Recalling Leibniz formula for the determinant of a matrix, we compute for any x ∈ U

det JΨ(x) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

∂σ(i)Ψ
i(x)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

(
δiσ(i) + ∂σ(i)Φ

i(x)
)
,

(3.5)

where Sn is the symmetric group on {1, . . . , n} and sgn(σ) denotes the sign of the permuta-
tion σ. Notice now that if σ 6= I - the identical permutation - then there exists an index j
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for which σ(j) 6= j and so, with the aid of (3.2),∣∣∣∣∣sgn(σ)
n∏
i=1

(
δiσ(i) + ∂σ(i)Φ

i(x)
)∣∣∣∣∣ =

∣∣∣∣∣∣∣∂σ(j)Φ
j(x)

n∏
i=1
i 6=j

(
δiσ(i) + ∂σ(i)Φ

i(x)
)∣∣∣∣∣∣∣

6
∣∣∂σ(j)Φ

j(x)
∣∣ n∏
i=1
i 6=j

(
1 +

∣∣∂σ(i)Φ
i(x)

∣∣)
6 η(1 + η)n−1

6 (1 + η0)n−1η,

(3.6)

On the other hand, the term relative to the identical permutation I can be written as

sgn(I)

n∏
i=1

(
δiI(i) + ∂I(i)Φ

i(x)
)

=

n∏
i=1

(
1 + ∂iΦ

i(x)
)

= 1 +
n∑
j=1

∑
16i1<...<ij6n

j∏
k=1

∂ikΦik(x).

Since, using (3.2) and Lemma 3.1, it holds∣∣∣∣∣∣
n∑
j=1

∑
16i1<...<ij6n

j∏
k=1

∂ikΦik(x)

∣∣∣∣∣∣ 6
n∑
j=1

(
n

j

)
ηj = (1 + η)n − 1 6 Cη,

we are then able to deduce that∣∣∣∣∣
∣∣∣∣∣sgn(I)

n∏
i=1

(
δiI(i) + ∂I(i)Φ

i(x)
)∣∣∣∣∣− 1

∣∣∣∣∣ 6 Cη, (3.7)

for some constant C > 0 depending only on n and η0. Putting together inequalities (3.6)
and (3.7), recalling (3.5) we finally conclude that∣∣| det JΨ(x)| − 1

∣∣ 6 Cη, for any x ∈ U,
for some constant C > 0 depending only on n and η0, which is (3.3).

Now we turn to (3.4). Notice that, for any x, y ∈ U ,

|Ψ(x)−Ψ(y)|
|x− y|

6
|x− y|+ |Φ(x)− Φ(y)|

|x− y|
6 1 + η,

and

|Ψ(x)−Ψ(y)|
|x− y|

=
|Ψ(x)−Ψ(y)|

|Ψ−1(Ψ(x))−Ψ−1(Ψ(y))|

>
|Ψ(x)−Ψ(y)|

|Ψ(x)−Ψ(y)|+ |Ξ(Ψ(x))− Ξ(Ψ(y))|

>
1

1 + η
,

by (3.2). Furthermore, by Lemma 3.1 there exists a constant C > 0 depending only on η0

and λ̄ for which ∣∣∣(1 + η)±λ − 1
∣∣∣ 6 Cη.

Hence, we deduce that ∣∣∣∣∣
[
|Ψ(x)−Ψ(y)|
|x− y|

]−λ
− 1

∣∣∣∣∣ 6 Cη,
and the proof is complete. �
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Next is the following proposition, where we address the problem of estimating the size of
the domain over which the perturbation of a hyperplane is a graph. Moreover, we give an
estimate of its norm as a graph in terms of the norm of the diffeomorphism.

Proposition 3.3. Fix η0, R > 0, α ∈ (0, 1], x̄ ∈ Rn and e ∈ Sn−1. Denote by π the
hyperplane orthogonal to e which passes through x̄. Let Ψ : BR(x̄) ⊂ Rn → Rn be a C1,α

diffeomorphism and, decomposing Ψ and Ψ−1 as in (1.2)-(1.3), assume that, for some 0 <
η < η0,

‖JΦ‖C0,α(BR(x̄)), ‖JΞ‖C0,α(Ψ(BR(x̄))) 6 η. (3.8)

Then, there exists a radius r? > 0 and a height H? > 0, depending only on n, α, η0 and R,
such that the hypersurface

Ψ (π ∩BR(x̄)) ∩KΨ∗π,r?,H?(Ψ(x̄)), (3.9)

is a C1,α graph with respect to the tangent hyperplane Ψ∗π to Ψ (π ∩BR(x̄)) at Ψ(x̄).
Moreover, denoting by h the C1,α function defining (3.9) as a graph and by B′ the (n−1)-

dimensional ball of center Ψ(x̄) and radius r? contained in Ψ∗π on which h is defined, we
have

‖∇′h‖C0,α(B′) 6 Cη, (3.10)

for some constant C > 0 depending only on n and η0.

