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Abstract: Wearable sensors play a significant role for monitoring the functional ability of the elderly
and in general, promoting active ageing. One of the relevant variables to be tracked is the number of
stair steps (single stair steps) performed daily, which is more challenging than counting flight of stairs
and detecting stair climbing. In this study, we proposed a minimal complexity algorithm composed
of a hierarchical classifier and a linear model to estimate the number of stair steps performed
during everyday activities. The algorithm was calibrated on accelerometer and barometer recordings
measured using a sensor platform worn at the wrist from 20 healthy subjects. It was then tested on
10 older people, specifically enrolled for the study. The algorithm was then compared with other
three state-of-the-art methods, which used the accelerometer, the barometer or both. The experiments
showed the good performance of our algorithm (stair step counting error: 13.8%), comparable with
the best state-of-the-art (p > 0.05), but using a lower computational load and model complexity.
Finally, the algorithm was successfully implemented in a low-power smartwatch prototype with a
memory footprint of about 4 kB.

Keywords: stair step counting; human activity recognition; wearable sensors; active ageing

1. Introduction

Ageing is a physiological process characterised by many factors including a progressive loss of
muscular strength, reduction of contraction speed and lower power production. These impairments
might affect many aspects of functional abilities of older people that are essential to independent
mobility [1]. In this regard, there is great interest in identifying clinical physical performance measures
able to characterise the functional impairment of older adults, particularly for balance, gait, and stair
climbing. Regarding the latter, the Stair Climb Power Test, 1-minute Stair Climb Test, 4-Step Stair
Climb Power Test and 12-Step Stair Test have been developed for clinical evaluation [2–4]. Indeed,
since climbing stairs involves a full control of balance and gait, as well as a sufficient muscular strength,
assessing functional parameters while climbing stairs is clinically important for an overall description
of how healthy the ageing process is. Despite the wide use of such clinical tests, their evaluation is
limited within the clinical environment, typically when loss of functional ability has already occurred.
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On the contrary, frequent assessments would enable early detection of functional decline and initiate
preventive measures [5].

Among the relevant functional parameters, it is well known that the number of steps performed
daily is an indicator of healthy ageing. It therefore might be further relevant to investigate sensing
modalities and algorithms capable of estimating the number of stair steps climbed on a daily basis,
outside the clinical environment, as important clinical information about the ageing process and for
the early detection of functional decline.

Human Activity Recognition (HAR) using wearable sensors is a branch of Computer Science
that finds applications in a wide range of scenarios, such as fitness and sports [6], the entertainment
industry [7], health monitoring and rehabilitation [8]. A comprehensive review on HAR can be found
in [9]. HAR for active ageing using wearable sensors became an important ally to promote an active life
style and to reduce age-related issues, such as movement, mental and cognitive disorders. In addition,
along with the diffusion of inertial measurement units (IMUs), that are small in size and cheap, plenty
of initiatives currently aim to promote active ageing, by quantifying the amount of physical activity
performed by older people and their functional ability, [10,11].

In the context of HAR for detection of stair climbing, approaches mainly differ for the sensing
modality, position of the sensor/s, features, algorithms used for classification, and target users.
Sensors comprise IMUs [5,12–15] and their combined use with barometers [16–21]. Positions include
wrist [16,17], chest [16,18,20], waist [5,12,17,19], calf and foot [13–16,21]. Common features are averages,
ranges, Fourier Transform and Wavelet coefficients, statistical moments of sensor data, whereas classifiers
are Support Vector Machine (SVM) [5,12,16,17,19], K-Nearest Neighbour (KNN) [5,16,17], Decision Tree
and Random Forest [5,13,17,19], Artificial Neural Network (ANN) [22], and also convolutional NN [15].
Users span from healthy young people up to elderly patients with severe conditions such as Parkinson’s
disease or stroke [5,16,20].

The main outcomes shared by all these relevant works are the following: (i) the use of the
barometer highly improves classification accuracy for stair climbing detection; (ii) the only use of the
accelerometer results in limited performance; (iii) sensor fusion of nine-axial sensors (accelerometer,
gyroscope and magnetometer) achieves high performance but at the cost of complexity; (iv) the type
of classifier plays a small role in the performance; and (v) position matters, with the trunk is the most
reliable one [16] and the wrist is likely the most comfortable for the user, but with the highest amount
of noise.

