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Abstract: Phytic acid has two main roles in plant tissues: Storage of phosphorus and regulation
of different cellular processes. From a nutritional point of view, it is considered an antinutritional
compound because, being a cation chelator, its presence reduces mineral bioavailability from the
diet. In recent decades, the development of low phytic acid (lpa) mutants has been an important goal
for nutritional seed quality improvement, mainly in cereals and legumes. Different lpa mutations
affect phytic acid biosynthetic genes. However, other lpa mutations isolated so far, affect genes coding
for three classes of transporters: A specific group of ABCC type vacuolar transporters, putative
sulfate transporters, and phosphate transporters. In the present review, we summarize advances in
the characterization of these transporters in cereals and legumes. Particularly, we describe genes,
proteins, and mutants for these different transporters, and we report data of in silico analysis aimed
at identifying the putative orthologs in some other cereal and legume species. Finally, we comment
on the advantage of using such types of mutants for crop biofortification and on their possible utility
to unravel links between phosphorus and sulfur metabolism (phosphate and sulfate homeostasis
crosstalk).

Keywords: phytic acid; low phytic acid mutants; MRP transporter; ABCC transporter; SULTR
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1. Introduction

Phytic acid (PA), chemically myo-inositol-1,2,3,4,5,5-hexakisphosphate, is the major form of
phosphorus (P) storage in seeds (up to 85% of total P) and in other plant organs, such as pollen, roots,
tubers, and turions. However, PA is not only an important molecule for P storage but, together with
its precursors (lower InsPs and myo-inositol) and its derivative molecules (InsP7 and InsP8 inositol
pyrophosphates), it is involved in the regulation of different cell signaling and plant processes in
vegetative tissues, such as abiotic and biotic stress response, storage and polar transport of auxin,
P homeostasis, photomorphogenesis, chromatin modification, and remodeling and mRNA nuclear
export [1].

In seeds, where P amounts may even be 1000-fold higher than those detected in vegetative
tissues, PA is accumulated during development, reaching a plateau at the end of the “cell expansion
phase” [2,3]. PA is synthesized in the cytosol through two different routes: (i) The lipid-independent
pathway, the most used in the seed, consisting of the sequential phosphorylation of the 6-carbon
myo-inositol and soluble inositol phosphates (InsPs), and (ii) the lipid-dependent pathway, using
precursors that include phosphatidylinositol (PtdIns) and PtdIns phosphates. PA is transferred from
the cytosol to the vacuole where it is accumulated into globoids, spherical inclusions found within
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protein bodies [4–7]. Interestingly, the amount and distribution of PA in different seed/grain portions
vary among different species. In cereals, there are differences between Zea mays L. (maize) kernels,
where PA is mainly present in the embryo and scutellum, and the small grains of Hordeum vulgare L.
(barley), different Triticum (wheat) species and Oryza sativa L. (rice), where 80% of PA is stored in the
aleurone and bran (maternal teguments) and only a limited amount accumulates in the embryo [8].
However, in legumes, more than 95% seed PA is accumulated in the cotyledons [9]. During germination,
phytases degrade PA and in this way, P is remobilized to support seedling growth [10]. Due to its high
negative charge at physiological pH (~6–7), PA easily precipitates in the form of phytate salts binding
cations, such as iron, zinc, potassium, calcium, magnesium, some of them (mainly iron and zinc)
important from a nutritional point of view, in this way reducing their bioavailability. Only ruminants
are able to degrade PA, due to the presence of microbial phytases in their digestive tracts, while for
monogastric animals, including humans, mainly in those populations whose diet is largely based on
staple crops, the presence of PA decreases seeds’ nutritional value [11,12]. Moreover, as undigested PA
is excreted by non-ruminants, such as swine, fowl, and fish, the supplementation of feed with nutrient
P is a common practice, in order to provide for an animal’s nutritional requirement. In this way P
concentrations increase in manure, consequently in soils, finally contributing to P pollution in runoff

water [13]. Hence, PA is considered an antinutrient and in recent decades, many efforts were spent to
isolate and develop low phytic acid (lpa) crops, in which a 45–90% reduction of PA was achieved [1].
Unfortunately, it was shown that the reduction in PA content may affect plant growth, plant stress
response and seed development and germination, thus limiting the efficacy of the introgression of the
lpa trait into breeding programs [14]. The negative pleiotropic effects of the lpa mutations depend on
the previously mentioned important roles PA has in different regulatory processes.

Hence, it is very important to identify the best strategy in order to specifically decrease PA
content in the seeds without affecting plant and seed performance and possibly contribute to
reducing the environmental impact. The lpa mutations so far isolated can be classified into three
classes, depending on the step of the biosynthetic pathway or transport they affect: (i) Mutations
altering the MIPS activity, the first steps of the biosynthetic pathway (from glucose 6-P to
myo-inositol[3]-monophosphate), (ii) mutations affecting the following phosphorylation of the InsP6
pathway (from myo-inositol[3]-monophosphate to PA), (iii) mutations perturbing the final transport
of PA.

Only mutants belonging to class (ii) accumulate InsPs intermediates. The mutations belonging to
the (i) and (iii) classes induce a decrease of PA amount, accompanied by a molar equivalent increase of
inorganic phosphate (Pi) in the homozygous mutants. Moreover, they are usually perturbed in different
branches of the biosynthetic pathway common to PA and other compounds (e.g., galactinol, raffinose,
stachyose, and ascorbic acid). Mutants in three classes of transporters have been characterized for their
lpa phenotype, affected in: (i) A specific group of ABCC type vacuolar transporters [15], orthologues
to the Arabidopsis thaliana (L.) Heinh AtMRP5 (also referred to as AtABCC5) [16,17], also known as
multidrug resistance-associated proteins (MRPs), (ii) putative sulfate transporters, orthologues of
the Arabidopsis AtSULTR3;3 [18,19] and AtSULTR3;4 proteins [20]; (iii) the rice OsPht1;4 phosphate
transporter [21,22]. Only in the case of an ABCC transporter was it shown that the protein is able to
actually transport PA [16].