Proof. We remark that it is enough to prove the proposition for e = en and x̄ = 0. Moreover,
by composing Ψ with a translation, we may also assume Ψ(0) = 0.

We restrict for the moment to prove the result under the additional hypothesis

Ψ∗π = π and 〈JΨ(0)en, en〉 > 0. (3.11)

At a second stage we will show that the general case boils down to this one.
First, observe that (3.11) is equivalent to asking

∂µΨn(0) = ∂µ(Ψ−1)n(0) = 0, for any µ = 1, . . . , n− 1,

and

∂nΨn(0), ∂n(Ψ−1)n(0) > 0.

By this and (3.8) we then obtain

∂n(Ψ−1)n(0) =
1

∂nΨn(0)
=

1

1 + ∂nΦn(0)
>

1

1 + η0
. (3.12)

Now, we claim that there exists a radius R? ∈ (0, R], depending only on α, η0 and R,
such that

∂n(Ψ−1)n(y) >
1

2(1 + η0)
, for any y ∈ BR? . (3.13)

Indeed, by (3.12) and (3.8) we get

∂n(Ψ−1)n(y) > ∂n(Ψ−1)n(0)− η|y|α > 1

1 + η0
− η0|y|α,

which gives (3.13), by taking R? = min{[2η0(1 + η0)]−1/α, R}.
Consequently, we may apply the Implicit Function Theorem to deduce the existence of

two numbers r,H ∈ (0, R?] and a C1 function h : B′r → [−H,H] for which

(y′, h(y′)) ∈ BR? , for any y′ ∈ B′r, (3.14)

and

(Ψ−1)n(y′, h(y′)) = 0, for any y′ ∈ B′r. (3.15)

We recover the C0,α bound on the gradient of h. By differentiating (3.15) we get

∂µ(Ψ−1)n(y′, h(y′)) + ∂n(Ψ−1)n(y′, h(y′))hµ(y′) = 0,
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for any µ = 1, . . . , n− 1, and so

hµ(y′) = −∂µ(Ψ−1)n(y′, h(y′))

∂n(Ψ−1)n(y′, h(y′))
, for any y′ ∈ B′r. (3.16)

Then, combining (3.8) and (3.13), we have

‖∇′h‖L∞(B′r)
6

∥∥∥∥ ∇′Ξn

∂n(Ψ−1)n

∥∥∥∥
L∞(BR? )

6 2(1 + η0)η. (3.17)

From this bound and (3.14), we see that the choice

r =
R?√

1 + 4(1 + η0)2η2
0

, H =
2(1 + η0)η0R?√
1 + 4(1 + η0)2η2

0

,

is admissible. Moreover, by the Implicit Function Theorem there exists a number κ ∈ (0, 1]
such that Ψ (π ∩BR)∩Kκr,κH is entirely parametrized by the graph of h restricted to B′κr.
We claim that κ may be chosen to depend only on η0 and α. Indeed, assume that there
exists y ∈ Kκr,H such that (Ψ−1)n(y) = 0, but y does not belong to the graph of h. Hence,
by (3.8) and the fact that Ψ−1(y) should lay outside of the set Ψ−1 ({(z′, h(z′)) : z′ ∈ B′r}),
we have

|Ψ−1(y)| > inf
z′∈∂B′r

|Ψ−1(z′, h(z′))| > inf
z′∈∂B′r

√
|z′|2 + h(z′)2

1 + η0
>

r

1 + η0
,

so that

|yn|2 = |y|2 − |y′|2 > |Ψ
−1(y)|2

(1 + η0)2
− |y′|2 >

[
1

(1 + η0)4
− κ2

]
r2.

In order to have |yn| > κH it is enough to take κ < (1 + η0)−2
(
1 + 4(1 + η0)2η2

0

)−1/2
.

Note that, if we set r? := κr and H? := κH, then h defines Ψ (π ∩BR) as a graph in the
cylinder Kr?,H? .