In this work, despite the current trend in Machine and Deep Learning where complex models
are used for HAR, we investigated the design of a low-complexity algorithm to be deployed on a
wearable device worn at the wrist to determine the number of stair steps (specifically: single stair steps)
climbed by a population of older people. In fact, the application of interest is long-term monitoring
that requires minimal battery consumption (and the avoidance of too frequent charges to improve
usage by older people) which is easier to obtain by means of constraint hardware infrastructures and
low-complexity algorithms. There are several innovations in the current work. First, we determined the
actual number of stair steps climbed while the reported works only detect the phase of climbing stairs.
Second, to achieve the final counting, we only used three simple features, despite the dozens of features
normally computed for HAR. Thirdly, threshold-based classifiers were employed to further reduce
the model complexity and battery expenditure. Fourthly, we considered only a limited set of sensors
to perform the task, i.e., one triaxial accelerometer and one barometer. In fact, previous evidence
questioned the advantage of a gyroscope for stair climbing detection [23], unless it is mounted
on the foot [13]. Moreover, a gyroscope has typically a large energy requirement with respect
to accelerometers [24]. Moreover, sensor fusion was excluded to further reduce complexity and
energy consumption.

The algorithm was then tested and compared with two state-of-the-art methods in experiments
performed outside the clinical environment, achieving good performance in terms of stair step counting.
It was also successfully implemented in a wrist-worn prototype device. The work proved that in
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the case of a highly constraint hardware infrastructure and for the very specific task of counting the
number of stair steps, a simple algorithm might be a sufficient trade-off between performance and
model complexity.

2. Materials and Methods

2.1. Study Population and Data Acquisition

Data were collected by means of two different acquisition campaigns.
The first one comprised 56 acquisition sessions (total duration: 103.79 min) performed by

20 healthy volunteers (6 females and 14 males; age: 25.2 ± 10.39 years, range: 16–61 years). Data were
recorded while performing common everyday activities such as walking, running, staying still,
taking the elevator and climbing or running on the stairs. These recordings were carried out varying,
for example, the speed of some actions or choosing environments with different slopes to have a wide
range of situations. The first dataset was used as the training set.

Triaxial accelerometer data and pressure readings of the training set were collected through a
Wearable Medical Platform (WMP) device (Flex Design srl, Milan, Italy). The device was not employed
in its standard modality (medical patch), but it was adapted to be worn at the wrist to emulate the
usage of a smartwatch. The sampling rates of the accelerometer and barometer sensors were set to
50 Hz and 25 Hz, respectively, whereas their resolutions were 2.44 · 10−4 g and 7.62 · 10−4 millibar.

The second dataset comprised 10 recordings (total duration: 28.73 min) performed by ten older
people living independently that were informed about the aim of the research and accepted to
participate to the study (3 females and 7 males; age: 69.6 ± 5.3 years, range: 63–77 years). To simulate a
real everyday scenario, participants were invited in a public space where they were asked to perform
a common experimental protocol. Each subject freely walked about 10 meters in a hallway at the
ground floor of the selected building, including walking uphill and downhill on a ramp. Then,
they climbed stairs up to the second floor and returned to the initial position at the ground floor.
Finally, subjects went up and down to the second floor by the elevator. In two situations, the protocol
was slightly modified to accommodate participant’s requirements (i.e., one asked to avoid the elevator
due to claustrophobia; a second did not stop and climbed an extra flight of stairs). These changes
did not jeopardize the objectives of the experiments and thus, the recordings were anyhow included.
This second dataset was our test set.

Accelerometer and barometer data of the test set were collected using an ad-hoc device, developed
and described in Section 4. Briefly, the sampling rates and resolutions of the two sensors were identical
to those in the WMP, with the exception of the accelerometer whose resolution was 3.9 · 10−3 g.

During the experiments, each activity was labeled to describe the content of the action and
then used as gold standard. Given the objectives of the study, we categorized the activities into
three groups: (i) going upstairs; (ii) going downstairs; and (iii) any other activity (to identify and
measure the number of false positives detected while not climbing stairs). It is worth noting that
walking uphill and downhill were included in the third group (making the distinction with climbing
more challenging). We manually tracked the starting and ending times of each action by means
of a commercial stopwatch. Afterwards, the accelerometer and barometric signals were manually
segmented to separate the various activities and split into 5 s segments (each segment containing only
one type of activity). Segments shorter than 5 s were discarded during the training phase.