In this review we will discuss the advances in the characterization of PA-MRP, PA-SULTR, and
OsPht1;4 transporters, and of the corresponding mutants described so far in cereals and legumes.
Particular emphasis will be given to the reported differences among cereals and legumes of lpa mutant
phenotypes in the PA-MRP genes, depending on the presence of one or more partially redundant
copies of these genes and to their tissue-specific expression. Moreover, we identified in silico the
putative orthologs of PA-SULTR in species of interest for the isolation of lpa mutants. We will also
discuss the advantages of these mutants for crop biofortification. Furthermore, we will highlight how
the study of these mutants may help to elucidate phosphate and sulfur metabolism, and the possible
roles that the transporters described here may play.
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2. PA-MRP Transporters

MRP proteins are transmembrane transporters involved in several functions, such as organic
ions transport, xenobiotic detoxification, oxidative stress tolerance, and transpiration control [23].
The first evidence of the involvement of an MRP-type ABC transporter in PA transport was reported
for the maize ZmMRP4 protein from the analysis of the insertional lpa1 mutant [24]. ZmMRP4 gene is
orthologous to AtMRP5, which had already been characterized some years ago as an anion transporter
involved in root growth, lateral root formation, regulation of stomatal movement, guard cell hormonal
signaling, and water use efficiency [25–27], aspects not immediately attributable to PA transport.
The biochemical demonstration that PA transport was dependent on the presence of a functional MRP
transporter in an ATP-dependent manner was given for AtMRP5, showing a very high affinity for PA
(maximum reaction velocity -Vmax- values of about 1.6–2.5 µmol min−1 mg−1 and Michaelis—Mentent
constant -Km- ranging between 263 and 310 nM) and a vacuolar subcellular localization [16].

As summarized in Table 1, other PA-MRP genes and the corresponding mutants/transgenics have
been hereafter characterized in rice, Glycine max (L.) Merr. (soybean), Phaseolus vulgaris L. (common
bean) and Triticum aestivum L. (soft wheat) [28–33]. Moreover, the putative Pennisetum glaucum (L.)
R.Br. (pearl millet) PA-MRP gene has recently been described [34].

The main difference between cereals and legumes for which PA-MRPs have been characterized so
far is the gene number: While only one gene is present in diploid maize, pearl millet, and rice genomes,
and three copies in the hexaploid Triticum aestivum, two and three paralogues are present in common
bean and soybean, respectively [17,32,33]. The presence of more than one member of the PA-MRP
genes seems to be a common feature of legumes, for example also in Medicago truncatula it is possible
to predict two PA-MRP genes [35], unlike the situation in other dicotyledons, such as Arabidopsis and
Solanum lycopersicum L. (tomato) in which only one PA-MRP gene was described [16,36]. As discussed
below, the gene copy number has a significant influence on the lpa mutant phenotypes.

The gene structure of PA-MRP transporters is very highly conserved: All analyzed genes in the
present study have 11 exons and 10 introns with very similar lengths, only some differences can be
found in the lengths of some introns between cereals and legumes. In Figure 1a, the rice OsMRP5 and
the soybean GmABCC1 gene schematic representations are given as examples.

PA-MRP proteins are full-length ABC transporters (length from 1501 aa of TaABCC13–4B
to 1539 aa of GmABCC1) with three membrane-spanning domains (TMD0, containing five
transmembrane α-helices and TMD1, TMD2, each with six α-helices) and two cytosolic
nucleotide-binding domains (NBD1 and NBD2, containing the Walker A and B motifs), arranged
in the TMD0-TMD1-NBD1_TMD2-NBD2 so-called forward orientation (Figure 1b), as previously
described [17]. Although it is not known which specific amino acids are involved in PA transport, a
conserved lysine residues stretch, located in the cytosolic loop linking NBD1 and TMD2 and a number
of charged amino acid residues (mostly lysine and arginine) found in other conserved stretches in
TMD1 and TMD2 have been suggested to be involved in PA transport [17].

PA-MRP protein sequences are phylogenetically very highly conserved among different species,
mainly in the TMD and NBD domains, but also outside, particularly among cereals or legumes (Figure 1
and Figure S1). As shown in Figure 1c, the degree of aminoacid identity among different PA-MRP
proteins belonging to different species is very high, also between cereals and legumes where it ranges
from 67 to 71.5% (similarity between cereals and legumes ranges from 86 to 89%, data not shown).
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Table 1. Described cereal and legume transporters involved in PA accumulation and corresponding mutations affecting PA seed/grain content. EMS stands for ethyl
methanesulfonate. * Indicates incomplete sequence.

Class of Transporters Species Gene Phytozome/Genbank/Ensembl
Accession Number Origin of Mutation Mutation Reference

MRP

Zea mays ZmMRP4/ZmABCC4 EF586878

EMS lpa1-1 [37]
lpa1-241 [38]
lpa1-7 [39]

T-DNA insertion lpa1-mum1 [24]
Embryo specific:RNAi Ole::MRP4 Glb::MRP4 [24]

Oryza sativa OsMRP5/OsABCC13 LOC_Os03g04920

γ rays + sodium azide Os-lpa-XS110-2 [40]
Os-lpa-XS110-3 [41]

T-DNA insertion 4A-02500 [41]
Embryo specific amiRNA Ami-MRP5 [42]

Triticum aestivum
TaABCC13-4B TraesCS4B02G343800

Constitutive RNAi TaABCC13 RNAi [33]TaABCC13-4D TraesCS4D02G339000
TaABCC13-5A* TraesCS5A02G512500

Glycine max
GmMRP3/GmABCC1 Glyma.03G167800

EMS CX1834 [29–31,43]
GmMRP19/GmABCC2 Glyma.19G169000
GmMRP13/GmABCC3 Glyma.13G127500 no reported mutant no reported mutant [32]

Phaseolus vulgaris PvMRP1/PvABCC1 Phvul.001G165500 EMS
lpa1 [32,44]
lpa12 [35]

PvMRP2/PvABCC2 Phvul.007G153800 no reported mutant no reported mutant [32]

SULTR
Oryza sativa OsSULTR3;3 LOC_Os04g55800 γ rays Oslpa-MH86-1

Os-lpa-Z9B-1
[28]
[19]

OsSULTR3;4 LOC_Os06g05160 retrotransposon Tos-17
insertion spdt-1, spdt-2, spdt-3 [20]

Hordeum vulgare Hvst HORVU2Hr1G113050 sodium azide lpa1-1(M422) [45]
[19]

Pht Oryza sativa OsPht1;4 LOC_Os04g10750 retrotransposon Tos-17
insertion

ospt4-1 (NE1260) ospt4-2
(SHIP_ZSF6267)

RNAi

[21]
[22]
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Figure 1. (a) Gene structure of OsMRP5 and GmABCC1 genes, as an example of a cereal and a legume 
PA-MRP gene, respectively. Light and dark blue rectangles represent UTRs and coding exons, 
respectively, the black bars correspond to introns. Gene Structure Display Server [46] was used; (b) 
Predicted domains of the PA-MRP protein. The transmembrane domains (TMD) and the nucleotide-
binding domains (NBD) are represented in red and green, respectively. The structure of the PA-MRP 
proteins was previously described [17]; (c) Distances between PA-MRP proteins, expressed as a 
percentage of identity. Phylogenies were constructed with the Geneious Tree Builder tool, using the 
Jukes—Cantor distance model, neighbor-joining tree build method. 

In Figure 2, pictographic representations of the different organs’ expression patterns of the 
OsMRP5 and the soybean PA-MRP genes, taken as examples for cereals and legumes, are reported 
from the rice and soybean eFP Browsers [47]. The rice gene is expressed at high levels in different 
organs including the caryopsis, as previously reported [41]. The maize ortholog shows a similar 
expression pattern [24]. The TaABCC13 genes are expressed in different plant organs, preferentially 
during grain developmental stages, with the transcript accumulation derived from the B genome the 
highest one, mainly at 14 days after anthesis [33,48]. 