Finally, we turn to the C0,α seminorm of h. In order to simplify the exposition, we will
adopt the shorter notation

ψi(y
′) := ∂i(Ψ

−1)n(y′, h(y′)).

We stress that (3.16) now reads as

hµ(y′) = −ψµ(y′)

ψn(y′)
.

Moreover, we have that

1

2(1 + η0)
6 |ψn(y′)| 6 1 + η and |ψµ(y′)| 6 η, for any y′ ∈ B′r? .

Given y′, z′ ∈ B′r? , we also notice that, using (3.17), we may estimate

|ψi(y′)− ψi(z′)| = |∂i(Ψ−1)n(y′, h(y′))− ∂i(Ψ−1)n(z′, h(z′))|

6
[
∂i(Ψ

−1)n
]
C0,α(Br? )

(
|y′ − z′|2 + |h(y′)− h(z′)|2

)α/2
6 (δin + η)

(
1 + 4(1 + η0)2η2

)α/2 |y′ − z′|α.
Using these inequalities we compute

|hµ(y′)− hµ(z′)| = |ψn(z′)ψµ(y′)− ψn(y′)ψµ(z′)|
|ψn(y′)||ψn(z′)|

6
|ψµ(y′)||ψn(z′)− ψn(y′)|+ |ψn(y′)||ψµ(y′)− ψµ(z′)|

|ψn(y′)||ψn(z′)|

6 4 [η(1 + η) + (1 + η)η]
(
1 + 4(1 + η0)2η2

)α/2
(1 + η0)2|y′ − z′|α

6 8(1 + η0)3
(
1 + 4(1 + η0)2η2

0

)1/2
η |y′ − z′|α,
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that is h ∈ C1,α(B′r?) and [
∇′h

]
C0,α(B′r? )

6 Cη, (3.18)

for some constant C > 0 depending only on η0. The combination of (3.17) and (3.18) leads
to (3.10).

To conclude, we show that hypothesis (3.11) may be dropped.
Let v ∈ Sn−1 be a vector orthogonal to Ψ∗π and consider a rotation Q ∈ SO(n) such

that Qv = en. Up to an orthogonal change of variables in the hyperplane π, we may indeed
assume v to be spanned by en−1 and en. Hence, we write

v =
1√

1 + t2
(en−1 + ten) ,

for some t ∈ R. Moreover we may take Q of the form

Q =

(
In−2 0

0 R

)
, (3.19)

where In−2 is the identity matrix of Matn−2(R) and R ∈ SO(2) is defined by

R =
1√

1 + t2

(
t −1
1 t

)
. (3.20)

Then, we introduce the function

ΨQ(x) := QΨ(x), for any x ∈ BR.

Notice that ΨQ is a C1,α diffeomorphism. In addition, for any w ∈ π we have

〈JΨQ(0)w, en〉 = 〈QJΨ(0)w, en〉 = 〈JΨ(0)w,QT en〉 = 〈JΨ(0)w, v〉 = 0,

since JΨ(0)w ∈ Ψ∗π and v is orthogonal to Ψ∗π by definition. Hence, (ΨQ)∗π = π.
Furthermore, we can choose v in a way that

〈JQΨ(0)en, en〉 = 〈JΨ(0)en, v〉 > 0.

Thus, assumption (3.11) holds true for ΨQ.
Now, we prove that the Jacobians JΦQ and JΞQ, defined as in (1.2)-(1.3), satisfy a

bound similar to (3.8). We claim that it is enough to show that there exists a dimensional
constant C > 0 such that

‖Q− I‖ = ‖QT − I‖ 6 Cη. (3.21)

Indeed, we compute

JΦQ = JΨQ − I = QJΨ− I = QJΦ +Q− I,

and similarly

JΞQ = JΞQT +QT − I.
Notice that formula Ψ−1

Q = Ψ−1 ◦ QT has been used to recover the last identity. Thus,

since ‖Q‖ = ‖QT ‖ =
√
n, if (3.21) holds, then we immediately deduce that

‖JΦQ‖C0,α(BR), ‖JΞQ‖C0,α(BR) 6 (
√
n+ C)η.

Now we prove (3.21). Observe that we may restrict to consider η 6 1/2. Indeed, if this is
not the case we simply estimate

‖Q− I‖ 6 ‖Q‖+ ‖I‖ = 2
√
n 6 4

√
nη.