2.2. Algorithm for Stair-Step Counting

In this section, we proposed a pipeline comprising of a hierarchical classifier and a linear regression
model to count the number of stair steps climbed. Hereafter, we named our algorithm CSC.

The algorithm is composed of three main blocks. In the first one, we used the barometric data
to detect the time intervals in which the sensor likely changed its altitude. The block also discarded
intervals in which the altitude changed too quickly with respect to human movement capabilities.
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The outcome of the first block was then further processed by the second block, meant to detect periodic
movements in the range of physiological step frequency. Finally, in the third block, the time intervals
during which the periodic movement was detected were then used to estimate the number of stair
steps through a linear regression model. Figure 1 shows the diagram of the entire pipeline developed.

Signal processing algorithms and classifiers were built using the “Signal Processing Toolbox”
and “Statistics and Machine Learning Toolbox” of Matlab (Matlab 2019a, The MathWorks, Inc.,
Natick, Massachusetts, United States), whereas the analyses were ad-hoc implemented using the
same software.
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Figure 1. Diagram of the three blocks composing the proposed pipeline (a). Colors indicate different
blocks. In the first one, the time derivative of pressure data in a 5 s window is computed and then
two thresholds (tdL and tdU) are used to detect whether the derivative resembles that of the range
of human movement while climbing stairs. Once a change in altitude is detected, the second block
(depicted in details in (b)) identifies movements, quantified by thresholding the accelerometer signal
using the standard deviation (ts). Then, if the peak of the autocorrelation function of the accelerometer
signal in the range 1 step/s to 2.5 step/s is above a threshold (ta), the periodicity of the movements is
associated to the activity of climbing steps. Finally, the number of stair steps is computed using the
step frequency associated to the peak of the autocorrelation function.

2.2.1. First Block

In order to detect changes in altitude, we computed the time derivative of the barometric signal
by means of a linear fitting on consecutive windows of 5 s. This approach was already found to be
effective in [17].

Considering going upstairs, the time derivative of the signal was compared with two thresholds
(tdL, tdU) to determine the time intervals in which the altitude of the sensor changed, likely due
to human movements. In particular, the threshold tdL set a lower boundary to discard low slopes,
while the upper threshold tdU rejected quick changes due to, for example, elevators (or light slopes
performed very fast). In case of going downstairs, the sign of the thresholds was inverted. In this way,
each window was categorized into three possible states: going upstairs, going downstairs, no change
in altitude (see Section 2.3 for the selection of the thresholds).
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2.2.2. Second Block

For each window identified by the first block as either going upstairs or downstairs, we detected
whether a periodic change resembling the human step frequency was present within the triaxial
accelerometer signals. To do so, we divided this second block into three parts. First, the vector
magnitude (VM) was determined as the square root of the squared sum of the three accelerometer
components, and then, VM was filtered in a frequency range such to mainly include frequency
components of the human movements (3rd-order, zero-phase, Butterworth filter from 0.25 to
5 Hz) [25,26]. Second, we computed the standard deviation of the filtered vector magnitude and
compared it with the threshold ts to identify the presence of a movement (see Section 2.3 for the
selection of the threshold). Third, we computed the normalized autocorrelation function (ACF) of the
filtered VM signal, and the main peak in the range from 1 to 2.5 step/s was identified [27]. Examples of
normalized ACF during two different activities are reported in Figure 2. When the amplitude of the
peak was above the threshold ta, the window was marked as “climbling stairs” (see Section 2.3 for the
selection of the threshold). The step frequency associated with the identified peak above threshold
was then used as input for the third block.
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Figure 2. Examples of normalized ACF obtained from a portion of data (a) while using the elevator
(no peak above threshold is found), and (b) during climbing stairs, where a peak associated with a step
frequency of 1.92 step/s was located. Black dashed lines mark the interval of the step rates considered
(1 to 2.5 step/s).

2.2.3. Third Block

In the third block, we estimated the number of stair steps by using a linear regression model of
the form n = α1s + α0, where s was the step frequency obtained from the second block and n was the
number of stair steps to be estimated. We set these values to α0 = 0 and α1 = 5 s, so that the latter
corresponded to the duration of the time window in the other blocks. While these values could be
further calibrated through a fitting procedure, we excluded it to avoid overfitting.