The expression pattern of the different legume genes varies. As shown in Figure 2, GmMRP3 and 
GmMRP19 genes are expressed in different organs and highly expressed in seed, particularly at the 
late stage of development, while the GmMRP13 gene is mainly expressed in root and flower and at a 
very low level in seed. As discussed below, when both GmMRP3 and GmMRP19 are mutated an lpa 
seed phenotype occurs [30]. It suggests that GmMRP3 and GmMRP19 have an important role in PA 
accumulation and their function is redundant, while GmMRP13 is not active in the seed. 

A similar diversified expression pattern was observed in common bean, where the PvMRP1 
gene, coding for a protein more similar to GmMRP3 and GmMRP19 (Figure 1c and Figure S1), is 
highly expressed in cotyledons, where its transcript levels continue to increase during seed 
development, reaching the highest levels at 28 days after flowering (DAF) with a similar kinetics to 
that reported for the accumulation of PA in the same organ. The PvMRP2 gene, ortholog of 
GmMRP13, is expressed similarly to PvMRP1 in vegetative organs, but at no appreciable level in 
cotyledons. Interestingly, both genes are expressed in root nodules, organs specialized in symbiosis 
with nitrogen-fixing bacteria, in which the role of PA is still unknown [35]. Recently, a detailed 
analysis was reported of GUS activity in Arabidopsis thaliana and Medicago truncatula plants, harboring 
a promoter sequence of PvMRP1 and PvMRP2 genes, fused upstream of the GUS reporter gene. The 
strongest GUS activity, driven by both constructs, in organs other than the seeds was present in the 
vascular tissues [35]. Similar patterns of reporter gene activity were previously shown in transgenic 
plants harboring the AtMRP5 promoter [25] and promoters of different Arabidopsis genes coding for 
enzymes involved in different steps in PA pathway [49–56]. These data suggest that vascular tissues 

Figure 1. (a) Gene structure of OsMRP5 and GmABCC1 genes, as an example of a cereal and a
legume PA-MRP gene, respectively. Light and dark blue rectangles represent UTRs and coding
exons, respectively, the black bars correspond to introns. Gene Structure Display Server [46] was
used; (b) Predicted domains of the PA-MRP protein. The transmembrane domains (TMD) and the
nucleotide-binding domains (NBD) are represented in red and green, respectively. The structure of the
PA-MRP proteins was previously described [17]; (c) Distances between PA-MRP proteins, expressed as
a percentage of identity. Phylogenies were constructed with the Geneious Tree Builder tool, using the
Jukes—Cantor distance model, neighbor-joining tree build method.

In Figure 2, pictographic representations of the different organs’ expression patterns of the OsMRP5
and the soybean PA-MRP genes, taken as examples for cereals and legumes, are reported from the rice
and soybean eFP Browsers [47]. The rice gene is expressed at high levels in different organs including
the caryopsis, as previously reported [41]. The maize ortholog shows a similar expression pattern [24].
The TaABCC13 genes are expressed in different plant organs, preferentially during grain developmental
stages, with the transcript accumulation derived from the B genome the highest one, mainly at 14 days
after anthesis [33,48].

The expression pattern of the different legume genes varies. As shown in Figure 2, GmMRP3 and
GmMRP19 genes are expressed in different organs and highly expressed in seed, particularly at the
late stage of development, while the GmMRP13 gene is mainly expressed in root and flower and at a
very low level in seed. As discussed below, when both GmMRP3 and GmMRP19 are mutated an lpa
seed phenotype occurs [30]. It suggests that GmMRP3 and GmMRP19 have an important role in PA
accumulation and their function is redundant, while GmMRP13 is not active in the seed.

A similar diversified expression pattern was observed in common bean, where the PvMRP1 gene,
coding for a protein more similar to GmMRP3 and GmMRP19 (Figure 1c and Figure S1), is highly
expressed in cotyledons, where its transcript levels continue to increase during seed development,
reaching the highest levels at 28 days after flowering (DAF) with a similar kinetics to that reported for
the accumulation of PA in the same organ. The PvMRP2 gene, ortholog of GmMRP13, is expressed
similarly to PvMRP1 in vegetative organs, but at no appreciable level in cotyledons. Interestingly, both
genes are expressed in root nodules, organs specialized in symbiosis with nitrogen-fixing bacteria, in
which the role of PA is still unknown [35]. Recently, a detailed analysis was reported of GUS activity in
Arabidopsis thaliana and Medicago truncatula plants, harboring a promoter sequence of PvMRP1 and
PvMRP2 genes, fused upstream of the GUS reporter gene. The strongest GUS activity, driven by both
constructs, in organs other than the seeds was present in the vascular tissues [35]. Similar patterns of
reporter gene activity were previously shown in transgenic plants harboring the AtMRP5 promoter [25]
and promoters of different Arabidopsis genes coding for enzymes involved in different steps in PA
pathway [49–56]. These data suggest that vascular tissues are an important site for synthesis and
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transport of PA involved in the regulation of different cellular processes, the so-called “signaling
PA” [57].
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equivalent increase of Pi and the absence of accumulation of InsPs intermediates. For this reason, the 
first efforts to map the maize lpa1 mutation suggested that the myo-inositol 3-phosphate synthase 
(MIPS) gene coding for the first enzyme of the pathway was mutated [37,38]. This was also 
corroborated by mapping and expression data, since in maize the ZmMIPS1S and the ZmMRP4 genes 
map very closely on chromosome 1S, and in mutants affecting ZmMRP4 the expression of ZmMIPS1S 
is reduced [24,37,38,58]. However, transposon mutagenesis tagging experiments conducted by Shi et 
al. (2007) demonstrated that lpa1 gene encodes a multidrug-associated-protein (MRP) named 
ZmMRP4 (accession number EF586878). As shown in Table 1, different lpa mutations were isolated 
in the maize ZmMRP4 and the rice OsMRP5 PA transporters [4,24,28,37,38,41,58–63]. Due to the 
previously mentioned important roles of PA in different regulatory processes and due to the fact that 
in these species only a PA-MRP gene is present, these mutants display negative pleiotropic effects on 
plants (stunted vegetative growth) and seeds, such as reduced seed development and weight, low 
germination rates, making these mutants of limited value to breeders [37,59,64–66]. In maize, the 
most studied model species, four different mutants affecting the ZmMRP4 locus were isolated: lpa1-
1, consisting of a point mutation that causes an A1432V substitution in the NBD2 region [24,37], lpa1-