Thus, we assume η 6 1/2 in what follows. By (3.19) and (3.20), we have

‖Q− I‖2 = ‖R− I‖2 = 2

(
t√

1 + t2
− 1

)2

+
2

1 + t2
= 4

(
1− t√

1 + t2

)
. (3.22)
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Note that, by (3.8) and the definition of v, we get

0 < 1− η 6 |v|2 + 〈JΦ(0)v, v〉 = 〈JΨ(0)v, v〉

=
1√

1 + t2
[〈JΨ(0)en−1, v〉+ t〈JΨ(0)en, v〉] =

t√
1 + t2

〈JΨ(0)en, v〉.

Moreover, it holds 〈JΨ(0)en, v〉 > 0, so that t > 0. On the other hand,

0 = 〈JΨ(0)en−1, v〉 =
1√

1 + t2
[〈JΨ(0)en−1, en−1〉+ t〈JΨ(0)en−1, en〉]

=
1√

1 + t2
[1 + 〈JΦ(0)en−1, en−1〉+ t〈JΦ(0)en−1, en〉] .

Hence, we obtain that

1

2
6 1− η 6 1 + 〈JΦ(0)en−1, en−1〉 = −t〈JΦ(0)en−1, en〉 6 ηt,

that is, t > 1/(2η). Then, after a simple computation, from (3.22) we finally deduce the
bound

‖Q− I‖2 6 8η2,

which immediately implies (3.21).
By the previous results, it is now clear that ΨQ satisfies the hypotheses of the proposition

and (3.11). Consequently, the first part of the argument applies, yielding the thesis for ΨQ.
But then the proof is complete, since Ψ(π ∩ BR) is the rotation of ΨQ(π ∩ BR) by means

of QT . �

3.3. Integral computations. In this subsection we report a couple of straightforward
results concerning singular integrals. The first one provides an estimate for the detachment
of a C1,α graph from its tangent hyperplane inside a ball.

Lemma 3.4. Let η, r > 0, s ∈ (0, 1), α ∈ (s, 1] and x̄ ∈ Rn. Let h : B′r(x̄
′) → R be a

given C1,α function, with h(x̄′) = x̄n and[
∇′h

]
C0,α(B′r(x̄

′))
6 η.

Then, denoting by

G := {(x′, xn) ∈ B′r(x̄′)× R : xn < h(x′)},
the subgraph of h, and by

L := {(x′, xn) ∈ Rn−1 × R : xn < h(x̄′) +∇′h(x̄′) · (x′ − x̄′)},

the lower half-space determined by the tangent hyperplane of h at x̄, we have that∫
Br(x̄)

|χ̃G(x)− χ̃L(x)|
|x− x̄|n+s

dx 6 C(α− s)−1rα−sη, (3.23)

for some constant C > 0 depending only on n.

Proof. We assume without loss of generality that x̄ = 0, i.e. h(0) = 0, and ∇′h(0) = 0.
Observe that the function P defined by

P(x′) := η|x′|1+α, for any x′ ∈ Rn−1

is such that

−P(x′) 6 h(x′) 6 P(x′), for any x′ ∈ B′r.
Therefore, setting

P :=
{

(x′, xn) ∈ Rn−1 × R : |xn| < P(x′)
}
,

we have

|χ̃G − χ̃L| 6 2χG∆L 6 2χP , in Br.
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Thus, me may conclude that∫
Br

|χ̃G(x)− χ̃L(x)|
|x|n+s

dx 6 2

∫
Br

χP (x)

|x|n+s
dx

6 4

∫
B′r

(∫ η|x′|1+α

0

dxn
|x|n+s

)
dx′

6 4η

∫
B′r

|x′|1+α

|x′|n+s
dx′

=
4ωn−2

α− s
rα−sη,

which yields (3.23). �

As a consequence, we deduce that the s-mean curvature is a well-defined quantity for C1,α

sets, if α > s.

Corollary 3.5. Let s ∈ (0, 1) and α ∈ (s, 1]. Let E ⊂ Rn be an open set and take x̄ ∈ ∂E.
If ∂E is of class C1,α at x̄, then Hs[E](x̄) is well-defined in the principal value sense.

Proof. By definition, we know that E may be written as the subgraph of a C1,α function,
locally in Br(x̄), for some small radius r > 0. Thus, denoting by L the lower half-space
determined by the tangent hyperplane to ∂E at x̄, we may apply Lemma 3.4 to deduce that∣∣∣∣∣P.V.