2.3. Identification of the Thresholds for the Classifier

Three different analyses were performed on the training set. In the first one, we determined the
lower and upper thresholds for the time derivative of the pressure signal ypd. The upper threshold
was set as the maximum derivative value within all the time intervals labelled as climbing stairs,
i.e., tdU = 0.0735 millibar/s. The lower threshold was estimated using a ROC analysis meant to
distinguish climbing stairs from all other activities using the absolute value of the time derivative as
input. In particular, we chose the threshold that balanced the true recognition rates of the two classes.
The value obtained for the lower threshold was tdL = 0.0149 millibar/s. The simple threshold-based



Computers 2020, 9, 31 6 of 15

classifier achieved an AUC of 0.90 on the training set. The thresholds were then used symmetrically to
detect both ascending and descending stairs. In summary, the classification scheme was as follows:

• “going downstairs”: if ypd > tdL and ypd < tdU ;
• “going upstairs”: if ypd < −tdL and ypd > −tdU ;
• “no change in altitude”: otherwise.

Figure 3 reports the probability density function (PDF) of the time derivative for each of the three
activities considered and the ROC curve used for the selection of the lower threshold tdL.
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Figure 3. (a) Distribution of the time derivative of barometric data in the training set, for each of the
three activities to be classified by the first block of our algorithm. Black dashed lines represented the
thresholds tdL and tdU . (b) ROC curve for the absolute value of the derivative to differentiate climbing
stairs and others. TPR and TNR stand for true positive rate and true negative rate, respectively.

In the second analysis, we estimated the threshold of the standard deviation carrying out several
measurements during activities with no significant movements like standing, taking the elevator or
staying still. The threshold identified for our sensor was ts = 0.1 g. When the time derivative is above
this value, an acceleration window is marked as containing a movement.

Finally, we estimated the threshold on the amplitude of the peak of the normalized autocorrelation
function of the filtered VM signal (meant to determine whether the movement performed during a
specific activity was periodic). Even in this case, a ROC analysis was carried out comparing the data in
the training set related to periodic activities (i.e., walking, running, climbing stairs) and all the others.
The optimal identified threshold was ta = 0.1, with a corresponding recall for periodic activities of
0.98. To summarize, if the amplitude of the autocorrelation peak associated with the step frequency
was greater than ta, then a periodic movement was recognized, and its correspondent step frequency
considered further.

2.3.1. Comparison with an Accelerometer-Based Classifier

We compared the performance of our algorithm with that of a state-of-the-art accelerometer-based
classification scheme for stair detection proposed by Ravi et al. [12]. Hereafter, we named this
algorithm as RV. The algorithm required several time- and frequency-domain features to be extracted
from the raw accelerometer data on windows of 5 s. For each of the three axes, the sample mean,
standard deviation and power in the step frequency range 1 to 2.5 step/s (i.e., area under the power
spectral density) were estimated. Also, the cross-correlation between all pairs of accelerometer axes
was computed since, as stated by the authors, it can help differentiating among walking and climbing
stairs. In total, the algorithm required the computation of twelve features.
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In the original manuscript [12], the authors tested the performance of several classifiers,
including a linear SVM. To be in line with their tests, we then selected the same classifier. However,
we adapted the classification pipeline by training a hierarchical classifier composed by two SVMs.
The first one was trained to classify all types of activities vs climbing stairs, whereas the second one to
distinguish between going upstairs and downstairs.

In order to allow a comparison with CSC, since the RV algorithm did not estimate the number of
stair steps (single stair steps climbed) but only the stair climbing phase (i.e., the initial and ending time
instants of stair climbing), we used its output to determine the number of stair steps climbed by first
estimating the step frequency from the autocorrelation function of the VM signal, as in our second
block (but without the use of our thresholds ta and ts), and then multiplying it with the duration of
the window.

The training of the classifiers was performed on the training set after downsampling to balance
the classes.

2.3.2. Comparison with a Barometer-Based Classifier

We compared the performance of our algorithm CSC with a simplified version that did not include
the second and third block, i.e., no accelerometer data were used. Hereafter, we named this algorithm
as BR. After the classification carried out by the first block using the pressure readings, we computed
the number of stair steps by multiplying the duration of the time window identified with an average
measure of step frequency for older people, i.e., 1.5 steps/s, according to previous works [26,28,29].
The comparison with such method provided evidence about the possible improvement achievable by
the combined use of the accelerometer in terms of stair step counting, in particular for estimating the
number of stair steps detected while not climbing stairs (false positives during other activities).