Figure 2. PA-MRP gene expression data in various rice and soybean organs and tissues were obtained
from the rice and soybean eFP Browsers [47]. Rice MAS and soybean Severin data sources were used.
For rice, the default signal threshold was used, while for the three soybean genes the signal threshold
was arbitrarily put to the same value (8.00) in order to compare expression data between different genes.

lpa Mutants in PA-MRP Transporters

As shown in Table 1, the majority of the lpa mutations affecting transporters concern mutations
in PA-MRP proteins. Differences exist between cereal and legume lpa mutants, with cereal mutants
generally affected by more pronounced negative pleiotropic effects mainly due to: (i) The different
accumulation of PA in seed/caryopsis compartments, as previously mentioned, (ii) the presence of only
one gene coding for a PA-MRP transporter in cereal genomes and more than one in legumes [17,37,38].
As previously discussed, there are similarities between mutants affected in PA biosynthetic genes and
in PA transport in the reduction of PA content, accompanied by a molar equivalent increase of Pi and
the absence of accumulation of InsPs intermediates. For this reason, the first efforts to map the maize
lpa1 mutation suggested that the myo-inositol 3-phosphate synthase (MIPS) gene coding for the first
enzyme of the pathway was mutated [37,38]. This was also corroborated by mapping and expression
data, since in maize the ZmMIPS1S and the ZmMRP4 genes map very closely on chromosome 1S,
and in mutants affecting ZmMRP4 the expression of ZmMIPS1S is reduced [24,37,38,58]. However,
transposon mutagenesis tagging experiments conducted by Shi et al. (2007) demonstrated that lpa1
gene encodes a multidrug-associated-protein (MRP) named ZmMRP4 (accession number EF586878).
As shown in Table 1, different lpa mutations were isolated in the maize ZmMRP4 and the rice OsMRP5
PA transporters [4,24,28,37,38,41,58–63]. Due to the previously mentioned important roles of PA in
different regulatory processes and due to the fact that in these species only a PA-MRP gene is present,
these mutants display negative pleiotropic effects on plants (stunted vegetative growth) and seeds,
such as reduced seed development and weight, low germination rates, making these mutants of
limited value to breeders [37,59,64–66]. In maize, the most studied model species, four different
mutants affecting the ZmMRP4 locus were isolated: lpa1-1, consisting of a point mutation that causes
an A1432V substitution in the NBD2 region [24,37], lpa1-241, a paramutagenic allele [60] that causes a
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remarkable variability of expression with a different degree of negative pleiotropic effects depending on
its strength [59], lpa1-7, whose molecular feature is not known, although the nature of a paramutagenic
allele can be excluded [39] and lpa1-5525, not yet fully characterized [67]. In the lpa1-1 mutant, kernel
PA was reduced by 66% [37], whilst lpa1-241 and lpa1-7 mutants showed the highest reduction in PA
with more than 80% [39,59]. All these mutants do not perturb the total P present but are characterized
by a five- to ten-fold increase in the amount of free phosphate in the kernel [37–39].

In rice, the Os-XS-lpa2-1 and Os-XS-lpa2-2 mutations have been isolated at the OsMRP5 locus [28].
The Os-XS-lpa2-1 mutant shows a grain PA reduction of about 20% caused by a single base pair
substitution mutation in the transmembrane domain TMD2 [41]. In the case of Os-XS-lpa2-2 the PA
reduction is more than 90% due to a 5-bp deletion determining a frame shift causing a premature
stop codon at aa 474. The same phenotype was observed in a T-DNA knock outline (4A-02500),
demonstrating the important involvement of this gene in PA transport [41]. Unfortunately, in these
maize and rice mutants, there is a correlation between the severity of the negative pleiotropic effects
and the PA content. In fact, the strongest maize lpa1-241 and lpa1-7 mutants and rice Os-XS-lpa2-2 and
4A-02500 are lethal in the homozygous state, while the other milder mutants (lpa1-1 and Os-XS-lpa2-1)
are viable, although showing yield losses compared to wild type [37,39,41,59]. The incapacity to
germinate is probably due to the impaired embryo development, mainly because of the displacement
of the root primordium and the consequent asymmetry in the body plan, as shown in the maize
lpa1-241 mutant [39,59]. Furthermore, the maize lpa1-1 mutant and barley lpa mutants, such as Hvlpa1,
Hvlpa2, Hvlpa3, and Hv-M955 mutants affected in other genes, are more sensitive to drought stress
in the field [68]. The negative pleiotropic effects could be associated with an alteration of the mature
root system, as demonstrated in the case of the maize lpa1-7 mutant [39]. In the latter mutant, other
pleiotropic effects associated with the lpa mutation have been described, such as reduced carotenoid
and chlorophyll content and increased length and trichome density compared with wild type sibling
leaves [39].

Another explanation for the lethal phenotype due to the strongest mutations was proposed by
Doria and colleagues [62]: They showed that whole lpa1-241 mutant kernels contained about 50% more
free iron associated with a higher content of free radicals than the wild type control. Furthermore,
higher production of hydrogen peroxide was found in the embryo of lpa1-241 grains, particularly in
the ones artificially aged. Taken together, these results confirmed that PA is involved in the prevention
of oxidative stress in grains, previously only suggested [69–71] and considered to be important for the
maintenance of the viability of grains [37,72]. Another hypothesis to explain the negative pleiotropic
effect associated with mutations affecting the multidrug-associated-protein (MRP) in lpa mutants could
be that this protein is involved directly or indirectly in the transport of other molecules in addition to
PA. In fact, it was observed that the lpa1-241 mutation, in a genetic background capable of accumulating
anthocyanins in the scutellum (embryo tissue), conferred a bluish color in comparison to the reddish
wild type control. This alteration was attributed to a defect in the pigment transport in the vacuole,
causing a mislocalized accumulation of these pigments in the cytosol, suggesting that ZmMRP4 could
have a direct or indirect role in anthocyanin transport [62].

To overcome the negative pleiotropic effects present in maize and rice, lpa mutants affected
in ZmMRP4 and OsMRP5 genes, respectively, seed-specific silencing of both MRP genes was
undertaken [24,42]. Transgenic lines expressing an antisense sequence for a fragment of the cDNA for
the ZmMRP4 transporter under the control of the embryo-specific Ole16 and Glb promoters produced
lpa, high Pi grains that germinated normally and did not have any significant reduction in grain dry
weight, revealing the potential of this approach in maize nutritional quality improvement [24]. On the
other hand, plants silenced in the OsMRP5 gene through the artificial microRNA (amiRNA) technology,
under the control of the Ole18 promoter, active in the embryo and aleurone, produced lpa grains
(PA reduced by 35.8–71.9% with increased levels of Pi of up to 7.5 times). Although no consistent
significant differences of plant height or number of tillers per plant were observed, significantly lower
grain weights (up to 17.8% reduction) and reduced seed germination were observed, suggesting
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that this strategy is not successful for practical application in rice breeding. The different results
obtained in maize and rice may depend on the different promoters used, with the rice ones also being
active in aleurone and endosperm beyond the embryo [42]. A similar approach was also used in
hexaploid wheat, where the three copies of the TaABCC13 gene, previously shown to encode a protein
able to transport cadmium [73] were silenced through RNA-interference (RNAi). In transgenic lines,
a reduction in PA content of 34–22% was observed. Moreover, these lines were characterized by
reduced grain filling, reduced numbers of spikelets, reduced kernel viability, delayed germination,
early emergence of lateral roots, and defects in metal uptake and development of lateral roots in the
presence of cadmium stress, compared to non-transgenic lines. These data show that TaABCC13 is
important for several other aspects of growth as well as for grain nutritional quality and for root
development and detoxification of heavy metals [33].