∫
Br(x̄)

χ̃E(x)

|x− x̄|n+s
dx

∣∣∣∣∣ 6
∫
Br(x̄)

|χ̃E(x)− χ̃L(x)|
|x− x̄|n+s

dx

+

∣∣∣∣∣P.V.

∫
Br(x̄)

χ̃L(x)

|x− x̄|n+s
dx

∣∣∣∣∣
=

∫
Br(x̄)

|χ̃E(x)− χ̃L(x)|
|x− x̄|n+s

dx

<+∞.

Notice that the integral on the second line vanishes by symmetry, in the principal value
sense. Furthermore, outside of Br(x̄) we simply estimate∣∣∣∣∣

∫
CBr(x̄)

χ̃E(x)

|x− x̄|n+s
dx

∣∣∣∣∣ 6 ωn−1

∫ +∞

r
ρ−1−s dρ =

ωn−1

srs
< +∞.

These two estimates yield the thesis. �

Appendix A. The result in the classical framework

In this appendix we present a straightforward computation showing the validity of the
counterpart of Theorem 1.1 for the classical mean curvature. By so doing, we extend our
result, formally including the case s = 1. Notice that this conclusion may be rigorously
obtained as a limiting case of Theorem 1.1, as discussed in the introduction. Nevertheless,
we provide here a direct proof.

Let E be an open set of Rn and x̄ ∈ ∂E. Assume E to have C2 boundary at x̄. Let R > 0
and Ψ : BR(x̄)→ Rn be a C2 diffeomorphism. Define F ⊂ Rn and ȳ ∈ ∂F by setting

F := Ψ(E ∩BR(x̄)), ȳ := Ψ(x̄).

Decomposing Ψ as in (1.2) and assuming

‖JΨ(x̄)‖, ‖J2Ψ(x̄)‖ 6 η,
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for some small η > 0, we will show that the mean curvatures of ∂E and ∂F , at x̄ and ȳ
respectively, are linked by the relation∣∣H[E](x̄)−H[F ](ȳ)

∣∣ 6 Cη.
Notice that, without any loss of generality, we may assume both ∂E and ∂F to be smooth

graphs with respect to the hyperplane {xn = 0}, locally around x̄ and ȳ respectively. That
is

E ∩Bε(x̄) =
{
x = (x′, xn) ∈ Rn−1 × R : u(x′) < xn

}
∩Bε(x̄),

F ∩Bε(ȳ) =
{
y = (y′, yn) ∈ Rn−1 × R : v(y′) < yn

}
∩Bε(ȳ),

for some C2 functions u : B′ε(x̄
′)→ R and v : B′ε(ȳ

′)→ R, satisfying

Ψn(x′, u(x′)) = v(Ψ′(x′, u(x′))), for any x′ ∈ B′ε(x̄′).

When we differentiate this equation we get

∂µΨn + ∂nΨnuµ = vκ (∂µΨκ + ∂nΨκuµ) .

Taking one more derivative, we find

∂2
µνΨn + ∂2

µnΨnuν +
(
∂2
nνΨn + ∂2

nnΨnuν
)
uµ + ∂nΨnuµν

= vκξ

(
∂µΨκ + ∂nΨκuµ

)(
∂νΨξ + ∂nΨξuν

)
+ vκ

(
∂2
µνΨκ + ∂2

µnΨκuν +
(
∂2
nνΨκ + ∂2

nnΨκuν
)
uµ + ∂nΨκuµν

)
.

Supposing then for simplicity that x̄ = ȳ = 0, u(0) = v(0) = 0 and ∇′v(0) = 0, we deduce
from the above relations

uµ(0) = − ∂µΨn(0)

1 + ∂nΦn(0)
= O(η),

and

uµν(0) =
[
vκξ(0)

(
∂µΨκ(0) + ∂nΨκ(0)uµ(0)

)(
∂νΨξ(0) + ∂nΨξ(0)uν(0)

)
− ∂2

µνΨn(0)− ∂2
µnΨn(0)uν(0)

−
(
∂2
nνΨn(0) + ∂2

nnΨn(0)uν(0)
)
uµ(0)

]
[1 + ∂nΦn(0)]−1

= vµν(0) +O(η).

Hence, we may finally conclude that

H[E](0) = div

(
∇u√

1 + |∇u|2

)
(0)

=
(
1 + |∇u|2

)−1/2
∆u(0)−

(
1 + |∇u|2

)−3/2
uµν(0)uµ(0)uν(0)

= ∆v(0) +O(η)

= H[F ](0) +O(η),

which is what we wanted to prove.
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