2.3.3. Comparison with an Accelerometer and Barometer-Based Classifier

We further compared the performance of our algorithm with that of a recent state-of-the-art
methodology based on both accelerometer and barometric data for climbing stair detection proposed
by Leuenberger et al. [16]. Hereafter, we named this algorithm as LB. Briefly, it made use of two
different blocks, the first one used to classify whether the person was walking and the second one
to determine the climbing stair phase using pressure readings. The first block made use of a SVM
while the second one utilized a KNN. The whole method required a total number of fifteen features.
Features included signal energy, range, variance, 10th and 90th percentiles, derivative of sensor
data, and skewness, kurtosis, maximum value and scale from the Continuous Wavelet Transform of
accelerometer data. Features were extracted from time windows lasting 7.5 s. For a better description of
the features, please refer to the original manuscript [16]. The training of the classifiers was performed
on the training set after downsampling to balance the classes. In addition, features were normalized
and outliers removed, as performed in [16].

As for the RV algorithm, LB did not estimate the number of stair steps. To overcome the issue,
we used the same strategy reported in Section 2.3.1.

Given the fact that a longer duration of the time window might negatively affect the performance
of the classifier, as suggested in [17], especially around 8 s, we repeated the comparison by retraining
the classifier using windows of 5 s. We named this second version of LB as LB5.

2.3.4. Performance Evaluation

Performances were estimated by dividing the test set into two subsets, according to the labels
available. The first one contained all the phases with climbing stair activities and, the second one,
all other activities together. Confusion matrices and recalls for each activity and method were then
computed on the test set.

Afterwards, we computed the absolute stair step counting error for climbing stair activities and
the number of stair steps detected during other activities (false positives while not climbing stairs).
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The expected number of stair steps used as a gold standard did not include those steps performed
on the stair landings.

The stair step counting error, produced by each method, was reported using the median and
interquartile range (median [IQR]) across the entire test set, while the Wilcoxon sign rank test and χ2

test were used for testing statistical hypotheses. Tests were considered statistically significant for p < 0.05.

3. Results

The total duration of stair climbing phase on the training set was 31.81 min, with 16.98 min
and 14.83 min for going upstairs and downstairs, respectively. The total duration of all other
activities together was 71.99 min. The duration of the stair climbing phases were 14.91 ± 10.19 s
(mean ± standard deviation), with 15.68 ± 10.98 s and 14.12 ± 9.33 s for going upstairs and downstairs,
respectively. Regarding the test set, we had 5.18 min of going upstairs (31.05 ± 6.18 s), 5.31 min for
going downstairs (28.99 ± 7.33 s) and 18.24 min for the other activities.

Table 1 shows the confusion matrices for CSC, RV, LB, LB5 and BR on the whole test set, for stair
climbing detection. In terms of classification performance, the only use of accelerometer data proved
limited performance as shown by the recalls achieved by the RV algorithm (<0.5 for stair climbing
and 0.79 for “others”), obtaining statistically significant differences between recalls when compared
with all the other methodologies (χ2 test; p < 0.05).

Table 1. Confusion matrices, along with the three recalls, for the different methods, as computed on
the test set. “U”, “D” and “O” refer to going upstairs, downstairs and all other activities, respectively.
Please notice that for LB the duration of the time window is 7.5 s. For this reason, the overall number of
events (the sum along each column) is different from the other methods. CSC is the proposed algorithm.
RV refers to the algorithm in [12], LB and LB5 to the one in [16] (the latter with time windows of 5 s),
BR is our algorithm when only barometer data were used.

Actual
CSC RV LB LB5 BRPredicted

U D O U D O U D O U D O U D O

U 49 0 10 29 40 27 38 0 5 57 1 9 57 0 37
D 0 55 11 0 9 16 0 37 7 0 49 12 0 55 36
O 13 12 189 33 18 167 4 7 126 5 17 189 5 12 137

Recall 0.79 0.82 0.90 0.47 0.14 0.79 0.90 0.84 0.91 0.92 0.73 0.90 0.92 0.82 0.65

When combining the accelerometer and barometer data, CSC and LB obtained similar recalls
(in the range 0.79–0.91), although slightly in favor for LB (0.84–0.91). However, the difference in
terms of recalls between CSC vs LB were not statistically significant (χ2 test; p > 0.05). Moreover,
it was possible to achieve very high recalls for the activities labeled as “other” (≈0.90 for CSC, LB and
LB5). However, the only use of barometer in BR did not protect against false positives while not
climbing stairs (recall of 0.65 for BR). Recalls of CSC, LB, LB5 vs. BR were statistically significantly
different (χ2 test; p < 0.05). The duration of the time window did not show any improvements in the
recalls (CSC vs. LB5 and LB vs. LB5; χ2 test; p > 0.05). Figure 4 reports an example of classification
performed by CSC, RV and LB.