Mutations in PA-MRP transporters have also been reported in soybean and common bean, two
of the most relevant legume crops worldwide [43,44]. Following EMS mutagenesis of the soybean
breeding line CX1515-4, the two independent M153 and M766 mutant lines were isolated, with the M153
line displaying a stronger PA reduction compared to the M766 one (80% vs. 76.3%, respectively) [43].
However, the content of PA drops to 94% of that of the parental line when the double mutant is
produced [31,43,74,75]. Although at the beginning it was hypothesized that a mutation in the MIPS
gene could be responsible for the lpa phenotype of these lines [29,76], genetic and fine-mapping studies
revealed that the trait was under the control of two loci, named lpa1 and lpa2 [74,77]. These contained
independent but interactive recessive alleles coding for PA-MRP transporters, GmMRP3/GmABCC1,
and GmMRP19/GmABCC2, respectively [30,31] (Table 1). It was shown that the lpa1-a allele (line
M153) carries a nonsense mutation at R893, which results in a truncated protein [29,30], while in the
case of the lpa1-b allele (M766 line) a single T > A SNP 7 bp upstream of the start of exon 10 was
identified, which introduced an alternative splicing site producing five additional base pairs from the
intron sequence and a frame shift starting at exon 10. Concerning the second locus, an R1039K change
was identified in the lpa2-a allele (M153 line), while in the lpa2-b allele (M766 line) a single base change
at position 1039 causes a premature termination [31].

A number of agronomic analyses have been performed on the soybean breeding line CX1834-1-6
(derived from the mutant lines M153), and in different studies, a reduction in seedling emergence
(about 22–30% less than wt) has been reported [75,78–80]. In particular, Anderson et al. (2008)
demonstrated that the environment of reproduction of the lpa plants has important implications for
seedlings’ field emergence. In fact, lpa seeds harvested in Puerto Rico (tropical environment) displayed
decreased germination, compared to those harvested in Iowa (temperate environment). However,
genetic improvement through advanced backcrossing was successful and lpa lines with normal seedling
emergence were obtained [79].

In common bean, two lpa mutants in the PA-MRP transporter have been isolated in two different
backgrounds [35,44]. In the lpa1 mutant, a highly conserved Glu changed to Lys at position 1155, in the
transmembrane domain TMD2, while in the lpa12 mutant a single base pair change in the first exon
caused a non-sense mutation (R500Stop) leading to a truncated protein. Reduction of PA accumulation
was about 90% and 75% compared with the wt parent, for the lpa1 and lpa12 mutants, respectively,
suggesting a highly critical functional role of the conserved Glu1155 residue. In the lpa1 mutant, it has
also been demonstrated that PA accumulation is accompanied by a decrease of raffinose-containing
sugars by 25% and myo-inositol by 30% [32,44], thus indicating metabolic rearrangements of derived
pathways. Despite the strong PA reduction in the seed, the different bean lpa1 mutant lines showed
that seedling emergence, seed yield, and plant growth were not statistically different from those of wt
and parental genotypes [81]. Furthermore, germination of lpa1 seeds in stressful conditions: By the
accelerated aging test (AAT) and the stress integrated germination test (SIGT) showed that there was
equal (SIGT) or even better (AAT) germination performance of lpa1 seeds compared to the wt ones [44].
The finding that in common bean a second gene, PvMRP2, paralog of PvMRP1, is present, indicates
that most likely it is able to complement the absence of a functional PvMRP1 in tissues and organs
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other than the seed. Another interesting feature of the lpa1 mutant is that its seeds when germinated in
the presence of ABA were hypersensitive to the presence of this phytohormone [26] a result contrasting
with the finding of Klein and coworkers who reported that the Arabidopsis mrp5 mutant has reduced
sensitivity to ABA during germination [26]. Since the sensitivity of seed germination to ABA has been
reported to correlate negatively to seed myo-inositol content [32,50,82,83], it is possible that myo-inositol
levels are not reduced or may even be increased in the Arabidopsis mrp5 mutant.

3. SULTR3.3 and SULTR3.4 Transporters Involved in PA Metabolism

Two lpa mutants isolated in barley and rice are affected in HvST and OsSULTR3;3 genes,
respectively [19,28,45,84], coding for two putative sulfate transporters, belonging to the SULTR3;3
class [18]. Recently, another rice lpa mutant, affected in the OsSULTR3;4 putative sulfate transporter,
also called SULTR-like Phosphorus Distribution Transporter (SPDT), was isolated [20].

Here, we present an in silico analysis of SULTR3;3 and SULTR3;4 genes, including the ones already
described (Table 1) and also putative SULTR3;3 and SULTR3;4 orthologs from other cereal and legume
crops for which interest in the isolation of lpa mutants is considered an important challenge, such as
maize, barley, common bean and soybean (Table 2). A phylogenetic tree with all the SULTR3;3 and
SULTR3;4 proteins of cereals and legumes analyzed in the present work is shown in Figure S3.

Table 2. Putative orthologous genes of OsSULTR3;3/HvSULTR3;3 and OsSULTR3;4, identified in maize,
common bean, and soybean by in silico analysis.

SULTR Group. Species Gene Name Phytozome Accession Number

SULTR3;3

Zea mays ZmSULTR3;3 GRMZM2G395114

Phaseolus vulgaris PvSULTR3;3 Phvul.002G095300

Glycine max GmSULTR3;3a Glyma.20G017100
GmSULTR3;3b Glyma.07G218900

SULTR3;4

Zea mays ZmSULTR3;4 GRMZM2G444801

Phaseolus vulgaris PvSULTR3;4a Phvul.005G171800
PvSULTR3;4b Phvul.010G151000

Glycine max

GmSULTR3;4a Glyma.07G006500
GmSULTR3;4b Glyma.08G207100
GmSULTR3;4c Glyma.13G360000
GmSULTR3;4d Glyma.15G014000

3.1. SULTR3;3

In all analyzed species, one putative ortholog belonging to the SULTR3;3 group was found by
BLAST analysis of HvST or OsSULTR3;3 against the different genomes, except for soybean, in which
two different genes have been identified (Table 2, Figures S3 and S4). Indeed, this is not unexpected, as
soybean underwent an ancient event of genome duplication [85]. The SULTR3;3 gene structure is quite
conserved among species and consists of 13 exons in the majority of the genes, with the exceptions of
barley and maize with only 12 exons. All genomic sequences are characterized by the presence of a long
fourth or fifth intron, as reported in Figure 3a, where the structure of the characterized OsSULTR3;3
and HvST and of PvSULTR3;3 is shown as an example.
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Predicted domains of SULTR3;3 proteins are represented in Figure 3b and correspond to a sulfate
transporter domain and an anti-sigma factor antagonist (STAS) domain, as previously reported [84].
Protein length varies from 647 aa of PvSULTR3;3 to 661 aa of OsSULTR3;3 (Figure S4).

Protein identity is generally very high among different species, ranging from 84.1% to 86.5%
among the considered cereals and from 90.9% to 91.7% among legumes, and at 97.9% in the two
paralogs of soybean, as shown in the Figure 3c diagram.

In the case of the OsSULTR3;3 gene detailed expression analysis was reported: Transgenic lines
harboring the promoter of this gene fused to the GUS reporter gene revealed that a strong GUS
activity was present in vascular bundles of shoots, leaves, flowers, and grains, where it was mainly
detected in the scutellum. Moreover, the subcellular localization was defined to be in the endoplasmic
reticulum [84]. Interestingly, both GmSULTR3;3a and GmSULTR3;3b are expressed in leaves and
flowers, while only GmSULTR3;3a was expressed in the seed, with an increasing expression during
seed development with a peak at 35 DAF (data not shown, in silico analysis performed using the
soybean eFP Browser [47]).

The exact function of this family of proteins is still unknown and in the case of OsSULTR3;3,
which was the only one analyzed in detail, no activity was revealed for the transport of phosphate,
sulfate, inositol or inositol 1,4,5 triphosphate by heterologous expression in either yeast or Xenopus
oocytes [84].

3.2. SULTR3;4

In the case of the SULTR3;4 group of transporters a similar situation to the one previously
described for MRP proteins is present: In cereals, only one protein for each species can be found
by BLAST analysis of OsSULTR3;4 against the different genomes, while in legumes, two or four
paralogous proteins are present in common bean and soybean, respectively (Table 2 and Figures S3
and S5). The gene structure differs between cereals with 10 exons (the barley sequence present in the
Phytozome database is incomplete with only eight exons) and legumes with 13 exons and also in this
case, the fourth (the fifth in maize) intron is quite long. In Figure 4a the structures of the characterized
OsSULTR3;4 and of putative ZmSULTR3;4 and PvSULTR3;4a genes are given as examples.



Plants 2020, 9, 69 11 of 20
Plants 2020, 9, 69 11 of 20 

 

 
Figure 4. (a) Gene structure of OsSULTR3;4 and putative ZmSULTR3;4 and PvSULTR3;4a genes. Light 
and dark blue rectangles represent UTRs and coding exons, respectively, the black bars correspond 
to introns. The gene structure was obtained as described in Figure 1a legend. (b) Distances between 
SULTR3;4 proteins, expressed as the percentage of identity. Phylogenies were constructed as 
described in Figure 1c. 

Predicted domains are the same as those already described for SULTR3;3, represented in Figure 
3b. Protein length varies from 648 aa of the soybean protein to 670 aa of the rice one (Figure S5). 

Also for SULTR3;4 proteins, identity is quite high ranging from 78.8% to 81.3% among cereals, 
from 83% to 91.9% among legumes and from 61.3% to 67% between cereals and legumes, as shown 
in the diagram in Figure 4b. 

Analysis of the phylogenetic tree (Figure S3) clearly shows a separation between 
monocotyledons and dicotyledons. Furthermore, in the two legume species, the gene is duplicated, 
with soybean carrying four genes arising from an ancient event of genome duplication [85]. 

qRT-PCR expression analysis of OsSULTR3;4 gene revealed that during grain filling it was 
mainly expressed in node I, a very important hub for mineral distribution to upper node and panicle 
in Poaceae [86]. Moreover, immunostaining against GFP in lines harboring OsSULTR3;4 promoter 
fused to GFP, showed the highest staining in the xylem region of both enlarged- and diffuse-vascular 
bundles of the basal node and in node I, as well as in the parenchyma tissues between them, but not 
in the phloem region [20]. The activity of OsSULTR3;4 as an influx plasma-membrane localized H+/Pi 
symporter was shown in proteoliposomes as well as in Xenopus oocytes. Particularly, it was found 
that OsSULTR3;4 is involved in the intervascular transfer of P at the nodes, unloading P from xylem 
towards phloem [20]. 

3.3. lpa Mutants in SULTR Transporters 

The first mutants affected in SULTR3;3 and SULTR3;4 genes were described in Arabidopsis 
thaliana. They have been characterized for phenotypic alterations related to sulfate translocation 
between seed compartments [87]. Moreover, using the quintuple mutant defective in all SULTR3 
subfamily members, it was recently shown that they have functional redundancy in chloroplast 
sulfate uptake and consequent influence on Cys, glutathione, and ABA biosynthesis, with the 
resulting growth retardation and altered stress responses in the multiple mutants [88]. Otherwise, no 
evidence of the involvement of these Arabidopsis genes in PA metabolism has been reported so far, 
with the only exception of AtSULTR3;4 for which contrasting results have been reported. In fact, very 
recently, Ding and co-workers [89] demonstrated that AtSULTR3;4/SPDT functions as a high-affinity 
Pi transporter, being able to mediate Pi uptake when injected in the Xenopus oocyte. Furthermore, it 
has been shown to localize to the plasma membrane, while Chen et al. reported a chloroplast 
localization [89]. On the other hand, these data are in agreement with those reported below on 
mutations affecting the HvST, OsSULTR3;3 and OsSULTR3;4 genes which confer grain lpa phenotype 

Figure 4. (a) Gene structure of OsSULTR3;4 and putative ZmSULTR3;4 and PvSULTR3;4a genes. Light
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Predicted domains are the same as those already described for SULTR3;3, represented in Figure 3b.
Protein length varies from 648 aa of the soybean protein to 670 aa of the rice one (Figure S5).

Also for SULTR3;4 proteins, identity is quite high ranging from 78.8% to 81.3% among cereals,
from 83% to 91.9% among legumes and from 61.3% to 67% between cereals and legumes, as shown in
the diagram in Figure 4b.

Analysis of the phylogenetic tree (Figure S3) clearly shows a separation between monocotyledons
and dicotyledons. Furthermore, in the two legume species, the gene is duplicated, with soybean
carrying four genes arising from an ancient event of genome duplication [85].

qRT-PCR expression analysis of OsSULTR3;4 gene revealed that during grain filling it was mainly
expressed in node I, a very important hub for mineral distribution to upper node and panicle in
Poaceae [86]. Moreover, immunostaining against GFP in lines harboring OsSULTR3;4 promoter fused
to GFP, showed the highest staining in the xylem region of both enlarged- and diffuse-vascular bundles
of the basal node and in node I, as well as in the parenchyma tissues between them, but not in the
phloem region [20]. The activity of OsSULTR3;4 as an influx plasma-membrane localized H+/Pi

symporter was shown in proteoliposomes as well as in Xenopus oocytes. Particularly, it was found
that OsSULTR3;4 is involved in the intervascular transfer of P at the nodes, unloading P from xylem
towards phloem [20].