Table 2 shows the results of the stair step counting for each algorithm and acquisition in the
test set. The total number of stair steps climbed in the whole test set was 795, while the number
of stair steps estimated while climbing stairs were 905, 345, 890, 914 and 881 for CSC, RV, LB,
LB5 and BR, respectively, achieving an overall error of +13.84%, −56.60%, +11.95%, +14.97% and
+10.82%. When considering going upstairs, no difference in terms of stair step counting error was
found between CSC vs LB (7.5[3.0, 13.0] vs 10.5[3.0, 15.0] steps; p > 0.05), CSC vs LB5 (12.0[8.0, 15.0];
p > 0.05) and CSC vs BR (8.0[7.0, 8.0]; p > 0.05). Similar results were obtained for going downstairs
where the errors were 8.0[6.0, 14.0] for CSC, 7.5[6.0, 15.0] for LB, 11.0[7.0, 17.0] for LB5 and 8.0[7.0, 8.0]
for BR (all comparisons were not statistically significant; p > 0.05). RV obtained instead errors of
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19.5[7.0, 28.0] and 37.0[37.0, 37.0] steps for going upstairs and downstairs, respectively. Both errors
were statistically significantly different from those of the other four methodologies (p < 0.05).
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Figure 4. Example of triaxial accelerometer and barometer data, along with the values of the gold
standard and the classifications performed by RV, LB and our algorithm CSC. The sequence of
activities recorded in these signals (gold standard) was: (i) walking downhill and uphill (approximately
the first ten seconds); (ii) walking upstairs and downstairs; (iii) short pause for approximately 30 s;
and (iv) taking the elevator (ascending and descending).

In case of false positives during other activities in the test set, CSC, LB and LB5 did not show any
difference between the wrongly detected stairs (error of 12.0[10.0, 15.0], 4.0[0.0, 15.0], 10.0[7.0, 13.0];
p > 0.05). On the contrary, RV and BR resulted in a higher number of false positives (55.5[44.0, 80.0]
and 52.5[46.0, 53.0], respectively; p < 0.05), that are stair steps detected while not climbing stairs.
Results are reported in the FPO column of Table 2.

Table 2. Number of expected (“Exp.”) and estimated number of stair steps during climbing stair
phases, for each method and subject (“Subj.”) of the test set. “U” and “D” refer to going upstairs and
downstairs, respectively. “FPO” indicates the number of stair steps detected while not climbing stairs
but doing other activities (false positives during other activities). CSC is the proposed algorithm. RV
refers to the algorithm in [12], LB and LB5 to the one in [16] (the latter with time windows of 5 s), BR is
our algorithm when only barometer data were used.

Exp. CSC RV LB LB5 BR
Subj. U/D U/D FPO U/D FPO U/D FPO U/D FPO U/D FPO

1 37/37 50/42 14 0/0 25 10/60 0 22/45 10 53/45 15
2 37/37 46/45 15 46/0 80 46/41 24 46/36 7 45/38 53
3 37/37 42/45 10 0/0 55 52/44 15 49/45 10 45/45 53
4 37/74 35/80 19 35/80 50 39/73 15 35/91 26 30/60 83
5 37/37 34/27 11 10/6 44 49/31 0 45/40 11 38/30 38
6 37/37 40/45 5 33/0 104 40/46 0 33/54 0 45/45 46
7 37/37 51/23 10 44/0 23 40/22 0 51/23 10 45/23 53
8 37/37 49/53 10 17/0 68 49/53 0 49/44 0 45/45 46
9 46/46 62/62 13 18/0 96 67/54 8 62/70 15 53/53 60

10 37/37 43/31 22 56/0 56 44/30 34 55/19 13 60/38 52
Tot. 379/416 452/453 129 259/86 601 436/454 96 447/467 102 459/422 499
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4. Discussion

In this work, we proposed an algorithm to estimate the number of stair steps climbed during
everyday life, for the aim of long term monitoring of this functional parameter in a population
of older people. The computational load and model complexity was kept as minimal as possible
to reduce power consumption and hardware requirements of the wearable device where it might
be implemented.