3.3. lpa Mutants in SULTR Transporters

The first mutants affected in SULTR3;3 and SULTR3;4 genes were described in Arabidopsis thaliana.
They have been characterized for phenotypic alterations related to sulfate translocation between
seed compartments [87]. Moreover, using the quintuple mutant defective in all SULTR3 subfamily
members, it was recently shown that they have functional redundancy in chloroplast sulfate uptake
and consequent influence on Cys, glutathione, and ABA biosynthesis, with the resulting growth
retardation and altered stress responses in the multiple mutants [88]. Otherwise, no evidence of the
involvement of these Arabidopsis genes in PA metabolism has been reported so far, with the only
exception of AtSULTR3;4 for which contrasting results have been reported. In fact, very recently, Ding
and co-workers [89] demonstrated that AtSULTR3;4/SPDT functions as a high-affinity Pi transporter,
being able to mediate Pi uptake when injected in the Xenopus oocyte. Furthermore, it has been shown
to localize to the plasma membrane, while Chen et al. reported a chloroplast localization [89]. On the
other hand, these data are in agreement with those reported below on mutations affecting the HvST,
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OsSULTR3;3 and OsSULTR3;4 genes which confer grain lpa phenotype and in which the relevant
proteins are localized in the endoplasmic reticulum and plasma membranes, respectively [19,20,84].

3.3.1. Mutants Affected in the SULTR3;3 Genes

In the case of HvST a nonsense mutation (M422) in the last exon of the barley lpa1-1 gene was
isolated from a sodium azide mutagenized population [19], and in the case of OsSULTR3;3 the two
different Os-lpa-Z9B-1 and Os-lpa-MH86-1 mutations were a 6 bp deletion in the first exon and a 1
bp deletion in the 12th exon, identified through screening of a gamma-ray irradiation mutagenized
population [28,45,84]. These barley and rice mutants exhibit a decrease in phytic acid-P like other
lpa mutants, but also a decrease in total P in the seed (about 15% in barley mutant and 27.5–18.9%
in rice mutants) [19,84,90], differently from lpa mutants affected in biosynthetic or MRP-transporter
genes. Particularly, an endosperm-specific total P reduction [90] was reported that is not due to a
reduction in the uptake of P in the maternal plant, suggesting that HvST functions as a seed-specific
or filial determinant of barley endosperm total P. Moreover, OsSULTR3;3 disruption dramatically
alters the grain metabolite profile. In fact, an increase was observed in the concentration of sugars
involved in the close biosynthetic pathway leading to PA, sugar alcohols, free fatty acids, organic acids,
biogenic amine GABA, serine, and lysine. However, the concentration of cysteine was decreased [84].
These traits were also stably maintained in the homozygous lpa progeny of generations F4 to F7 of
crosses between the original Os-lpaMH86-1 mutant with a commercial rice cultivar [91]. In addition,
the metabolic profiles of the lpa progenies were strongly influenced by the lipid profiles of the wild
type cultivar used as the crossing parent [92].

The OsSULTR3;3 mutants also show a significant increase in seed total sulfur and in sulfate
concentration in embryo and pericarp/aleuronic layers. The mutations also increase root and leaf
P and Pi concentrations and decrease root and leaf sulfate concentration in comparison to their
corresponding wild type parents. Moreover, the analysis performed on developing seeds of the MH86
mutant showed that the expression of genes coding for the last steps of PA biosynthesis was altered:
Generally, an up-regulation was shown, and the expression of genes for sulfur metabolism and sulfate
transport was different in the mutant compared to the corresponding wild type. However, the most
dramatic effects on gene expression concern several genes involved in P signaling and homeostasis [84].
A redistribution of Pi in endosperm and a reduction of lysophospholipid content were also observed in
the rice mutant [93].

As previously mentioned, the role of the SULTR3;3 transporter is not clear, as, when expressed
in heterologous systems, such as yeast or Xenopus oocytes, it is unable to transport either sulfate, or
phosphate, or PA precursors [84]. However, it cannot be excluded that in plant systems OsSULTR3;3
may transport these molecules as well as PA. In plant cells OsSULTR3;3 is ER-localized. Previous
studies have suggested that the final steps of PA synthesis (from InsP3 to InsP6) take place in the
ER [94]. Zhao and collaborators suggested that OsSULTR3;3 may have a specific role in the existing
cross-talk between sulfate and phosphate homeostasis and/or signaling, as it has effects on phosphate
as well as on sulfate concentrations in both vegetative tissues and grain [84].

Unfortunately, from an agronomic point of view, these mutants show some negative pleiotropic
effects. In the rice mutant, grain weight reduction and yield per plant reductions have been shown [45].
In barley, only in rain-fed locations and not in irrigated ones, the mutation is associated with reduced
test weight and percentage of plump kernels [95].

Interestingly, the mutant barley straws, although not showing significant differences in terms of
fiber composition, compared to the wild type, after an acidic pre-treatment, showed increased fiber
hydrolysibility, thus representing a promising material for cellulosic ethanol production [96].

3.3.2. The spdt Mutants

The rice spdt mutants, affected in the OsSULTR3;4/SPDT gene are retrotransposon Tos-17 insertion
lines (the transposon is in the fourth exon in spdt1 and in the eighth exon in spdt-2 and spdt-3).
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The analysis of these mutants, grown under field conditions, revealed that the distribution of P in
different organs was greatly altered, with a reduction by 20% of P concentration and P content in
the seeds, without a significant penalty on grain yield, and a comparable 20% increase of P in the
straw. Moreover, in the mutant seeds, a reduction in the concentration of PA by 25–32% was observed,
compared to the wild type. However, neither the seed germination rate nor the early growth was
affected by the reduced phytate content. P in the grain comes from re-translocation from old leaves
or from node-based distribution of P newly taken up after the flowering stage. The reported results
indicate that SPDT, localized in the nodes, especially in the uppermost node I, functions as a switch
for P distribution to the grains. Indeed, another meaning of the acronym SPDT, used by Yamaji et al.
(2017), is “single-pole, double throw”, corresponding to a type of two-way electrical switch.