The first block of our algorithm was characterized by the use of two thresholds tdL and tdU on the
derivative of the pressure readings. Such simple approach was able to achieve high performance in
detecting the climbing of stairs within the set of activities considered. In particular, the upper threshold,
estimated using the maximum derivative of the barometric pressure in our training set, made the
classifier robust to quick changes in altitude, like those due to elevators. Indeed, for the data collected
while using an elevator, the maximum derivative was 0.2 millibar/s, that was three times higher
than the maximum derivative obtained during running on the stairs. The high performance achieved
in detecting stairs corroborated the validity of previous studies involving barometer data [17,19].
In addition, as shown in Figure 5, the time derivative of the barometric pressure varies very slowly
across different altitudes (it is substantially constant in the range 0 to 3000 m and in particular around
0.028 millibar/s, which is the average variation in the training set), thus it is not necessary to re-calibrate
the values of tdL and tdU , when employing the algorithm at altitudes relevant for older people. Finally,
atmospheric pressure variations due to weather phenomena will generally not affect the values of the
thresholds. In fact, very rapid changes of the order of 6 millibars/3 h (or 0.00056 millibar/s) [30] are,
on average, far smaller than tdL and tdU .
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Figure 5. Barometric pressure derivative values (absolute value) as a function of vertical velocity and
altitude in the International Standard Atmosphere (ISA) model (ISO 2533:1975). The two red lines
correspond to the thresholds tdL = 0.0149 millibar/s and tdU = 0.0735 millibar/s.

The stair step counting block achieved an overall error of about 13% while considering only
those phases when the subject was actually climbing stairs. This error is in line with the best of the
other methods considered, while obtained with a lower computational load and model complexity.
Stairs climbed in less than 5 s (very small number of steps) were completely undetected due to the
size of the time window selected. However, shortening the time window would have compromised a
reliable estimate of the step frequency through the accelerometer data, leading to a larger counting
error. In addition, considering that the target users of our study were older people, only stair flights
longer than just a few steps (hence, likely longer than 5 s) may be a relevant effort for improving active
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ageing. A second source of error was the noise in the barometric sensor contained in the prototype,
which was further enhanced by the derivative operator in the first block (although limited by a low
pass filter). The impact of noise might decrease in future with technological improvements leading to
better signal-to-noise ratio.

When CSC was compared with other algorithms, it was clear that the use of the barometer played
an important role and made the proposed pipeline reliable for stair climbing detection with acceptable
stair step counting error (CSC vs. RV). On the contrary, the only use of the barometer data resulted
in a high recall for stair climbing detection but with high error for stair step counting (CSC vs. BR).
The main reason was that BR reported a high number of false positives while not climbing stairs
(FPO column in Table 2) with 499 steps estimated whereas our methodology estimated 129 steps,
obtaining about 4 times less in terms of stair step counting error. We believe that FPO for BR were
underestimated with respect a real life scenario. For example, common activities such as escalators
and car driving will likely trigger a stair climbing detection, and thus counting stair steps when they
are not supposed to exist.

As expected, CSC and LB reported similar results, slightly in favor for the latter in terms of
classification performance, but with non significant differences in terms of stair step counting error.
Despite such similar performance, a few differences are worth to be discussed. First, the number of
features used in our algorithm was lower than the ones required by LB (three vs fifteen), reducing then
the computational cost needed. In addition, LB required the computation of both time- and
frequency-domain features, while CSC only time domain. The calculation of time-domain features is
recommended over frequency domain ones as their computation consumes less energy [31,32]. Second,
LB made use of a KNN classifier, that would require the entire training set to be stored locally on the
device. Third, the order of the blocks presented in LB (opposite than CSC) was not energy efficient.
Indeed, since climbing stairs is supposed to happen a fewer amount of times during a day with respect
to walking, detecting the change in altitude in the first place (as in our case) would reduce the time
windows in which the features required by the walking classifier would be needed to be computed.
It is though necessary to mention that LB was supposed to be utilized during ambulatory visits,
therefore the power consumption and model complexity were minor issues for Leuenberger et al. [16].

Regarding the duration of the time window, we found no difference between the original version
of LB and LB5 with windows of 5 s. This result might be explained by the fact that most of the
recordings of the test set during stair climbing lasted at least 15 s. Consequently, it was not possible to
determine whether our algorithm CSC would perform better on shorter stairs.