As knockout of SPDT resulted in a 20% reduction of total P and about 30% of PA in the grain
without an obvious penalty of grain yield, and in increased P in the straw, the use of these mutants
may present some advantages: As straw will be returned to the field after harvest, less P will be
removed from the field, reducing the requirement for P fertilizer input. Their lpa phenotype may
increase mineral bioavailability and lower the risk of eutrophication of waterways [20]. Very recently,
the atsultr3;4 mutant of Arabidopsis has been characterized and demonstrated to be a high-affinity Pi

transporter that mediates xylem to phloem transfer of phosphate. In particular, it has been shown that,
like the OsSULTR3;4/SPDT mutant, atsultr3;4 seeds accumulate less P (about 15%) than the wt ones.
This decrease is accompanied by a P increase in the shoot, indicating a role of AtSULTR3;4/SPDT in
mediating P allocation to the seeds [89].

4. OsPht1;4 Phosphate Transporter

The OsPht1;4 (or OsPT4, corresponding to LOC_Os04g10750) phosphate transporter, belonging to
the Pht1 family, was described as influencing grain PA content, as the corresponding mutant produces
lpa grains [21]. As the identification of putative orthologs of this protein in other species is not so
obvious, due to the high number of Pht1 genes and to their sequence similarity, (in rice there are
26 [97]), in the present review we limit our consideration to OsPT4.

The genomic sequence is characterized by the presence of a single exon (Figure 5a) and the protein,
538 aa long, by a major facilitator superfamily domain, characteristic of different transporters, including
phosphate transporters (Figure 5b).
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The OsPT4 gene is mainly expressed in roots, flag leaves and embryos, and its expression is
increased in response to prolonged P starvation conditions in shoots and roots, where the signal is
specifically localized to the exodermis. The protein is localized to the plasma membrane, as shown in
the protoplast system and it is a functional Pi influx transporter, able to complement a yeast mutant
defective in Pi uptake and to facilitate the increased accumulation of Pi in Xenopus oocytes.
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Ospt4 Mutants, OsPT4 RNAi and Overexpression Lines

The OsPT4 functional characterization was performed using transposon insertional mutants,
knockdown lines harboring the OsPT4-RNAi construct and overexpression lines. Pi and total
P concentration is strongly reduced in mutant lines, attenuated in RNAi lines and increased in
overexpression lines, in roots as well as in shoots. Moreover, a dramatic reduction in Pi uptake in
mutants, a small reduction in RNAi lines, and an increase in overexpression lines were observed [21,22].
There was altered expression of genes that regulate Pi absorption and homeostasis, such as OsPHO2,
OsPHR2, and OsSPX1. A detailed analysis of the grains revealed a decrease in total P concentration in
the embryo and in one line also in the endosperm, attenuated and increased effects in RNAi lines and
overexpression lines, respectively. Moreover, a decrease of 32–22% in PA concentration was observed
in ospt4-1 and RNAi lines’ grains and an increase of 10% in overexpression lines. The alteration in
mutant and RNAi embryos correlates with a reduction in the transcript levels of OsRINO (coding
for myo-inositol 3-phosphate synthase—MIPS) and of OsIPK1 (coding for 1,3,5,6-pentakisphosphate
2-kinase), coding for enzymes catalyzing the first and the last step of the PA biosynthetic pathway,
respectively. Both genes’ transcript levels were also significantly reduced in the endosperm of mutant
grains and only partially reduced in RNAi lines [21]. From all these data, it is clear that OsPT4
has an important role in acquisition and mobilization of Pi and also during embryogenesis and
seed development, so it is a good candidate to improve P efficiency, although alterations in panicle
robustness, grain-setting rates, grain weight, grain yield per plant and seed germination registered in
ospt4 and OsPt4 RNAi lines need breeding actions to ensure acceptable agronomic performance and
avoid yield penalties.

5. Conclusions

Strategies for controlling the accumulation of specific metabolites are commonly based on
switching off structural or regulatory genes of the biosynthetic pathway. However, in order to avoid or
reduce downstream effects on derived pathways, a different approach is to interfere with compound
transport to the site of accumulation (organ, cell type, subcellular compartment). In this review
we reported data showing how PA reduction can be achieved with mutations in different types of
transporters that control PA transport to the vacuole (MRP), or by modifying Pi availability for PA
synthesis through mutations in transporters involved in Pi loading and organ/intracellular distribution
(SULTR) or by Pi acquisition and mobilization during seed development (PHT1;4) (Figure 6).
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These types of lpa mutants are potentially advantageous over other lpa mutants in structural
biosynthetic genes to achieve a triple goal: (i) Increased bioavailability of mineral cations, which are no
longer chelated by PA, (ii) less PA is excreted into the environment with manures, and hence there
is reduced impact on water eutrophication, (iii) increased P use efficiency as the seeds are loaded
with less P which remains in the straw and may potentially contribute to reducing the demand for P
fertilizers, hence increasing crop sustainability [99].

From an agronomic point of view, mutants in MRP and PHT1;4 genes show compromised yields,
seed setting, seed germination, and/or seedling growth, etc., so that they are not very attractive for
breeders [21,22,37]. However, good field performance has been demonstrated for MRP mutants of
common bean, which is due to the presence of duplicated MRP gene(s) able to complement the mutated
seed-specific copy [32]. So far, sultr3;3 and sultr3;4/spdt mutants, besides Arabidopsis, have been
isolated and described only in rice and barley. Interestingly, these mutants do not display negative
pleiotropic effects as observed for the other transporters described above, hence they potentially
represent a valuable tool to simultaneously achieve seed biofortification and a more sustainable crop
while reducing the environmental impact of the crop cultivation. It would be very interesting to verify
the role and function of sultr3;3 and sultr3;4/spdt genes in legume crops as well, since contrasting data
on function and subcellular localization have been reported for Arabidopsis mutants and a possible
species-specific and/or development-specific behavior has been proposed [100].

Finally, the finding that both phosphate and putative sulfate transporters produce similar lpa
phenotypes suggests the “existence of a multilevel coordination in the regulation of the two ions
in which currently unidentified key elements are actively cross-talking between the two signaling
pathways” [101,102]. The availability of such mutants from different crops may help towards
understanding this cross-talk and identifying new players.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/1/69/s1.
Figure S1. PA-MRP proteins alignment. See Table 1 for the correspondence with genes accession numbers.
The Clustal W alignment (cost matrix Blosum, gap open cost 10, gap extend cost 0.1) of Geneious 11.0.2 software
was used. Figure S2. Phylogenetic tree of characterized crop PA-MRP proteins, listed in Table 1. Phylogenies were
constructed with the Geneious Tree Builder tool, using the Jukes-Cantor distance model, Neighbor-Joining tree
build method. Figure S3. Phylogenetic tree of SULTR3;3 and SULTR3;4 proteins, listed in Table 2. Phylogenies
were constructed as described in Figure S2. Figure S4. SULTR3;3 proteins alignment. See Tables 1 and 2
for the correspondence with genes accession numbers. The method used is described in Figure S1 legend.
Figure S5. SULTR3;4 proteins alignment. See Tables 1 and 2 for the correspondence with genes accession numbers.
The method used is described in Figure S1 legend.
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