Another important point regarding the number of sensors and their positions has to be discussed.
Despite the fact that the use of sensors placed in different parts of the body is known to improve the
performance [33], in the context of active ageing, it is mandatory to reduce the intrusiveness of the
wearable devices for an effective and prolonged monitoring. Therefore, a wearable sensor resembling
a watch would likely require the least effort for its use. However, the wide spectrum of movements
performed by the upper limbs would likely produce false detection of stairs climbing only using
acceleration data, further favoring the insertion of a barometric sensor.

Finally, it is worth noting that the accelerometer resolution was 16 times lower in the test set
with respect to the training set, given the fact that different devices were employed for data collection.
To assess the possible effect this might have on the results described in the paper, we artificially
decreased the resolution of the training set and evaluated accuracy before and after. The change in
resolution did not have any relevant effect (the difference in accuracy on the training set was 0.0014%),
suggesting that the method is robust in the range of the resolutions considered, despite different
hardware characteristics.
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The present work contains several limitations, particularly regarding the definition of the gold
standard. In particular, we considered walking uphill and downhill as separate from climbing
stairs, even though older people would benefit from this activity [34,35] and thus it is worth to be
proper monitored. However, given the limited amount of data acquired during walking uphill and
downhill, we preferred to focus our effort only on climbing stairs, a more common scenario for in-home
monitoring during ageing.

Another problem regarded the presence of short stair landings in which we observed that two or
three steps were performed by the subjects but not counted as stairs in the gold standard. Although the
performances reported might suffer for this bias across all algorithms (and thus not a relevant problem
here), to the best of our knowledge, there is little discussion in the scientific community with respect to
the impact of the length of the stair landings on the fatigue of climbing stairs (longer stair landings
favor recovery). We leave the issue open to future discussions.

Finally, although the main target user for our smartwatch implementation were healthy young-old
people where preventive measures are most effective for active ageing, we believe that old-old and
very-old people, as well as sarcopenic or disease population, may also benefit from a proper monitoring
of this functional parameter. However, the oldest subject in our test set was 77 years old, and thus,
it was impossible to assess the performance for a higher range of ages. In this regard, a further test of
the algorithm on data collected from very-old people is therefore necessary.

Online Implementation

Among the numerous initiatives aimed to promote active ageing, the H2020 NESTORE project
(see the Acknowledgement section for details) objective is to support healthy older people’s wellbeing
and capacity to live independently. In the context of the project, an ad-hoc wristband form-factor
device was designed and built to monitor physical and social status of older people during both
daily living and physical activities. The device was based on a low-power wireless dual core
microcontroller targeting Bluetooth 4.2 and Bluetooth 5 Low Energy (BLE) applications (first core:
32 bit ARM-Cortex M3 @48 MHz, RAM: 28 kB, flash memory: 128 kB; second core: ARM-Cortex
M0, completely dedicated to manage BLE stack). It interacted with the user using a TFT color
display and a motor vibrator, while exchanging data with a smartphone and other nearby devices
through BLE connectivity. The architecture was specifically meant to limit the overall battery energy
expenditure of the system. The device collected data from: (i) an heart rate optical sensor; (ii) a triaxial
accelerometer; and (iii) a barometer. Raw data obtained by these sensors were used for the computation
of elaborated measures like number of steps, number of stair steps, travelled distance, elevation gain,
activity intensity, burned calories, and social interaction through proximity to beacon devices.

The algorithm described in this paper was effectively implemented in firmware for the
computation of the number of stair steps climbed. Given the high number of tasks that the RTOS
(Real-Time Operating System) preemptive architecture had to run concurrently, along with the overall
RAM limitation (only 28 kB), constrained the stair step counting algorithm to fit into a RAM memory
footprint of about 4 kB (and a time slice of 40 ms @48 MHz). A part from being used in practice for the
collection of our test set (see Section 2.1), the device will soon be tested for the long term monitoring of
older people living independently in a community house.

5. Conclusions

In this study, we proposed an algorithm meant to estimate the stair steps climbed by older people
in everyday life, based on accelerometer and barometer data collected by a wearable sensor worn on
the wrist. The algorithm was composed of a hierarchical classifier and a linear regression model.
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In addition, to classify the climbing stair phases, the work described an algorithm able to count
the number of stair steps, achieving satisfactory performance with only three simple features and
threshold-based classifiers. In this regard, the computational cost for climbing stair detection was
lower with respect to other state-of-the-art algorithms, while achieving similar stair step counting
errors. Therefore, the entire pipeline is suitable for online computation on a wearable device dedicated
to the described purpose.
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